WO2016090579A1 - 血液crp质控物及其质控方法 - Google Patents

血液crp质控物及其质控方法 Download PDF

Info

Publication number
WO2016090579A1
WO2016090579A1 PCT/CN2014/093500 CN2014093500W WO2016090579A1 WO 2016090579 A1 WO2016090579 A1 WO 2016090579A1 CN 2014093500 W CN2014093500 W CN 2014093500W WO 2016090579 A1 WO2016090579 A1 WO 2016090579A1
Authority
WO
WIPO (PCT)
Prior art keywords
crp
blood
mimetic
class
blood cell
Prior art date
Application number
PCT/CN2014/093500
Other languages
English (en)
French (fr)
Inventor
谢键
宋瑞霞
张华利
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201480082488.5A priority Critical patent/CN107076766B/zh
Priority to PCT/CN2014/093500 priority patent/WO2016090579A1/zh
Priority to CN201910711338.0A priority patent/CN110376387A/zh
Publication of WO2016090579A1 publication Critical patent/WO2016090579A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/96Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood or serum control standard

Definitions

  • the invention relates to the field of blood testing, in particular to a blood CRP quality control substance and a quality control method thereof.
  • CRP detection is a very effective indicator for the diagnosis of acute infections, cardiovascular diseases and cancer.
  • CRP detection is combined with routine blood tests, it can effectively identify the type of infectious agent and provide a targeted treatment plan.
  • analyzers There are already five types of analyzers for the combined detection of blood routine and CRP, but there are currently no controls for such instruments.
  • U.S. Patent 6,548,486 discloses a method for preparing a CRP control which is based on a serum or plasma matrix and exhibits good repeatability and the like when tested on a companion analyzer. The control also failed to complete simultaneous monitoring of blood routine and CRP.
  • a blood CRP control comprising a five-class white blood cell mimetic and a CRP antigen.
  • the concentration of the CRP antigen is from 0.1 mg/L to 100 mg/L.
  • the five-class leukocyte mimetic comprises neutrophils, lymphocytes, monocytes, basophils, and eosinophils, and the concentration of the five-class leukocyte mimetic is 1 ⁇ 10 9 / L ⁇ 30 ⁇ 10 9 / L.
  • the five-class white blood cell mimetic is a mammalian white blood cell.
  • the blood CRP control further comprises a red blood cell mimetic having a concentration of 1 x 10 12 /L to 6 x 10 12 .
  • the red blood cell mimetic is human red blood cells.
  • the blood CRP control further comprises a platelet mimetic having a concentration of 10 x 10 9 /L to 1000 x 10 9 /L.
  • the platelet mimetic is mammalian platelets or red blood cells.
  • the blood CRP control further comprises a substrate preservation solution.
  • the substrate preservation solution is formulated in a buffer containing water soluble proteins, polyhydroxy compounds, and small molecule amino acids.
  • the buffer is a citrate buffer or a phosphate buffer
  • the water soluble protein is bovine serum albumin or human serum albumin
  • the polyhydroxy compound is mannitol, lactose, glucose, Sucrose or trehalose, the small molecule amino acid being glycine, lysine, small molecule polypeptide or peptidoglycan.
  • a quality control method for blood CRP quality control includes the following steps:
  • An analyzer that provides a combined test of five-class blood routine and CRP
  • a white blood cell count and a CRP antigen reading obtained on the analyzer of the five-class blood routine and CRP combined detection are analyzed.
  • the concentration of the CRP antigen in the blood CRP control is from 0.1 mg/L to 100 mg/L.
  • the five-class leukocyte mimetic comprises neutrophils, lymphocytes, monocytes, basophils, and eosinophils, the five-class leukocyte mimic in the blood CRP
  • concentration in the control is 1 ⁇ 10 9 /L ⁇ 30 ⁇ 10 9 / L.
  • the blood CRP control further comprises a red blood cell mimetic having a concentration of 1 x 10 12 /L to 6 x 10 12 .
  • the blood CRP control further comprises a platelet mimetic having a concentration of 10 x 10 9 /L to 1000 x 10 9 /L.
  • the blood CRP control further comprises a substrate preservation solution.
  • the substrate preservation solution is prepared in a buffer containing a concentration of 0.1 g/L. ⁇ 10g / L of water-soluble protein, 1g / L ⁇ 50g / L of polyhydroxy compounds and 1g / L ⁇ 50g / L of small molecular amino acids.
  • the buffer is a citrate buffer or a phosphate buffer
  • the water soluble protein is bovine serum albumin or human serum albumin
  • the polyhydroxy compound is mannitol, lactose, glucose, Sucrose or trehalose, the small molecule amino acid being glycine, lysine, small molecule polypeptide or peptidoglycan.
  • This blood CRP control contains CRP antigen and a five-class white blood cell mimetic. When applied to an analyzer that combines five-class blood routine and CRP, it can simultaneously monitor blood routine and CRP.
  • This blood CRP quality control can be used for the daily quality control of the analyzer for the combined detection of five-class blood routine and CRP, monitoring and evaluating the precision of the analyzer test results.
  • FIG. 1 is a flow chart showing a quality control method of a blood CRP quality control according to an embodiment
  • Example 2 is a classification scatter plot of neutrophils, lymphocytes, monocytes, and basophils prepared in Example 1 in the Diff channel of Mindray BC-53 series blood cell analyzer, and the abscissa indicates the side.
  • the intensity of the scattered light, the ordinate indicates the intensity of the forward scattered light;
  • Figure 3 is a histogram of neutrophils, lymphocytes, monocytes, and basophils prepared in Example 1 in the Basil channel of the Mindray BC-53 series blood cell analyzer;
  • Figure 4 is a classification scatter plot of the eosinophils prepared in Example 1 in the Diff channel of the Mindray BC-53 series blood cell analyzer, the abscissa indicates the intensity of the side scattered light, and the ordinate indicates the intensity of the forward scattered light;
  • Figure 5 is a histogram of the red blood cell mimetic obtained in Example 1 detected by the RBC channel of the Mindray BC-53 series blood cell analyzer;
  • Figure 6 is a histogram of the platelet mimetic obtained in Example 1 detected on the PLT channel of the Mindray BC-53 series blood cell analyzer;
  • Example 7 is a classification scatter diagram of the blood CRP control substance prepared in Example 1 in the Diff channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 8 is a histogram of the blood CRP control substance prepared in Example 1 in the Basil channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 9 is a classification scatter plot of lymphocytes, monocytes, and basophils prepared in Example 2 in the Diff channel of the Mindray BC-53 series blood cell analyzer.
  • the abscissa indicates the intensity of side scattered light, vertical
  • the coordinates represent the forward scattered light intensity;
  • Figure 10 is a histogram of lymphocytes, monocytes, and basophils prepared in Example 2 in the Basil channel of the Mindray BC-53 series blood cell analyzer;
  • Figure 11 is a classification scatter plot of the neutrophils prepared in Example 2 in the Diff channel of the Mindray BC-53 series blood cell analyzer.
  • the abscissa indicates the intensity of the side scattered light and the ordinate indicates the intensity of the forward scattered light. ;
  • Figure 12 is a classification scatter plot of the eosinophils prepared in Example 2 in the Diff channel of the Mindray BC-53 series blood cell analyzer, the abscissa indicates the intensity of the side scattered light, and the ordinate indicates the intensity of the forward scattered light;
  • Figure 13 is a histogram of the red blood cell mimetic obtained in Example 2 in the RBC channel of the Mindray BC-53 series blood cell analyzer
  • Figure 14 is the platelet mimetic obtained in Example 2 in the Mindray BC-53 series blood cell analyzer a histogram obtained by detecting the PLT channel;
  • Figure 15 is a classification scatter plot of the blood CRP control substance prepared in Example 2 in the Diff channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 16 is a histogram of the blood CRP control substance prepared in Example 2 in the Basil channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 17 is a classification scatter plot of the blood CRP control substance prepared in Example 3 in the Diff channel of the Mindray BC-55/58 series blood cell analyzer.
  • the abscissa indicates the intensity of the side scattered light and the ordinate indicates the forward scatter. brightness;
  • Figure 18 is a classification scatter plot of the blood CRP control substance prepared in Example 3 in the Basu channel of Mindray BC-55/58 series blood cell analyzer.
  • the abscissa indicates the intensity of side scattered light and the ordinate indicates forward scattering. brightness;
  • Figure 19 is a classification scatter plot of the blood CRP control substance prepared in Example 3 in the Diff channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 20 is a histogram of the blood CRP control substance prepared in Example 3, which was detected by the Baso channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 21 is a classification scatter plot of the blood CRP control substance prepared in Example 4 in the Bashu channel of the Mindray BC-68 series blood cell analyzer, the abscissa indicates the intensity of the side scattered light, and the ordinate indicates the fluorescence intensity;
  • Figure 22 is a classification scatter plot of the blood CRP control substance prepared in Example 4 in the Basu channel of Mindray BC-68 series blood cell analyzer, the abscissa indicates the intensity of the side scattered light, and the ordinate indicates the intensity of the forward scattered light. ;
  • Figure 23 is a blood CRP control substance prepared in Example 4 at SYSMEX
  • Figure 24 is a blood CRP control prepared in Example 4 at SYSMEX
  • Figure 25 is a classification scatter diagram of the blood CRP control substance prepared in Example 4 in the Diff channel of the Mindray Whole Blood CRP Analyzer;
  • Figure 26 is a histogram of the blood CRP control substance prepared in Example 4 in the Basil channel of the Mindray Whole Blood CRP Analyzer.
  • CRP antigens and five-class white blood cell mimics are generally not used in combination because the presence of antigen is expected to affect the stability of various cell mimics.
  • CRP antigen has no effect on leukocyte mimics.
  • the antigen can obtain long-term stable composite blood control products of five-class white blood cells and CRP antigens.
  • One control can complete blood routine testing and Quality control of CRP antigen detection, easy to use and more accurate results.
  • Blood CRP controls of one embodiment include five-class white blood cell mimics, CRP antigens, red blood cell mimics, platelet mimetics, and substrate preservation solutions.
  • the five-class white blood cell mimetic, CRP antigen, red blood cell mimetic, and platelet mimetic are separately stored in a matrix preservation solution, and then mixed in proportion to obtain a desired blood CRP control.
  • both red blood cell mimetics and platelet mimics can be omitted.
  • the CRP antigen may be a purified human CRP antigen or a commercially available CRP antigen, which is known to be CRP concentration when detected by an immunoturbidimetric analyzer or by traceability. In blood CRP controls, the concentration of CRP antigen can range from 0.1 mg/L to 100 mg/L.
  • the concentration of the five-class white blood cell mimetic is 1 ⁇ 10 9 /L ⁇ 30 ⁇ 10 9 /L.
  • Five-class white blood cell mimics include neutrophils, lymphocytes, monocytes, basophils, and eosinophils to mimic the properties of white blood cells in the blood.
  • the five-class white blood cell mimetic of the present application which contains five subtypes of white blood cells, can mimic the properties of white blood cells, is separated in the detection of scattered light or fluorescent signals on a fully automated blood analyzer, and exhibits the results of five classifications of white blood cells.
  • This five-class white blood cell mimic can accurately simulate human white blood cells on a blood cell analyzer using fluorescence, laser light scattering, and electrical impedance methods.
  • the five-class white blood cell mimetic can be prepared by taking fresh anticoagulant, lysing the red blood cells, separating and washing the white blood cells, and appropriately fixing, then obtaining a mimic of one or more cell subtypes of the white blood cells, adjusting the subtypes. After concentration, the mixture was mixed to obtain a five-class white blood cell mimic of the target concentration.
  • leukocyte mimics or various subtypes of leukocytes, from red blood cells of birds, reptiles or mammals. Some animals have different properties of white blood cells and human white blood cells. They can regulate cell volume and intracellular particle complexity by osmotic pressure, auxiliary reagents and temperature, and then fix them to simulate human leukocyte subtypes.
  • a five-class white blood cell mimetic of the present application can be prepared by simulating a mimetic of each subtype of leukocytes in a scattered light detection signal.
  • the five-class white blood cell mimetic can be prepared from white blood cells in human blood or mammalian white blood cells similar to human white blood cells, and generally includes: bovine white blood cells, porcine leukocytes, sheep white blood cells, horse white blood cells, rabbit white blood cells, and the like.
  • the operation of the five-class white blood cell mimetic may be: taking fresh EDTA anticoagulation, dissolving the red blood cells with Tris-NH 4 Cl solution, separating the white blood cells by centrifugation, discarding the supernatant, and washing the white blood cells twice with PBS to obtain the hobby.
  • Neutrophils, lymphocytes, monocytes, and basophils take fresh EDTA anticoagulation, centrifuge to remove the plasma and fat from the supernatant, and dissolve the precipitated red blood cells with Tris-NH 4 Cl solution.
  • the leukocytes were separated by centrifugation, the supernatant was discarded, and the residual red blood cells were dissolved in Tris-NH 4 Cl solution, the white blood cells were separated by centrifugation, the supernatant was discarded, and the bovine white blood cells were washed twice with PBS to obtain eosinophils; neutrophils and lymphocytes were obtained. Cells, monocytes, and basophils and eosinophils were mixed to obtain a five-class white blood cell mimetic.
  • the blood CRP control may further comprise a red blood cell mimetic having a concentration of 1 x 10 12 /L to 6 x 10 12 .
  • the red blood cell mimetic can be prepared from human red blood cells, fresh anticoagulation is taken, and after removing white blood cells and platelets, the red blood cells are adjusted and fixed by a suitable solution to obtain red blood cell mimics. For example, after filtering and removing white blood cells and platelets from the blood to obtain suspended red blood cells, the red blood cells are treated with a strong oxidizing agent and a low concentration of aldehydes to stabilize the cell membrane and slow down metabolism, and then fixed to prepare a red blood cell mimetic.
  • This red blood cell mimetic can simulate red blood cells on a blood cell analyzer using fluorescence and electrical impedance methods, and it can also be hemolyzed without disturbing the measurement of white blood cells and CRP.
  • the blood CRP control may further comprise platelets having a concentration of 10 x 10 9 /L to 1000 x 10 9 /L.
  • Platelet mimetics can be prepared from mammalian platelets or mammalian red blood cells similar to human platelets, and generally include: bovine platelets, porcine platelets, sheep platelets, horse platelets, sheep red blood cells, and the like.
  • the platelet mimetic can be prepared by taking fresh citric acid anticoagulation, standing overnight, layering, taking the supernatant for low-speed centrifugation, taking the supernatant, and then centrifuging the supernatant at high speed, using citric acid-PEG buffer. The precipitate was washed twice, and a part of the supernatant was taken, and the collected supernatant was combined to obtain platelets; the density of the platelets was adjusted and fixed, and after the fixation was completed, the cells were centrifuged and the supernatant was discarded, and the platelet mimetic was obtained after washing.
  • This platelet mimetic accurately mimics platelets on a blood cell analyzer using fluorescence and electrical impedance methods.
  • the blood CRP control further comprises a matrix preservation solution for providing a microenvironment for each cell mimetic and CRP antigen
  • the matrix preservation solution is prepared by using a buffer solution
  • the matrix preservation solution contains water-soluble protein and more Hydroxy compounds as well as small molecule amino acids.
  • the substrate preservation solution may have a concentration of 0.1 g/L. ⁇ 10g / L of water-soluble protein, 1g / L ⁇ 50g / L of polyhydroxy compounds and 1g / L ⁇ 50g / L of small molecular amino acids.
  • the matrix preservation solution contains water-soluble proteins, polyhydroxy compounds and small molecular amino acids. On the one hand, it can simulate various physiological conditions of human blood, on the other hand, it reduces the immunogens of five-class white blood cell mimics, red blood cell mimics and platelet mimics. Sexuality, avoiding the CRP antigen and its immune response.
  • the buffer may be citrate buffer (CPBS) or phosphate buffered saline (PBS).
  • the water soluble protein is bovine serum albumin or human serum albumin.
  • the polyhydroxy compound is mannitol, lactose, glucose, sucrose or trehalose. Small molecule amino acids are glycine, lysine, small molecule polypeptide or peptide polysaccharide.
  • Small molecule polypeptides generally refer to high activity peptides consisting of amino acids without protein secondary or tertiary structure.
  • This blood CRP control contains CRP antigen and a five-class white blood cell mimetic. When applied to an analyzer that combines five-class blood routine and CRP, it can simultaneously monitor blood routine and CRP.
  • This blood CRP quality control can be used for the daily quality control of the analyzer for the combined detection of five-class blood routine and CRP, monitoring and evaluating the precision of the analyzer test results.
  • the quality control method of the above blood CRP quality control device as shown in FIG. 1 includes the following steps:
  • the CRP controls are as described above.
  • the analyzer for the combined detection of the five-class blood routine and the CRP is selected as the Mindray Whole Blood CRP Analyzer.
  • the blood sample to be tested is obtained by conventional treatment.
  • This blood CRP quality control can be used for the daily quality control of the analyzer for the combined detection of five-class blood routine and CRP, monitoring and evaluating the precision of the analyzer test results.
  • the blood cell analyzers are Mindray BC-53 series, BC-55/58 series, BC-68 series, and SYSMEX.
  • XE series blood cell analyzer, five-class blood routine and CRP combined detection analyzer is Mindray whole blood CRP analyzer, CRP antigen purchased from Roche Diagnostics Shanghai Co., Ltd., the specification is 1000-3000mg / L.
  • the substrate preservation solution used in this example was prepared by using PBS to prepare bovine serum albumin at a concentration of 1 g/L, 2 g/L of lactose, 2 g/L of mannitol, 7 g/L of trehalose, 3 g/L of glycine, 5 g. /L polylysine and 0.1 g/L chloramphenicol.
  • Fresh EDTA anticoagulated bovine blood was taken, red blood cells were dissolved in Tris-NH 4 Cl solution, bovine white blood cells were separated by centrifugation, and the supernatant was discarded. The leukocytes were washed twice with PBS and the cell density was adjusted to about 1.5 x 10 10 / liter.
  • the white blood cells were fixed at a final concentration of 1% formaldehyde at 30 ° C for 20 h, and the white blood cells were fixed at a final concentration of 0.025% glutaraldehyde at 30 ° C for 4.5 h.
  • the leukocytes were fixed by centrifugation, the supernatant was discarded, and washed twice with PBS under the same conditions, and the obtained neutrophils, lymphocytes, monocytes, and basophils were preserved with a matrix preservation solution.
  • the neutrophils, lymphocytes, monocytes, and basophils produced in the Mind BC-53 series blood cell analyzer Diff channel detection, there are three groups of obvious scatter
  • the three groups of particles have different degrees of differentiation in the cell volume measured by forward scattered light (FS) and the particle complexity measured by side scattered light (SS), which can be accurately divided into lymphocytes and single nuclei. Cells and neutrophils.
  • FS forward scattered light
  • SS side scattered light
  • neutrophils, lymphocytes, monocytes, and basophils were produced in the Mind BC-53 series hematology analyzer Baso channel, and basophils appeared in Figure 3. Right position.
  • the neutrophils, lymphocytes, monocytes, and basophils produced can be accurately monitored and counted on the Mindray BC-53 series blood cell analyzer.
  • Fresh EDTA anticoagulated bovine blood was taken, and the plasma and fat in the supernatant were aspirated, and the precipitated red blood cells were dissolved in Tris-NH 4 Cl solution, and the bovine white blood cells were separated by centrifugation, and the supernatant was discarded.
  • the residual red blood cells were dissolved in Tris-NH 4 Cl solution, the bovine white blood cells were separated by centrifugation, and the supernatant was discarded.
  • Bovine leukocytes were washed twice with PBS and the cell density was adjusted to about 1.5 x 10 10 / liter.
  • White blood cells were fixed by adding glutaraldehyde at a final concentration of 1% at 30 °C overnight.
  • the leukocytes were fixed by centrifugation, the supernatant was discarded, and washed twice with PBS under the same conditions, and the obtained eosinophils were stored with a matrix preservation solution.
  • the neutrophils, lymphocytes, monocytes, and basophils prepared in (1) and the eosinophils prepared in (2) are mixed at a volume ratio of 10:1, and are preserved in a substrate for preservation.
  • Human red blood cells were collected, white blood cells, platelets, etc. were filtered using a leukocyte filter. Potassium dichromate with a final concentration of 0.06% and 0.0125% glutaraldehyde were added to the filtered suspended red blood cells, treated at room temperature for 2 hours, centrifuged and discarded. The cells were washed once with physiological saline and a substrate preservation solution under the above conditions, and the obtained red blood cell mimics were stored in a matrix preservation solution.
  • the prepared red blood cell mimics can be used to characterize the volume distribution of red blood cells by the electrical impedance method when the Ryros channel of the Mindray BC-53 series blood cell analyzer is detected, and is accurately recognized as red blood cells on the blood cell analyzer. Thereby monitoring red blood cell related parameters.
  • the prepared platelet mimics can be used to characterize the volume distribution of platelets by the electrical impedance method when the Piri channel of the Mindray BC-53 series blood cell analyzer is detected, and is accurately identified as platelets on the blood cell analyzer. Thereby monitoring platelet related parameters.
  • the prepared five-class white blood cell mimetic, red blood cell mimetic, platelet mimetic and high-purity CRP antigen were prepared as a blood CRP control substance using a matrix preservation solution as a regulating reagent.
  • concentration of the CRP antigen is 5 mg/L
  • volume ratio of the five-class leukocyte mimetic, the red blood cell mimetic, the platelet mimetic, and the matrix preservation solution is 2:30:1:67.
  • the prepared blood CRP quality control uses the Mindray Whole Blood CRP Analyzer to detect CRP by immunoturbidimetric method.
  • the CRP results are shown in Table 1 below.
  • the mixed Diff scatter plot and Baso histogram are shown in Figures 7 and 8, respectively. .
  • Table 1 Comparison table of CRP test results of blood CRP control substances prepared in Example 1. Theoretical concentration Actual test concentration Relative deviation CRP concentration 1 5.71 5.95 4.20% CRP concentration 2 22.86 26.28 14.96% CRP concentration 3 45.71 47.50 3.92%
  • Example 1 the blood CRP control prepared in Example 1 can completely retain all the characteristics of the five-class blood routine control when tested by the Mindray Whole Blood CRP Analyzer. It also accurately characterizes CRP.
  • the substrate preservation solution used in this example was prepared using CPBS, containing 2 g/L of bovine serum albumin, 1 g/L of glucose, 2 g/L of sucrose, 8 g/L of trehalose, 2 g/L of mannitol, 5 g/ Lysine of L, 5 g/L of peptide polysaccharide, and 0.1 g/L of kanamycin sulfate.
  • Fresh EDTA anticoagulated pig blood was taken and allowed to stand overnight. After stratification, the supernatant was centrifuged, the supernatant was discarded, the red blood cells were dissolved in Tris-NH 4 Cl solution, the porcine leukocytes were separated by centrifugation, and the pellet was washed twice with PBS, and the count was adjusted. Up to 10 ⁇ 10 10 / liter. The concentrated porcine leukocytes were mixed with the cell separation solution at 2:1, and centrifuged at a low speed. The intermediate layer of leukocytes was washed twice with PBS and adjusted to a value of about 1.5 ⁇ 10 10 /liter.
  • the white blood cells were fixed at a final concentration of 1% formaldehyde at 30 ° C for 20 h, and the white blood cells were fixed at a final concentration of 0.025% glutaraldehyde at 30 ° C for 4.5 h.
  • the leukocytes were fixed by centrifugation, the supernatant was discarded, and washed twice with PBS under the same conditions, and the obtained lymphocytes, monocytes, and basophils were stored with a matrix preservation solution.
  • the prepared lymphocytes, monocytes, and basophils were detected in the Minor BC-53 series hematology analyzer Baso channel, and basophils appeared in the right position of the histogram.
  • the prepared lymphocytes, monocytes, and basophils can be accurately monitored and counted on the Mindray BC-53 series blood cell analyzer.
  • Fresh EDTA anticoagulated bovine blood was taken, and the plasma and fat in the supernatant were aspirated, and the precipitated red blood cells were dissolved in Tris-NH 4 Cl solution, and the bovine white blood cells were separated by centrifugation, and the supernatant was discarded.
  • the residual red blood cells were dissolved in Tris-NH 4 Cl solution, the bovine white blood cells were separated by centrifugation, and the supernatant was discarded.
  • Bovine leukocytes were washed twice with PBS and the cell density was adjusted to approximately 1.5 x 10 10 / liter.
  • the white blood cells were fixed at a final concentration of 1% formaldehyde at 30 ° C for 20 h, and the white blood cells were fixed at a final concentration of 0.025% glutaraldehyde at 30 ° C for 4.5 h.
  • the leukocytes were fixed by centrifugation, the supernatant was discarded, and washed twice with PBS under the same conditions, and the obtained neutrophils were preserved with a matrix preservation solution.
  • the prepared neutrophils were well clustered in the Diff channel of the Mindray BC-53 series hematology analyzer, with forward scattered light (FS) and side scattered light (SS). There are very obvious signals that can be accurately classified as neutrophils on a blood cell analyzer to monitor neutrophil counts.
  • Fresh EDTA anticoagulated pig blood was taken and allowed to stand overnight. After stratification, the supernatant was centrifuged, the supernatant was discarded, the red blood cells were dissolved in Tris-NH 4 Cl solution, the porcine leukocytes were separated by centrifugation, and the pellet was washed twice with PBS, and the count was adjusted. Up to 10 ⁇ 10 10 / liter. The concentrated porcine leukocytes were mixed with the cell separation solution 1:1, and centrifuged at a low speed. The bottom white blood cells were washed twice with PBS and adjusted to a value of about 1.5 ⁇ 10 10 /liter.
  • White blood cells were fixed by adding glutaraldehyde at a final concentration of 1% at 30 °C overnight.
  • the leukocytes were fixed by centrifugation, the supernatant was discarded, and washed twice with PBS under the same conditions, and the obtained eosinophils were stored with a matrix preservation solution.
  • the eosinophils prepared by the above method have better cell aggregation when detected by the Diff channel of the Mindray BC-53 series blood cell analyzer, in forward scattered light (FS) and side scattered light (SS). There are very obvious signals that can be accurately classified as eosinophils on a blood cell analyzer to monitor eosinophil counts.
  • Lymphocytes, monocytes, and basophils prepared in (1), neutrophils prepared in (2), and eosinophils prepared in (3) are 3:2 by volume: 1 Mix to obtain a five-class white blood cell mimetic stored in the substrate preservation solution.
  • Human red blood cells were collected, white blood cells and platelets were filtered using a leukocyte filter, and sodium nitrite and 0.0125% glutaraldehyde were added to the suspended red blood cells at a final concentration of 0.05%, treated at room temperature for 2 hours, centrifuged and discarded. The cells were washed once with physiological saline and a preservation solution under the above conditions, and the obtained red blood cell mimetic was stored with a matrix preservation solution.
  • the prepared red blood cell mimics can be used to characterize the volume distribution of red blood cells by the electrical impedance method when the Ryerson BC-53 series blood cell analyzer RBC channel is detected, and is accurately recognized as red blood cells on the blood cell analyzer. Thereby monitoring red blood cell related parameters.
  • the prepared platelet mimics can be used to characterize the volume distribution of platelets by an electrical impedance method when detected by a PLT channel of a blood cell analyzer, and are accurately identified as platelets on a blood cell analyzer to monitor platelet-related parameters. .
  • the prepared five-class white blood cell mimetic, red blood cell mimetic, platelet mimetic and high-purity CRP antigen were prepared as a blood CRP control substance using a matrix preservation solution as a regulating reagent.
  • concentration of the CRP antigen is 10 mg/L
  • volume ratio of the five-class leukocyte mimetic, the red blood cell mimetic, the platelet mimetic, and the substrate preservation solution is 2:20:1:10.
  • the prepared blood CRP quality control uses the Mindray Whole Blood CRP Analyzer to detect CRP by immunoturbidimetric method.
  • the CRP results are shown in Table 2 below.
  • the mixed Diff scatter plot and Baso histogram are shown in Fig. 15 and Fig. 16, respectively. .
  • the substrate preservation solution used in this example was prepared in CPBS, containing 1 g/L of bovine serum albumin, 5 g/L of lactose, 2 g/L. Sucrose, 5 g/L trehalose, 2 g/L mannitol, 5 g/L glycine, 5 g/L peptidoglycan, and 0.2 g/L paraben.
  • the neutrophils, lymphocytes, monocytes, and basophils prepared in (1) and the eosinophils prepared in (2) are mixed at a volume ratio of 6:1 to obtain a preservation in the substrate.
  • the prepared five-class white blood cell mimetic, red blood cell mimetic, platelet mimetic and high-purity CRP antigen were prepared as a blood CRP control substance using a matrix preservation solution as a regulating reagent.
  • the concentration of the CRP antigen was 15 mg/L, and the volume ratio of the five-class white blood cell mimics, the red blood cell mimetic, the platelet mimetic, and the matrix preservation solution was 2:11:1:1.
  • the prepared blood CRP control substance was tested for CRP by immunoturbidimetric method using the Mindray Whole Blood CRP Analyzer.
  • the CRP results are shown in Table 3 below.
  • the mixed whole blood CRP control substance was analyzed in Mind BC-55/58 series blood cells.
  • the Diff and Baso scatter plots are shown in Figure 17 and Figure 18, respectively.
  • the Diff scatter plot and the Baso histogram of the Mindray Whole Blood CRP Analyzer are shown in Figures 19 and 20, respectively.
  • the substrate preservation solution used in this example was prepared with PBS, 2 g/L of bovine serum albumin, 2 g/L of glucose, 3 g/L of lactose, 3 g/L of mannitol, 5 g/L of trehalose, 5 g/L. Polylysine, 5 g/L of peptide polysaccharide, and 0.2 g/L of paraben.
  • the neutrophils, lymphocytes, monocytes, and basophils prepared in (1) and the eosinophils prepared in (2) are mixed at a volume ratio of 8:1, and are preserved in a substrate for preservation.
  • the prepared five-class white blood cell mimetic, red blood cell mimetic, platelet mimetic and high-purity CRP antigen were prepared as a blood CRP control substance using a matrix preservation solution as a regulating reagent.
  • concentration of the CRP antigen is 30 mg/L
  • volume ratio of the five-class leukocyte mimetic, the red blood cell mimetic, the platelet mimetic, and the matrix preservation solution is 1:10:1:8.
  • the prepared blood CRP control was tested for CRP by immunoturbidimetric method using the Mindray Whole Blood CRP Analyzer.
  • the CRP results are shown in Table 4 below.
  • the mixed whole blood CRP control was in the Mind BC-68 series blood cell analyzer Diff. And Baso scatter plots are shown in Figure 21 and Figure 22, respectively, at SYSMEX
  • the Diff and Baso scatter plots of the XE series blood cell analyzer are shown in Fig. 23 and Fig. 24, respectively, and the Diff scatter plot and the Baso histogram of the Mindray whole blood CRP analyzer are shown in Fig. 25 and Fig. 26, respectively.
  • FIG. 21, FIG. 22, FIG. 23, FIG. 24, FIG. 25 and FIG. 26, it can be seen that the blood CRP control substance prepared in Example 4 uses the Mindray BC-68 series blood cell analyzer, SYSMEX.
  • SYSMEX Mindray BC-68 series blood cell analyzer
  • XE series blood cell analyzer and Mindray whole blood CRP analyzer are tested, all the characteristics of five-class blood routine control can be completely preserved, and CRP can be accurately characterized. It is indicated that the blood CRP control prepared in Example 4 has a significant five-class effect when applied to other brands of blood cell analyzers.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种血液CRP质控物,包括五分类白细胞模拟物和CRP抗原。这种血液CRP质控物选择CRP抗原和五分类白细胞模拟物进行联用,在应用于五分类血常规与CRP联合检测的分析仪时,能够同时完成对血常规和CRP的监测。这种血液CRP质控物可以用于五分类血常规与CRP联合检测的分析仪的日常质控,监控和评价分析仪检测结果的精密度。本发明还公开了上述血液CRP质控物的质控方法。

Description

血液CRP质控物及其质控方法
【技术领域】
本发明涉及血液检测领域,特别是涉及一种血液 CRP 质控物及其质控方法。
【背景技术】
CRP(C反应蛋白)检测是作为诊断急性感染、心血管疾病以及癌症等十分有效的指标。CRP检测与血常规检测联用时,可以有效地鉴别感染原的种类,提供针对性的治疗方案。现市面上已经出现五分类血常规与CRP联合检测的分析仪,但目前尚无针对此类仪器的质控物。
现在有多种五分类血常规质控物的实现方法,一般采用人或动物的红细胞、白细胞等加工后模拟质控物中的红细胞、白细胞以及血小板等无法完成同时对血常规和CRP的监测。
美国专利6548646公开了一种CRP质控物的制备方法,其基于血清或者血浆基质,在配套的分析仪上检测时,重复性等性能表现较好。该质控品也无法完成同时对血常规和CRP的监测。
目前,需要有一种针对同时进行血常规和CRP检测的分析仪的质控品,用于这种仪器的质量控制。
【发明内容】
基于此,有必要提供一种CRP抗原和五分类白细胞模拟物联用的血液CRP质控物。
此外,还有必要提供一种上述血液CRP质控物的质控方法。
一种血液CRP质控物,包括五分类白细胞模拟物和CRP抗原。
在一个实施例中,所述CRP抗原的浓度为0.1mg/L~100mg/L。
在一个实施例中,所述五分类白细胞模拟物包括嗜中性粒细胞、淋巴细胞、单核细胞、嗜碱性粒细胞和嗜酸性粒细胞,所述五分类白细胞模拟物的浓度为1×109个/L ~ 30×109个/L。
在一个实施例中,所述五分类白细胞模拟物为哺乳动物白细胞。
在一个实施例中,所述血液CRP质控物还包括红细胞模拟物,所述红细胞模拟物的浓度为1×1012个/L ~ 6×1012个。
在一个实施例中,所述红细胞模拟物为人红细胞。
在一个实施例中,所述血液CRP质控物还包括血小板模拟物,所述血小板模拟物的浓度为10×109个/L~1000×109个/L。
在一个实施例中,所述血小板模拟物为哺乳动物血小板或红细胞。
在一个实施例中,所述血液CRP质控物还包括基质保存液。
在一个实施例中,所述基质保存液采用缓冲液配制,所述基质保存液中含有水溶性蛋白质、多羟基化合物以及小分子氨基酸。
在一个实施例中,所述缓冲液为柠檬酸盐缓冲液或磷酸盐缓冲液,所述水溶性蛋白质为牛血清蛋白或人血清白蛋白,所述多羟基化合物为甘露醇、乳糖、葡萄糖、蔗糖或海藻糖,所述小分子氨基酸为甘氨酸、赖氨酸、小分子多肽或肽多糖。
一种血液CRP质控物的质控方法,包括如下步骤:
提供血液CRP质控物,所述血液CRP质控物包括五分类白细胞模拟物和CRP抗原;
提供五分类血常规与CRP联合检测的分析仪;
提供待测血液样本;
分析所述血液CRP质控物在所述五分类血常规与CRP联合检测的分析仪上得到的白细胞计数和CRP抗原读数;以及
分析所述待测血液样本在所述五分类血常规与CRP联合检测的分析仪上得到的白细胞计数和CRP抗原读数。
在一个实施例中,所述CRP抗原在所述血液CRP质控物中的浓度为0.1mg/L~100mg/L。
在一个实施例中,所述五分类白细胞模拟物包括嗜中性粒细胞、淋巴细胞、单核细胞、嗜碱性粒细胞和嗜酸性粒细胞,所述五分类白细胞模拟物在所述血液CRP质控物中的浓度为1×109个/L ~ 30×109个/L。
在一个实施例中,所述血液CRP质控物还包括红细胞模拟物,所述红细胞模拟物的浓度为1×1012个/L ~ 6×1012个。
在一个实施例中,所述血液CRP质控物还包括血小板模拟物,所述血小板模拟物的浓度为10×109个/L~1000×109个/L。
在一个实施例中,所述血液CRP质控物还包括基质保存液。
在一个实施例中,所述基质保存液采用缓冲液配制,所述基质保存液中含有浓度为0.1g/L ~10g/L的水溶性蛋白质、1g/L ~50g/L的多羟基化合物以及1g/L ~50g/L的小分子氨基酸。
在一个实施例中,所述缓冲液为柠檬酸盐缓冲液或磷酸盐缓冲液,所述水溶性蛋白质为牛血清蛋白或人血清白蛋白,所述多羟基化合物为甘露醇、乳糖、葡萄糖、蔗糖或海藻糖,所述小分子氨基酸为甘氨酸、赖氨酸、小分子多肽或肽多糖。
这种血液CRP质控物含有CRP抗原和五分类白细胞模拟物,在应用于五分类血常规与CRP联合检测的分析仪时,能够同时完成对血常规和CRP的监测。这种血液CRP质控物可以用于五分类血常规与CRP联合检测的分析仪的日常质控,监控和评价分析仪检测结果的精密度。
【附图说明】
图1为一实施方式的血液CRP质控物的质控方法的流程图;
图2为实施例1制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图3为实施例1制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Baso通道检测得到的直方图;
图4为实施例1制得的嗜酸性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图5为实施例1制得的红细胞模拟物在迈瑞BC-53系列血细胞分析仪RBC通道检测得到的直方图;
图6为实施例1制得的血小板模拟物在迈瑞BC-53系列血细胞分析仪PLT通道检测得到的直方图;
图7为实施例1制得的血液CRP质控物在迈瑞全血CRP分析仪Diff通道检测得到的分类散点图;
图8为实施例1制得的血液CRP质控物在迈瑞全血CRP分析仪Baso通道检测得到的直方图;
图9为实施例2制得的淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图10为实施例2制得的淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Baso通道检测得到的直方图;
图11为实施例2制得的嗜中性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图12为实施例2制得的嗜酸性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图13为实施例2制得的红细胞模拟物在迈瑞BC-53系列血细胞分析仪RBC通道检测得到的直方图;图14为实施例2制得的血小板模拟物在迈瑞BC-53系列血细胞分析仪PLT通道检测得到的直方图;
图15为实施例2制得的血液CRP质控物在迈瑞全血CRP分析仪Diff通道检测得到的分类散点图;
图16为实施例2制得的血液CRP质控物在迈瑞全血CRP分析仪Baso通道检测得到的直方图;
图17为实施例3制得的血液CRP质控物在迈瑞BC-55/58系列血细胞分析仪Diff通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图18为实施例3制得的血液CRP质控物在迈瑞BC-55/58系列血细胞分析仪Baso通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图19为实施例3制得的血液CRP质控物在迈瑞全血CRP分析仪Diff通道检测得到的分类散点图;
图20为实施例3制得的血液CRP质控物在迈瑞全血CRP分析仪Baso通道检测得到的直方图;
图21为实施例4制得的血液CRP质控物在迈瑞BC-68系列血细胞分析仪Baso通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示荧光强度;
图22为实施例4制得的血液CRP质控物在迈瑞BC-68系列血细胞分析仪Baso通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图23为实施例4制得的血液CRP质控物在SYSMEX XE系列血细胞分析仪Baso通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示荧光强度;
图24为实施例4制得的血液CRP质控物在SYSMEX XE系列血细胞分析仪Baso通道检测得到的分类散点图,横坐标表示侧向散射光强度,纵坐标表示前向散射光强度;
图25为实施例4制得的血液CRP质控物在迈瑞全血CRP分析仪Diff通道检测得到的分类散点图;
图26为实施例4制得的血液CRP质控物在迈瑞全血CRP分析仪Baso通道检测得到的直方图。
【具体实施方式】
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
传统的观点中,一般不会选择CRP抗原和五分类白细胞模拟物进行联用,因为预计抗原的存在会影响各类细胞模拟物的稳定性。申请人经过研究,发现CRP抗原对白细胞模拟物基本没有影响,使用合适的基质,抗原获得长期稳定的五分类白细胞和CRP抗原的复合血液质控品,一个质控品即可完成血常规检测和CRP抗原检测的质控,使用方便且结果更准确。
一实施方式的血液CRP质控物,包括五分类白细胞模拟物、CRP抗原、红细胞模拟物、血小板模拟物和基质保存液。
将五分类白细胞模拟物、CRP抗原、红细胞模拟物和血小板模拟物分别保存在基质保存液中,接着按比例混合,即可得到所需的血液CRP质控物。
在其他的实施方式中,红细胞模拟物和血小板模拟物均可以省略。
CRP抗原可以选用纯化的人CRP抗原,或者商品化的CRP抗原,其在使用免疫比浊法的分析仪上检测时,可知CRP浓度,或者通过溯源方式得知浓度。血液CRP质控物中,CRP抗原的浓度可以为0.1mg/L~100mg/L。
血液CRP质控物中,五分类白细胞模拟物的浓度为1×109个/L ~ 30×109个/L。五分类白细胞模拟物包括嗜中性粒细胞、淋巴细胞、单核细胞、嗜碱性粒细胞和嗜酸性粒细胞,以模拟血液中白细胞的性质。
本申请的五分类白细胞模拟物,含有白细胞的五个亚型细胞,能够模拟白细胞的性质,在全自动血液分析仪上散射光或荧光信号检测中,被区分开,展现白细胞五分类的结果。这种五分类白细胞模拟物在使用荧光、激光散射及电阻抗方法的血细胞分析仪上可准确模拟人白细胞。
该五分类白细胞模拟物可以通过如下操作制备得到:取新鲜抗凝血,裂解红细胞后,分离洗涤白细胞,适当固定后,可以得到白细胞一个或多个细胞亚型的模拟物,调整各亚型的浓度后混合得到目标浓度的五分类白细胞模拟物。此外,也有文献公开了从鸟类、爬行动物或哺乳动物的红细胞制备白细胞模拟物,或者白细胞各亚型的方法。一些动物的白细胞和人类白细胞性质有所差异,可以通过渗透压、辅助试剂以及温度等条件调节细胞体积及细胞内颗粒复杂程度,再固定来模拟人类的白细胞各亚型。基本上,能在散射光检测信号中模拟白细胞各亚型的模拟物均可制备本申请的五分类白细胞模拟物。
本实施方式中,五分类白细胞模拟物可以由人类血液中的白细胞或者与人白细胞类似的哺乳动物白细胞制备,一般包括:牛白细胞、猪白细胞、羊白细胞、马白细胞、兔白细胞等。
本实施方式中,五分类白细胞模拟物的操作可以为:取新鲜EDTA抗凝血,用Tris-NH4Cl溶液溶解红细胞,离心分离白细胞,弃上清,再用PBS洗涤白细胞2次,得到嗜中性粒细胞、淋巴细胞、单核细胞以及嗜碱性粒细胞;取新鲜EDTA抗凝血,离心后吸去上清中的血浆以及脂肪等,用Tris-NH4Cl溶液溶解沉淀的红细胞,离心分离白细胞,弃上清,再使用Tris-NH4Cl溶液溶解残留红细胞,离心分离白细胞,弃上清,用PBS洗涤牛白细胞2次,得到嗜酸性粒细胞;将嗜中性粒细胞、淋巴细胞、单核细胞以及嗜碱性粒细胞和嗜酸性粒细胞混合,得到五分类白细胞模拟物。
在另一个具体实施方式中,血液CRP质控物还可以含有红细胞模拟物,红细胞模拟物的浓度为1×1012个/L ~ 6×1012个。红细胞模拟物可以由人红细胞制备,取新鲜的抗凝血,除去白细胞和血小板后,通过合适的溶液调整和固定红细胞,获得红细胞模拟物。例如,过滤去除血液中的白细胞和血小板得到悬浮的红细胞后,使用强氧化剂及低浓度的醛类处理红细胞来稳定细胞膜并减缓代谢,再固定后制备红细胞模拟物。这种红细胞模拟物既可在使用荧光及电阻抗方法的血细胞分析仪上模拟红细胞,还可保证被溶血,而不干扰白细胞及CRP的测量。
在另一个具体实施方式中,血液CRP质控物还可以含有血小板,血小板模拟物的浓度为10×109个/L~1000×109个/L。血小板模拟物可以由与人血小板类似的哺乳动物血小板或哺乳动物红细胞制备,一般包括:牛血小板、猪血小板、羊血小板、马血小板、羊红细胞等xxx。
血小板模拟物可以通过如下操作制备得到:取新鲜柠檬酸抗凝血,静置过夜,分层后取上清中低速离心,取上清,再高速离心弃上清,用柠檬酸-PEG缓冲液洗涤沉淀2次,并取部分上清,将搜集的上清合并,得到血小板;调节血小板的密度后固定,固定完成后离心并弃上清,洗涤后得到血小板模拟物。
这种血小板模拟物可在使用荧光及电阻抗方法的血细胞分析仪上准确模拟血小板。
在另一个具体实施方式中,血液CRP质控物还含有基质保存液,为各细胞的模拟物和CRP抗原提供微环境,基质保存液采用缓冲液配制,基质保存液中含有水溶性蛋白质、多羟基化合物以及小分子氨基酸。一般的,基质保存液可以为含有浓度为0.1g/L ~10g/L的水溶性蛋白质、1g/L ~50g/L的多羟基化合物以及1g/L ~50g/L的小分子氨基酸。
基质保存液中含有水溶性蛋白质、多羟基化合物以及小分子氨基酸,一方面可以模拟人血液的各项生理条件,另一方面降低了五分类白细胞模拟物、红细胞模拟物和血小板模拟物的免疫原性,避免了CRP抗原与其产生免疫反应。
缓冲液可以为柠檬酸盐缓冲液(CPBS)或磷酸盐缓冲液(PBS)。水溶性蛋白质为牛血清蛋白或人血清白蛋白。多羟基化合物为甘露醇、乳糖、葡萄糖、蔗糖或海藻糖。小分子氨基酸为甘氨酸、赖氨酸、小分子多肽或肽多糖。
小分子多肽一般指由氨基酸构成的无蛋白质二级或三级结构的高活性肽。
这种血液CRP质控物含有CRP抗原和五分类白细胞模拟物,在应用于五分类血常规与CRP联合检测的分析仪时,能够同时完成对血常规和CRP的监测。这种血液CRP质控物可以用于五分类血常规与CRP联合检测的分析仪的日常质控,监控和评价分析仪检测结果的精密度。
如图1所示的上述血液CRP质控物的质控方法,包括如下步骤:
S10、提供血液CRP质控物。
CRP质控物如上所述。
S20、提供五分类血常规与CRP联合检测的分析仪。
本实施方式中,五分类血常规与CRP联合检测的分析仪选择为迈瑞全血CRP分析仪。
S30、提供待测血液样本。
待测血液样本经过常规处理得到。
本实施方式中,S10、S20和S30之间的顺序可以互换,没有先后的区别。
S40、分析S10得到的血液CRP质控物在S20得到的五分类血常规与CRP联合检测的分析仪上得到的白细胞计数和CRP抗原读数。
S50、分析S30得到的待测血液样本在S20得到的五分类血常规与CRP联合检测的分析仪上得到的白细胞计数和CRP抗原读数。
这种血液CRP质控物可以用于五分类血常规与CRP联合检测的分析仪的日常质控,监控和评价分析仪检测结果的精密度。
下面为具体实施例。
除非特别说明,实施例中使用的到的仪器、设备和溶液均为常规选择。实施例中,血细胞分析仪为迈瑞BC-53系列、BC-55/58系列、BC-68系列以及SYSMEX XE系列血细胞分析仪,五分类血常规与CRP联合检测的分析仪为迈瑞全血CRP分析仪,CRP抗原购自罗氏诊断产品上海有限公司,规格为1000-3000mg/L。
实施例1
本实施例中使用的基质保存液采用PBS配制含有浓度为1g/L的牛血清蛋白、2g/L的乳糖、2g/L的甘露醇、7g/L的海藻糖、3g/L的甘氨酸、5g/L的多聚赖氨酸以及0.1g/L的氯霉素。
1、五分类白细胞模拟物的制备。
(1)嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞的制备。
取新鲜EDTA抗凝牛血,用Tris-NH4Cl溶液溶解红细胞,离心分离牛白细胞,弃上清。再用PBS洗涤白细胞2次,并调节细胞密度至约1.5×1010个/升。
分别加入终浓度为1%的甲醛30℃固定白细胞20h,再加入终浓度为0.025%的戊二醛30℃固定白细胞4.5h。
离心固定后白细胞,弃上清,同等条件下用PBS再洗涤2次,得到的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞用基质保存液进行保存。
如图2所示,制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测时,出现了3群较为明显的散点,此3群粒子在前向散射光(FS)测量的细胞体积,以及侧向散射光(SS)测量的颗粒复杂度上均有不同程度的区分,可以被准确地划分为淋巴细胞、单核细胞和嗜中性粒细胞。
如图3所示,制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Baso通道检测时,嗜碱性粒细胞出现在图3靠右的位置。
结合图2和图3,制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞可以在迈瑞BC-53系列血细胞分析仪上分别被准确的监控计数。
(2)嗜酸性粒细胞的制备。
取新鲜EDTA抗凝牛血,离心后吸去上清中的血浆以及脂肪等,用Tris-NH4Cl溶液溶解沉淀的红细胞,离心分离牛白细胞,弃上清。再使用Tris-NH4Cl溶液溶解残留红细胞,离心分离牛白细胞,弃上清。用PBS洗涤牛白细胞2次,并调节细胞密度至约1.5×1010个/升。
加入终浓度为1%的戊二醛30℃过夜固定白细胞。离心固定后白细胞,弃上清,同等条件下用PBS再洗涤2次,得到的嗜酸性粒细胞用基质保存液进行保存。
如图4所示,制得的嗜酸性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测时,其细胞聚集性较好,在前向散射光(FS)与侧向散射光(SS)均有十分明显的信号,可在血细胞分析仪上被准确地划分为嗜酸性粒细胞,从而监控嗜酸性粒细胞的计数。
(3)得到五分类白细胞模拟物。
将(1)制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞以及(2)制得的嗜酸性粒细胞按照体积比为10:1混合,得到保存在基质保存液中的五分类白细胞模拟物。
2、红细胞模拟物的制备。
取人悬浮红细胞,使用白细胞过滤器过滤白细胞、血小板等,向过滤后的悬浮红细胞中加入终浓度分别为0.06%的重铬酸钾以及0.0125%的戊二醛,室温处理2h,离心后弃上清,并用生理盐水以及基质保存液在上述条件下各洗涤一次,得到的红细胞模拟物保存至基质保存液中。
如图5所示,制得的红细胞模拟物在迈瑞BC-53系列血细胞分析仪RBC通道检测时,通过电阻抗方法可以表征红细胞的体积分布等信息,在血细胞分析仪上被准确识别为红细胞,从而监控红细胞相关参数。
3、血小板模拟物的制备。
取新鲜柠檬酸抗凝猪血,静置过夜,分层后取上清中低速离心,取上清,再高速离心弃上清,用柠檬酸-PEG缓冲液洗涤沉淀2次,并取部分上清,将搜集的上清合并。调整血小板计数至1×1012个/升,加入终浓度为0.015%的戊二醛,室温反应30min,离心固定后血小板,弃上清,再用柠檬酸-PEG缓冲液洗涤2次,得到的血小板模拟物保存至基质保存液中。
如图6所示,制得的血小板模拟物在迈瑞BC-53系列血细胞分析仪PLT通道检测时,通过电阻抗方法可以表征血小板的体积分布等信息,在血细胞分析仪上被准确识别为血小板,从而监控血小板相关参数。
4、CRP复合质控。
将制得的五分类白细胞模拟物、红细胞模拟物、血小板模拟物和高纯度CRP抗原以基质保存液为调节试剂,配制成为血液CRP质控物。其中,CRP抗原的浓度为5mg/L,五分类白细胞模拟物、红细胞模拟物、血小板模拟物和基质保存液的体积比为2:30:1:67。
制得的血液CRP质控物使用迈瑞全血CRP分析仪通过免疫比浊方法检测CRP,CRP结果如下表1所示,混合后Diff散点图及Baso直方图分别如图7和图8所示。
表1:实施例1制得的血液CRP质控物的CRP检测结果对照表。
理论浓度 实际测试浓度 相对偏差
CRP 浓度 1 5.71 5.95 4.20%
CRP 浓度 2 22.86 26.28 14.96%
CRP 浓度 3 45.71 47.50 3.92%
结合表1、图7和图8,可以看出,实施例1制得的血液CRP质控物使用迈瑞全血CRP分析仪测试时,既能完全保留五分类血常规质控物的所有特征,还能准确表征CRP。
实施例2
本实施例中使用的基质保存液采用CPBS配制,含有2g/L的牛血清蛋白、1g/L的葡萄糖、2g/L的蔗糖、8g/L的海藻糖、2g/L的甘露醇、5g/L的赖氨酸、5g/L的肽多糖以及0.1g/L的硫酸卡那霉素。
1、五分类白细胞模拟物的制备。
(1)淋巴细胞、单核细胞和嗜碱性粒细胞的制备。
取新鲜EDTA抗凝猪血,静置过夜,分层后取上清离心,弃上清,用Tris-NH4Cl溶液溶解红细胞,离心分离猪白细胞,再用PBS洗涤沉淀2次,并调整计数至10×1010个/升。将浓缩的猪白细胞与细胞分离液按2:1混合,中低速离心,取中间层白细胞用PBS洗涤2次后调整计数至约1.5×1010个/升。
分别加入终浓度为1%的甲醛30℃固定白细胞20h,再加入终浓度为0.025%的戊二醛30℃固定白细胞4.5h。
离心固定后白细胞,弃上清,同等条件下用PBS再洗涤2次,得到的淋巴细胞、单核细胞和嗜碱性粒细胞用基质保存液进行保存。
如图9所示,制备的淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测时,出现了2群较为明显的散点,此2群粒子在前向散射光(FS)测量的细胞体积,以及侧向散射光(SS)测量的颗粒复杂度上均有不同程度的区分,可以被准确地划分为淋巴细胞和单核细胞。
如图10所示,制备的淋巴细胞、单核细胞和嗜碱性粒细胞在迈瑞BC-53系列血细胞分析仪Baso通道检测时,嗜碱性粒细胞出现在直方图靠右的位置。
结合图9和图10,制得的淋巴细胞、单核细胞和嗜碱性粒细胞可以在迈瑞BC-53系列血细胞分析仪上分别被准确的监控计数。
(2)嗜中性粒细胞的制备。
取新鲜EDTA抗凝牛血,离心后吸去上清中的血浆以及脂肪等,用Tris-NH4Cl溶液溶解沉淀的红细胞,离心分离牛白细胞,弃上清。再使用Tris-NH4Cl溶液溶解残留红细胞,离心分离牛白细胞,弃上清。用PBS洗涤牛白细胞2次,并调节细胞密度至大约1.5×1010个/升。
分别加入终浓度为1%的甲醛30℃固定白细胞20h,再加入终浓度为0.025%的戊二醛30℃固定白细胞4.5h。
离心固定后白细胞,弃上清,同等条件下用PBS再洗涤2次,得到的嗜中性粒细胞用基质保存液进行保存。
如图11所示,制备的嗜中性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测时,其细胞聚集性较好,在前向散射光(FS)与侧向散射光(SS)均有十分明显的信号,可在血细胞分析仪上被准确地划分为嗜中性粒细胞,从而监控嗜中性粒细胞计数。
(3)嗜酸性粒细胞的制备。
取新鲜EDTA抗凝猪血,静置过夜,分层后取上清离心,弃上清,用Tris-NH4Cl溶液溶解红细胞,离心分离猪白细胞,再用PBS洗涤沉淀2次,并调整计数至10×1010个/升。将浓缩的猪白细胞与细胞分离液按1:1混合,中低速离心,取底层白细胞用PBS洗涤2次后调整计数至约1.5×1010个/升。
加入终浓度为1%的戊二醛30℃过夜固定白细胞。离心固定后白细胞,弃上清,同等条件下用PBS再洗涤2次,得到的嗜酸性粒细胞用基质保存液进行保存。
如图12所示,上述方法制备的嗜酸性粒细胞在迈瑞BC-53系列血细胞分析仪Diff通道检测时,其细胞聚集性较好,在前向散射光(FS)与侧向散射光(SS)均有十分明显的信号,可在血细胞分析仪上被准确地划分为嗜酸性粒细胞,从而监控嗜酸性粒细胞计数。
(4)得到五分类白细胞模拟物。
将(1)制得的淋巴细胞、单核细胞和嗜碱性粒细胞、(2)制得的嗜中性粒细胞以及(3)制得的嗜酸性粒细胞按照体积比为3:2:1混合,得到保存在基质保存液中的五分类白细胞模拟物。
2、红细胞模拟物的制备。
取人悬浮红细胞,使用白细胞过滤器过滤白细胞及血小板等,向滤后的悬浮红细胞中加入终浓度分别为0.05%的亚硝酸钠以及0.0125%的戊二醛,室温处理2h后,离心后弃上清,并用生理盐水以及保存液在上述条件下各洗涤一次,得到的红细胞模拟物用基质保存液进行保存。
如图13所示,制得的红细胞模拟物在迈瑞BC-53系列血细胞分析仪RBC通道检测时,通过电阻抗方法可以表征红细胞的体积分布等信息,在血细胞分析仪上被准确识别为红细胞,从而监控红细胞相关参数。
3、血小板模拟物的制备。
取抗凝羊血,使用白细胞过滤器过滤白细胞等,向5%的NaCl溶液中加入滤后羊血,调整血小板计数至1×1012个/升,并分别加入终浓度为0.1%的甲醛和0.05%的戊二醛,室温反应15min,用5倍体积生理盐水终止反应,并用生理盐水洗涤3次,得到的血小板模拟物保存至保存液中。
如图14所示,制得的血小板模拟物在血细胞分析仪PLT通道检测时,通过电阻抗方法可以表征血小板的体积分布等信息,在血细胞分析仪上被准确识别为血小板,从而监控血小板相关参数。
4、CRP复合质控。
将制得的五分类白细胞模拟物、红细胞模拟物、血小板模拟物和高纯度CRP抗原以基质保存液为调节试剂,配制成为血液CRP质控物。其中,CRP抗原的浓度为10mg/L,五分类白细胞模拟物、红细胞模拟物、血小板模拟物和基质保存液的体积比为2:20:1:10。
制得的血液CRP质控物使用迈瑞全血CRP分析仪通过免疫比浊方法检测CRP,CRP结果如下表2所示,混合后Diff散点图及Baso直方图分别如图15和图16所示。
表2:实施例2制得的血液CRP质控物的CRP检测结果对照表。
理论浓度 实际测试浓度 相对偏差
CRP 浓度 1 5.71 5.51 -3.50%
CRP 浓度 2 22.86 25.34 10.85%
CRP 浓度 3 45.71 43.95 -3.85%
结合表2、图15和图16,可以看出,实施例2制得的血液CRP质控物使用迈瑞全血CRP分析仪测试时,既能完全保留五分类血常规质控物的所有特征,还能准确表征CRP。
实施例3
本实施例中使用的基质保存液采用CPBS配制,含有1g/L的牛血清蛋白、5g/L 的乳糖、2g/L 的蔗糖、5g/L 的海藻糖、2g/L的甘露醇、5g/L的甘氨酸、5g/L 的肽多糖、以及0.2g/L的尼泊金酯。
1、五分类白细胞模拟物的制备。
(1)嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞的制备。
同实施例1中嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞的制备。
(2)嗜酸性粒细胞的制备。
同实施例1中嗜酸性粒细胞的制备。(3)得到五分类白细胞模拟物。
将(1)制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞以及(2)制得的嗜酸性粒细胞按照体积比为6:1混合,得到保存在基质保存液中的五分类白细胞模拟物。
2、红细胞模拟物的制备。
同实施例1中红细胞模拟物的制备。
3、血小板模拟物的制备。
同实施例1中血小板模拟物的制备。
4、CRP复合质控。
将制得的五分类白细胞模拟物、红细胞模拟物、血小板模拟物和高纯度CRP抗原以基质保存液为调节试剂,配制成为血液CRP质控物。其中,CRP抗原的浓度为15mg/L,五分类白细胞模拟物、红细胞模拟物、血小板模拟物和基质保存液的体积比为2:11:1:1。
制得的血液CRP质控物使用迈瑞全血CRP分析仪通过免疫比浊方法检测CRP,CRP结果如下表3所示,混合后的全血CRP质控物在迈瑞BC-55/58系列血细胞分析仪Diff及Baso散点图分别如图17和图18所示,在迈瑞全血CRP分析仪Diff散点图及Baso直方图分别如图19和图20所示。
表3:实施例3制得的血液CRP质控物的CRP检测结果对照表。
理论浓度 实际测试浓度 相对偏差
CRP 浓度 1 5.71 5.50 -3.68%
CRP 浓度 2 22.86 25.31 10.72%
CRP 浓度 3 45.71 44.34 -3.00%
结合表3、图17、图18、图19和图20,可以看出,实施例3制得的血液CRP质控物使用迈瑞BC-55/58系列血细胞分析仪和迈瑞全血CRP分析仪测试时,既能完全保留五分类血常规质控物的所有特征,还能准确表征CRP。
实施例4
本实施例中使用的基质保存液采用PBS配制,2g/L的牛血清蛋白、2g/L的葡萄糖、3g/L的乳糖、3g/L的甘露醇、5g/L的海藻糖、5g/L的多聚赖氨酸、5g/L的肽多糖以及0.2g/L的尼泊金酯。
1、五分类白细胞模拟物的制备。
(1)嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞的制备。
同实施例1中嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞的制备。
(2)嗜酸性粒细胞的制备。
同实施例1中嗜酸性粒细胞的制备。
(3)得到五分类白细胞模拟物。
将(1)制得的嗜中性粒细胞、淋巴细胞、单核细胞和嗜碱性粒细胞以及(2)制得的嗜酸性粒细胞按照体积比为8:1混合,得到保存在基质保存液中的五分类白细胞模拟物。
2、红细胞模拟物的制备。
同实施例1中红细胞模拟物的制备。
3、血小板模拟物的制备。
同实施例1中血小板模拟物的制备。
4、CRP复合质控。
将制得的五分类白细胞模拟物、红细胞模拟物、血小板模拟物和高纯度CRP抗原以基质保存液为调节试剂,配制成为血液CRP质控物。其中,CRP抗原的浓度为30mg/L,五分类白细胞模拟物、红细胞模拟物、血小板模拟物和基质保存液的体积比为1:10:1:8。
制得的血液CRP质控物使用迈瑞全血CRP分析仪通过免疫比浊方法检测CRP,CRP结果如下表4所示,混合后的全血CRP质控物在迈瑞BC-68系列血细胞分析仪Diff及Baso散点图分别如图21和图22所示,在SYSMEX XE系列血细胞分析仪Diff及Baso散点图分别如图23和图24所示,迈瑞全血CRP分析仪Diff散点图及Baso直方图分别如图25和图26所示。
表4:实施例4制得的血液CRP质控物的CRP检测结果对照表。
理论浓度 实际测试浓度 相对偏差
CRP 浓度 1 5.71 5.84 2.28%
CRP 浓度 2 22.86 26.14 14.35%
CRP 浓度 3 45.71 45.43 -0.61%
结合表4、图21、图22、图23、图24、图25和图26,可以看出,实施例4制得的血液CRP质控物使用迈瑞BC-68系列血细胞分析仪、SYSMEX XE系列血细胞分析仪和迈瑞全血CRP分析仪测试时,既能完全保留五分类血常规质控物的所有特征,还能准确表征CRP。说明实施例4制备的血液CRP质控物应用在其他品牌的血细胞分析仪上时,也具有显著的五分类效果。
结合实施例1~4,可以看出,不同来源和不同制备方法制得的血细胞(白细胞、红细胞和血小板)模拟物与CRP抗原混合得到的血液CRP质控物,在应用于五分类血常规与CRP联合检测的分析仪时,都能够完成同时对血常规及CRP的监测。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种血液CRP质控物,其特征在于,包括五分类白细胞模拟物和CRP抗原。
  2. 根据权利要求1所述的血液CRP质控物,其特征在于,所述CRP抗原的浓度为0.1mg/L~100mg/L。
  3. 根据权利要求1所述的血液CRP质控物,其特征在于,所述五分类白细胞模拟物包括嗜中性粒细胞、淋巴细胞、单核细胞、嗜碱性粒细胞和嗜酸性粒细胞,所述五分类白细胞模拟物的浓度为1×109个/L ~ 30×109个/L。
  4. 根据权利要求3所述的血液CRP质控物,其特征在于,所述五分类白细胞模拟物为哺乳动物白细胞。
  5. 根据权利要求1所述的血液CRP质控物,其特征在于,所述血液CRP质控物还包括红细胞模拟物,所述红细胞模拟物的浓度为1×1012个/L ~ 6×1012个。
  6. 根据权利要求5所述的血液CRP质控物,其特征在于,所述红细胞模拟物为人红细胞。
  7. 根据权利要求1所述的血液CRP质控物,其特征在于,所述血液CRP质控物还包括血小板模拟物,所述血小板模拟物的浓度为10×109个/L~1000×109个/L。
  8. 根据权利要求7所述的血液CRP质控物,其特征在于,所述血小板模拟物为哺乳动物血小板或红细胞。
  9. 根据权利要求1~8中任一项所述的血液CRP质控物,其特征在于,所述血液CRP质控物还包括基质保存液。
  10. 根据权利要求9所述的血液CRP质控物,其特征在于,所述基质保存液采用缓冲液配制,所述基质保存液中含有水溶性蛋白质、多羟基化合物以及小分子氨基酸。
  11. 根据权利要求10所述的血液CRP质控物,其特征在于,所述缓冲液为柠檬酸盐缓冲液或磷酸盐缓冲液,所述水溶性蛋白质为牛血清蛋白或人血清白蛋白,所述多羟基化合物为甘露醇、乳糖、葡萄糖、蔗糖或海藻糖,所述小分子氨基酸为甘氨酸、赖氨酸、小分子多肽或肽多糖。
  12. 一种血液CRP质控物的质控方法,其特征在于,包括如下步骤:
    提供血液CRP质控物,所述血液CRP质控物包括五分类白细胞模拟物和CRP抗原;
    提供五分类血常规与CRP联合检测的分析仪;
    提供待测血液样本;
    分析所述血液CRP质控物在所述五分类血常规与CRP联合检测的分析仪上得到的白细胞计数和CRP抗原读数;以及
    分析所述待测血液样本在所述五分类血常规与CRP联合检测的分析仪上得到的白细胞计数和CRP抗原读数。
  13. 根据权利要求12所述的血液CRP质控物的质控方法,其特征在于,所述CRP抗原在所述血液CRP质控物中的浓度为0.1mg/L~100mg/L。
  14. 根据权利要求12所述的血液CRP质控物的质控方法,其特征在于,所述五分类白细胞模拟物包括嗜中性粒细胞、淋巴细胞、单核细胞、嗜碱性粒细胞和嗜酸性粒细胞,所述五分类白细胞模拟物在所述血液CRP质控物中的浓度为1×109个/L ~ 30×109个/L。
  15. 根据权利要求12所述的血液CRP质控物的质控方法,其特征在于,所述血液CRP质控物还包括红细胞模拟物,所述红细胞模拟物的浓度为1×1012个/L ~ 6×1012个。
  16. 根据权利要求12所述的血液CRP质控物的质控方法,其特征在于,所述血液CRP质控物还包括血小板模拟物,所述血小板模拟物的浓度为10×109个/L~1000×109个/L。
  17. 根据权利要求12所述的血液CRP质控物的质控方法,其特征在于,所述血液CRP质控物还包括基质保存液。
  18. 根据权利要求17所述的血液CRP质控物的质控方法,其特征在于,所述基质保存液采用缓冲液配制,所述基质保存液中含有浓度为0.1g/L ~10g/L的水溶性蛋白质、1g/L ~50g/L的多羟基化合物以及1g/L ~50g/L的小分子氨基酸。
  19. 根据权利要求18所述的血液CRP质控物的质控方法,其特征在于,所述缓冲液为柠檬酸盐缓冲液或磷酸盐缓冲液,所述水溶性蛋白质为牛血清蛋白或人血清白蛋白,所述多羟基化合物为甘露醇、乳糖、葡萄糖、蔗糖或海藻糖,所述小分子氨基酸为甘氨酸、赖氨酸、小分子多肽或肽多糖。
PCT/CN2014/093500 2014-12-10 2014-12-10 血液crp质控物及其质控方法 WO2016090579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480082488.5A CN107076766B (zh) 2014-12-10 2014-12-10 血液crp质控物及其质控方法
PCT/CN2014/093500 WO2016090579A1 (zh) 2014-12-10 2014-12-10 血液crp质控物及其质控方法
CN201910711338.0A CN110376387A (zh) 2014-12-10 2014-12-10 血液crp质控物及其质控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093500 WO2016090579A1 (zh) 2014-12-10 2014-12-10 血液crp质控物及其质控方法

Publications (1)

Publication Number Publication Date
WO2016090579A1 true WO2016090579A1 (zh) 2016-06-16

Family

ID=56106448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093500 WO2016090579A1 (zh) 2014-12-10 2014-12-10 血液crp质控物及其质控方法

Country Status (2)

Country Link
CN (2) CN110376387A (zh)
WO (1) WO2016090579A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175515A (zh) * 2019-12-30 2020-05-19 上海奥普生物医药股份有限公司 一种血清淀粉样蛋白a和c反应蛋白的二合一质控物及其制备方法
CN111579803A (zh) * 2020-05-25 2020-08-25 北京康思润业生物技术有限公司 一种多项目炎症标志物质控品及其制备方法
CN117705541A (zh) * 2024-02-05 2024-03-15 江西赛基生物技术有限公司 用于血样pd-1检测的质控品及其制备与质控方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016090579A1 (zh) * 2014-12-10 2016-06-16 深圳迈瑞生物医疗电子股份有限公司 血液crp质控物及其质控方法
CN112805567B (zh) * 2018-12-25 2024-09-20 深圳迈瑞生物医疗电子股份有限公司 红细胞模拟粒子、其制备方法及含其的质控物或校准物
CN110133282A (zh) * 2019-05-06 2019-08-16 中生北控生物科技股份有限公司 炎症类标志物复合质控品及其制备方法与应用
CN112129931A (zh) * 2019-06-24 2020-12-25 深圳迈瑞生物医疗电子股份有限公司 一种样本检测的设备及测量模式选择方法
CN110579613A (zh) * 2019-10-28 2019-12-17 深圳开立生物医疗科技股份有限公司 一种血液分析仪
WO2021097630A1 (zh) * 2019-11-18 2021-05-27 深圳迈瑞生物医疗电子股份有限公司 一种血液细胞检测结果处理方法、系统及存储介质
WO2021179177A1 (zh) * 2020-03-10 2021-09-16 深圳迈瑞生物医疗电子股份有限公司 血液分析仪、血液分析方法和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548646B1 (en) * 2001-08-23 2003-04-15 Bio-Rad Laboratories, Inc. Reference control for high-sensitivity C-reactive protein testing
CN101561443A (zh) * 2008-04-15 2009-10-21 深圳迈瑞生物医疗电子股份有限公司 五分类白细胞模拟物粒子、其制备方法以及含该模拟粒子的质控物和校准物
CN103336110A (zh) * 2013-06-18 2013-10-02 南京普朗医疗设备有限公司 一种全血质控物及其制备方法
CN103336130A (zh) * 2013-06-21 2013-10-02 嘉善加斯戴克医疗器械有限公司 一种全血免疫分析装置及使用此装置的血液分析仪
CN103454410A (zh) * 2012-05-30 2013-12-18 桂林优利特医疗电子有限公司 血液测试仪用生物安全质控物及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU756780B2 (en) * 1999-03-29 2003-01-23 Asahi Kasei Kabushiki Kaisha Method for determining a while blood cell count of a whole blood sample
CN101887059B (zh) * 2009-05-11 2014-03-19 深圳迈瑞生物医疗电子股份有限公司 嗜酸性粒细胞模拟物、制备方法及全血质控物
CN101893639B (zh) * 2010-02-11 2013-10-30 上海蓝怡科技有限公司 稳定质控血清α-羟丁酸脱氢酶和乳酸脱氢酶活性的方法
US8394325B2 (en) * 2010-06-14 2013-03-12 Abbott Point Of Care Inc. Magnetic beads for reducing leukocyte interference in immunoassays
WO2016090579A1 (zh) * 2014-12-10 2016-06-16 深圳迈瑞生物医疗电子股份有限公司 血液crp质控物及其质控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6548646B1 (en) * 2001-08-23 2003-04-15 Bio-Rad Laboratories, Inc. Reference control for high-sensitivity C-reactive protein testing
CN101561443A (zh) * 2008-04-15 2009-10-21 深圳迈瑞生物医疗电子股份有限公司 五分类白细胞模拟物粒子、其制备方法以及含该模拟粒子的质控物和校准物
CN103454410A (zh) * 2012-05-30 2013-12-18 桂林优利特医疗电子有限公司 血液测试仪用生物安全质控物及其制备方法
CN103336110A (zh) * 2013-06-18 2013-10-02 南京普朗医疗设备有限公司 一种全血质控物及其制备方法
CN103336130A (zh) * 2013-06-21 2013-10-02 嘉善加斯戴克医疗器械有限公司 一种全血免疫分析装置及使用此装置的血液分析仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, JUN;: "The Clinical Evaluation of HORIBA ABX Micros CRP200 Automatic Blood Analyzer to Test CRP And White Blood Cells Jointly", CHINA MEDICAL HERALD, vol. 8, no. 11, April 2011 (2011-04-01) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175515A (zh) * 2019-12-30 2020-05-19 上海奥普生物医药股份有限公司 一种血清淀粉样蛋白a和c反应蛋白的二合一质控物及其制备方法
CN111175515B (zh) * 2019-12-30 2024-04-26 上海奥普生物医药股份有限公司 一种血清淀粉样蛋白a和c反应蛋白的二合一质控物及其制备方法
CN111579803A (zh) * 2020-05-25 2020-08-25 北京康思润业生物技术有限公司 一种多项目炎症标志物质控品及其制备方法
CN117705541A (zh) * 2024-02-05 2024-03-15 江西赛基生物技术有限公司 用于血样pd-1检测的质控品及其制备与质控方法
CN117705541B (zh) * 2024-02-05 2024-04-26 江西赛基生物技术有限公司 用于血样pd-1检测的质控品及其制备与质控方法

Also Published As

Publication number Publication date
CN110376387A (zh) 2019-10-25
CN107076766A (zh) 2017-08-18
CN107076766B (zh) 2019-07-12

Similar Documents

Publication Publication Date Title
WO2016090579A1 (zh) 血液crp质控物及其质控方法
Song et al. Little to no expression of angiotensin‐converting enzyme‐2 on most human peripheral blood immune cells but highly expressed on tissue macrophages
Baban et al. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation
Moreno et al. Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells
Roholl et al. Characterization of tumor cells in malignant fibrous histiocytomas and other soft-tissue tumors, in comparison with malignant histiocytes. II. Immunoperoxidase study on cryostat sections.
Knipfer et al. A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2–mediated inflammation
Aye Erythroid colony formation in cultures of human marrow: effect of leukocyte conditioned medium
Letvin et al. Acquired immunodeficiency syndrome in a colony of macaque monkeys.
Ezquerra et al. Porcine myelomonocytic markers and cell populations
KR20130064720A (ko) 조혈계 세포의 생장 및 분화용 세포 배양 배지
Schrader et al. Intramucosal lymphocytes of the gut: Lyt-2 and thy-1 phenotype of the granulated cells and evidence for the presence of both T cells and mast cell precursors.
AU2002350352A1 (en) Cellular compositions and methods of making and using them
Gaston et al. Cross-reactivity of self-HLA-restricted Epstein-Barr virus-specific cytotoxic T lymphocytes for allo-HLA determinants.
Ikuno et al. Human induced pluripotent stem cell-derived mast cells useful for in vitro mast cell activation assay exhibiting phenotypes and morphological characteristics of human mast cells
White et al. Micropipette aspiration of human blood platelets: a defect in Bernard-Soulier's syndrome
Dainiak et al. Surface membrane vesicles from mononuclear cells stimulate erythroid stem cells to proliferate in culture
Arnaud-Battandier et al. Lymphoid populations of gut mucosa in chickens
Olson et al. Megakaryocytes and megakaryocyte progenitors in human cord blood
CN112305232A (zh) 血液与特定蛋白的混合质控物及其质控方法
Wu et al. Comparative transcriptome analysis of the transcriptional heterogeneity in different IgM+ cell subsets from peripheral blood of Nile tilapia (Oreochromis niloticus)
Liu et al. Flow cytometric monitoring of human immunodeficiency virus-infected patients: simultaneous enumeration of five lymphocyte subsets
EP0354989B1 (en) Megakaryocytopoietin, preparation and use
Freed et al. The inhibitory effects of N-ethylmaleimide, colchicine and cytochalasins on human T-cell functions
Shiga et al. Immature granulocyte count after liver transplantation
Uchiumi et al. Protein components of rat lens and their age-related changes observed with two-dimensional polyacrylamide gel electrophoresis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.11.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14907946

Country of ref document: EP

Kind code of ref document: A1