WO2016090519A1 - 光合作用微流道室与光合作用方法 - Google Patents

光合作用微流道室与光合作用方法 Download PDF

Info

Publication number
WO2016090519A1
WO2016090519A1 PCT/CN2014/001112 CN2014001112W WO2016090519A1 WO 2016090519 A1 WO2016090519 A1 WO 2016090519A1 CN 2014001112 W CN2014001112 W CN 2014001112W WO 2016090519 A1 WO2016090519 A1 WO 2016090519A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchannel
photosynthesis
communication space
micro
microchannels
Prior art date
Application number
PCT/CN2014/001112
Other languages
English (en)
French (fr)
Inventor
林伯刚
Original Assignee
林伯刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林伯刚 filed Critical 林伯刚
Priority to PCT/CN2014/001112 priority Critical patent/WO2016090519A1/zh
Priority to EP14907678.8A priority patent/EP3232422B1/en
Priority to JP2017548504A priority patent/JP6476312B2/ja
Priority to PL14907678T priority patent/PL3232422T3/pl
Priority to BR112017011395-3A priority patent/BR112017011395B1/pt
Priority to ES14907678T priority patent/ES2745308T3/es
Priority to KR1020177014808A priority patent/KR101878655B1/ko
Priority to RU2017120356A priority patent/RU2673728C1/ru
Publication of WO2016090519A1 publication Critical patent/WO2016090519A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/38Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for botany

Definitions

  • the invention relates to a photosynthesis micro-flow chamber and a photosynthesis method.
  • the present invention provides a photosynthetic micro-channel chamber comprising: at least one communication space; a plurality of micro-flow channels respectively connected to the at least one communication space; at least one saline solution is injected into the micro-channel Connecting to the at least one communication space respectively; a plurality of filter plugs respectively connected to the plurality of micro flow channels and the other end of the at least one saline injection micro flow channel; and a light source illuminating the at least one communication space, the The plurality of microchannels and the at least one saline solution are injected into the microchannel, wherein the chloroplast and the physiological saline are injected into the at least one communication space, and the plurality of microchannels and the at least one saline solution are injected into the microchannel.
  • the physiological saline is continuously injected into the at least one communication space and the plurality of microchannels from the at least one saline injection microchannel, and the plurality of filter plugs prevent the chloroplast from flowing out.
  • the plurality of microchannels and the at least one saline solution are injected into the microchannel to be rotatable.
  • At least one communication space is a plurality of communication spaces
  • at least one communication space micro flow channel is further connected to connect the plurality of communication spaces, and the at least one communication space micro flow channel is rotatable.
  • the present invention further provides a method for photosynthesis comprising: injecting a chloroplast and a physiological saline into a photosynthetic microchannel chamber; continuously injecting a physiological saline solution from at least one saline injection microchannel; and irradiating the light to the photosynthetic Actuating the microchannel chamber, wherein the photosynthesis microchannel chamber comprises at least one communication space, a plurality of microchannels, the at least one saline injection microchannel and a plurality of filter plugs, and the plurality of microchannels
  • the at least one saline injection microchannel is respectively connected to the at least one communication space, and the plurality of filter plugs respectively connect the plurality of microchannels and the at least one saline solution to the other end of the microchannel.
  • the at least one communication space is a plurality of communication spaces
  • the at least one communication space micro flow channel is further configured to connect the plurality of communication spaces, and the at least one communication space micro flow channel is rotatable.
  • the plurality of microchannels and the at least one saline solution are injected into the microchannel to be rotatable.
  • FIG. 1 is a view showing a photosynthesis micro-flow chamber according to an embodiment of the present invention.
  • FIG. 2 is a view showing a photosynthesis micro-flow chamber according to an embodiment of the present invention.
  • FIG. 3 is a view showing a method of photosynthesis according to an embodiment of the present invention.
  • Figure 4 is a graph showing the amount of glucose after photosynthesis reaction of the photosynthesis microchannel chamber according to Figure 1.
  • the photosynthesis microchannel chamber will be described below in accordance with an embodiment of the present invention.
  • FIG. 1 is a view showing a photosynthesis micro-flow chamber according to an embodiment of the present invention.
  • the photosynthesis microchannel chamber 100 includes a communication space 101, a plurality of microchannels 102, a saline injection microchannel 103, a plurality of filter plugs 104, and a light source 105.
  • the volume of the photosynthesis microchannel chamber is 3.5 cm * 3.5 cm * 0.7 cm, but is not limited thereto.
  • the communication space 101 is a circle having a diameter of 2 cm, but is not limited thereto.
  • the communication space 101, the microchannel 102, and the saline injection microchannel 103 are made of a transparent material such as glass.
  • microchannel 102 and the saline injection microchannel 103 are connected to the communication space 101, respectively.
  • the microchannel 102 and the other end of the saline injection microchannel 103 are connected to the filter plug 104, respectively.
  • the chloroplast 106 and physiological saline are injected to fill the communication space 101 in the photosynthesis micro-channel chamber 100, and the plurality of micro-channels 102 and saline are injected into the micro-channel 103.
  • the light source 105 continuously illuminates the communication space 101 and the plurality of microchannels 102 to cause the chloroplast 106 to perform photosynthesis.
  • the microchannel 102 and the saline injection microchannel 103 are rotatable so that the chloroplast 106 can be evenly distributed therein.
  • the physiological saline is continuously injected into the communication space 101 and the plurality of microchannels 102 by the saline injection microchannel 103 to constantly disturb the communication space 101 and the plurality of microchannels 102.
  • the chloroplast 106 allows the chloroplast 106 to be continuously dispersed in the communication space 101 and the plurality of microchannels 102, thereby effectively performing photosynthesis, wherein the filter plug 104 is used to prevent the chloroplast 106 from flowing out of the photosynthesis microchannel chamber 100.
  • FIG. 2 is a diagram showing a photosynthesis micro-flow chamber according to an embodiment of the present invention.
  • the photosynthesis microchannel chamber 200 includes a plurality of communication spaces 201, a plurality of microchannels 202, a saline injection microchannel 203, a plurality of filter plugs 204, a light source 205, and a communication space microchannel 207.
  • the communication space micro-channels are used to connect the communication spaces.
  • the connected space micro flow path 207 is used to connect the communication space 201.
  • the communication space microchannels 207 are rotatable so that the chloroplasts 206 can be evenly distributed in the communication space microchannels 207.
  • the flow path 203, the plurality of filter plugs 204, and the light source 205 are the same as the embodiment of the communication space 101, the plurality of microchannels 102, the saline injection microchannel 103, the plurality of filter plugs 104, and the light source 105 in FIG. The description will not be repeated.
  • the two communication spaces and one saline solution are used to inject the micro flow channels, but are not limited thereto. In other embodiments, multiple saline solutions may also be utilized to inject the microchannels.
  • Figure 3 is a diagram showing a photosynthesis method in accordance with an embodiment of the present invention.
  • step S31 the chloroplast and the physiological saline solution are injected into the photosynthesis microchannel chamber, wherein the photosynthesis microchannel chamber comprises at least one communication space, a plurality of microchannels, at least one saline solution injected into the microchannel, and a plurality of a filter plug, a plurality of microchannels and at least one saline injection microchannel are respectively connected to at least one communication space, and the plurality of filter plugs respectively connect the plurality of microchannels and at least one saline solution to the other end of the microchannel,
  • the at least one communication space micro flow channel is further configured to connect the plurality of communication spaces.
  • the microchannel, the saline injection microchannel and the communication space microchannel are rotatable.
  • physiological saline is continuously injected from at least one saline injection microchannel.
  • the light is irradiated to the photosynthesis micro-flow chamber.
  • Figure 4 is a graph showing the amount of glucose after photosynthesis reaction of the photosynthesis microchannel chamber according to Figure 1.
  • the physiological saline is continuously injected into the communication space 101 and the plurality of microchannels 102 from the saline injection microchannel 103, the physiological saline containing glucose after the photosynthesis reaction is continuously continuously A plurality of filter plugs 104 flow out.
  • the amount of glucose in Figure 4 is known by measuring the liquid flowing from the plurality of filter plugs 104. As shown in Fig. 4, after one hour passed, the amount of glucose was about 0.25 g/ml, and after two hours, the amount of glucose was about 0.5 g/ml, and after six hours, the amount of glucose was about 2.0 g/ml.
  • the photosynthesis micro-flow channel chamber provided by the invention does not need to be carried out in plants, and as long as the chloroplast can be extracted, the photosynthesis can be effectively carried out outside the plant, and the glucose can be successfully used as a source of energy food, thereby reducing Carbon dioxide in the air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Mathematical Analysis (AREA)
  • Botany (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Pure & Applied Mathematics (AREA)
  • Educational Administration (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种光合作用微流道室(100),包括:至少一连通空间(101);多个微流道(102),分别连接至该至少一连通空间(101);至少一食盐水注入微流道(103),分别连接至该至少一连通空间(101);多个过滤栓(104),分别连接至多个微流道(103)与至少一食盐水注入微流道(103)的另一端;以及一光源(105),照射至少一连通空间(101)、多个微流道(102)与至少一食盐水注入微流道(103),其中,叶绿体(106)与生理食盐水被注入至少一连通空间(101)、多个微流道(102)与至少一食盐水注入微流道(103)。

Description

光合作用微流道室与光合作用方法 技术领域
本发明涉及一种光合作用微流道室与光合作用方法。
背景技术
近年来的气候变迁的主因为人类活动所产生的二氧化碳、甲烷、氧化亚氮等所谓的温室气体浓度提升,造成温室效应,全球温度提升。温度增加会造成蒸散量增加,可能会改变热平衡系统,进而改变降雨带的分布,使得原本该降雨的地区发生干旱,而原本干旱的地方却发生水灾。对粮食作物生产而言,不仅温度改变了,也可能造成作物在需要水分的季节无法获得水分,或反之获得过多水分,明显降低作物的生产。
气候变迁除了造成水资源危机,其连锁反应更牵动粮食安全。根据联合国针对全球土地资源的评估,全球近四分之一农地已严重退化,世界人口却相反的仍持续增长,若要喂饱全人类,至2050年势必得增加70%的粮食产量。
因此,如何解决接下来所要面对的粮食不足以及如何有效地减少温室气体排放等问题,实为目前各界极欲解决的技术问题。
发明内容
为达上述目的及其他目的,本发明提供一种光合作用微流道室,包括:至少一连通空间;多个微流道,分别连接至该至少一连通空间;至少一食盐水注入微流道,分别连接至该至少一连通空间;多个过滤栓,分别连接至该多个微流道与该至少一食盐水注入微流道的另一端;以及一光源,照射该至少一连通空间、该多个微流道与该至少一食盐水注入微流道,其中,叶绿体与生理食盐水被注入至该至少一连通空间、该多个微流道与该至少一食盐水注入微流道。
其中,生理食盐水不断地从该至少一食盐水注入微流道被注入至该至少一连通空间与该多个微流道中,且该多个过滤栓防止该叶绿体流出。
此外,该多个微流道与该至少一食盐水注入微流道为可旋转的。
再者,当该至少一连通空间为多个连通空间时,更包括至少一连通空间微流道用以连接该多个连通空间,且该至少一连通空间微流道为可旋转的。
本发明进一步提供一种光合作用方法,包括:注入叶绿体与生理食盐水至一光合作用微流道室中;不断地从至少一食盐水注入微流道注入生理食盐水;以及照射光线至该光合作用微流道室,其中,该光合作用微流道室包括至少一连通空间、多个微流道、该至少一食盐水注入微流道与多个过滤栓,该多个微流道与该至少一食盐水注入微流道分别连接至该至少一连通空间,该多个过滤栓分别连接该多个微流道与该至少一食盐水注入微流道的另一端。
其中,当该至少一连通空间为多个连通空间时,更包括至少一连通空间微流道用以连接该多个连通空间,且该至少一连通空间微流道为可旋转的。
此外,该多个微流道与该至少一食盐水注入微流道为可旋转的。
附图说明
图1是显示依据本发明一实施例的光合作用微流道室;
图2是显示依据本发明一实施例的光合作用微流道室;
图3是显示依据本发明一实施例的光合作用方法;以及
图4是显示根据图1光合作用微流道室的光合作用反应后的葡萄糖量示意图。
其中,附图标记说明如下:
100、200 光合作用微流道室
101、201 连通空间
102、202 微流道
103、203 食盐水注入微流道
104、204 过滤栓
105、205 光源
106、206 绿叶体
207      连通空间微流道
S31~S33  步骤
具体实施方式
以下依据本发明的实施例,描述光合作用微流道室。
图1是显示依据本发明一实施例的光合作用微流道室。
如图1所示,光合作用微流道室100包括连通空间101、多个微流道102、食盐水注入微流道103、多个过滤栓104与光源105。在本发明一实施例中,举例而言,光合作用微流道室的体积为3.5cm*3.5cm*0.7cm,但并不限制于此。举例而言,连通空间101为直径2公分的圆,但并不限制于此。在本发明一实施例中,连通空间101、微流道102与食盐水注入微流道103为透明材质,例如玻璃等材质。微流道102与食盐水注入微流道103的一端各自连接连通空间101。微流道102与食盐水注入微流道103的另一端分别连接过滤栓104。叶绿体106与生理食盐水被注入以充满光合作用微流道室100中的连通空间101、多个微流道102与食盐水注入微流道103。光源105持续照射连通空间101与多个微流道102,以使叶绿体106进行光合作用。在本发明一实施例中,微流道102与食盐水注入微流道103为可旋转的,藉以使叶绿体106能够均匀分布在其中。
在本发明一实施例中,生理食盐水持续藉由食盐水注入微流道103被注入连通空间101与多个微流道102中,以不断扰动连通空间101与多个微流道102中的叶绿体106,使叶绿体106能持续分散在连通空间101与多个微流道102之中,进而有效地进行光合作用,其中,过滤栓104用以防止叶绿体106流出光合作用微流道室100。
图2是显示依据本发明一实施例的光合作用微流道室。
如图2所示,光合作用微流道室200包括多个连通空间201、多个微流道202、食盐水注入微流道203、多个过滤栓204、光源205与连通空间微流道207。在本发明一实施例中,光合作用微流道室具有两个以上的连通空间时,连通空间微流道用以连接连通空间。举例而言,连通空间微流道207用以连接连通空间201。在本发明一实施例中,连通空间微流道207为可旋转的,藉以使叶绿体206能够均匀分布在连通空间微流道207之中。图2中的多个连通空间201、多个微流道202、食盐水注入微 流道203、多个过滤栓204以及光源205与图1中的连通空间101、多个微流道102、食盐水注入微流道103、多个过滤栓104以及光源105的实施方式相同,此处不再重复描述。需注意的是,在此实施例中利用两个连通空间以及一个食盐水注入微流道,但并不限制于此。在其他实施例中,也可利用多个食盐水注入微流道。
图3是显示依据本发明一实施例的光合作用方法。
在步骤S31中,注入叶绿体与生理食盐水至光合作用微流道室中,其中光合作用微流道室包括至少一连通空间、多个微流道、至少一食盐水注入微流道与多个过滤栓,多个微流道与至少一食盐水注入微流道分别连接至至少一连通空间,多个过滤栓分别连接多个微流道与至少一食盐水注入微流道的另一端,在本发明一实施例中,当至少一连通空间为多个连通空间时,更包括至少一连通空间微流道用以连接多个连通空间。在本发明一实施例中,微流道、食盐水注入微流道与连通空间微流道为可旋转的。在步骤S32中,不断地从至少一食盐水注入微流道注入生理食盐水。在步骤S33中,照射光线至光合作用微流道室。
图4是显示根据图1光合作用微流道室的光合作用反应后的葡萄糖量示意图。
在图1中,由于生理食盐水不断地从食盐水注入微流道103被注入连通空间101与多个微流道102中,因此经由光合作用反应后含有葡萄糖的生理食盐水也会不断地从多个过滤栓104流出。图4中葡萄糖的含量经由量测从多个过滤栓104流出的液体中所得知。如图4所示,在经过一小时后,葡萄糖量约为0.25g/ml,经过两小时后,葡萄糖量约为0.5g/ml,在经过六小时后,葡萄糖量约为2.0g/ml。
本发明所提供的光合作用微流道室不需要在植物体内所进行,只要能萃取出叶绿体即可在植物体外有效地进行光合作用,以成功取得葡萄糖作为能量食物的来源,也能藉此减少空气中的二氧化碳。
尽管已参考本申请的许多说明性实施例描述了实施方式,但应了解的是,本领域技术人员能够想到多种其他改变及实施例,这些改变及实施例将落入本公开原理的精神与范围内。尤其是,在本公开、图式以及所附权利要求的范围内,对主题结合配置的组成部分及/或配置可作出各 种变化与修饰。除对组成部分及/或配置做出的变化与修饰之外,可替代的用途对本领域技术人员而言将是显而易见的。

Claims (9)

  1. 一种光合作用微流道室,包括:
    至少一连通空间;
    多个微流道,分别连接至该至少一连通空间;
    至少一食盐水注入微流道,分别连接至该至少一连通空间;
    多个过滤栓,分别连接至该多个微流道与该至少一食盐水注入微流道的另一端;以及
    一光源,照射该至少一连通空间、该多个微流道与该至少一食盐水注入微流道,
    其特征在于,叶绿体与生理食盐水被注入至该至少一连通空间、该多个微流道与该至少一食盐水注入微流道。
  2. 根据权利要求1所述的光合作用微流道室,其特征在于,生理食盐水不断地从该至少一食盐水注入微流道被注入至该至少一连通空间与该多个微流道中,且该多个过滤栓防止该叶绿体流出。
  3. 根据权利要求1所述的光合作用微流道室,其特征在于,该多个微流道与该至少一食盐水注入微流道为可旋转的。
  4. 根据权利要求1所述的光合作用微流道室,其特征在于,当该至少一连通空间为多个连通空间时,更包括至少一连通空间微流道用以连接该多个连通空间。
  5. 根据权利要求4所述的光合作用微流道室,其特征在于,该至少一连通空间微流道为可旋转的。
  6. 一种光合作用方法,包括:
    注入叶绿体与生理食盐水至一光合作用微流道室中;
    不断地从至少一食盐水注入微流道注入生理食盐水;以及
    照射光线至该光合作用微流道室,
    其特征在于,该光合作用微流道室包括至少一连通空间、多个微流道、该至少一食盐水注入微流道与多个过滤栓,该多个微流道与该至少一食盐水注入微流道分别连接至该至少一连通空间,该多个过滤栓分别连接该多个微流道与该至少一食盐水注入微流道的另一端。
  7. 根据权利要求6所述的光合作用方法,其特征在于,当该至少一连通空间为多个连通空间时,更包括至少一连通空间微流道用以连接该多个连通空间。
  8. 根据权利要求7所述的光合作用方法,其特征在于,该至少一连通空间微流道为可旋转的。
  9. 根据权利要求6所述的光合作用方法,其特征在于,该多个微流道与该至少一食盐水注入微流道为可旋转的。
PCT/CN2014/001112 2014-12-09 2014-12-09 光合作用微流道室与光合作用方法 WO2016090519A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2014/001112 WO2016090519A1 (zh) 2014-12-09 2014-12-09 光合作用微流道室与光合作用方法
EP14907678.8A EP3232422B1 (en) 2014-12-09 2014-12-09 Photosynthesis microfluidic channel chamber and photosynthesis method
JP2017548504A JP6476312B2 (ja) 2014-12-09 2014-12-09 光合成マイクロ流体チャンバ及び光合成の方法
PL14907678T PL3232422T3 (pl) 2014-12-09 2014-12-09 Komora fotosyntezy z kanałem mikroprzepływowym i sposób prowadzenia fotosyntezy
BR112017011395-3A BR112017011395B1 (pt) 2014-12-09 2014-12-09 Dispositivo fotossintetico, e, metodo para provocar fotossintese
ES14907678T ES2745308T3 (es) 2014-12-09 2014-12-09 Cámara de canal de microfluido de fotosíntesis y procedimiento de fotosíntesis
KR1020177014808A KR101878655B1 (ko) 2014-12-09 2014-12-09 광합성 마이크로유체 채널 챔버 및 광합성 방법
RU2017120356A RU2673728C1 (ru) 2014-12-09 2014-12-09 Устройство для осуществления фотосинтеза с микрофлюидной камерой для осуществления фотосинтеза в указанной камере и способ осуществления фотосинтеза

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/001112 WO2016090519A1 (zh) 2014-12-09 2014-12-09 光合作用微流道室与光合作用方法

Publications (1)

Publication Number Publication Date
WO2016090519A1 true WO2016090519A1 (zh) 2016-06-16

Family

ID=56106390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/001112 WO2016090519A1 (zh) 2014-12-09 2014-12-09 光合作用微流道室与光合作用方法

Country Status (8)

Country Link
EP (1) EP3232422B1 (zh)
JP (1) JP6476312B2 (zh)
KR (1) KR101878655B1 (zh)
BR (1) BR112017011395B1 (zh)
ES (1) ES2745308T3 (zh)
PL (1) PL3232422T3 (zh)
RU (1) RU2673728C1 (zh)
WO (1) WO2016090519A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042975A2 (en) * 2006-10-04 2008-04-10 Board Of Regents, The University Of Texas System Compositions, methods and systems for producing saccharides in photosynthetic prokaryotes (cyanobacteria)
CN102224079A (zh) * 2008-11-25 2011-10-19 阿斯特里姆有限公司 用于加强光合作用的空中系统和方法
KR20120110262A (ko) * 2011-03-29 2012-10-10 공주대학교 산학협력단 광합성 학습 교구
CN102753249A (zh) * 2010-01-19 2012-10-24 马斯特瑞达股份公司 利用人工光合作用对气体污染物的中和
CN203673740U (zh) * 2014-01-14 2014-06-25 陈翔 一种光合作用教学实验演示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2035505C1 (ru) * 1992-12-15 1995-05-20 Акционерное общество "ДОКА" Биореактор для культивирования фотосинтезирующих микроорганизмов
US5856174A (en) * 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
EP2407243B1 (en) * 2003-07-31 2020-04-22 Handylab, Inc. Multilayered microfluidic device
JP2006311887A (ja) * 2005-05-06 2006-11-16 Imoto Seisakusho:Kk 生体管状器官培養方法及びその装置
EP2238231B1 (en) * 2008-01-03 2016-03-23 Proterro, Inc. Transgenic photosynthetic microorganisms and photobioreactor
JP2009207475A (ja) * 2008-03-03 2009-09-17 Masahiro Kondo 水素・酸素発生装置
WO2010023497A1 (en) * 2008-08-29 2010-03-04 Peking University A microfluidic chip for accurately controllable cell culture
JP2014176361A (ja) * 2013-03-15 2014-09-25 Kobelco Eco-Solutions Co Ltd 微細藻類の培養装置
KR101862550B1 (ko) * 2015-11-03 2018-05-30 고려대학교 산학협력단 미세액적을 이용한 균주배양장치 및 이를 이용한 균주 배양방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008042975A2 (en) * 2006-10-04 2008-04-10 Board Of Regents, The University Of Texas System Compositions, methods and systems for producing saccharides in photosynthetic prokaryotes (cyanobacteria)
CN102224079A (zh) * 2008-11-25 2011-10-19 阿斯特里姆有限公司 用于加强光合作用的空中系统和方法
CN102753249A (zh) * 2010-01-19 2012-10-24 马斯特瑞达股份公司 利用人工光合作用对气体污染物的中和
KR20120110262A (ko) * 2011-03-29 2012-10-10 공주대학교 산학협력단 광합성 학습 교구
CN203673740U (zh) * 2014-01-14 2014-06-25 陈翔 一种光合作用教学实验演示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232422A4 *

Also Published As

Publication number Publication date
ES2745308T3 (es) 2020-02-28
JP6476312B2 (ja) 2019-02-27
EP3232422A4 (en) 2018-06-20
EP3232422B1 (en) 2019-06-26
PL3232422T3 (pl) 2019-12-31
BR112017011395B1 (pt) 2020-12-08
RU2673728C1 (ru) 2018-11-29
KR101878655B1 (ko) 2018-07-16
EP3232422A1 (en) 2017-10-18
JP2018505692A (ja) 2018-03-01
KR20170077219A (ko) 2017-07-05
BR112017011395A2 (zh) 2018-02-20

Similar Documents

Publication Publication Date Title
Yan et al. Influence of soil organic carbon on the aroma of tobacco leaves and the structure of microbial communities
WO2016090519A1 (zh) 光合作用微流道室与光合作用方法
CN206879648U (zh) 贴片式滴灌带
WO2019109175A1 (en) Process for the production of micronized sulfur
TW201618666A (zh) 光合作用微流道室與光合作用方法
US10214757B2 (en) Photosynthetic device with microfluid chamber for causing photosynthesis therein and method thereof
CN105875224A (zh) 光合作用微流道室与光合作用方法
CN104472331B (zh) 用于观察植物根系真菌的快速透明方法
Aloqailf et al. Estimating soil evaporation from different irrigation system designs using isotope geochemistry.
CN104541721A (zh) 一种提高上部烟叶钾含量的方法
Lopes et al. Nitrous oxide emission in response to N application in irrigated sugarcane
Jamadar Training needs of sugarcane growers about recommended production technology
Jiménez-Noriega et al. Cambial activity and phloem-xylogenesis of three plant species in an elevation gradient in the Sierra Nevada, México
Franz Keimungsverhalten der Kapuzinerkresse Tropaeolum majus L.
Shanu Chapter-1 Climate Change in Sustainable Production of Vegetable Crops
Yamgar Post Harvest Technology Followed By Turmeric Growers
Bohme et al. Growth and internal quality of Vietnamese coriander (Polygonum odoratum Lour.) affected by additional lighting with blue, red and green LEDs
CN104957021A (zh) 一种无土栽培定植装置
Bing et al. Solvent-free one-pot synthesis of Cu/SSZ-13 for ammonia SCR
Lu et al. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System
Koryzma-Zepp et al. Electrical potentials in" W. Murcott" tangor trees in response to salinity stress
Rice et al. Do Nutrient Additions Affect Sap Flow in Sugar Maple Trees?
Balogh et al. Responses of soil CO2 efflux to changes in plant CO2 uptake and transpiration
Repo Root research is producing valuable information about tree growth
Görres et al. Soil greenhouse gas fluxes from a poplar bioenergy plantation: How long does former land use type matter?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177014808

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017548504

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014907678

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017120356

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017011395

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017011395

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170530