WO2016089103A1 - 부등피치 재생 블로워 및 이의 최적화 설계 방법 - Google Patents

부등피치 재생 블로워 및 이의 최적화 설계 방법 Download PDF

Info

Publication number
WO2016089103A1
WO2016089103A1 PCT/KR2015/013040 KR2015013040W WO2016089103A1 WO 2016089103 A1 WO2016089103 A1 WO 2016089103A1 KR 2015013040 W KR2015013040 W KR 2015013040W WO 2016089103 A1 WO2016089103 A1 WO 2016089103A1
Authority
WO
WIPO (PCT)
Prior art keywords
design
objective function
optimal solution
blower
response surface
Prior art date
Application number
PCT/KR2015/013040
Other languages
English (en)
French (fr)
Inventor
이경용
최영석
김진혁
정욱희
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to DE112015005494.4T priority Critical patent/DE112015005494B4/de
Priority to US15/533,175 priority patent/US10590938B2/en
Publication of WO2016089103A1 publication Critical patent/WO2016089103A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a regenerative blower and its optimization design method.
  • regenerative blowers are mainly used for transporting gases at relatively low flow rates and high pressures, such as industrial high pressure blowers (ring blowers).
  • ring blowers industrial high pressure blowers
  • regenerative blowers are also used as air supply systems for fuel cell systems and hydrogen recirculators. The scope of use is expanding.
  • Such a regenerative blower is used as a blower for air supply of a system requiring a low flow rate and a high head, and has an open channel type and a side channel type.
  • the regenerative blower is located in the circumferential direction of the rotating impeller in the form of a disk and operates on the principle that the pressure rises through the internal circulation flow between the groove of the wing and the flow path of the case.
  • the regenerative blower is required a plurality of wings for the lift of the head, which causes the frequency passing through the wings, that is, high frequency noise (BPF, Blade Passing Frequency) and noise (overall noise) occurs.
  • BPF Blade Passing Frequency
  • noise overall noise
  • a method of reducing noise by installing a silencer may be used, which may increase cost, increase in size, and cause loss of about 10% of the flow path due to the silencer.
  • the conventional regenerative blower has a problem that it is difficult to predict or adjust the noise and efficiency according to the wing arrangement because the wing arrangement is controlled by a random number.
  • One embodiment of the present invention is to provide a regeneration blower and an optimization design method thereof that can predict or adjust the noise and efficiency according to the wing arrangement by arranging the wings in an uneven pitch.
  • the regeneration blower including an impeller including a plurality of wings spaced apart in the circumferential direction
  • the plurality of wings is a regeneration blower is arranged between each wing at an incremental angle ( ⁇ i) Is provided.
  • Am is the size of the distribution of the wing spacing (equal angle) (0 degrees ⁇ Am ⁇ 360 / N degrees),
  • P1 and P2 are factors that influence the period (0 ⁇ P1 ⁇ N, 0 ⁇ P2 ⁇ N, except P1 and P2 are real)
  • Am, P1, and P2 are 27 ⁇ 32, and 77dB (A) ⁇ SPL ⁇ 83.7dB (A) may be satisfied at the same time.
  • efficiency
  • SPL Sound Pressure Level (Sound pressure level)
  • Pout - Pin total pressure
  • Q volume flow rate
  • torque
  • angular velocity
  • P pressure
  • Pref reference pressure (2 - 10 - 5 Pa)
  • the Am may be 1 degrees ⁇ Am ⁇ 8.23 degrees.
  • P1 and P2 may be 1 ⁇ P1 ⁇ 38 and 0 ⁇ P2 ⁇ 39.
  • an optimization design method of a regeneration blower comprising a step of obtaining.
  • obtaining an optimal solution of the objective function in the design region may further include comparing the optimal solution with a validity.
  • the design variable may include Am, which is a distribution size of the inter-blade spacing, elements P1 and P2 which influence the period, and the objective function may include the efficiency ⁇ and the sound pressure level SPL. Can be.
  • Am may be 1 ° ⁇ Am ⁇ 8.23 °
  • P1 may be 1 ⁇ P1 ⁇ 38
  • P2 may be 0 ⁇ P2 ⁇ 39.
  • obtaining an optimal solution of the objective function in the design region may include constructing a response surface for calculating an optimal solution using a response surface technique.
  • a multi-objective evolution algorithm may be used to maximize each objective function based on the response surfaces of the objective functions obtained by the response surface technique. You can get the optimal solution.
  • the optimal solution may be further improved through local search of each objective function using sequential quadratic programming (SQP).
  • SQL sequential quadratic programming
  • comparing whether the optimal solution is valid may include analysis of variance (ANOVA) and regression analysis of the response surface of each objective function constructed from the response surface technique.
  • ANOVA analysis of variance
  • the regeneration blower and its optimization design method according to an embodiment of the present invention are designed to selectively control efficiency and noise by being designed through multi-objective optimization.
  • FIG. 1 is a schematic diagram illustrating a regeneration blower according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating an impeller of a regeneration blower according to an exemplary embodiment of the present invention.
  • FIG 3 is a perspective view showing a modification of the impeller of the regeneration blower according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing the cross section of FIG.
  • FIG. 5 is a flowchart illustrating an optimization design method of a regeneration blower according to an exemplary embodiment of the present invention.
  • FIG. 6 is a graph showing the objective function efficiency and sound pressure level in the optimized design method of the regeneration blower according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the correlation of design variables in the optimization design method of the regeneration blower according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a regeneration blower according to an embodiment of the present invention.
  • 2 is a perspective view showing an impeller in which the wings of the regeneration blower according to the embodiment of the present invention are arranged at an uneven pitch.
  • the regeneration blower 1 may include an impeller 70, a first casing 10, a second casing 30, and a motor 50. have.
  • an impeller 70 rotates inside a pair of the first casing 10 and the second casing 30, which are divided into left and right sides. It is possible to install. At this time, the impeller 70 is installed on a rotating shaft (not shown) of the motor 50 and rotated by the motor.
  • FIG. 3 is a perspective view showing a modification of the impeller of the regeneration blower according to an embodiment of the present invention.
  • 4 is a cross-sectional view showing the cross section of FIG.
  • Impeller 70 of the regeneration blower 1 may include a disc 71, a plurality of wings (73).
  • the disc 71 has a shaft fixing part 71a formed at the center of the disc 71 to be fixed to a rotational axis (not shown) of the regeneration blower 1, and as shown in FIG.
  • a plurality of wings may be spaced apart in the circumferential direction on both sides.
  • the regeneration blower 1 according to the embodiment of the present invention will be described below with respect to the regeneration blower in which a plurality of wings are spaced circumferentially on one surface of the disc.
  • the present invention is not limited thereto, and as illustrated in FIGS. 3 and 4, a plurality of wings may be spaced apart in the circumferential direction.
  • the shaft fixing portion 71a is fixed to the rotating shaft of the regeneration blower 1, that is, the rotating shaft of the motor, so that the disc 71 rotates together with the rotating shaft.
  • the flow path groove 75 may be formed between the plurality of wings, but the cross section may be a semicircle or a semi-oval shape, but is not limited thereto. Since the flow path groove 75 is formed between the plurality of wings, the plurality of flow path grooves 75 are spaced apart from each other.
  • the plurality of wings 73 are arranged in an unequal pitch in which the angles ⁇ i between the respective wings are not the same equal pitch but the angles are not equal.
  • the wings may be arranged at an uneven pitch by setting the angle between the wings to an incremental angle ⁇ i according to Equation 1.
  • Am is the size of the distribution of the wing spacing (equal angle) (0 degrees ⁇ Am ⁇ 360 / N degrees),
  • P1 and P2 are factors influencing the period (0 ⁇ P1 ⁇ N, 0 ⁇ P2 ⁇ N, where P1 and P2 are real)
  • the reference shape is a pitch impeller, such that the wings are spaced at equal pitch because the angles between the wings are the same, and the sum of the incremental angles ⁇ i must satisfy 360 degrees.
  • the impeller 70 is able to create an unequal pitch condition of the same structure even if the number of the blades 73 is changed by the incremental angle ⁇ i, and the generated functions have the form of the vibration divergence function because of the (-1) i term. This allows the average of the incremental angles to be similar to the overall average.
  • the regeneration blower 1 not only reduces the high frequency sound by dispersing the time interval of the wing passing through the partition wall adjacent to the wing 73 but also reduces the BPF in the high frequency region because the sound pressure is dispersed in various frequencies. Will be.
  • Am which is the distribution size of the wing spacing (equal angle)
  • P1, P2 which are factors influencing the period
  • FIG. 5 is a flowchart illustrating an optimization design method of a regeneration blower according to an exemplary embodiment of the present invention.
  • the efficiency and noise of the regenerative blower may be simultaneously adjusted by modifying the wing spacing to the inequality pitch using multi-objective optimization.
  • the optimized design method of the regeneration blower includes a design variable and an objective function selection step (S10), a design area selection step (S20) for determining upper and lower limit values of the design variable, and an object in the design area.
  • S10 an objective function selection step
  • S20 design area selection step
  • a step of obtaining an optimal solution of the function (S30) and a comparison of the optimal solution (S40) may be included.
  • the regeneration blower 10 selects a design variable and optimizes the objective function in the design area.
  • the objective function is obtained through aerodynamic and noise performance tests, and the design variables for determining the uneven pitch of the wing are selected to optimize the objective function.
  • the design variables are Am, P1, and P2, where Am is the distribution size (0 degrees ⁇ Am ⁇ 360 / N degrees) of the inter-blade spacing (equal angle), and P1 and P2 are factors that influence the period. (0 ⁇ P1 ⁇ N, 0 ⁇ P2 ⁇ N, provided that P1 and P2 are real numbers).
  • Geometrical parameters Am, P1 and P2 related to the unequal pitch of the wing 73 can be used as design variables for simultaneously optimizing the efficiency ⁇ and the sound pressure level SPL in the regenerative blower 1. At this time, it is important to find a movable design space formed by establishing a range of design variables.
  • the objective function may be set to the efficiency ⁇ and the sound pressure level SPL.
  • an appropriate design region is set by limiting the range of the design variable for optimal design performance.
  • the upper limit and the lower limit of each design variable to be changed in the optimal design process may be determined by the minimum thickness of a drill or a blade used when manufacturing an impeller including a plurality of wings. Obtaining the upper limit and the lower limit by substituting Equation 1 is shown in Table 1 below.
  • the design variable Am is 1 degree or more and 8.23 degrees or less
  • P1 is 1 or more and 38 or less
  • P2 is 0 or more and 39 or less.
  • the experiment is performed in the selected design region to determine, for example, the objective function values at 30 experimental points.
  • a response surface for calculating an optimal point may be constructed using a response surface technique, which is a type of surrogate model.
  • ⁇ and SPL can be defined as follows as an objective function for design optimization of the regeneration blower.
  • efficiency
  • SPL sound pressure level
  • Pout-Pin total pressure
  • Q volumetric flow rate
  • torque
  • angular velocity
  • P sound pressure
  • Pref reference pressure (2 * 10 -5 Pa).
  • the response surface technique is a series of mathematical statistics that use the results obtained from physical experiments or numerical calculations to model the actual response function as an approximate polynomial function.
  • the response surface technique can reduce the number of experiments performed by modeling responses in arbitrary space with a limited number of experiments.
  • the reaction surface composed of the second order polynomial used herein may be expressed as follows.
  • C is the regression coefficient
  • n is the number of design variables and x is the design variable.
  • the function form of the RSA model of the objective functions according to an embodiment of the present invention may be expressed as follows with respect to normalized design variables.
  • a multi-objective evolutionary algorithm capable of maximizing each objective function based on the response surfaces of the respective objective functions obtained through the response surface technique may be used to simultaneously optimize ⁇ and SPL.
  • real coded NSGA-II code developed by Deb can be used. Where real coded means that intersections and variations in the actual design space are performed to construct the response of NSGA-II.
  • Pareto optimal solutions are a collection of non-dominant solutions. This Pareto optimal solution allows you to select the desired optimal point according to the intention of the intended purpose.
  • the value of the objective function for the experimental points obtained by Latin hypercube sampling (LHS) can be evaluated and the optimal point can be searched using SQP (Sequential Quadratic Programming) based on the evaluated objective functions.
  • the optimal solutions of each objective function can be improved by the local search of each objective function from the solutions predicted by the initial NSGA-II using sequential quadratic programming (SQP). have.
  • Pareto optimal solution which is a collection of non-dominant solutions.
  • the units that are grouped in the Pareto optimal solution are called clusters.
  • FIG. 6 is a graph illustrating the efficiency and sound pressure levels of a Pareto optimal solution (cluster optimal, COSs) derived from a multi-purpose numerical optimization design of a regeneration blower according to an embodiment of the present invention.
  • the Pareto optimal solution may have an S shape as the objective function values regarding efficiency and noise are optimized.
  • Trade-off analysis shows the correlation between two objective functions.
  • Am, P1, and P2 are 27 ⁇ ⁇ ⁇ 32, and may satisfy 77 dB (A) ⁇ SPL ⁇ 83.7 dB (A) at the same time, and Table 2 below shows Am, P1 satisfying this. And a value of P2 and corresponding to a graph of Pareto optimal solutions in FIG. 6.
  • Table 3 shows the values of the optimal design variables Am, P1, and P2 for Cluster A, B, C, D, and E, which are optimal populations of efficiency and noise.
  • the reference shape has an efficiency ⁇ of 27.25 and an SPL of 79 dB (A).
  • Table 3 shows that design variables Am increase and P1 and P2 decrease as they move from optimal point A to E. However, the slope at which P2 decreases is greater than the slope at which P1 decreases.
  • Am is proportional to three design variables, and P1 and P2 are inversely related.
  • the three optimal design variables can be significantly changed relative to the value of the reference shape, and efficiency and noise can be significantly improved at all optimum points (COSs) to select values of efficiency and sound pressure levels. .
  • the optimal point comparison step (S50) it is examined whether the optimum points obtained through ANOVA and regression analysis on the response surface of each objective function constructed from the response surface technique are reliable.
  • R 2 may represent a correlation coefficient at least square surface fitting
  • the R 2 adj value may represent an adjusted correlation coefficient at least square surface fitting.
  • Ginuta said that the R 2 adj value is more than 0.9 and less than 1 when the response model is accurately predicted by the response surface technique.
  • the mean square root error is the average of the squared errors in experiments and observations, and the cross-proof error is a technique for calculating the predicted error.
  • the R 2 adj values of efficiency and noise which are the respective objective functions calculated in the optimum point comparison step S50 according to the exemplary embodiment of the present invention, were 0.948 and 0.933, respectively, and thus, the response surface may be determined to be reliable.
  • the regenerative blower and its optimization design method according to an embodiment of the present invention are formed so that the wings are arranged at an unequal pitch through multi-objective optimization to selectively control efficiency and noise.
  • the regeneration blower and its optimization design method according to an embodiment of the present invention are designed to selectively control efficiency and noise by being designed through multi-objective optimization.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

재생 블로워가 제공된다. 본 발명의 예시적인 실시예에 따른 재생 블로워는 원주방향으로 이격 배치되는 복수개의 날개를 포함하는 임펠러를 포함하는 재생 블로워에 있어서, 복수개의 날개는 각각의 날개 사이가 증분각도(△Θi)로 배열된다.

Description

부등피치 재생 블로워 및 이의 최적화 설계 방법
본 발명은 재생 블로워 및 이의 최적화 설계 방법에 관한 것이다.
일반적으로, 재생 블로워는 산업용 고압 송풍기(링 블로워)와 같이 상대적으로 적은 유량 및 높은 압력으로 기체를 이송하는 용도에 주로 사용되는 것으로, 최근에는 연료전지 시스템의 공기 공급기, 수소 재순환장치 등으로도 그 활용범위가 확장되고 있다.
이러한 재생 블로워는 저 유량, 고 양정을 요구하는 시스템의 공기 공급용 블로워로 사용되고 오픈 채널형(Open channel type)과 사이드 채널형(Side channel type)이 있다. 재생 블로워는 원판 형태의 회전하는 임펠러의 원주 방향으로 날개가 위치하고 있으며 날개의 홈과 케이스의 유로 사이에서 내부 순환유동을 통해 압력이 상승하는 원리로 작동한다.
한편, 재생 블로워는 양정의 상승을 위해 복수개의 날개가 필수적이며 이로 인해 날개를 통과하는 주파수, 즉 고주파 소음(BPF, Blade Passing Frequency) 및 소음(overall 소음)이 발생한다. 일반적으로 재생 블로워의 소음을 줄이기 위해 효율을 높여 상대적인 성능을 향상시켜 회전 수 감소로 인한 소음 저감을 실현할 수 있으나 한계가 존재한다.
또한, 가정용 및 의료용으로 재생 블로워가 사용될 경우 소음기를 장착하여 소음을 저감시키는 방법을 사용할 수 있으나 이는 원가가 상승하고 크기가 증가하며 소음기로 인한 약 10%의 유로의 손실이 발생할 수 있다.
다만, 종래의 재생 블로워는 날개 배열을 난수로 제어하기 때문에 날개 배열에 따른 소음 및 효율을 예상하거나 조절하는 것이 어려운 문제가 있었다.
또한, 종래의 재생 블로워의 날개의 부등피치 배열은 난수발생(random number)법을 사용하나 이러한 경우 배열에 대한 근거가 부족하고 조절이 어려운 문제가 있었다.
본 발명의 일 실시예는 날개를 부등피치로 배열하여 날개 배열에 따른 소음 및 효율을 예상하거나 조절할 수 있는 재생 블로워 및 이의 최적화 설계 방법을 제공하고자 한다.
본 발명의 일 측면에 따르면 원주방향으로 이격 배치되는 복수개의 날개를 포함하는 임펠러를 포함하는 재생 블로워에 있어서, 상기 복수개의 날개는 각각의 날개 사이가 증분각도(△Θi)로 배열되는 재생 블로워가 제공된다.
이때,
N은 전체 날개의 수(N=2보다 큰 자연수),
Am은 날개 간 간격(등분각)의 분포 크기(0도<Am<360/N도),
i는 날개의 순번(i=1, 2, 3, 4,…N),
P1 및 P2는 주기에 영향을 미치는 요소(0≤P1≤N, 0≤P2≤N, 단 P1, P2는 실수)
또한, 상기 Am, P1, P2는 27≤η≤32이고, 77dB(A)≤SPL≤83.7dB(A)를 동시에 만족할 수 있다.
이때, η = (Pout -Pin)Q / (σω), SPL = 10log10(P / Pref)2
η=효율, SPL=음압 레벨(Sound pressure level), (Pout - Pin)=총 압력, Q=체적 유량, σ=토크, ω=각 속도, P=음압, Pref=기준압력(2*10-5Pa)
또한, 상기 Am은 1도≤Am≤8.23도일 수 있다.
또한, 상기 P1, P2는 1≤P1≤38, 0≤P2≤39일 수 있다.
본 발명의 다른 측면에 따르면 전술한 재생 블로워의 최적화 설계 방법으로서, 설계 변수 및 목적 함수 선택 단계, 상기 설계 변수의 상한 및 하한 값을 결정하는 설계영역 선정단계, 상기 설계 영역에서 목적함수의 최적해를 얻는 단계를 포함하는 재생 블로워의 최적화 설계 방법이 제공된다.
또한, 상기 설계 영역에서 목적 함수의 최적해를 얻는 단계는 상기 최적해가 타당한지 비교하는 단계를 더 포함할 수 있다.
또한, 상기 설계 변수 및 목적 함수 선택 단계에서 상기 설계 변수는 날개 간 간격의 분포 크기인 Am, 주기에 영향을 미치는 요소 P1 및 P2를 포함하고, 상기 목적 함수는 효율 η 및 음압 레벨 SPL을 포함할 수 있다.
또한, 상기 설계 변수의 상한 및 하한값을 결정하는 설계 영역 선정 단계에서 상기 Am은 1도≤Am≤8.23도이고, 상기 P1은 1≤P1≤38이며 상기 P2는 0≤P2≤39일 수 있다.
또한, 상기 설계 영역에서 목적함수의 최적해를 얻는 단계는, 상기 설계 영역에서 라틴 하이퍼 큐브 샘플링을 통해 복수개의 실험점을 결정하는 단계 및 상기 복수개의 실험점에서 각각 공력성능시험과 소음시험을 통해 상기 목적 함수 값을 얻는 단계를 포함할 수 있다.
또한, 상기 설계 영역에서 목적함수의 최적해를 얻는 단계는 반응면 기법을 사용하여 최적해를 산출할 반응면을 구성하는 단계를 포함할 수 있다.
또한, 상기 반응면 기법을 사용하면, 상기 목적 함수들의 RSA 모델의 함수 형태는, η= - 18.8659 - 17.9578Am - 10.5773P1 - 21.7493P2 + 7.3846AmP1 + 17.3858AmP2 - 0.789P1P2 + 6.2258Am2 + 11.0769P12 + 16.1141P22, SPL= 84.2304 + 4.2557Am -11.8326P1 -6.4429P2 + 8.2626AmP1 + 4.8169AmP2 + 5.9802P1P2 - 4.2959Am2 + 4.7855P12 + 1.2078P22일 수 있다.
또한, 상기 반응면 기법을 사용하여 최적해를 산출할 반응면을 구성하는 단계 이후에 다중 목적 진화 알고리즘을 이용하여, 상기 반응면 기법에 의해 얻어진 목적 함수들의 반응면들을 토대로 각 목적 함수들을 최대화시킬 수 있는 최적해를 얻을 수 있다.
또한, 상기 각 목적 함수들을 최대화시킬 수 있는 최적해를 얻는 단계 이후에 탐색 알고리즘인 SQP(sequential quadratic programming)를 이용하여 상기 최적해를 각 목적 함수들의 국부적인 검색을 통해 좀더 개선된 값을 구할 수 있다.
또한, 상기 최적해가 타당한지 비교하는 단계는 반응면 기법으로부터 구성된 각 목적 함수들의 반응면에 대한 분산 분석(ANOVA) 및 회귀 분석을 포함할 수 있다.
본 발명의 일 실시예에 따른 재생 블로워 및 이의 최적화 설계 방법은 다중 목적 최적화를 통해 설계됨으로써 효율 및 소음을 선택적으로 조절할 수 있도록 형성된다.
도 1은 본 발명의 일 실시예에 따른 재생 블로워를 도시한 개략도이다.
도 2는 본 발명의 일 실시예에 따른 재생 블로워의 임펠러를 도시한 평면도이다.
도 3은 본 발명의 일 실시예에 따른 재생 블로워의 임펠러의 변형예를 도시한 사시도이다.
도 4는 도 3의 단면을 도시한 단면도이다.
도 5는 본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법을 도시한 순서도이다.
도 6은 본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법에서 목적함수 효율 및 음압 레벨을 도시한 그래프이다.
도 7은 본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법에서 설계 변수들의 상관관계를 도시한 그래프이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
이하에서는 도면을 참조하여 본 발명의 일 실시예에 따른 재생 블로워 및 이의 최적화 설계 방법을 보다 상세히 설명하도록 한다.
도 1은 본 발명의 일 실시예에 따른 재생 블로워를 도시한 사시도이다. 도 2는 본 발명의 일 실시예에 따른 재생 블로워의 날개가 부등피치로 배열된 임펠러를 도시한 사시도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 재생 블로워(1)는 임펠러(70), 제1 케이싱(10), 제2 케이싱(30) 및 모터(50)를 포함할 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 재생 블로워(1)는 좌우 양측으로 분할되는 한 쌍의 제1 케이싱(10)과 제2 케이싱(30)의 내부에 임펠러(70)가 회전 가능하게 설치된다. 이때, 임펠러(70)는 모터(50)의 회전축(미도시)에 설치되어 모터에 의해 회전된다.
도 3은 본 발명의 일 실시예에 따른 재생 블로워의 임펠러의 변형예를 도시한 사시도이다. 도 4는 도 3의 단면을 도시한 단면도이다.
이하에서는 본 발명의 일 실시예에 따른 재생 블로워의 임펠러를 설명한다.
본 발명의 일 실시예에 따른 재생 블로워(1)의 임펠러(70)는 원판(71), 복수개의 날개(73)를 포함할 수 있다.
한편 도 2 내지 도 4를 참조하면, 원판(71)은 재생 블로워(1)의 회전축(미도시)에 고정되기 위해 중심부에 축고정부(71a)가 형성되고 도 2에 도시된 바와 같이 일 측면 또는 도 3 및 도 4에 도시된 바와 같이 양 측면에 복수개의 날개가 원주방향으로 이격 배치될 수 있다.
다만 본 발명의 일 실시예에 따른 재생 블로워(1)는 원판의 하나의 면에 복수개의 날개가 원주방향으로 이격 배치된 재생 블로워에 대해서 이하 설명한다. 다만 이에 한정되지는 않고 도 3 및 도 4에 도시된 바와 같이 양면이 복수개의 날개가 원주방향으로 이격 배치될 수 있다.
축고정부(71a)는 재생 블로워(1)의 회전축 즉 모터의 회전축이 고정되어 회전축과 함께 원판(71)이 회전되도록 한다.
유로홈(75)은 복수개의 날개 사이에 형성되어 단면이 반원 또는 반 타원형일 수 있으나 이에 한정되지는 않는다. 유로홈(75)은 복수개의 날개 사이에 형성되므로 복수개가 서로 이격 배치된다.
한편 복수개의 날개(73)는 각각의 날개 사이의 각도(Θi)들이 동일한 등피치가 아닌 각도들이 동일하지 않은 부등피치로 배열된다.
본 발명의 일 실시예에 따른 재생 블로워는 날개 간의 각도가 식 1에 의한 증분각도(△Θi )로 설정됨으로써 부등피치로 날개를 배열할 수 있다.
Figure PCTKR2015013040-appb-M000001
N은 전체 날개의 수(N=2보다 큰 자연수),
Am은 날개 간 간격(등분각)의 분포 크기(0도<Am<360/N도),
i는 날개의 순번(i=1, 2, 3, 4,…N),
P1 및 P2는 주기에 영향을 미치는 요소(0≤P1≤N, 0≤P2≤N, 단, P1, P2는 실수)
이때, 기준형상은 날개 사이의 각도가 동일하여 날개가 등 피치로 이격 배치되는 등 피치 임펠러이고 증분각도(△Θi)의 합은 360도를 만족해야 한다.
한편, 증분각도(△Θi)에 의해 임펠러(70)는 날개(73)수가 변하더라도 같은구조의 부등피치 조건을 만들 수 있을 뿐만 아니라 생성된 함수들은 (-1)i항 때문에 진동발산함수의 형태를 띄고 있어 증분각도의 평균이 전체 평균과 유사하도록 만들 수 있게 된다.
본 발명의 일 실시예에 따른 재생 블로워(1)는 날개(73)와 근접하는 격벽을 통과하는 날개의 시간 간격이 흩어져서 고주파 음이 줄어들 뿐만 아니라 음압이 여러 주파수대로 분산되어 고주파 영역에서 BPF가 감소되게 된다.
한편, 예를 들어, 전체 날개수가 N=39일 경우 여기서 전체 날개각도의 평균값은 360도 / 39 = 9.2도가 된다.
상기의 수학식들에 제시된 조건을 만족하기 위하여 날개 간 간격(등분각)의 분포 크기인 Am과 주기에 영향을 미치는 요소인 P1, P2 값을 제어하게 된다. 이러한 Am 값과 P1, P2 값을 제어하여 난수조건(Random Pitch Condition)과 비슷한 피치 조건 및 일정 간격을 가진 피치 조건을 생성할 수 있으므로 날개 배열에 대한 예상 및 조절을 용이하게 할 수 있게 된다.
도 5는 본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법을 도시한 순서도이다.
본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법에서는 다중 목적 최적화를 이용하여 날개의 간격을 부등피치로 변형시킴으로써 재생 블로워의 효율 및 소음을 동시에 조절할 수 있다.
본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법에서 최적화란 기준 형상인 등피치 임펠러와 비교할 때, 효율 및 소음을 동시에 좋게 할 수도 있고, 효율만 좋게 하거나, 또는 소음만을 좋게 할 수 있는 등 필요에 따라 조절할 수 있다는 것이다. 이를 위하여 본 발명의 일 실시예에 따르면 재생 블로워의 최적화 설계 방법은 설계 변수 및 목적 함수 선택 단계(S10), 설계 변수의 상한 및 하한 값을 결정하는 설계 영역 선정 단계(S20), 설계 영역에서 목적 함수의 최적해를 얻는 단계(S30) 및 최적해 비교 단계(S40)를 포함할 수 있다.
본 발명의 일 실시예에 따른 재생 블로워의 최적화 설계 방법에서는 재생 블로워(10)에서 설계 변수를 선정하고 설계영역 내에서 목적 함수를 최적화한다.
먼저, 설계 변수 및 목적 함수 선택 단계(S10)에서는 공력 및 소음 성능 시험을 통해서 목적 함수를 구하고, 이렇게 구한 목적 함수를 최적화하기 위해 날개의 부등피치를 결정하기 위한 설계 변수를 선정한다.
본 실시예에서, 설계 변수는 Am, P1 및 P2인데, Am은 날개 간 간격(등분각)의 분포 크기(0도<Am<360/N도)이고, P1 및 P2는 주기에 영향을 미치는 요소(0<P1<N, 0≤P2≤N, 단 P1, P2는 실수)이다.
날개(73)의 부등피치에 관련된 기하학적 매개 변수들(Am, P1 및 P2)은 재생 블로워(1)에서 효율(η) 및 음압 레벨(SPL)을 동시에 최적화하기 위한 설계 변수들로 사용될 수 있다. 이때, 설계 변수들의 범위를 확립함으로써 형성된 이동 가능한 설계 공간을 찾는 것이 중요하다.
또한, 본 발명의 일 실시예에 따른 재생 블로워(1)는 날개의 부등피치의 형상을 최적화시켜 효율 및 소음을 동시에 최적화하는 목적이 있으므로 목적 함수는 효율 η 및 음압 레벨 SPL로 설정될 수 있다.
그 후, 설계 변수의 상한 및 하한값을 결정하는 설계 영역 선정 단계(S20)에서는 최적 설계 수행을 위해 설계 변수의 범위를 한정함으로써 적절한 설계 영역을 설정한다.
최적 설계 과정에서 변경될 각 설계 변수들의 상한과 하한은 복수개의 날개를 포함하는 임펠러를 제작할 때 사용되는 드릴이나 날 등의 최소두께를 통해 결정될 수 있는데 본 발명의 발명자에 의하여 선정된 각 설계 변수들을 식 1에 대입하여 상한과 하한을 구하면 하기 표 1과 같다.
변수들 최소값 최대값
Am 1도 8.23도
P1 1 38
P2 0 39
즉, 본 발명의 일 실시예에서, 설계 변수 Am은 1도 이상 8.23도 이하이고, P1은 1이상 38이하이며, P2는 0이상 39이하이다.
그 후, 선정된 설계 영역에서의 실험 단계(S30)에서는 선정된 설계 영역에서 실험을 수행하여 예를 들어 30개의 실험 점에서의 목적함수 값을 결정한다.
이때, 30개의 실험 점은 다차원의 분포를 갖는 설계 영역에서 특정 실험 점을 샘플링하는데 유용한 라틴 하이퍼 큐브 샘플링(LHS)에 의해 결정될 수 있다. 30개의 실험 점에서의 목적함수 η 및 SPL값은 각각 공력성능시험과 소음시험을 통해 얻어질 수 있다.
실험결과를 통해 설계 영역에서 목적함수의 최적해를 얻는 단계(S40)에서는 대리모델의 일종인 반응면 기법을 사용하여 최적점을 산출할 반응면을 구성할 수 있다.
본 발명의 일 실시예에 따른 재생 블로워(10)의 다중 목적 최적화를 통하여 재생 블로워(10)의 다양한 유체역학적 성능을 높일 수 있다. 최적화의 목적은 재생 블로워의 효율(η) 및 음압 레벨(SPL)를 동시에 최적화하기 위한 것이다. η 및 SPL은 재생 블로워의 설계 최적화를 위한 목적 함수로서 다음과 같이 규정될 수 있다.
Figure PCTKR2015013040-appb-M000002
Figure PCTKR2015013040-appb-M000003
이때, η= 효율, SPL= 음압 레벨(Sound Pressure Level), (Pout-Pin)=총 압력, Q=체적 유량, σ=토크, ω=각 속도, P=음압, Pref=기준압력(2*10-5Pa)이다.
반응면 기법은 실제 반응함수를 근사적인 다항 함수로 모델링하기 위해 물리적인 실험 또는 수치적인 계산으로부터 얻어진 결과들을 이용하는 일련의 수리통계적인 기법이다.
반응면 기법은 한정된 수의 실험만으로도 임의 공간 내 반응을 모델링함으로써 실험의 시행횟수를 줄일 수 있다. 여기서 사용된 2차 다항식으로 구성된 반응면은 다음과 같이 표현될 수 있다.
Figure PCTKR2015013040-appb-M000004
여기서, C는 회귀 분석 계수, n은 설계변수의 개수 및 x는 설계변수를 나타낸다.
이때, 회귀 분석 계수는 하기 식 5와 같다.
Figure PCTKR2015013040-appb-M000005
이때, 본 발명의 일 실시예에 따른 목적 함수들의 RSA모델의 함수 형태는 정상화된 설계 변수들에 관해 아래와 같이 표현될 수 있다.
Figure PCTKR2015013040-appb-M000006
Figure PCTKR2015013040-appb-M000007
그 후, 상기 식 6 및 식 7를 만족하는 η 및 SPL을 구한다.
한편, 본 발명의 일 실시예에 있어서, η 및 SPL을 동시에 최적화하기 위해서 반응면 기법을 통해 얻어진 각 목적함수들의 반응면들을 토대로 각 목적 함수들을 최대화시킬 수 있는 다중 목적 진화 알고리즘을 사용할 수 있다.
다중 목적 진화 알고리즘으로서, Deb에 의해 개발된 real coded NSGA-Ⅱ 코드가 사용될 수 있다. 여기서 real coded는 NSGA-Ⅱ의 반응을 구성하기 위해 실제 설계 공간 내 교차 및 변이가 수행되는 것을 의미한다.
다중 목적 진화 알고리즘을 통하여 얻어진 최적점들은 비지배해들의 집합체인 파레토 최적해라 부른다. 이 파레토 최적해를 통해 사용하고자 하는 목적의 의도에 따라 원하는 최적점을 선택할 수 있다.
다중 목적 진화 알고리즘은 공지된 방법이므로 상세한 설명은 생략한다.
한편 라틴 하이퍼 큐브 샘플링(LHS)에 의해 얻어진 실험점들에 대한 목적함수의 값을 평가하고 평가된 목적 함수들을 바탕으로 하여 SQP(Sequential Quadratic Programming)를 사용하여 최적점을 탐색할 수 있다.
각 목적함수의 최적해들은 구배기반의 탐색 알고리즘인 SQP(sequential quadratic programming)를 사용하여 초기 NSGA-Ⅱ에 의해 예측된 해들로부터 각 목적함수들의 국부적인 검색을 통해 좀더 개선된 각각의 최적해들을 얻을 수 있다.
이때, SQP는 비선형 제약조건 내에서 비선형 목적 함수를 최적화하기 위한 방법으로 공지된 방법이므로 상세한 설명은 생략한다.
이렇게 개선된 최적해들로부터 지배해들은 버리고, 중복되는 해들은 제거하여 결과적으로 비지배해들의 집합체인 파레토 최적해를 얻을 수 있다. 파레토 최적해 중에 집단으로 분류한 단위체를 클러스터(Cluster)라 한다.
도 6은 본 발명의 일 실시예에 따른 재생 블로워의 다중목적 수치 최적설계로부터 도출된 파레토 최적해(클러스터드 최적해, COSs)의 효율 및 음압 레벨을 도시화 그래프이다.
도 6을 참조하면, 효율과 소음에 관한 목적 함수값들이 최적화됨에 따라 파레토 최적해는 S자 형상일 수 있다. 거래분석(trade-off analysis)은 2개의 목적 함수 사이에 상관관계를 보여준다.
따라서 본 발명의 일 실시예에 따른 재생 블로워(1)에서 더 높은 효율은 더 높은 소음에서 얻을 수 있고, 반대로 더 낮은 효율은 더 낮은 소음에서 얻을 수 있다.
도 6에 도시된 바와 같이, 이때 Am, P1 및 P2는 27≤η≤32이고, 77dB(A)≤SPL≤83.7dB(A)를 동시에 만족할 수 있고 하기 표 2는 이를 만족하는 Am, P1 및 P2의 값이며 도 6에서 파레토 최적해들의 그래프와 대응하는 값이다.
Figure PCTKR2015013040-appb-T000001
Figure PCTKR2015013040-appb-I000002
Figure PCTKR2015013040-appb-I000003
Figure PCTKR2015013040-appb-I000004
이때, 하기 표 3는 효율 및 소음이 동시에 최적인 집단인 Cluster A, B, C, D, E에 대한 최적 설계 변수들 Am, P1 및 P2의 값을 나타낸다. 이때 기준 형상은 효율 η 이 27.25이고 SPL은 79dB(A)이다.
설계 설계 변수들
Am P1 P2
기준 형상 0.000 0.000 0.000
Cluster A 1 23.96992 37.72269
Cluster B 1 20.31293 26.94253
Cluster C 1.975457 18.18757 23.56059
Cluster D 3.27427 15.95297 18.60822
Cluster E 6.793103 12.29705 1.858063
표 3은 최적점 A부터 E까지 이동함에 따라 설계 변수 Am은 증가하고 P1 및 P2은 감소하는 경향이다. 다만 P2가 감소하는 기울기가 P1이 감소하는 기울기보다 더 크다. 거래 분석에서 3개의 설계 변수 중 Am은 비례하고, P1 및 P2들은 반비례 관계를 보임을 확인할 수 있다.
이때, 기준 형상은 날개가 등 피치이므로 Am, P1 및 P2는 0,(도 6에서 삼각형으로 표시된 지점)이고, Cluster A는 Am = 1, P1 = 23.96992, P2 = 37.72269이고, Cluster B는 Am = 1, P1 = 20.31293, P2 = 26.94253이고, Cluster C는 Am = 1.975457, P1 = 18.18757, P2 = 23.56059이고, Cluster D는 Am = 3.27427, P1 = 15.95297, P2 = 18.60822이고, Cluster E는 Am = 6.793103, P1 = 12.29705, P2 = 1.858063이다.
도 6 및 도 7을 참조하면, 3개의 최적 설계 변수들은 기준 형상의 값에 비해 현저히 변할 수 있고, 효율 및 소음은 모든 최적점(COSs)에서 상당히 개선되어 효율 및 음압 레벨의 값을 선택할 수 있다.
따라서, 최적점 A부터 E까지 변화하는 동안 소음 및 효율은 증가하며 최적점(COSs) A는 가장 낮은 소음과 효율을 최적점(COSs) E는 가장 높은 소음과 효율을 나타냄을 알 수 있다.
본 발명의 일 실시예에 따른 최적점 비교 단계(S50)에서 반응면 기법으로부터 구성된 각 목적 함수들의 반응면에 대한 분산 분석(ANOVA) 및 회귀 분석을 통해서 구한 최적점들이 신뢰할 수 있는지 검토한다.
하기의 표 4는 분산 분석 및 회귀 분석의 결과를 나타낸다.
목적 함수들 R2 R2 adj 평균 제곱근 오차 교차 증명 오차
η 0.977 0.948 4.73×10-1 7.50×10-1
SPL 0.898 0.933 5.49×10-1 9.40×10-1
여기서 R2은 최소 제곱 표면 피팅에서 상관 계수를 나타내고, R2 adj값은 최소 제곱 표면 피팅에서의 조절된 상관 계수를 나타낼 수 있다. 이때, Ginuta는 반응면 기법에 의한 반응모델이 정확히 예측된 경우 R2 adj값은 0.9 이상 1 이하의 값을 가진다고 하였다.
평균 제곱근 오차는 실험이나 관측에서 나타나는 오차를 제곱해서 평균한 값을 의미하고, 교차 증명 오차는 예측한 오류를 계산하는 기법이다.
본 발명의 일 실시예에 따른 최적점 비교 단계(S50)에서 계산된 각 목적 함수인 효율과 소음의 R2 adj값이 각각 0.948 및 0.933이었으며, 이에 따라 반응면이 신뢰할 수 있다고 판단될 수 있다.
본 발명의 일 실시예에 따른 재생 블로워 및 이의 최적화 설계 방법은 다중 목적 최적화를 통해 날개가 부등피치로 배열되어 효율 및 소음을 선택적으로 조절할 수 있도록 형성된다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
본 발명의 일 실시예에 따른 재생 블로워 및 이의 최적화 설계 방법은 다중 목적 최적화를 통해 설계됨으로써 효율 및 소음을 선택적으로 조절할 수 있도록 형성된다.

Claims (14)

  1. 원주방향으로 이격 배치되는 복수개의 날개를 포함하는 임펠러를 포함하는 재생 블로워에 있어서,
    상기 복수개의 날개는 각각의 날개 사이가 증분각도(△Θi)로 배열되는 재생 블로워.
    이때,
    Figure PCTKR2015013040-appb-I000005
    N은 전체 날개의 수(N=2보다 큰 자연수),
    Am은 날개 간 간격(등분각)의 분포 크기(0도<Am<360/N도),
    i는 날개의 순번(i=1, 2, 3, 4,…N),
    P1 및 P2는 주기에 영향을 미치는 요소(0≤P1≤N, 0≤P2≤N, 단 P1, P2는 실수)
  2. 제1 항에 있어서,
    상기 Am, P1, P2는 27≤η≤32이고, 77dB(A)≤SPL≤83.7dB(A)를 동시에 만족할 수 있는 재생 블로워.
    이때, η = (Pout - Pin)Q / (σω),
    SPL = 10log10(P / Pref)2
    η=효율, SPL=음압 레벨(Sound pressure level), (Pout -Pin)=총 압력, Q=체적 유량, σ=토크, ω=각 속도, P=음압, Pref=기준압력(2*10-5Pa)
  3. 제1 항에 있어서,
    상기 Am은 1도≤Am≤8.23도인 재생 블로워.
  4. 제1 항에 있어서,
    상기 P1, P2는 1≤P1≤38, 0≤P2≤39인 재생 블로워.
  5. 제1 항 내지 제4 항 중 어느 한 항에 따른 재생 블로워의 최적화 설계 방법으로서,
    설계 변수 및 목적 함수 선택 단계;
    상기 설계 변수의 상한 및 하한 값을 결정하는 설계영역 선정단계;및
    상기 설계 영역에서 목적함수의 최적해를 얻는 단계를 포함하는 재생 블로워의 최적화 설계 방법.
  6. 제5 항에 있어서,
    상기 설계 영역에서 목적 함수의 최적해를 얻는 단계에서 상기 최적해가 타당한지 비교하는 단계를 더 포함하는 재생 블로워의 최적화 설계 방법.
  7. 제5 항에 있어서,
    상기 설계 변수 및 목적 함수 선택 단계에서 상기 설계 변수는 날개 간 간격의 분포 크기인 Am, 주기에 영향을 미치는 요소 P1 및 P2를 포함하고,
    상기 목적 함수는 효율 η 및 음압 레벨 SPL을 포함하는 재생 블로워의 최적화 설계 방법.
  8. 제5 항에 있어서,
    상기 설계 변수의 상한 및 하한값을 결정하는 설계 영역 선정 단계는 상기 Am은 1≤Am≤8.23이고, 상기 P1은 1≤P1≤38이며 상기 P2는 0≤P2≤39을 포함하는 재생 블로워의 최적화 설계 방법.
  9. 제5 항에 있어서,
    상기 설계 영역에서 목적함수의 최적해를 얻는 단계는 상기 설계 영역에서 라틴 하이퍼 큐브 샘플링을 통해 복수개의 실험점을 결정하는 단계 및
    상기 복수개의 실험점에서 각각 공력성능시험과 소음시험을 통해 상기 목적 함수 값을 얻는 단계를 포함하는 재생 블로워의 최적화 설계 방법.
  10. 제9 항에 있어서,
    상기 설계 영역에서 목적함수의 최적해를 얻는 단계는 반응면 기법을 사용하여 최적해를 산출할 반응면을 구성하는 단계를 포함하는 재생 블로워의 최적화 설계 방법.
  11. 제10 항에 있어서,
    상기 반응면 기법을 사용하면, 상기 목적 함수들의 RSA 모델의 함수 형태는,
    η= - 18.8659 - 17.9578Am - 10.5773P1 - 21.7493P2 + 7.3846AmP1 + 17.3858AmP2 - 0.789P1P2 + 6.2258Am2 + 11.0769P12 + 16.1141P22,
    SPL= 84.2304 + 4.2557Am -11.8326P1 -6.4429P2 + 8.2626AmP1 + 4.8169AmP2 + 5.9802P1P2 - 4.2959Am2 + 4.7855P12 + 1.2078P22인 재생 블로워의 최적화 설계 방법.
  12. 제11 항에 있어서,
    상기 반응면 기법을 사용하여 최적해를 산출할 반응면을 구성하는 단계 이후에 다중 목적 진화 알고리즘을 이용하여, 상기 반응면 기법에 의해 얻어진 목적 함수들의 반응면들을 토대로 각 목적 함수들을 최대화시킬 수 있는 최적해를 얻는 재생 블로워의 최적화 설계 방법.
  13. 제12 항에 있어서,
    상기 각 목적 함수들을 최대화시킬 수 있는 최적해를 얻는 단계 이후에 탐색 알고리즘인 SQP(sequential quadratic programming)를 이용하여 상기 최적해를 각 목적 함수들의 국부적인 검색을 통해 좀더 개선된 값을 구하는 재생 블로워의 최적화 설계 방법.
  14. 제6 항에 있어서,
    상기 최적해가 타당한지 비교하는 단계는 반응면 기법으로부터 구성된 각 목적 함수들의 반응면에 대한 분산 분석(ANOVA) 및 회귀 분석을 포함하는 재생 블로워의 최적화 설계 방법.
PCT/KR2015/013040 2014-12-04 2015-12-02 부등피치 재생 블로워 및 이의 최적화 설계 방법 WO2016089103A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015005494.4T DE112015005494B4 (de) 2014-12-04 2015-12-02 Regenerativ-Gebläsemaschine mit irregulärem Abstand und Design-Optimierungsmethode dafür
US15/533,175 US10590938B2 (en) 2014-12-04 2015-12-02 Irregular-pitch regenerative blower and optimization design method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0172727 2014-12-04
KR1020140172727A KR101671946B1 (ko) 2014-12-04 2014-12-04 부등피치 재생 블로워 및 이의 최적화 설계 방법

Publications (1)

Publication Number Publication Date
WO2016089103A1 true WO2016089103A1 (ko) 2016-06-09

Family

ID=56091988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013040 WO2016089103A1 (ko) 2014-12-04 2015-12-02 부등피치 재생 블로워 및 이의 최적화 설계 방법

Country Status (4)

Country Link
US (1) US10590938B2 (ko)
KR (1) KR101671946B1 (ko)
DE (1) DE112015005494B4 (ko)
WO (1) WO2016089103A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112069607A (zh) * 2020-07-17 2020-12-11 北京动力机械研究所 整体叶轮成组分类编码与几何特征参数计算方法及装置
CN114218688A (zh) * 2021-10-28 2022-03-22 北京建筑大学 一种通风式制动盘的分段式倾斜槽叶片特征参数优化方法
CN116776600A (zh) * 2023-06-21 2023-09-19 安徽工业大学 基于自适应代理模型的风力机叶片优化设计方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107991200B (zh) * 2017-11-24 2020-02-14 北京航空航天大学 一种钛合金叶轮的疲劳寿命预测方法
CN109723658B (zh) * 2018-12-26 2020-09-11 上海洞彻智能科技有限公司 一种蒸发风机
CN113048086B (zh) * 2021-03-18 2022-05-20 江苏大学 一种基于径向基神经网络模型的低噪声不等距离心风扇优化设计方法
KR102380405B1 (ko) * 2021-06-09 2022-03-30 김윤성 유로확장형 스웹트 프란시스 베인을 갖는 임펠러의 설계방법, 이에 의해 제조된 임펠러, 및 유로확장형 스웹트 프란시스 베인을 갖는 임펠러를 구비한 수중펌프
CN113642121A (zh) * 2021-07-26 2021-11-12 南京工业大学 一种基于响应面设计和多目标进化算法的铝合金制动钳铸造工艺参数优化方法
CN114841032B (zh) * 2021-09-29 2024-03-22 杭州汽轮控股有限公司 一种燃气轮机热部件寿命稳健性的设计方法
CN115263774A (zh) * 2022-06-24 2022-11-01 烟台东德实业有限公司 一种转子分体式旋涡型氢气循环泵

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923365A (en) * 1987-03-14 1990-05-08 Robert Bosch Gmbh Impeller wheel for conveying a medium
JP2003278684A (ja) * 2002-03-26 2003-10-02 Denso Corp 流体吸排装置
JP2003336591A (ja) * 2002-03-13 2003-11-28 Aisan Ind Co Ltd ウエスコ式ポンプ
JP2006161723A (ja) * 2004-12-08 2006-06-22 Denso Corp インペラおよびそれを用いた燃料ポンプ
KR100872294B1 (ko) * 2008-08-29 2008-12-05 현담산업 주식회사 연료펌프용 부등피치 임펠러

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599126B1 (en) * 2012-09-26 2017-03-21 Airtech Vacuum Inc. Noise abating impeller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923365A (en) * 1987-03-14 1990-05-08 Robert Bosch Gmbh Impeller wheel for conveying a medium
JP2003336591A (ja) * 2002-03-13 2003-11-28 Aisan Ind Co Ltd ウエスコ式ポンプ
JP2003278684A (ja) * 2002-03-26 2003-10-02 Denso Corp 流体吸排装置
JP2006161723A (ja) * 2004-12-08 2006-06-22 Denso Corp インペラおよびそれを用いた燃料ポンプ
KR100872294B1 (ko) * 2008-08-29 2008-12-05 현담산업 주식회사 연료펌프용 부등피치 임펠러

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112069607A (zh) * 2020-07-17 2020-12-11 北京动力机械研究所 整体叶轮成组分类编码与几何特征参数计算方法及装置
CN114218688A (zh) * 2021-10-28 2022-03-22 北京建筑大学 一种通风式制动盘的分段式倾斜槽叶片特征参数优化方法
CN114218688B (zh) * 2021-10-28 2024-04-12 北京建筑大学 一种通风式制动盘的分段式倾斜槽叶片特征参数优化方法
CN116776600A (zh) * 2023-06-21 2023-09-19 安徽工业大学 基于自适应代理模型的风力机叶片优化设计方法及系统
CN116776600B (zh) * 2023-06-21 2024-04-12 安徽工业大学 基于自适应代理模型的风力机叶片优化设计方法及系统

Also Published As

Publication number Publication date
DE112015005494T5 (de) 2017-11-16
US20170363091A1 (en) 2017-12-21
KR101671946B1 (ko) 2016-11-16
US10590938B2 (en) 2020-03-17
KR20160067402A (ko) 2016-06-14
DE112015005494B4 (de) 2023-05-25

Similar Documents

Publication Publication Date Title
WO2016089103A1 (ko) 부등피치 재생 블로워 및 이의 최적화 설계 방법
US6889908B2 (en) Thermal analysis in a data processing system
US8842431B2 (en) Horizontal chassis having front to back airflow
Wang et al. Intelligent sensor placement for hot server detection in data centers
WO2018140330A1 (en) Systems and methods for providing on-demand ventilation management
WO2014084648A1 (ko) 설계 및 운영 단계에서 건물 에너지를 예측하여 건물을 제어하는 방법 및 이를 위한 시스템
WO2015163561A1 (ko) 서버실 냉각 장치 및 이를 구비하는 데이터 센터의 공조 시스템의 제조 방법
WO2018155769A1 (ko) 고효율 저유체 유발 진동 단일채널펌프
CN108710724A (zh) 一种计算叶盘振动可靠性的模糊双重响应面法
WO2018016776A1 (ko) 건물 에너지 관리 시스템을 통한 냉동기의 최적 제어 방법 및 장치
WO2024021568A1 (zh) 窗机空调及其控制板温度控制方法、装置、设备及介质
JP2004218919A (ja) クリーンルーム
TWI809457B (zh) 系統機箱
CN115577652A (zh) 一种涡轮机匣气壳式冷却结构及其设计方法
JP7360876B2 (ja) 換気装置及び換気システム
US20050216229A1 (en) Monitoring systems and methods thereof
CN210267589U (zh) 一种计算机网络机房的高效散热装置
Jaszczak et al. A model of the refinishing spray booth as a plant of automatic control
KR20030017821A (ko) 전기자동차용 배터리 냉각시스템
CN114811934B (zh) 一种用于自冷却式引风机房和鼓风机房的噪声控制方法
JP2012048549A (ja) データセンタ
KR20210147281A (ko) 변전소의 환기 시스템 및 그 방법
Han et al. Optimization of workload distribution of data centers based on a self-learning in situ adaptive tabulation model
JPH0791731A (ja) 通気ユニット
JP6075512B1 (ja) 空調システム及び空調制御サーバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865258

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15533175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005494

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865258

Country of ref document: EP

Kind code of ref document: A1