WO2016088669A1 - Heat transfer unit for cooling and manufacturing method thereof - Google Patents

Heat transfer unit for cooling and manufacturing method thereof Download PDF

Info

Publication number
WO2016088669A1
WO2016088669A1 PCT/JP2015/083360 JP2015083360W WO2016088669A1 WO 2016088669 A1 WO2016088669 A1 WO 2016088669A1 JP 2015083360 W JP2015083360 W JP 2015083360W WO 2016088669 A1 WO2016088669 A1 WO 2016088669A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
plate
refrigerant
vapor flow
refrigerant vapor
Prior art date
Application number
PCT/JP2015/083360
Other languages
French (fr)
Japanese (ja)
Inventor
大沢健治
Original Assignee
大沢健治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大沢健治 filed Critical 大沢健治
Priority to JP2015559366A priority Critical patent/JP6023965B1/en
Publication of WO2016088669A1 publication Critical patent/WO2016088669A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention is directed to a heat conductor for cooling the heat transferred from a heating element.
  • a heat transfer device for cooling is in contact with a heating element and contains a refrigerant such as water, alcohol, acetone, or fluorine in a vacuum state and evaporates the refrigerant.
  • a refrigerant such as water, alcohol, acetone, or fluorine in a vacuum state and evaporates the refrigerant.
  • the joining operation by the adhesive member is complicated, but when the heat pipes are joined by the adhesive member, the dissimilar metal of solder or brazing material permeates the inner wall of the heat pipe, so that the local part by contact with the refrigerant Electrolytic corrosion occurs due to the battery action, non-condensable gas is generated by hydrogen gas, and performance deterioration is likely to occur.
  • Patent Documents 1 and 2 in order to alleviate such defects, various attempts have been made to improve the heat conduction efficiency by the heat pipe, but such a configuration itself is extremely complicated, and It is impossible to fundamentally improve the defects. *
  • a plurality of heat transfer pipes 16 (in fact, the present invention described later) is connected to a heat receiving header 14 (heat receiving block 14) to which a heating element is connected.
  • This corresponds to the heat diffusion frame for refrigerant vapor flow.
  • the heat-cooling fins are installed between the heat transfer pipes in the horizontal direction or in the oblique direction intersecting the horizontal direction.
  • the configuration is adopted (FIGS. 12A and 14A of Patent Document 3 and FIG. 1B of Patent Document 4). *
  • the present invention can achieve a high cooling effect by setting the average distance of heat transfer in the heat-cooling fins as small as possible in the heat-cooling heat conductor in which the heat pipe and the heat sink are integrated. It aims at providing the structure of the heat exchanger for natural cooling.
  • the basic configuration of the present invention is as follows: (1) Heat transfer from a heating element, and both ends of the heat storage frame for storing the refrigerant that stores the refrigerant in a vacuum state, the vicinity thereof, A refrigerant vapor flow heat diffusion frame in which refrigerant is stored in the lower region and flows in a vacuum state in the upper region from the vicinity and the intermediate position in the vicinity is extended in a communication state.
  • the upper direction is intersected from a region at a distance equal to or less than the inner width between the refrigerant vapor flow diffusion frames on both sides from the lower end.
  • a heat transfer device for cooling which is connected to 10 or more total heat cooling fins extending in the upward direction, and (2) receives heat from the heating element and is in a vacuum state
  • the refrigerant is stored in the lower region in the upper direction from both ends of the heat storage frame for storing the refrigerant in the vicinity thereof, or in the vicinity thereof, or in the upper direction from both ends or the vicinity thereof, and in the vacuum state in the upper region.
  • the refrigerant vapor flow heat diffusion frames located on both sides of the refrigerant diffusion heat diffusion frames, the refrigerant vapor flow heat diffusion frames through which the refrigerant flows are extended in communication.
  • 16 or more heat-dissipating fins are extended upward and the refrigerant vapor flow on both sides from the lower end is formed.
  • Intersect the upper direction from an area that is less than the inner width between diffusion frames Extending the number of the heat-cooling fins in the lateral direction by an integer equal to or greater than 0.8 times 1/2 of the number of the 16 or more heat-cooling fins extending in the upward direction, And the heat-dissipating fin located on the uppermost side is connected in common with a plurality of heat-dissipating fins extending upward, and the remaining heat-dissipating fins are connected upward. It consists of the heat-relieving heat transfer device connected individually to the heat-dissipating fins other than the plurality of extended heat-dissipating fins.
  • the average distance of heat transfer in the heat cooling fins is further shortened compared with the cases of Patent Documents 3 and 4, so The difference from the air cooling temperature becomes large, and the cooling efficiency can be improved more efficiently than in the case of the improved technology configuration.
  • Example 3 it is possible to realize a cooling heat transfer device by stacking on an integrally formed material, and a heat pipe, a substrate, a heat release as in the case of the configuration according to the prior art.
  • the number of parts can be significantly reduced as compared with the three-unit configuration of the heat-fining pipe, the heat receiving header, and the heat-dissipating fin, as in the three-unit configuration of the cooling fin and the improved technology configuration.
  • FIG. 1 It is a side view which shows the structure of a basic composition, Comprising: (a) is extending the heat
  • the embodiment by the basic composition (1) by connecting the fin for thermal cooling extended from the direction through a plate-like body (Example 1) is shown
  • (b) is thermal diffusion for refrigerant storage
  • FIGS. 1A, 1B, 1C, and 1D show an embodiment according to the basic configuration (2) in which the refrigerant vapor flow heat diffusion frame is extended upward at both ends, and (d) is based on the configuration of (a) and the refrigerant vapor on both sides.
  • the heat-dissipating fins are installed in the lateral direction from a predetermined upper region, and at both ends.
  • the ⁇ indicates the refrigerant inlet 20, which is described later with reference to FIGS.
  • An embodiment according to a basic configuration (1) in which heat-dissipating fins are extended in the lower direction from the heat diffusion frame is shown, and (c) is an example in which heat-dissipating fins are extended in the lower direction
  • the heat diffusion frame for refrigerant vapor flow an embodiment according to the basic configuration (1) in which the heat-dissipating fins are installed in the lateral direction from the intermediate region is shown, and (d) shows the heat in the downward direction.
  • the cooling fins are extended, and the heat cooling fins from the middle region of the heat diffusion frames for refrigerant vapor flow on both sides.
  • the technical improvement structure of the heat exchanger for cooling in patent documents 3 and 4 is shown. It is a side view which shows the structure of a prior art. In the respective regions forming the refrigerant diffusion heat diffusion frame, the refrigerant vapor flow heat diffusion frame, and the refrigerant vapor flow heat diffusion frame, the x- It is the graph which set y coordinate, Comprising: (a) has demonstrated the case of basic composition (1), (b) has demonstrated the case of basic composition (2).
  • the embodiment which provided the shielding board is shown, (a) is the upper and lower sides which show the state of the thermal-diffusion frame for refrigerant
  • (b) is a transverse direction sectional view of a heat diffusion frame for refrigerant vapor flow provided with a shielding board.
  • the cross section of the fin for heat cooling is shown, and (a) shows the case where it has an uneven surface shape, (b) is constituted by a plurality of lines, and is adjacent. The vertical direction position of the lines to be in contact with each other changes alternately, and a striped case with a gap between the vertical directions is shown.
  • It is a side view showing an embodiment provided with a frame forming a gap for sandwiching a heating element (a) shows an embodiment provided with a frame in the lateral direction, (b), The embodiment which provided the frame in the up-and-down direction is shown.
  • FIG. 9 is a perspective view which shows the manufacturing process of this invention, Comprising: (a) is a perspective view which shows the manufacturing process of the heat exchanger for natural cooling by embodiment of FIG.2 (c), (b) is FIG. It is a perspective view which shows the manufacturing process of the heat exchanger for natural cooling by embodiment of (d).
  • the plate for heat-dissipating fins is constituted by a plurality of lines having a substantially hexagonal cross section, and the positions of adjacent fins are alternately changed and are adjacent to each other.
  • the Example which exhibits the striped shape which has a clearance gap between is shown.
  • 9 (a) and 9 (b) are perspective views showing a state of the coupling intermediate plate particularly when the shielding plate shown in FIG.
  • FIG. 9 (a) shows the shielding plate in the lateral direction.
  • FIG. 2B shows a coupling intermediate plate to be molded
  • FIG. 4B shows a coupling intermediate plate that molds a shielding plate in a direction orthogonal to the lateral direction.
  • the present invention is constituted by the basic structures (1) and (2).
  • the heat-releasing fins 3 extending upward from the heat diffusion frame 2 are individually connected to the total heat-releasing fins 3 extending upward from the refrigerant housing heat diffusion frame 1. *
  • the heat cooling fins 3 extending in the lateral direction from the refrigerant vapor flow heat diffusion frames 2 on both sides are provided.
  • the heat-releasing fins 3 located on the uppermost side are a plurality of heat-releasing fins 3 among the heat-releasing fins 3 extending in the upward direction from the refrigerant housing heat diffusion frame 1.
  • the heat-dissipating fins 3 extending in the other horizontal direction are individually connected to the heat-dissipating fins 3 other than the plurality of sheets extending in the upper direction. is doing.
  • the thermal diffusion frame 2 is extended in a communicating state (in the case of FIG. 1 (a)
  • the state of extending from the vicinity of both ends is shown, and in the case of FIGS. 1C and 1D, the case of extending from both ends is shown.
  • the refrigerant vapor flow diffusion frame 2 is extended in a communicating state from both ends, the vicinity thereof, and an intermediate position in an upward direction (in FIG. 1B, An embodiment is shown that extends upward from both ends.)
  • the basic configuration (1) ten or more heat cooling fins 3 in the region sandwiched by the refrigerant vapor flow heat diffusion frame 2 in the refrigerant storage heat diffusion frame 1. 5 or more from both sides in the lateral direction intersecting the upper direction from the heat diffusion frames 2 for refrigerant vapor flow on both sides forming the sandwiched area.
  • the cooling fins 3 are extended and connected to 10 or more heat cooling fins 3 extending in the upward direction.
  • the heat-cooling fins 3 are not installed between the adjacent refrigerant vapor flow heat diffusion frames 2 as shown in FIGS. 1A, 1 ⁇ / b> B, and 1 ⁇ / b> D.
  • the heat diffusing frame 1 for storing refrigerant and extending from the heat diffusing frame 2 for refrigerant vapor flow on both sides, and connecting the heat cooling fins 3 on both sides separately.
  • setting the average flow distance short means that the temperature in the above region is further increased, and consequently the temperature gap with the cooling air generated from the fan is increased, and high thermal efficiency is obtained. Yes. *
  • the differential heat conduction equation in the plate-like fin for radiating heat is the following partial differential in accordance with the temperature ⁇ , time t, and distance x in the length direction. It can be expressed by an equation (for example, Nobuhiro Seki, “Heat Transfer Engineering”: December 20, 2002, published by Morikita Publishing Co., Ltd., page 4). *
  • the amount of heat released from the tip of the fin is extremely small compared to the total amount of heat released, and can be regarded as the heat insulation state. Therefore, the distance from the position of the fin base to the tip is L. in case of, The approximate expression is established.
  • the temperature of the heat storage frame 1 for storing the refrigerant and the heat diffusion frame 2 for each refrigerant vapor flow is set to ⁇ 20 , and
  • the length of the installed heat-releasing fin 3 in the installation direction is a, Can be obtained.
  • the average distance of heat transfer in the heat cooling fins 3 can be designed to be smaller.
  • the heat release fins 3 extending in the upward direction are all extended in the lateral direction.
  • the distance of the refrigerant storage heat diffusion frame 1 in the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides is a, and the refrigerant vapor flow on both sides is In the heat diffusion frame 2, when the length of the region in which the heat diffusion fins extend in the lateral direction is b, as shown in FIG.
  • the refrigerant storage heat diffusion frame 1 and the refrigerant vapor flow Set the xy coordinate with O being the origin of the inner intersection with the heat diffusion frame 2, and the distance from the origin at which the heat-dissipation fins 3 are extended upward from the refrigerant storage heat diffusion frame 1.
  • x, and the distance from the origin of the position where the heat-cooling fins 3 are extended in the lateral direction from the heat diffusion frame 2 for refrigerant vapor flow If you have A, The linear equation is established.
  • M is an intermediate position of the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides, that is, a position at a distance of a / 2 along the x axis from the origin O, and
  • N the number of heat-dissipating fins 3 extending in the upward direction from the refrigerant housing heat diffusion frame 1
  • the refrigerant vapor flow heat diffusion frames 2 on both sides are extended in the lateral direction
  • the number of heat cooling fins 3 joined to each heat cooling fin 3 extending in the upper direction is as follows. (However, [N / 2] represents an integer obtained by rounding down the numerical value after the decimal point of N / 2. When N is an even number, it is N / 2, and when N is an odd number ( N-1) / 2)).
  • the average distance of the heat-cooling fins 3 extending in the i-th lateral direction in the region from the origin O to the intermediate point M is: It is.
  • the average total distance of the entire heat cooling fin 3 in the region from the origin O to the intermediate position M is It is.
  • b L, that is, in the heat diffusion frames 2 for refrigerant vapor flow on both sides, the width of the region in which the heat cooling fins 3 are extended in the lateral direction is the same as the width in the height direction of the conventional fins.
  • a / 2 L, that is, in the case of the improved technology configuration of FIG. 3, the average temperature ( ⁇ ) 2 of the heat-dissipating fin 3 is equivalent to that of the prior art of FIG.
  • d / 2 which is an index of temperature drop, Is established, and a state smaller than the width L in the height direction of the conventional heat-dissipating fin 3 is established.
  • the distance from the lower end to the inner width between the heat diffusion frames 2 is the same as the refrigerant vapor flow on both sides.
  • the relationship is b ⁇ a.
  • the heat-dissipating fins 3 extending in the upward direction and the heat-dissipating fins 3 extending in the lateral direction are connected individually or in a plurality in a common state. It will be clarified as follows that the temperature in the matching region is higher than in the improved configuration. *
  • N ′ is the number of the heat-cooling fins 3 that extend in the lateral direction.
  • the heat-dissipating fins 3 located on the uppermost side, not individually.
  • the average value d of the total distance of the heat cooling fins 3 connected individually and the heat cooling fins 3 connected in a common state is shown in FIG. By the same calculation as the case, Is established.
  • the second and third terms are the heat-cooling fins 3 extending in the upward direction and connected in the common state, and extending in the lateral direction.
  • the distance of the region connected to each other in the common state as described above among the heat cooling fins 3 positioned at the top is shown.
  • a heat diffusion path is formed between each heat-dissipating fin 3 extending from the heat diffusion frame 2 to the upper side of the second term, in the third term, not, It must be transformed.
  • the number N ′ of heat-dissipating fins 3 extending in the lateral direction is equal to or greater than an integer by 0.8 times the number 1 ⁇ 2 of the number of heat-dissipating fins 3 extending in the upward direction. Because it is a number, Is established, Is established.
  • d ′ / 2 which is an index of temperature drop
  • a / 2 which is an index of the improved configuration
  • the height width b is overwhelming compared to the horizontal width a in the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides. 1, as shown in FIG. 1 (d), among the refrigerant vapor flow heat diffusion frames 2 on both sides, among the refrigerant vapor flow heat diffusion frames 2 on both sides, the refrigerant vapor on both sides from the lower end.
  • the heat cooling fins 3 are not connected to the heat cooling fins 3 extending upward from the refrigerant housing heat diffusion frames 1.
  • the average temperature of the heat-dissipating fins 3 is the same as that of the improved technology configuration shown in FIG. Dimension in which a is smaller than b in the region where the basic configuration is established on the lower side By choosing, it is possible to set a higher temperature range than in the improved technology configuration.
  • FIG. 2 (a) shows the case of the basic configuration (1).
  • FIG. 2 (a) shows the case of the basic configuration (1).
  • FIG. 2 (a) an embodiment is characterized in that a plurality of heat-cooling fins 3 are extended in the upward direction from the refrigerant vapor flow thermal diffusion frame 2 installed in the lateral direction. When is adopted, the cooling effect of the heat cooling fin 3 can be further increased.
  • FIG. 2 (b) when the refrigerant vapor flow heat diffusion frame 2 extends upward from the intermediate position of the refrigerant storage heat diffusion frame 1, naturally, Thus, the refrigerant vapor flow heat diffusion frame 2 installed in the lateral direction intersecting with the upper side direction is connected in a communicating state (similarly, FIG. 2B is also the basic configuration (1)). Shows the case.) *
  • the refrigerant vapor flow thermal diffusion frame 2 constructed in the lateral direction intersecting the upper direction is used.
  • 10 or more heat-cooling fins 3 are extended in the lower direction in the region sandwiched between the refrigerant vapor flow thermal diffusion frames 2 and the refrigerant vapors on both sides forming the sandwiched region.
  • the heat-cooling fin 3 extends in a lateral direction intersecting the lower direction from a region having a distance equal to or smaller than the inner width between the refrigerant vapor flow diffusing frames 2 on both sides from the upper end.
  • the upper direction of the basic configuration (1) in which 5 or more are respectively connected to 10 or more total heat cooling fins 3 that are extended in the lower direction is reversed in the lower direction. Or lateral side intersecting the upper direction as shown in FIG. 2 (d) And extending 16 or more heat-dissipating fins 3 in a downward direction in a region sandwiched between the refrigerant vapor flow heat diffusion frames 2 among the refrigerant vapor flow heat diffusion frames 2 installed on the Among the refrigerant vapor flow heat diffusion frames 2 on both sides forming the sandwiched area, intersect the lower direction from an area at a distance equal to or less than the inner width between the refrigerant vapor flow diffusion frames 2 on both sides from the upper end.
  • the heat-cooling fins 3 are extended in the lateral direction by an integer of 0.8 times or more of 1/2 of 16 or more heat-cooling fins 3 extending in the lower direction. And the heat-dissipating fins 3 positioned at the lowermost side are connected in common with a plurality of heat-dissipating fins 3 extending in the downward direction, and the remaining heat-dissipating fins.
  • the upper side extension of the basic structure (2) in which 3 is individually connected to the heat cooling fins 3 extended to the lower side Often employ embodiments due to the reversed. In each of the embodiments shown in FIGS. 2C and 2D, the heat cooling fin 3 extending from the lower side in the upper direction and the heat cooling fin extending in the horizontal direction are both used.
  • the heat release fins 3 extending from the refrigerant vapor flow heat diffusion frames 2 on both sides to the upper direction and the lower direction are provided.
  • the embodiment erected in the lateral direction without being connected to the cooling fin 3 is shown. *
  • the heat cooling fin 3 extended in the downward direction and the heat cooling fin 3 extended in the horizontal direction, it is for heat cooling.
  • the average distance required for heat transfer of the fins 3 can be made shorter than that of the improved technology configuration shown in FIG. 3, and the basic feature of the present invention is simply the presence of the heat diffusing frame 1 for storing the refrigerant. This can be realized not only in the lower region, but also in the upper region where the refrigerant vapor flow heat diffusion frame 2 is installed.
  • the heat cooling fins 3 extend in the lateral direction and the vertical direction in the inner region of the cooling heat transfer device, but the present invention extends in the outer direction. Of course it is also possible.
  • the heat-dissipating fins 3 are further extended from the refrigerant-contained heat diffusion frame 1 at both ends to the outside of the heat-releasing heat transfer device, and FIG. As shown in (a), a plurality of heat-cooling fins 3 are further extended upward from the refrigerant vapor flow thermal diffusion frame 2 installed in the lateral direction from the refrigerant vapor flow thermal diffusion frames 2 on both sides.
  • Embodiments that employ either or both of the configurations can also be employed. *
  • the cooling effect can be further improved by dissipating the heat to the outer region of the cooling heat transfer device.
  • the cooling heat transfer device of the present invention is often employed for cooling of heating elements in computer equipment and vehicles.
  • the cooling heat transfer device is inevitably required. Must tilt with the vehicle. *
  • the refrigerant flows from the middle position in the vertical direction to the lower area.
  • the thermal diffusion for refrigerant vapor flow In the frame 2, as shown in FIG. 6 (b), the partitioned regions of the shielding plate 21 are formed in the lateral direction and in the direction orthogonal to the lateral direction, and the refrigerant solution is stored in each partitioned region.
  • the partitioned regions of the shielding plate 21 are formed in the lateral direction and in the direction orthogonal to the lateral direction, and the refrigerant solution is stored in each partitioned region.
  • the flat heat-dissipating fins 3 are employed, but the heat-dissipating fins 3 are not limited to a flat plate shape. That is, as shown in FIG. 7 (a), the surface is uneven, and as shown in FIG. 7 (b), it is composed of a plurality of lines, and the vertical positions of adjacent lines are alternately arranged. It is also possible to adopt a striped embodiment that changes and has a gap between the vertical directions. *
  • air cooling air transmitted from the fan collides with the heat cooling fins 3 and exhibits turbulent flow, whereby efficient cooling can be realized.
  • coolant accommodation As shown to a) and (b), the board which forms the space
  • An embodiment characterized in that the frame 7 is provided can also be adopted.
  • the design space can be effectively utilized by transferring the heat of the plurality of heating elements 6 to one cooling heat transfer device.
  • the plate frame 7 that sandwiches the heating element 6 forms the heat diffusion frame 2 for refrigerant vapor flow, and the upper heat storage frame 1 for storing refrigerant.
  • efficient cooling can be further promoted because the cooling has already been realized from the region where the heating element 6 is sandwiched.
  • the thickness width is usually set in the range of 0.05 to 1.5 mm, the interval between the fins is set to 0.05 to 3.0 mm, and In many cases, the width in the depth direction is set to 3.0 to 50 mm.
  • the distance between the refrigerant vapor flow heat diffusion frames 2 extending in the upper direction is 15 to 70 mm
  • the height direction width of the refrigerant vapor flow heat diffusion frame 2 is 40 to 100 mm
  • the depth direction width is It is often set to 10 to 50 mm.
  • a typical example of the refrigerant vapor used in the heat exchanger for cooling is water, but when aluminum (Al) having good thermal conductivity is adopted as the material of the heat exchanger for cooling, hydrogen (H 2 ) Erosion due to oxidation reaction accompanied by the occurrence of 2 ) cannot be avoided.
  • water is selected as the refrigerant
  • aluminum (Al) is used as the material for the refrigerant housing heat diffusion frame 1, the refrigerant vapor flow heat diffusion frame 2, the heat cooling fins 3, the plate 30, and the shielding plate 21.
  • Al is used as the material for the refrigerant housing heat diffusion frame 1, the refrigerant vapor flow heat diffusion frame 2, the heat cooling fins 3, the plate 30, and the shielding plate 21.
  • a nickel (Ni) coating film or a copper (Cu) coating film is formed on the surface in contact with water or water vapor
  • aluminum is the main material.
  • it is possible to realize a heat-cooling device for cooling that is extremely low in cost and lighter than the case where only copper is used or the case where copper is the main material.
  • Example 1 the basic configurations (1) and (2) are shown in FIGS. 1 (a), (b), (c), (d) and FIGS. 2 (a), (b), (c), ( As shown in d), the heat-dissipating fins 3 extending from the refrigerant-contained heat diffusion frame 1 and the heat-dissipating fins 3 extending from the refrigerant vapor flow heat-diffusing frame 2 are combined into a plate-like body. 30 is connected. *
  • the joining of the heat-dissipating fins 3 is made solid, while the joint portion itself has a conductive metal such as copper or aluminum.
  • the function By adopting the function, the function as the heat cooling fin 3 can be exhibited.
  • a plate-like body is interposed between the heat diffusion frames 2 on both sides of the refrigerant vapor flow heat diffusion frames 2 and the heat cooling fins 3 installed in the lateral direction. Embodiments characterized in that are also possible.
  • Example 2 is for refrigerant vapor flow extending upward from both ends of the refrigerant housing heat diffusion frame 1 or its vicinity as shown in FIG. 1 (d).
  • the thermal diffusion frame 2 is characterized by exhibiting a curved state that protrudes further on both sides at an intermediate position in the vertical direction (FIG. 1 (d) shows the configuration of the basic configuration (1).
  • FIG. 1 (c) shows the configuration of the basic configuration (1).
  • FIG. 1 (c) it is naturally possible to adopt the same curved state.
  • the lower-side refrigerant housing thermal diffusion frame 1 and both the upper and lower refrigerant-vapor-flow thermal diffusion frames 2 have heat release on the outside. While extending to the cooling fins 3 and being connected to each other, on the inside, it is indispensable to form a cavity part necessary for refrigerant storage and a cavity part necessary for refrigerant vapor flow. It is not possible to perform mold molding. *
  • Example 1 of Example 3 shown in FIG. 9 (a) makes it possible to manufacture a cooling heat transfer device according to the embodiment shown in FIG. 2 (c) by adopting the following manufacturing process. .
  • the inner intermediate plate for the lower refrigerant storage heat diffusion frame 1, the inner intermediate plate for the upper refrigerant vapor flow heat diffusion frame 2, and the upper refrigerant vapor flow heat diffusion frame 2 The inner intermediate plate for the heat diffusion frame 2 for refrigerant vapor flow in the vertical direction connecting the inner intermediate plates at both ends of the inner intermediate plate or in the vicinity thereof, or in the intermediate position between the both ends or the vicinity thereof, and the lower side
  • five or more plate pieces for heat-dissipating fins 3 that are individually connected to the plate-like pieces for heat-dissipating fins 3 extending in the lower direction, and further on the outside of each inner intermediate plate.
  • the outer intermediate plate is connected to the inner intermediate plate at a plurality of locations and forms a cavity for refrigerant storage and refrigerant vapor flow, and the lower side of the inner intermediate plate for the heat diffusion frame 2 for refrigerant vapor flow on both sides
  • a plurality of combined intermediate plates formed by plate-like pieces for heat-cooling fins 3 laid in the lateral direction in the intermediate region between the region and the upper region are formed by a die, a punching press, or etching.
  • Example 3-2 shown in FIG. 8 (b) by adopting the following manufacturing process, it is possible to manufacture the cooling heat transfer device according to the embodiment shown in FIG. 2 (d). Yes. (1) Both ends of the surface plate for the lower refrigerant storage heat diffusion frame 1, the upper surface plate for the upper refrigerant vapor flow heat diffusion frame 2, and the upper surface plate for the upper refrigerant vapor flow heat diffusion frame 2 In the vicinity thereof or in the middle of the both ends or the vicinity thereof, the surface plate for the heat diffusion frame 2 for the refrigerant vapor flow in the vertical direction connecting the respective surface plates, and the upper surface plate is extended upward.
  • one of the bonded surface plates of (1) above is formed by molding, punching press, or etching.
  • the inner intermediate for heat storage for refrigerant storage among the plurality of combined intermediate plates of (2) above among the plate, the upper intermediate plate for heat diffusion in the vertical direction, and the heat diffusion inner intermediate plate for the refrigerant vapor flow in the above-mentioned (3), the back plate for heat storage for refrigerant storage and the refrigerant vapor flow in the vertical direction in the upper and lower directions.
  • the plate for heat-dissipating fins 3 is composed of a plurality of lines having a substantially hexagonal cross section, and the positions of adjacent fins change alternately and are adjacent to each other.
  • the plate pieces for the heat cooling fins 3 extending in the lateral direction are alternately arranged.
  • the plate-like pieces can be in an adjacent state in which the lateral position changes alternately, and a gap can be formed between the adjacent pieces in the adjacent state.
  • the surfaces of the adjacent heat-releasing fins 3 are locally parallel, air for cooling air flows through the gaps, and the flow direction is sequentially changed. Regularly changing turbulence can be generated.
  • the elongated strip for the shielding plate 21 in the direction orthogonal to the lateral direction is connected to the refrigerant storage heat diffusion frame 1 and extends from the refrigerant storage heat diffusion frame 1.
  • an embodiment in which a part of the shielding plate 21 is disposed not only in the lower region of the refrigerant vapor flow heat diffusion frame 2 but also in the refrigerant storage heat diffusion frame 1 is also originally employed. be able to. *
  • the shielding plate 21 in the direction orthogonal to the lateral direction is provided with a hole through which the refrigerant passes by providing a hole through which the refrigerant passes in the region within the refrigerant diffusion heat diffusion frame 1. It is advisable to adopt a design that allows the refrigerant to be stored until it reaches the end of the thermal diffusion frame 1.
  • the present invention can realize efficient air cooling in an apparatus having many heating elements such as an automobile and a computer, and its utility value is tremendous.
  • Heat diffusion frame 14 for storing refrigerant, heat receiving header 16, heat transfer pipe 2, heat diffusion frame 20 for refrigerant vapor flow, refrigerant inlet 21, shield plate 3, heat-cooling fins 30, plate-like body 4, heat pipe 5, substrate 6, heating element 7, plate frame

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention addresses the problem of providing a structure of a heat transfer unit for cooling capable of achieving a high cooling effect. Thermal diffusion frames (2) for flowing of refrigerant vapor are connected to and extended upward from both ends or near both ends of a thermal diffusion frame (1) for housing refrigerant which is subjected to thermal transfer from a heating element (6), or are connected to and extended upward from said both ends or near both ends and the intermediate position. A predetermined number or more of thermally cooling fins (3) are extended upward from a region, of the thermal diffusion frame (1) for housing refrigerant, that is sandwiched by the thermal diffusion frames (2) for flowing of refrigerant vapor positioned on both ends, and the thermally cooling fins (3) are extended horizontally from a region, of the thermal diffusion frames (2) for flowing of refrigerant vapor positioned on both ends forming the sandwiched region, that has a distance, from the lower end, equal to or smaller than the inner width of the thermal diffusion frames (2) for flowing of refrigerant vapor at both ends, so as to be connected individually or collectively to the thermally cooling fins (3) extended upward, whereby the heat transfer unit for cooling can address the problem.

Description

[規則37.2に基づきISAが決定した発明の名称] 放冷用熱伝達器及びその製造方法[Name of invention determined by ISA based on Rule 37.2] Heat exchanger for cooling and its manufacturing method
本発明は、加熱素子から伝達された熱を放冷するための熱伝導器を対象としている。 The present invention is directed to a heat conductor for cooling the heat transferred from a heating element.
従来、放冷用熱伝達器は、図4に示すように、加熱素子と接触し、かつ内側に水、アルコール、アセトン、フッ素等の冷媒を真空状態にて収納ししかも冷媒を蒸発させることによって加熱素子から伝達された熱を一様に分散させるヒートパイプと接着部材を介して接続している1個のベースから熱放冷用フィンを複数枚延設させているヒートシンクを接合している構成が採用されている。  Conventionally, as shown in FIG. 4, a heat transfer device for cooling is in contact with a heating element and contains a refrigerant such as water, alcohol, acetone, or fluorine in a vacuum state and evaporates the refrigerant. A structure in which a heat pipe that uniformly dissipates heat transmitted from a heating element and a heat sink in which a plurality of heat cooling fins are extended from one base connected via an adhesive member are joined. Is adopted. *
しかしながら、このようなヒートパイプ+ヒートシンクという結合による構成の場合には、ヒートパイプとヒートシンクとの間の接合部分においては、熱伝導グリス、半田、又はロウ付けなどの接着部材を必要としており、当該接着部材が有している固有の熱抵抗の発生及び接着部材内の空気ボイドの発生によって、ヒートシンクに対しファンによる冷却空気による冷却効率が低下するという欠点を免れることができない。  However, in the case of the configuration of such a combination of heat pipe and heat sink, an adhesive member such as heat conduction grease, solder, or brazing is required at the joint portion between the heat pipe and the heat sink. Due to the generation of the inherent thermal resistance of the adhesive member and the generation of air voids in the adhesive member, it is inevitable that the cooling efficiency of the heat sink by the cooling air from the fan is reduced. *
しかも、上記接着部材による接合の作業は煩雑である一方、ヒートパイプ同士を接着部材によって接合させる場合には、半田やロウ材の異種金属がヒートパイプ内壁に浸透するために冷媒との接触による局部電池作用で電解腐食が生じ、水素ガスによる非凝縮性ガスが発生し、性能劣化が生じやすい。  In addition, the joining operation by the adhesive member is complicated, but when the heat pipes are joined by the adhesive member, the dissimilar metal of solder or brazing material permeates the inner wall of the heat pipe, so that the local part by contact with the refrigerant Electrolytic corrosion occurs due to the battery action, non-condensable gas is generated by hydrogen gas, and performance deterioration is likely to occur. *
更には、ヒートシンクのベースの位置からフィンの先端の位置に到るまでの温度低下が大きい状況にあり、その結果、ファンによる冷却効率が先端近傍において著しく減少するという致命的な欠陥を免れることができない。  Furthermore, there is a large temperature drop from the position of the base of the heat sink to the position of the tip of the fin, and as a result, it is possible to avoid a fatal defect that the cooling efficiency by the fan is significantly reduced near the tip. Can not. *
特許文献1及び同2においては、このような欠陥を軽減するため、ヒートパイプによる熱伝導効率を改善するために色々な工夫を行っているが、そのような構成自体極めて複雑であり、しかも前記欠陥を根本的に改善することは不可能である。  In Patent Documents 1 and 2, in order to alleviate such defects, various attempts have been made to improve the heat conduction efficiency by the heat pipe, but such a configuration itself is extremely complicated, and It is impossible to fundamentally improve the defects. *
特許文献3及び同4においては、従来技術の上記欠陥を克服するため、加熱素子を接続する受熱ヘッダ14(受熱ブロック14)に複数本の伝熱パイプ16(実際には、後述する本願発明の冷媒蒸気流動用熱拡散枠に該当している。)を上側方向に延設し、当該伝熱パイプ間にて、水平方向又は当該水平方向と交差する斜方向に熱放冷用フィンを架設する構成を採用している(特許文献3の図12A及び図14A、及び特許文献4の図1(b))。  In Patent Documents 3 and 4, in order to overcome the above-mentioned deficiencies of the prior art, a plurality of heat transfer pipes 16 (in fact, the present invention described later) is connected to a heat receiving header 14 (heat receiving block 14) to which a heating element is connected. This corresponds to the heat diffusion frame for refrigerant vapor flow.) Is extended upward, and the heat-cooling fins are installed between the heat transfer pipes in the horizontal direction or in the oblique direction intersecting the horizontal direction. The configuration is adopted (FIGS. 12A and 14A of Patent Document 3 and FIG. 1B of Patent Document 4). *
上記構成の場合には、前記従来技術の場合のようなフィンの先端に到るまでの温度低下を免れる点において優れている(以下、特許文献3、4に示す上記構成につき、「改良技術構成」と略称する。)。  In the case of the above-described configuration, it is excellent in that it avoids a temperature drop until reaching the tip of the fin as in the case of the above-described prior art. For short). *
しかしながら、改良技術構成においては、熱放冷用フィンが隣接し合うヒートパイプ間に架設されているため、当該架設位置の中間位置に到るまでに、熱放冷用フィン内の温度低下を免れることができない。  However, in the improved technology configuration, since the heat cooling fins are installed between the adjacent heat pipes, the temperature drop in the heat cooling fins is avoided before reaching the intermediate position of the installation position. I can't. *
しかも、受熱ヘッダ14と伝熱パイプ16とを、前記接着部材によって接合した場合には、従来技術と同じような冷却効率の低下及び非凝縮性ガスの発生という技術上の問題点を避けることができない。  In addition, when the heat receiving header 14 and the heat transfer pipe 16 are joined by the adhesive member, it is possible to avoid technical problems such as a decrease in cooling efficiency and generation of non-condensable gas as in the prior art. Can not. *
然るに、上記構成においては、熱放冷用フィンにおける熱伝達の平均距離を更に小さく設定しようとする基本的技術思想が存在しない。 However, in the above configuration, there is no basic technical idea for setting the average distance of heat transfer in the heat-dissipating fins to be further reduced.
特許第4035155号公報Japanese Patent No. 4035155 特許第4112602号公報Japanese Patent No. 4112602 WO2011/122332号公報WO2011 / 122332 publication 特開2014-159915号公報JP 2014-159915 A
本発明は、ヒートパイプとヒートシンクを一体化する放冷用熱伝導器において、熱放冷用フィンにおける熱伝達の平均距離を可能な限り小さく設定することによって、高い冷却効果を実現することができる放冷用熱伝達器の構成を提供することを課題としている。 The present invention can achieve a high cooling effect by setting the average distance of heat transfer in the heat-cooling fins as small as possible in the heat-cooling heat conductor in which the heat pipe and the heat sink are integrated. It aims at providing the structure of the heat exchanger for natural cooling.
前記課題を解決するため、本発明の基本構成は、(1)加熱素子から熱の伝達を受け、かつ真空状態にて冷媒を収納する冷媒収納用熱拡散枠の両端若しくはその近傍又は当該両端若しくはその近傍とその中間位置から上側方向に、下側領域にて冷媒が貯留し、かつその上側領域にて真空状態にて冷媒が流動する冷媒蒸気流動用熱拡散枠を連通状態にて延設し、冷媒収納用熱拡散枠のうち、両側に位置している冷媒蒸気流動用熱拡散枠に挟まれた領域内にて、10枚以上の熱放冷用フィンを上側方向に延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠のうち、下端から両側の冷媒蒸気流動用拡散枠間の内側幅以下の距離にある領域から当該上側方向と交差している横側方向に熱放冷用フィンを、それぞれ5枚以上延設し、かつ上側方向に延設された10枚以上の全熱放冷用フィンと個別に接続している放冷用熱伝達器、(2)加熱素子から熱の伝達を受け、かつ真空状態にて冷媒を収納する冷媒収納用熱拡散枠の両端若しくはその近傍又は当該両端若しくはその近傍とその中間位置から上側方向に、下側領域にて冷媒が貯留し、かつその上側領域にて真空状態にて冷媒が流動する冷媒蒸気流動用熱拡散枠を連通状態にて延設し、冷媒収納用熱拡散枠のうち、両側に位置している冷媒蒸気流動用熱拡散枠に挟まれた領域内にて、16枚以上の熱放冷用フィンを上側方向に延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠のうち、下端から両側の冷媒蒸気流動用拡散枠間の内側幅以下の距離にある領域から当該上側方向と交差している横側方向に熱放冷用フィンを、上側方向に延設された16枚以上の熱放冷用フィンの数の1/2の0.8倍以上の整数による数だけ延設し、かつそのうち最も上側に位置している熱放冷用フィンを上側方向に延設された複数枚の熱放冷用フィンと共通状態にて接続し、その余の熱放冷用フィンを上側方向に延設された上記複数枚以外の熱放冷用フィンと個別に接続している放冷用熱伝達器、からなる。 In order to solve the above-mentioned problems, the basic configuration of the present invention is as follows: (1) Heat transfer from a heating element, and both ends of the heat storage frame for storing the refrigerant that stores the refrigerant in a vacuum state, the vicinity thereof, A refrigerant vapor flow heat diffusion frame in which refrigerant is stored in the lower region and flows in a vacuum state in the upper region from the vicinity and the intermediate position in the vicinity is extended in a communication state. In the heat storage frame for storing the refrigerant, in the region sandwiched between the heat diffusion frames for refrigerant vapor flow located on both sides, extending 10 or more heat cooling fins in the upward direction, Of the heat diffusion frames for refrigerant vapor flow on both sides forming the sandwiched area, the upper direction is intersected from a region at a distance equal to or less than the inner width between the refrigerant vapor flow diffusion frames on both sides from the lower end. 5 or more fins for heat release in the lateral direction A heat transfer device for cooling, which is connected to 10 or more total heat cooling fins extending in the upward direction, and (2) receives heat from the heating element and is in a vacuum state The refrigerant is stored in the lower region in the upper direction from both ends of the heat storage frame for storing the refrigerant in the vicinity thereof, or in the vicinity thereof, or in the upper direction from both ends or the vicinity thereof, and in the vacuum state in the upper region. In the region sandwiched between the refrigerant vapor flow heat diffusion frames located on both sides of the refrigerant diffusion heat diffusion frames, the refrigerant vapor flow heat diffusion frames through which the refrigerant flows are extended in communication. In the heat diffusion frame for refrigerant vapor flow on both sides forming the sandwiched area, 16 or more heat-dissipating fins are extended upward and the refrigerant vapor flow on both sides from the lower end is formed. Intersect the upper direction from an area that is less than the inner width between diffusion frames Extending the number of the heat-cooling fins in the lateral direction by an integer equal to or greater than 0.8 times 1/2 of the number of the 16 or more heat-cooling fins extending in the upward direction, And the heat-dissipating fin located on the uppermost side is connected in common with a plurality of heat-dissipating fins extending upward, and the remaining heat-dissipating fins are connected upward. It consists of the heat-relieving heat transfer device connected individually to the heat-dissipating fins other than the plurality of extended heat-dissipating fins.
前記基本構成(1)、(2)からなる本発明においては、特許文献3、及び同4の場合に比し、熱放冷用フィンにおける熱伝達の平均距離を更に短縮することから、ファンによる空冷温度との差が大きくなり、改良技術構成の場合よりも更に効率的な冷却効率を改善することができる。  In the present invention consisting of the basic configurations (1) and (2), the average distance of heat transfer in the heat cooling fins is further shortened compared with the cases of Patent Documents 3 and 4, so The difference from the air cooling temperature becomes large, and the cooling efficiency can be improved more efficiently than in the case of the improved technology configuration. *
しかも、実施例3において後述するように、放冷用熱伝達器を一体成形の素材に対する積層によって実現することが可能であって、従来技術による構成の場合のようなヒートパイプ、基板、熱放冷用フィンの3単位の構成、更には改良技術構成のように、伝熱パイプ、受熱ヘッダ、熱放冷用フィンによる3単位の構成に比し、部品点数を大幅に削減することができる。 In addition, as will be described later in Example 3, it is possible to realize a cooling heat transfer device by stacking on an integrally formed material, and a heat pipe, a substrate, a heat release as in the case of the configuration according to the prior art. The number of parts can be significantly reduced as compared with the three-unit configuration of the heat-fining pipe, the heat receiving header, and the heat-dissipating fin, as in the three-unit configuration of the cooling fin and the improved technology configuration.
基本構成の構成を示す側面図であって、(a)は、冷媒収納用熱拡散枠の両端の近傍のみに、冷媒蒸気流動用熱拡散枠を上側に延設し、かつ上側方向及び横側方向から延設された熱放冷用フィンを板状体を介して接続する(実施例1)ことによる基本構成(1)による実施形態を示しており、(b)は、冷媒収納用熱拡散枠の両端だけでなく、その中間位置にも冷媒蒸気流動用熱拡散枠を上側方向に延設している基本構成(1)による実施形態を示し、(c)は、冷媒収納用熱拡散枠の両端に、冷媒蒸気流動用熱拡散枠を上側に延設している基本構成(2)による実施形態を示し、(d)は、(a)の構成に立脚したうえで、両側の冷媒蒸気流動用熱拡散枠のうち、所定の上側領域から熱放冷用フィンを横側方向に架設する一方、両端における冷媒蒸気流動用熱拡散枠が上下方向中間位置にて更に両側に突出した湾曲状態(実施例2)を呈している基本構成(1)による実施形態を示す。 尚、図1(a)、(b)、(c)、(d)において、●は冷媒注入口20を指しており、この点は、後述する図2(a)、(b)、(c)の場合においても同様である。It is a side view which shows the structure of a basic composition, Comprising: (a) is extending the heat | fever diffusion frame for refrigerant | coolant vapor flow to upper side only in the vicinity of the both ends of the heat | fever diffusion frame for refrigerant | coolant accommodation, and the upper side direction and a horizontal side The embodiment by the basic composition (1) by connecting the fin for thermal cooling extended from the direction through a plate-like body (Example 1) is shown, (b) is thermal diffusion for refrigerant storage An embodiment according to a basic configuration (1) in which a heat diffusion frame for refrigerant vapor flow is extended not only at both ends of the frame but also at an intermediate position thereof is shown in an upper direction, and (c) shows a heat diffusion frame for storing refrigerant. 2 shows an embodiment according to the basic configuration (2) in which the refrigerant vapor flow heat diffusion frame is extended upward at both ends, and (d) is based on the configuration of (a) and the refrigerant vapor on both sides. Of the heat diffusion frame for flow, the heat-dissipating fins are installed in the lateral direction from a predetermined upper region, and at both ends. Shows an embodiment according to the basic configuration (1) of the refrigerant vapor flowing heat diffusion frame and has a further curved so as to protrude on both sides in vertically intermediate positions (Example 2). In FIGS. 1A, 1B, 1C, and 1D, the ● indicates the refrigerant inlet 20, which is described later with reference to FIGS. 2A, 2B, and 2C. The same applies to the case of). 冷媒蒸気流動用熱拡散枠の頂部にて、上側方向と交差している横側方向に、冷媒蒸気流動用熱拡散枠を架設した構成を示しており、(a)は、更に横側方向に架設した冷媒蒸気流動用熱拡散枠の上側方向に熱放冷用フィンを延設した基本構成(1)による実施形態を示しており、(b)は、横側方向に架設した冷媒蒸気流動用熱拡散枠から下側方向に熱放冷用フィンを延設した基本構成(1)による実施形態を示し、(c)は、下側方向に熱放冷用フィンを延設すると共に、両側の冷媒蒸気流動用熱拡散枠のうち、中間領域から熱放冷用フィンを横側方向に架設している基本構成(1)による実施形態を示しており、(d)は、下側方向に熱放冷用フィンを延設すると共に、両側の冷媒蒸気流動用熱拡散枠のうち、中間領域から熱放冷用フィンを横側方向に架設している基本構成(2)による実施形態を示す。In the top of the heat diffusion frame for refrigerant vapor flow, a configuration in which the heat diffusion frame for refrigerant vapor flow is installed in the lateral direction intersecting with the upper direction is shown. The embodiment by the basic composition (1) which extended the heat-dissipation fin in the upper direction of the installed thermal diffusion frame for refrigerant vapor flow is shown, (b) is for the refrigerant vapor flow installed in the horizontal direction. An embodiment according to a basic configuration (1) in which heat-dissipating fins are extended in the lower direction from the heat diffusion frame is shown, and (c) is an example in which heat-dissipating fins are extended in the lower direction, In the heat diffusion frame for refrigerant vapor flow, an embodiment according to the basic configuration (1) in which the heat-dissipating fins are installed in the lateral direction from the intermediate region is shown, and (d) shows the heat in the downward direction. The cooling fins are extended, and the heat cooling fins from the middle region of the heat diffusion frames for refrigerant vapor flow on both sides. The show embodiments according to the basic configuration (2) which are bridged on the side direction. 特許文献3、及び同4における放冷用熱伝達器の改良技術構成を示す。The technical improvement structure of the heat exchanger for cooling in patent documents 3 and 4 is shown. 従来技術の構成を示す側面図である。It is a side view which shows the structure of a prior art. 本発明の技術的趣旨を明らかにすることを目的とする冷媒収納用熱拡散枠と冷媒蒸気流動用熱拡散枠の上側及び冷媒蒸気流動用熱拡散枠の内側を形成する各領域にてx-y座標を設定したグラフであって、(a)は、基本構成(1)の場合を説明しており、(b)は、基本構成(2)の場合を説明している。In the respective regions forming the refrigerant diffusion heat diffusion frame, the refrigerant vapor flow heat diffusion frame, and the refrigerant vapor flow heat diffusion frame, the x- It is the graph which set y coordinate, Comprising: (a) has demonstrated the case of basic composition (1), (b) has demonstrated the case of basic composition (2). 遮蔽板を設けた実施形態を示しており、(a)は、遮蔽板を配設した冷媒蒸気流動用熱拡散枠及びその下側に位置している冷媒収納用熱拡散枠の状態を示す上下方向側断面図であり、(b)は、遮蔽板を設けた冷媒蒸気流動用熱拡散枠の横方向断面図である。The embodiment which provided the shielding board is shown, (a) is the upper and lower sides which show the state of the thermal-diffusion frame for refrigerant | coolant vapor flow which installed the shielding board, and the thermal-diffusion frame for refrigerant | coolant accommodation located under it. It is a direction side sectional view, and (b) is a transverse direction sectional view of a heat diffusion frame for refrigerant vapor flow provided with a shielding board. 熱放冷用フィンの横側方向の断面図を示しており、(a)は、凹凸面状を有する場合を示しており、(b)は、複数本のラインによって構成されており、かつ隣接し合うラインの上下方向の位置が交互に変化し、しかも当該上下方向の間に隙間を有している縞状の場合を示す。The cross section of the fin for heat cooling is shown, and (a) shows the case where it has an uneven surface shape, (b) is constituted by a plurality of lines, and is adjacent. The vertical direction position of the lines to be in contact with each other changes alternately, and a striped case with a gap between the vertical directions is shown. 加熱素子を挟持する空隙を形成する枠体を設けた実施形態を示す側面図であって、(a)は、枠体を横側方向に設けた実施形態を示しており、(b)は、枠体を上下方向に設けた実施形態を示す。It is a side view showing an embodiment provided with a frame forming a gap for sandwiching a heating element, (a) shows an embodiment provided with a frame in the lateral direction, (b), The embodiment which provided the frame in the up-and-down direction is shown. 本発明の製造プロセスを示す斜視図であって、(a)は、図2(c)の実施形態による放冷用熱伝達器の製造プロセスを示す斜視図であり、(b)は、図2(d)の実施形態による放冷用熱伝達器の製造プロセスを示す斜視図である。It is a perspective view which shows the manufacturing process of this invention, Comprising: (a) is a perspective view which shows the manufacturing process of the heat exchanger for natural cooling by embodiment of FIG.2 (c), (b) is FIG. It is a perspective view which shows the manufacturing process of the heat exchanger for natural cooling by embodiment of (d). 図9の製造プロセスにおいて、熱放冷用フィン用板状片が断面略六角形状の複数本のラインによって構成されており、かつ隣接し合うフィンの位置が交互に変化し、しかも隣接し合う相互の間に隙間を有している縞状を呈する実施例を示す。In the manufacturing process of FIG. 9, the plate for heat-dissipating fins is constituted by a plurality of lines having a substantially hexagonal cross section, and the positions of adjacent fins are alternately changed and are adjacent to each other. The Example which exhibits the striped shape which has a clearance gap between is shown. 図9(a)、(b)の製造プロセスにおいて、特に図6に示す遮蔽板を成形する場合の結合中間板の状態を示す斜視図であり、(a)は、横側方向の遮蔽板を成形する結合中間板を示しており、(b)は、横側方向と直交する方向の遮蔽板を成形する結合中間板を示す。9 (a) and 9 (b) are perspective views showing a state of the coupling intermediate plate particularly when the shielding plate shown in FIG. 6 is formed, and FIG. 9 (a) shows the shielding plate in the lateral direction. FIG. 2B shows a coupling intermediate plate to be molded, and FIG. 4B shows a coupling intermediate plate that molds a shielding plate in a direction orthogonal to the lateral direction.
本発明は、前記基本構成(1)、(2)によって構成されるが、基本構成(1)の場合には、図1(a)、(b)に示すように、両側の冷媒蒸気流動用熱拡散枠2から上側方向に延設された熱放冷用フィン3は、冷媒収納用熱拡散枠1から上側方向に延設された全熱放冷用フィン3と個別に接続している。  The present invention is constituted by the basic structures (1) and (2). In the case of the basic structure (1), as shown in FIGS. The heat-releasing fins 3 extending upward from the heat diffusion frame 2 are individually connected to the total heat-releasing fins 3 extending upward from the refrigerant housing heat diffusion frame 1. *
これに対し、基本構成(2)の場合には、図1(c)に示すように、両側の冷媒蒸気流動用熱拡散枠2から横側方向に延設された熱放冷用フィン3のうち、最も上側に位置している熱放冷用フィン3は、冷媒収納用熱拡散枠1から上側方向に延設された熱放冷用フィン3のうち、複数枚の熱放冷用フィン3と共通状態にて接続しており、その余の横方向に延設された熱放冷用フィン3は、上側方向に延設された上記複数枚以外の熱放冷用フィン3と個別に接続している。  On the other hand, in the case of the basic configuration (2), as shown in FIG. 1C, the heat cooling fins 3 extending in the lateral direction from the refrigerant vapor flow heat diffusion frames 2 on both sides are provided. Among them, the heat-releasing fins 3 located on the uppermost side are a plurality of heat-releasing fins 3 among the heat-releasing fins 3 extending in the upward direction from the refrigerant housing heat diffusion frame 1. The heat-dissipating fins 3 extending in the other horizontal direction are individually connected to the heat-dissipating fins 3 other than the plurality of sheets extending in the upper direction. is doing. *
基本構成(1)、(2)においては、図1(a)、(c)、(d)に示すように、冷媒収納用熱拡散枠1において、両端若しくはその近傍から上側方向に冷媒蒸気流動用熱拡散枠2を連通状態にて延設するか(図1(a)の場合には、
両端の近傍から延設する状態を示し、図1(c)、(d)の場合には、両端から延設する場合を示す。)、又は、図1(b)に示すように、両端若しくはその近傍及び中間位置から上側方向に冷媒蒸気流動拡散枠2を連通状態にて延設している(図1(b)においては、両端から上側方向に延設した実施形態を示す。)。 
In the basic configurations (1) and (2), as shown in FIGS. 1 (a), (c) and (d), the refrigerant vapor flow in the upward direction from both ends or the vicinity thereof in the heat storage frame 1 for refrigerant storage. Whether the thermal diffusion frame 2 is extended in a communicating state (in the case of FIG. 1 (a),
The state of extending from the vicinity of both ends is shown, and in the case of FIGS. 1C and 1D, the case of extending from both ends is shown. 1), or as shown in FIG. 1B, the refrigerant vapor flow diffusion frame 2 is extended in a communicating state from both ends, the vicinity thereof, and an intermediate position in an upward direction (in FIG. 1B, An embodiment is shown that extends upward from both ends.)
基本構成(1)、(2)においても、図4に示す従来技術の場合のように、ヒートパイプ4と熱放冷用フィン3によるヒートシンクとの接合を伴わずとも、双方の機能を発揮することを可能としている。  Even in the basic configurations (1) and (2), both functions are exhibited without the joining of the heat pipe 4 and the heat sink by the heat cooling fin 3 as in the case of the prior art shown in FIG. Making it possible. *
特許文献3、及び同4に示す改良技術構成においては、図3に示すように、冷媒収納用熱拡散枠1から上側方向に延設された冷媒蒸気流動用熱拡散枠2間にて熱放冷用フィン3を専ら当該上側方向と交差している横側方向に架設している。  In the improved technical configurations shown in Patent Documents 3 and 4, as shown in FIG. 3, heat is dissipated between the refrigerant diffusion heat diffusion frame 2 extending upward from the refrigerant storage heat diffusion frame 1. The cooling fins 3 are erected exclusively in the lateral direction intersecting with the upper direction. *
これに対し、前記基本構成(1)においては、冷媒収納用熱拡散枠1のうち、冷媒蒸気流動用熱拡散枠2に挟まれた領域内にて、10枚以上の熱放冷用フィン3を上側方向に延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠2から当該上側方向と交差している横側方向に、両側からそれぞれ5枚以上の熱放冷用フィン3を延設し、かつ前記上側方向に延設した10枚以上の熱放冷用フィン3と接続している。  On the other hand, in the basic configuration (1), ten or more heat cooling fins 3 in the region sandwiched by the refrigerant vapor flow heat diffusion frame 2 in the refrigerant storage heat diffusion frame 1. 5 or more from both sides in the lateral direction intersecting the upper direction from the heat diffusion frames 2 for refrigerant vapor flow on both sides forming the sandwiched area. The cooling fins 3 are extended and connected to 10 or more heat cooling fins 3 extending in the upward direction. *
熱放冷用フィン3を、図3に示すように、隣接し合う冷媒蒸気流動用熱拡散枠2間に架設するのではなく、図1(a)、(b)、(d)に示すように、冷媒収納用熱拡散枠1から延設すると共に、両側の冷媒蒸気流動用熱拡散枠2からも延設し、かつ双方の熱放冷用フィン3を個別に接続させるのは、両側の冷媒蒸気流動用熱拡散枠2に挟まれた領域内における熱放冷用フィン3における熱の平均流動距離が図3に示すような架設の場合よりも短く設定することが可能となることに由来している。  As shown in FIG. 3, the heat-cooling fins 3 are not installed between the adjacent refrigerant vapor flow heat diffusion frames 2 as shown in FIGS. 1A, 1 </ b> B, and 1 </ b> D. In addition to extending from the heat diffusing frame 1 for storing refrigerant and extending from the heat diffusing frame 2 for refrigerant vapor flow on both sides, and connecting the heat cooling fins 3 on both sides separately, This is because the average flow distance of heat in the heat-dissipating fins 3 in the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 can be set shorter than in the case of installation as shown in FIG. is doing. *
しかも、平均流動距離を短く設定することは、上記領域内における温度を更に高温化し、ひいては、ファンから発生された冷却用空気との温度ギャップを大きくし、高い熱効率が得られることを意味している。  Moreover, setting the average flow distance short means that the temperature in the above region is further increased, and consequently the temperature gap with the cooling air generated from the fan is increased, and high thermal efficiency is obtained. Yes. *
前記基本構成(1)の技術的特徴点を、具体的な計算に即して、以下のとおり明らかにする。  The technical features of the basic configuration (1) will be clarified as follows in accordance with specific calculations. *
放熱する板状のフィンにおける熱伝導微分方程式は、内部における熱発生源が存在しない場合には、温度θ、及び時間t、及び長さ方向の距離xに即して、以下のような偏微分方程式によって表現することができる(例えば、関信弘編「伝熱工学」:平成14年12月20日森北出版株式会社発行の4頁)。  When there is no internal heat generation source, the differential heat conduction equation in the plate-like fin for radiating heat is the following partial differential in accordance with the temperature θ, time t, and distance x in the length direction. It can be expressed by an equation (for example, Nobuhiro Seki, “Heat Transfer Engineering”: December 20, 2002, published by Morikita Publishing Co., Ltd., page 4). *
Figure JPOXMLDOC01-appb-M000001
(θ:周囲の環境温度、f:フィンの断面積、p:断面に沿った周囲の長さ、α:熱伝達率、λ:熱伝導率、h=λ/cρ:温度伝導率、 c:比熱、ρ:密度、λ:熱伝達率) 
Figure JPOXMLDOC01-appb-M000001
f : ambient temperature, f: cross-sectional area of fin, p: circumference length along the cross-section, α: heat transfer coefficient, λ: heat conductivity, h = λ / cρ: temperature conductivity, c : Specific heat, ρ: density, λ: heat transfer coefficient)
ここで、環境温度θを基準とし、上記偏微分方程式のθ―θを、θと設定した場合の定常熱伝導は∂θ/∂t=0であることから、  
Figure JPOXMLDOC01-appb-M000002
 但し、m=pα/λfである。 
Here, based on the environmental temperature θ f as a reference, the steady heat conduction when θ−θ f of the partial differential equation is set to θ is ∂θ / ∂t = 0.
Figure JPOXMLDOC01-appb-M000002
However, m 2 = pα / λf.
上記(1)式の一般解から、  
Figure JPOXMLDOC01-appb-M000003
を得ることができる(但し、k、kは、境界条件によって特定される係数)。 
From the general solution of equation (1) above,
Figure JPOXMLDOC01-appb-M000003
(Where k 1 and k 2 are coefficients specified by the boundary conditions).
図4に示す従来技術において、フィンの先端からの放熱量は、全放熱量に比べて極めて小さく、断熱状態と同視することができることから、フィンのベースの位置から先端までの距離をLとした場合には、  
Figure JPOXMLDOC01-appb-M000004
という近似式が成立する。 
In the prior art shown in FIG. 4, the amount of heat released from the tip of the fin is extremely small compared to the total amount of heat released, and can be regarded as the heat insulation state. Therefore, the distance from the position of the fin base to the tip is L. in case of,
Figure JPOXMLDOC01-appb-M000004
The approximate expression is established.
フィンが板状のベースと接続している位置における温度がθ10の場合には、  
Figure JPOXMLDOC01-appb-M000005
が成立する。 
When the temperature at the position where the fin is connected to the plate-like base is θ 10 ,
Figure JPOXMLDOC01-appb-M000005
Is established.
上記の各境界条件から(2)の一般解としては、  
Figure JPOXMLDOC01-appb-M000006
を得ることができる。 
From the above boundary conditions, the general solution of (2) is as follows:
Figure JPOXMLDOC01-appb-M000006
Can be obtained.
上記θの平均値である(θ)については、  
Figure JPOXMLDOC01-appb-M000007
を得ることができる。 
For (θ) 1 which is the average value of θ,
Figure JPOXMLDOC01-appb-M000007
Can be obtained.
これに対し、図3に示す特許文献3、及び同4が立脚している改良技術構成において、冷媒収納用熱拡散枠1及び各冷媒蒸気流動用熱拡散枠2の温度をθ20とし、かつ架設された熱放冷用フィン3の架設方向の長さをaとした場合には、  
Figure JPOXMLDOC01-appb-M000008
を得ることができる。 
On the other hand, in the improved technical configuration based on Patent Documents 3 and 4 shown in FIG. 3, the temperature of the heat storage frame 1 for storing the refrigerant and the heat diffusion frame 2 for each refrigerant vapor flow is set to θ 20 , and When the length of the installed heat-releasing fin 3 in the installation direction is a,
Figure JPOXMLDOC01-appb-M000008
Can be obtained.
上記各境界条件を前記(2)式に代入することによって  
Figure JPOXMLDOC01-appb-M000009
を得ることができる。 
By substituting the above boundary conditions into the equation (2)
Figure JPOXMLDOC01-appb-M000009
Can be obtained.
したがって、長さをaとする熱放冷用フィン3の平均温度(θ)については、  
Figure JPOXMLDOC01-appb-M000010
を得ることができる。 
Therefore, for the average temperature (θ) 2 of the heat-dissipating fin 3 having a length a,
Figure JPOXMLDOC01-appb-M000010
Can be obtained.
前記(3)式の平均温度と同(4)式の平均温度とを対比した場合、熱源の温度が同一である場合には、図4に示す従来技術のように、ヒートパイプ4とヒートシンクとの間に接着部材が介在し、かつ当該接着部材の熱抵抗によって温度降下が生じているのに対し、接着部材を採用していない図3に示す改良技術構成の場合には、温度降下が生じていないことから、θ20>θ10が成立する。  When the average temperature of the formula (3) is compared with the average temperature of the formula (4), when the temperature of the heat source is the same, as in the prior art shown in FIG. In the case of the improved technology configuration shown in FIG. 3 in which the adhesive member is interposed and the thermal resistance of the adhesive member causes a temperature drop, the temperature drop occurs. Therefore, θ 20 > θ 10 is established.
ここで、  
Figure JPOXMLDOC01-appb-M000011
とした場合、  
Figure JPOXMLDOC01-appb-M000012
を得ることができる。 
here,
Figure JPOXMLDOC01-appb-M000011
If
Figure JPOXMLDOC01-appb-M000012
Can be obtained.
Figure JPOXMLDOC01-appb-M000013
とした場合、  
Figure JPOXMLDOC01-appb-M000014
が成立することから、  
Figure JPOXMLDOC01-appb-M000015
が成立し、結局、x>0である場合には、上記f(x)はxが小さいほど大きな値となる。 
Figure JPOXMLDOC01-appb-M000013
If
Figure JPOXMLDOC01-appb-M000014
From the fact that
Figure JPOXMLDOC01-appb-M000015
When x> 0, the above f (x) becomes a larger value as x is smaller.
したがって、前記(3)式のθ10及び前記(4)式のθ20以外の数式を対比した場合には、L>a/2であるならば、  
Figure JPOXMLDOC01-appb-M000016
即ち、  
Figure JPOXMLDOC01-appb-M000017
が成立する。 
Therefore, when comparing mathematical formulas other than θ 10 in the equation (3) and θ 20 in the equation (4), if L> a / 2,
Figure JPOXMLDOC01-appb-M000016
That is,
Figure JPOXMLDOC01-appb-M000017
Is established.
しかしながら、放冷用熱伝達器の設計において、常にL>a/2が成立する訳ではない。  However, L> a / 2 is not always satisfied in the design of the heat exchanger for cooling. *
 したがって、図3に示す改良技術構成の場合には、a≒2Lのように前記領域範囲が横側方向に広いような設計の場合には、熱放冷用フィン3における温度降下においてさしたる相違が存在せず、必ずしも十分な冷却効果を得ることができない。  Therefore, in the case of the improved technology configuration shown in FIG. 3, when the design is such that the region range is wide in the lateral direction as a≈2L, there is a significant difference in the temperature drop in the heat cooling fin 3. It does not exist, and a sufficient cooling effect cannot always be obtained. *
これに対し、前記基本構成(1)の場合には、以下に示すように、熱放冷用フィン3における熱伝達の平均距離を更に小さく設計することができる。  On the other hand, in the case of the basic configuration (1), as shown below, the average distance of heat transfer in the heat cooling fins 3 can be designed to be smaller. *
図1(a)、(b)、(d)に示す基本構成(1)に示すように、上側方向に延設された熱放冷用フィン3が全て横側方向に延設された熱放冷用フィン3と個別に接合している実施形態において、両側の冷媒蒸気流動用熱拡散枠2によって挟まれた領域における冷媒収納用熱拡散枠1の距離をaとし、両側の冷媒蒸気流動用熱拡散枠2において、熱拡散用フィンを横側方向に延設する領域の長さをbとした場合、図5(a)に示すように、冷媒収納用熱拡散枠1と冷媒蒸気流動用熱拡散枠2との内側交点を原点であるOとするx-y座標を設定し、かつ冷媒収納用熱拡散枠1から上側方向に熱放冷用フィン3を延設する原点からの距離をxとし、冷媒蒸気流動用熱拡散枠2から横側方向に熱放冷用フィン3を延設する位置の原点からの距離をyとした場合には、  
Figure JPOXMLDOC01-appb-M000018
という直線方程式が成立する。 
As shown in the basic configuration (1) shown in FIGS. 1 (a), 1 (b), and 1 (d), the heat release fins 3 extending in the upward direction are all extended in the lateral direction. In the embodiment in which the cooling fins 3 are individually joined, the distance of the refrigerant storage heat diffusion frame 1 in the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides is a, and the refrigerant vapor flow on both sides is In the heat diffusion frame 2, when the length of the region in which the heat diffusion fins extend in the lateral direction is b, as shown in FIG. 5A, the refrigerant storage heat diffusion frame 1 and the refrigerant vapor flow Set the xy coordinate with O being the origin of the inner intersection with the heat diffusion frame 2, and the distance from the origin at which the heat-dissipation fins 3 are extended upward from the refrigerant storage heat diffusion frame 1. x, and the distance from the origin of the position where the heat-cooling fins 3 are extended in the lateral direction from the heat diffusion frame 2 for refrigerant vapor flow If you have A,
Figure JPOXMLDOC01-appb-M000018
The linear equation is established.
冷媒収納用熱拡散枠1において、両側の冷媒蒸気流動用熱拡散枠2に挟まれた領域の中間位置、即ち原点Oからx軸に沿ってa/2の距離にある位置をMとし、かつ冷媒収納用熱拡散枠1から上側方向に延設する熱放冷用フィン3の数をNとした場合には、両側の冷媒蒸気流動用熱拡散枠2から横側方向に延設し、かつ上記上側方向に延設した各熱放冷用フィン3と接合する熱放冷用フィン3の数は、  
Figure JPOXMLDOC01-appb-M000019
である(但し、[N/2]は、N/2の小数点以下の数値を切り捨てたことによる整数を表し、Nが偶数の場合にはN/2であり、Nが奇数の場合には(N-1)/2である。)。 
In the refrigerant housing heat diffusion frame 1, M is an intermediate position of the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides, that is, a position at a distance of a / 2 along the x axis from the origin O, and When the number of heat-dissipating fins 3 extending in the upward direction from the refrigerant housing heat diffusion frame 1 is N, the refrigerant vapor flow heat diffusion frames 2 on both sides are extended in the lateral direction, and The number of heat cooling fins 3 joined to each heat cooling fin 3 extending in the upper direction is as follows.
Figure JPOXMLDOC01-appb-M000019
(However, [N / 2] represents an integer obtained by rounding down the numerical value after the decimal point of N / 2. When N is an even number, it is N / 2, and when N is an odd number ( N-1) / 2)).
したがって、原点Oから中間点Mに到るまでの領域についてi番目の横側方向に延設される熱放冷用フィン3の平均距離は、  
Figure JPOXMLDOC01-appb-M000020
である。 
Therefore, the average distance of the heat-cooling fins 3 extending in the i-th lateral direction in the region from the origin O to the intermediate point M is:
Figure JPOXMLDOC01-appb-M000020
It is.
これに対し、原点Oからi番目の上側方向に延設される熱放冷用フィン3の上側方向の平均距離は、上記直線方程式によって、  
Figure JPOXMLDOC01-appb-M000021
である。 
On the other hand, the average distance in the upper direction of the heat-dissipating fin 3 extending in the i-th upper direction from the origin O is given by the above linear equation.
Figure JPOXMLDOC01-appb-M000021
It is.
したがって、個別に接続し合っているi番目の熱放冷用フィン3の平均距離の合計は、  
Figure JPOXMLDOC01-appb-M000022
である。 
Therefore, the sum of the average distances of the i-th heat cooling fins 3 connected individually is
Figure JPOXMLDOC01-appb-M000022
It is.
このような場合、原点Oから中間位置Mに到るまでの領域にある熱放冷用フィン3全体の平均合計距離は、  
Figure JPOXMLDOC01-appb-M000023
である。 
In such a case, the average total distance of the entire heat cooling fin 3 in the region from the origin O to the intermediate position M is
Figure JPOXMLDOC01-appb-M000023
It is.
したがって、個別に接合している全体の熱放冷用フィン3の合計距離の平均値dとして、  
Figure JPOXMLDOC01-appb-M000024
を得ることができる。 
Therefore, as an average value d of the total distance of the entire heat-dissipating fins 3 joined individually,
Figure JPOXMLDOC01-appb-M000024
Can be obtained.
上記平均長さは、図5上の左側領域において算定したが、この点は、残余の右側領域においても全く同一である。  The average length was calculated in the left region on FIG. 5, but this point is completely the same in the remaining right region. *
Nが偶数の場合には、  
Figure JPOXMLDOC01-appb-M000025
であり、Nが奇数の場合には、  
Figure JPOXMLDOC01-appb-M000026
であるが、N≧10であることを考慮した場合には、上記平均値dについては、  
Figure JPOXMLDOC01-appb-M000027
が成立する。 
If N is an even number,
Figure JPOXMLDOC01-appb-M000025
And N is an odd number,
Figure JPOXMLDOC01-appb-M000026
However, when considering that N ≧ 10, the average value d is
Figure JPOXMLDOC01-appb-M000027
Is established.
前記(4)式の場合と同様に、距離の平均値がそれぞれdの場合の平均温度(θ)については、  
Figure JPOXMLDOC01-appb-M000028
が成立する。 
As in the case of the equation (4), the average temperature (θ) 3 when the average value of the distances is d is
Figure JPOXMLDOC01-appb-M000028
Is established.
ここで、b=L、即ち両側の冷媒蒸気流動用熱拡散枠2において、横側方向に熱放冷用フィン3を延設している領域幅を従来技術のフィンの高さ方向幅と同一に設定し、かつa/2=L、即ち図3の改良技術構成の場合には、熱放冷用フィン3の平均温度(θ)が、図4の従来技術の場合と同等であるであっても、前記(5)式において、温度降下の指標となるd/2については、  
Figure JPOXMLDOC01-appb-M000029
が成立し、従来技術の熱放冷用フィン3の高さ方向幅Lよりも小さな状態が成立する。 
Here, b = L, that is, in the heat diffusion frames 2 for refrigerant vapor flow on both sides, the width of the region in which the heat cooling fins 3 are extended in the lateral direction is the same as the width in the height direction of the conventional fins. And a / 2 = L, that is, in the case of the improved technology configuration of FIG. 3, the average temperature (θ) 2 of the heat-dissipating fin 3 is equivalent to that of the prior art of FIG. Even in the above equation (5), d / 2, which is an index of temperature drop,
Figure JPOXMLDOC01-appb-M000029
Is established, and a state smaller than the width L in the height direction of the conventional heat-dissipating fin 3 is established.
即ち、上記の場合であっても、平均温度が従来技術の場合に比し、明らかに高いことが判明する。  That is, even in the above case, the average temperature is clearly higher than that in the case of the prior art. *
しかも、図3に示す改良技術構成と対比しても、両側の冷媒蒸気流動用熱拡散枠2に挟まれた領域内における平均温度を高く設定するような設計が十分可能である。  Moreover, even when compared with the improved technology configuration shown in FIG. 3, it is possible to sufficiently design the average temperature in the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides. *
因みに、例えば、図1(a)において、a=bが成立することによって、双方の熱放冷用フィン3が接続し合う領域が正方形の場合であっても、  
Figure JPOXMLDOC01-appb-M000030
が成立し、結局、前記(5)式による平均温度の方が、前記(4)式による平均温度よりも明らかに高い状態を実現することができる。 
Incidentally, for example, in FIG. 1A, even if a = b is established, even if the area where both the heat cooling fins 3 are connected is a square,
Figure JPOXMLDOC01-appb-M000030
As a result, it is possible to realize a state in which the average temperature according to the equation (5) is clearly higher than the average temperature according to the equation (4).
更に一般的に説明するに、前記基本構成(1)において、両側の冷媒蒸気流動用熱拡散枠2のうち、下端から両側の冷媒蒸気流同様熱拡散枠2間の内側幅以下の距離にある領域から横方向に熱放冷用フィン3を延設している以上、b≦aの関係にある。 したがって、温度降下の指標であるd/2とa/2との比率を算定した場合、  
Figure JPOXMLDOC01-appb-M000031
 が成立し、冷媒蒸気流動用熱拡散枠2の上記領域幅bが上記両側幅aより小さく、かつ上側方向に延設された熱放冷用フィン3の数Nが大きいほど、前記基本構成による平均距離d/2は、前記改良構成による平均距離a/2よりも小さいことから、上側方向に延設された熱放冷用フィン3と横側方向に延設された熱放冷用フィン3とが個別に接続し合っている領域における温度は、前記改良構成の場合よりも高いことが裏付けられる。 
More generally, in the basic configuration (1), among the refrigerant vapor flow heat diffusion frames 2 on both sides, the distance from the lower end to the inner width between the heat diffusion frames 2 is the same as the refrigerant vapor flow on both sides. As long as the heat-dissipating fins 3 are extended in the lateral direction from the region, the relationship is b ≦ a. Therefore, when the ratio between d / 2 and a / 2, which is an index of temperature drop, is calculated,
Figure JPOXMLDOC01-appb-M000031
And the region width b of the refrigerant vapor flow heat diffusion frame 2 is smaller than the both side widths a and the number N of heat-dissipating fins 3 extending in the upward direction is larger, Since the average distance d / 2 is smaller than the average distance a / 2 according to the improved configuration, the heat cooling fins 3 extended in the upper direction and the heat cooling fins 3 extended in the lateral direction. It is proved that the temperature in the region where the two are connected individually is higher than that in the improved configuration.
基本構成(2)においても、上側方向に延設された熱放冷用フィン3と横側方向に延設された熱放冷用フィン3とが個別に又は複数枚が共通状態にて接続し合っている領域における温度が、前記改良構成の場合よりも高いことを以下のとおり明らかにする。  Also in the basic configuration (2), the heat-dissipating fins 3 extending in the upward direction and the heat-dissipating fins 3 extending in the lateral direction are connected individually or in a plurality in a common state. It will be clarified as follows that the temperature in the matching region is higher than in the improved configuration. *
図5(b)において、原点Oから中間位置Mに到るまでの領域において上側方向に延設された熱放冷用フィン3のうち、横側方向に延設されている熱放冷用フィンと相互に接続している数をN´とした場合には、その余の[N/2]-N´枚の熱放冷用フィン3は、横側方向に延設された熱放冷用フィン3のうち、最も上側に位置している熱放冷用フィン3と個別ではなく共通状態にて接続していることに帰する。 このような場合、個別に接続し合っている熱放冷用フィン3及び共通状態にて接続し合っている熱放冷用フィン3の合計距離の平均値dは、図5(a)に示す場合と同様の計算によって、  
Figure JPOXMLDOC01-appb-M000032
が成立する。 
In FIG. 5B, among the heat cooling fins 3 extended in the upper direction in the region from the origin O to the intermediate position M, the heat cooling fin extended in the horizontal direction. N ′ is the number of the heat-cooling fins 3 that extend in the lateral direction. Of the fins 3, it is attributed to being connected in a common state with the heat-dissipating fins 3 located on the uppermost side, not individually. In such a case, the average value d of the total distance of the heat cooling fins 3 connected individually and the heat cooling fins 3 connected in a common state is shown in FIG. By the same calculation as the case,
Figure JPOXMLDOC01-appb-M000032
Is established.
上記
dの一般式の分子のうち、第2項及び第3項は、それぞれ共通状態にて接続し合っている上側方向に延設された熱放冷用フィン3、及び横側方向に延設され、かつ最も頂部に位置している熱放冷用フィン3のうち、上記のように共通状態にて接続し合っている領域の距離を示すが、第3項については、両側の冷媒蒸気流動用熱拡散枠2から第2項の上側方向に延設されている各熱放冷用フィン3との間にて、熱拡散経路を形成している以上、上記第3項においては、  
Figure JPOXMLDOC01-appb-M000033
ではなく、  
Figure JPOXMLDOC01-appb-M000034
と変容されねばならない。 
Among the numerators of the general formula d, the second and third terms are the heat-cooling fins 3 extending in the upward direction and connected in the common state, and extending in the lateral direction. The distance of the region connected to each other in the common state as described above among the heat cooling fins 3 positioned at the top is shown. As long as a heat diffusion path is formed between each heat-dissipating fin 3 extending from the heat diffusion frame 2 to the upper side of the second term, in the third term,
Figure JPOXMLDOC01-appb-M000033
not,
Figure JPOXMLDOC01-appb-M000034
It must be transformed.
したがって、図5(b)の原点Oから中間位置Mに到る領域の熱放冷用フィン3における熱拡散経路の平均長さをd´とした場合には、  
Figure JPOXMLDOC01-appb-M000035
が成立する。 
Therefore, when the average length of the heat diffusion path in the heat-dissipating fin 3 in the region from the origin O to the intermediate position M in FIG.
Figure JPOXMLDOC01-appb-M000035
Is established.
したがって、基本構成(1)の場合と同様に、温度降下の指標となるd´/2とa/2とを対比し、(d´/2)÷(a/2)を算定した場合には、  
Figure JPOXMLDOC01-appb-M000036
が成立する。 
Therefore, as in the case of the basic configuration (1), when d ′ / 2 and a / 2, which are indicators of temperature drop, are compared and (d ′ / 2) ÷ (a / 2) is calculated ,
Figure JPOXMLDOC01-appb-M000036
Is established.
a≧bであることから、  
Figure JPOXMLDOC01-appb-M000037
が成立する。 
Since a ≧ b,
Figure JPOXMLDOC01-appb-M000037
Is established.
横側方向に延設された熱放冷用フィン3の数N´は、上側方向に延設された熱放冷用フィン3の数の1/2の数の0.8倍による整数以上の数であることから、  
Figure JPOXMLDOC01-appb-M000038
が成立し、  
Figure JPOXMLDOC01-appb-M000039
が成立する。 
The number N ′ of heat-dissipating fins 3 extending in the lateral direction is equal to or greater than an integer by 0.8 times the number ½ of the number of heat-dissipating fins 3 extending in the upward direction. Because it is a number,
Figure JPOXMLDOC01-appb-M000038
Is established,
Figure JPOXMLDOC01-appb-M000039
Is established.
前記基本構成(2)においては、Nは16以上であることから、[N/2]≧8が成立し、結局、  
Figure JPOXMLDOC01-appb-M000040
が成立する。 
In the basic configuration (2), since N is 16 or more, [N / 2] ≧ 8 is established.
Figure JPOXMLDOC01-appb-M000040
Is established.
即ち、前記基本構成(2)においても、基本構成(1)の場合と同様に、温度降下の指標となるd´/2が改良構成の指標となるa/2よりも小さく、熱放冷用フィン3が個別に又は共通状態にて接続している領域の平均温度を改良構成の場合よりも高く設定することができる。  That is, also in the basic configuration (2), as in the basic configuration (1), d ′ / 2, which is an index of temperature drop, is smaller than a / 2, which is an index of the improved configuration, and is for heat cooling. The average temperature of the region where the fins 3 are connected individually or in a common state can be set higher than in the improved configuration. *
前記基本構成(1)、(2)においては、たとえ、両側の冷媒蒸気流動用熱拡散枠2に挟まれた領域において、水平方向幅aに比し、高さ方向幅bの方が圧倒的に大きい場合であっても、図1(d)に示すように、両側の冷媒蒸気流動用熱拡散枠2のうち、両側の冷媒蒸気流動用熱拡散枠2のうち、下端から両側の冷媒蒸気流動用熱拡散枠2間の内側幅を超える領域にて、熱放冷用フィン3を冷媒収納用熱拡散枠1から上側方向に延設された熱放冷用フィン3と接続しない状態にて架設していることを特徴とする実施形態を採用した場合には、当該架設した領域においては、熱放冷用フィン3の平均温度は図3に示す改良技術構成の場合と同一であり、その下側において前記基本構成が成立する領域において、aをbよりも小さいような寸法幅を選択することによって、改良技術構成の場合よりも高い温度領域を設定することが可能となる。  In the basic configurations (1) and (2), the height width b is overwhelming compared to the horizontal width a in the region sandwiched between the refrigerant vapor flow heat diffusion frames 2 on both sides. 1, as shown in FIG. 1 (d), among the refrigerant vapor flow heat diffusion frames 2 on both sides, among the refrigerant vapor flow heat diffusion frames 2 on both sides, the refrigerant vapor on both sides from the lower end. In a region exceeding the inner width between the flow heat diffusion frames 2, the heat cooling fins 3 are not connected to the heat cooling fins 3 extending upward from the refrigerant housing heat diffusion frames 1. When the embodiment characterized by erection is adopted, in the erected area, the average temperature of the heat-dissipating fins 3 is the same as that of the improved technology configuration shown in FIG. Dimension in which a is smaller than b in the region where the basic configuration is established on the lower side By choosing, it is possible to set a higher temperature range than in the improved technology configuration. *
前記基本構成(1)、(2)においては、図2(a)に示すように、両端若しくはその近傍から延設された冷媒蒸気流動用熱拡散枠2の頂部にて、上側方向と交差している横側方向に冷媒蒸気流動用熱拡散枠2を架設していることを特徴とする実施形態を採用することができる(尚、図2(a)は、基本構成(1)の場合を示す。)。 尚、図2(a)に示すように、横側方向に架設した冷媒蒸気流動用熱拡散枠2から上側方向に複数枚の熱放冷用フィン3を延設することを特徴とする実施形態を採用した場合には、熱放冷用フィン3の冷却効果を更に増大することができる。  In the basic configurations (1) and (2), as shown in FIG. 2 (a), the top of the refrigerant vapor flow heat diffusion frame 2 extending from both ends or the vicinity thereof intersects the upper direction. An embodiment characterized in that a thermal diffusion frame 2 for refrigerant vapor flow is installed in the lateral direction of the horizontal direction can be adopted (FIG. 2 (a) shows the case of the basic configuration (1). Show.) As shown in FIG. 2 (a), an embodiment is characterized in that a plurality of heat-cooling fins 3 are extended in the upward direction from the refrigerant vapor flow thermal diffusion frame 2 installed in the lateral direction. When is adopted, the cooling effect of the heat cooling fin 3 can be further increased. *
上記実施形態において、図2(b)に示すように、冷媒収納用熱拡散枠1の中間位置から冷媒蒸気流動用熱拡散枠2が上側方向に延設されている場合には、当然、前記のように上側方向と交差する横側方向に架設された冷媒蒸気流動用熱拡散枠2と連通状態にて接続することになる(同様に、図2(b)もまた、基本構成(1)の場合を示す。)。  In the above embodiment, as shown in FIG. 2 (b), when the refrigerant vapor flow heat diffusion frame 2 extends upward from the intermediate position of the refrigerant storage heat diffusion frame 1, naturally, Thus, the refrigerant vapor flow heat diffusion frame 2 installed in the lateral direction intersecting with the upper side direction is connected in a communicating state (similarly, FIG. 2B is also the basic configuration (1)). Shows the case.) *
このような頂部において横側方向に熱拡散枠を設置した場合には、図2(c)に示すように、上側方向と交差する横側方向に架設された冷媒蒸気流動用熱拡散枠2のうち、冷媒蒸気流動用熱拡散枠2によって挟まれた領域にて下側方向に10枚以上の熱放冷用フィン3を延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠2のうち、上端から両側の冷媒蒸気流動用拡散枠2間の内側幅以下の距離にある領域から当該下側方向と交差している横側方向に熱放冷用フィン3を、それぞれ5枚以上延設し、かつ下側方向に延設された10枚以上の全熱放冷用フィン3と個別に接続するという基本構成(1)の上側方向を下側方向に逆転したことによる実施形態、又は図2(d)に示すように、上側方向と交差する横側方向に架設された冷媒蒸気流動用熱拡散枠2のうち、冷媒蒸気流動用熱拡散枠2によって挟まれた領域にて下側方向に16枚以上の熱放冷用フィン3を延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠2のうち、上端から両側の冷媒蒸気流動用拡散枠2間の内側幅以下の距離にある領域から当該下側方向と交差している横側方向に熱放冷用フィン3を、下側方向に延設された16枚以上の熱放冷用フィン3の1/2の0.8倍以上の整数だけそれぞれ延設し、かつ最も下側に位置している熱放冷用フィン3を下側方向に延設された複数枚の熱放冷用フィン3と共通状態にて接続し、その余の熱放冷用フィン3を下側に延設された熱放冷用フィン3と個別に接続するという基本構成(2)の上側方向の延設を下側方向に逆転したことによる実施形態を採用する場合が多い。 尚、図2(c)、(d)の各実施形態は、何れも上側方向に下側方向から延設された熱放冷用フィン3と横側方向に延設された熱放冷用フィン3とがそれぞれ接続している下側領域及び上側領域の中間領域において、両側の冷媒蒸気流動用熱拡散枠2から熱放冷用フィン3を上側方向及び下側方向に延設された熱放冷用フィン3と接続しない状態にて横側方向に架設した実施形態を示す。  When the thermal diffusion frame is installed in the lateral direction at such a top, as shown in FIG. 2 (c), the refrigerant vapor flow thermal diffusion frame 2 constructed in the lateral direction intersecting the upper direction is used. Among them, 10 or more heat-cooling fins 3 are extended in the lower direction in the region sandwiched between the refrigerant vapor flow thermal diffusion frames 2 and the refrigerant vapors on both sides forming the sandwiched region. Of the flow heat diffusing frame 2, the heat-cooling fin 3 extends in a lateral direction intersecting the lower direction from a region having a distance equal to or smaller than the inner width between the refrigerant vapor flow diffusing frames 2 on both sides from the upper end. The upper direction of the basic configuration (1) in which 5 or more are respectively connected to 10 or more total heat cooling fins 3 that are extended in the lower direction is reversed in the lower direction. Or lateral side intersecting the upper direction as shown in FIG. 2 (d) And extending 16 or more heat-dissipating fins 3 in a downward direction in a region sandwiched between the refrigerant vapor flow heat diffusion frames 2 among the refrigerant vapor flow heat diffusion frames 2 installed on the Among the refrigerant vapor flow heat diffusion frames 2 on both sides forming the sandwiched area, intersect the lower direction from an area at a distance equal to or less than the inner width between the refrigerant vapor flow diffusion frames 2 on both sides from the upper end. The heat-cooling fins 3 are extended in the lateral direction by an integer of 0.8 times or more of 1/2 of 16 or more heat-cooling fins 3 extending in the lower direction. And the heat-dissipating fins 3 positioned at the lowermost side are connected in common with a plurality of heat-dissipating fins 3 extending in the downward direction, and the remaining heat-dissipating fins The upper side extension of the basic structure (2) in which 3 is individually connected to the heat cooling fins 3 extended to the lower side Often employ embodiments due to the reversed. In each of the embodiments shown in FIGS. 2C and 2D, the heat cooling fin 3 extending from the lower side in the upper direction and the heat cooling fin extending in the horizontal direction are both used. In the intermediate region between the lower region and the upper region connected to each other, the heat release fins 3 extending from the refrigerant vapor flow heat diffusion frames 2 on both sides to the upper direction and the lower direction are provided. The embodiment erected in the lateral direction without being connected to the cooling fin 3 is shown. *
このように、下側方向に延設された熱放冷用フィン3と横側方向に延設された熱放冷用フィン3との接続によって、上記実施形態の場合には、熱放冷用フィン3の熱伝達に必要な平均距離を図3に示す改良技術構成の場合に比し更に短い距離とすることができ、本発明の基本的特徴点を単に冷媒収納用熱拡散枠1が存在する下側領域だけでなく、冷媒蒸気流動用熱拡散枠2が架設された上側の領域においても実現することが可能となる。  Thus, in the case of the said embodiment by the connection of the heat cooling fin 3 extended in the downward direction, and the heat cooling fin 3 extended in the horizontal direction, it is for heat cooling. The average distance required for heat transfer of the fins 3 can be made shorter than that of the improved technology configuration shown in FIG. 3, and the basic feature of the present invention is simply the presence of the heat diffusing frame 1 for storing the refrigerant. This can be realized not only in the lower region, but also in the upper region where the refrigerant vapor flow heat diffusion frame 2 is installed. *
上記各実施形態の場合には、熱放冷用フィン3を放冷用熱伝達器の内側領域にて横側方向及び上下方向に延設しているが、本発明は外側方向に延設することも当然可能である。  In the case of each of the above embodiments, the heat cooling fins 3 extend in the lateral direction and the vertical direction in the inner region of the cooling heat transfer device, but the present invention extends in the outer direction. Of course it is also possible. *
即ち、例えば、図1(d)に示すように、両端における冷媒収納用熱拡散枠1から放冷用熱伝達器の外側に、熱放冷用フィン3を更に延設すること、及び図2(a)に示すように、両側の冷媒蒸気流動用熱拡散枠2から横側方向に架設された冷媒蒸気流動用熱拡散枠2から上側方向に複数枚の熱放冷用フィン3を更に延設することの何れか一方又は双方を採用する実施形態もまた採用することができる。  That is, for example, as shown in FIG. 1 (d), the heat-dissipating fins 3 are further extended from the refrigerant-contained heat diffusion frame 1 at both ends to the outside of the heat-releasing heat transfer device, and FIG. As shown in (a), a plurality of heat-cooling fins 3 are further extended upward from the refrigerant vapor flow thermal diffusion frame 2 installed in the lateral direction from the refrigerant vapor flow thermal diffusion frames 2 on both sides. Embodiments that employ either or both of the configurations can also be employed. *
これらの実施形態の場合には、放冷用熱伝達器の外側領域に熱を放散することによって、冷却効果を更に一層向上させることができる。  In the case of these embodiments, the cooling effect can be further improved by dissipating the heat to the outer region of the cooling heat transfer device. *
本発明の放冷用熱伝達器は、コンピュータ機器及び車両における加熱素子の冷却のために採用される場合が多いが、車両が坂道を通行する場合には、必然的に放冷用熱伝達器は車両と共に傾斜状態とならざるを得ない。  The cooling heat transfer device of the present invention is often employed for cooling of heating elements in computer equipment and vehicles. However, when the vehicle travels on a slope, the cooling heat transfer device is inevitably required. Must tilt with the vehicle. *
このような傾斜状態に到った場合には、冷媒蒸気流動用熱拡散枠2の下側傾斜面側の領域に多量の冷媒が貯留し、上側の傾斜面側には少量の冷媒が貯留することになるが、その結果、冷媒蒸気流動用熱拡散枠2による一様な冷却に支障が生ずることになる。  When such an inclined state is reached, a large amount of refrigerant is stored in the region on the lower inclined surface side of the refrigerant vapor flow heat diffusion frame 2, and a small amount of refrigerant is stored on the upper inclined surface side. As a result, the uniform cooling by the refrigerant vapor flow heat diffusion frame 2 is hindered. *
これに対し、図6(a)、(b)に示すように、上側方向に延設されている冷媒蒸気流動用熱拡散枠2において、上下方向の中間位置から下側領域にて、冷媒の移行を遮蔽する遮蔽板21を横側方向及び当該横側方向と直交する方向にそれぞれ1枚又は複数枚配設していることを特徴とする実施形態の場合には、冷媒蒸気流動用熱拡散枠2においては、図6(b)に示すように、遮蔽板21の区分領域が横側方向及び当該横側方向と直交する方向に形成され、各区分領域に冷媒の溶液が貯留するため、前記のような弊害を防止することができる。  On the other hand, as shown in FIGS. 6A and 6B, in the heat diffusion frame 2 for refrigerant vapor flow extending in the upper direction, the refrigerant flows from the middle position in the vertical direction to the lower area. In the case of the embodiment characterized in that one or a plurality of shielding plates 21 that shield the transition are arranged in the lateral direction and in the direction orthogonal to the lateral direction, in the case of the embodiment, the thermal diffusion for refrigerant vapor flow In the frame 2, as shown in FIG. 6 (b), the partitioned regions of the shielding plate 21 are formed in the lateral direction and in the direction orthogonal to the lateral direction, and the refrigerant solution is stored in each partitioned region. Such adverse effects can be prevented. *
図1、及び図2においては、平板状の熱放冷用フィン3を採用しているが、熱放冷用フィン3は平板状に限定される訳ではない。 即ち、図7(a)に示すように、凹凸面状、及び図7(b)に示すように、複数本のラインによって構成されており、かつ隣接し合うラインの上下方向の位置が交互に変化し、しかも当該上下方向の間に隙間を有している縞状による実施形態を採用することも可能である。  In FIG. 1 and FIG. 2, the flat heat-dissipating fins 3 are employed, but the heat-dissipating fins 3 are not limited to a flat plate shape. That is, as shown in FIG. 7 (a), the surface is uneven, and as shown in FIG. 7 (b), it is composed of a plurality of lines, and the vertical positions of adjacent lines are alternately arranged. It is also possible to adopt a striped embodiment that changes and has a gap between the vertical directions. *
これらの実施形態においては、ファンから伝達される空冷用のエアが熱放冷用フィン3と衝突し、乱流を呈することによって、効率的な冷却を実現することができる。  In these embodiments, air cooling air transmitted from the fan collides with the heat cooling fins 3 and exhibits turbulent flow, whereby efficient cooling can be realized. *
本発明においては、図3に示す改良技術構成の構成、及び図4に示す従来技術のように、加熱素子6を冷媒収納用熱拡散枠1の下側に固着する実施形態だけでなく、図8(
a)、(b)に示すように、冷媒収納用熱拡散枠1の下側に、上下方向又は横側方向に1個又は複数個の加熱素子6を挟持し得る空隙を形成している板状枠体7を設けたことを特徴とする実施形態をも採用することができる。 
In the present invention, as well as the embodiment of the improved technical configuration shown in FIG. 3 and the prior art shown in FIG. 8 (
As shown to a) and (b), the board which forms the space | gap which can clamp the 1 or several heating element 6 in the up-down direction or a horizontal direction under the thermal diffusion frame 1 for refrigerant | coolant accommodation. An embodiment characterized in that the frame 7 is provided can also be adopted.
上記実施形態の場合には、複数の加熱素子6の熱を1個の放冷用熱伝達器に伝達することによって、設計空間を有効に利用することができる。  In the case of the above embodiment, the design space can be effectively utilized by transferring the heat of the plurality of heating elements 6 to one cooling heat transfer device. *
しかも、図9(a)、(b)に示すように、加熱素子6を挟持する板枠7が、冷媒蒸気流動用熱拡散枠2を形成し、かつ上側の冷媒収納用熱拡散枠1と連通している場合には、加熱素子6を挟持している領域から既に冷却を実現していることに帰し、効率的な冷却を一層助長することができる。  In addition, as shown in FIGS. 9A and 9B, the plate frame 7 that sandwiches the heating element 6 forms the heat diffusion frame 2 for refrigerant vapor flow, and the upper heat storage frame 1 for storing refrigerant. When communicating, efficient cooling can be further promoted because the cooling has already been realized from the region where the heating element 6 is sandwiched. *
本発明の熱放冷用フィン3においては、通常、厚み幅を0.05~1.5mmの範囲に設定しており、フィン同士の間隔については0.05~3.0mmに設定し、かつ奥行き方向幅を3.0~50mmに設定する場合が多い。  In the heat-cooling fin 3 of the present invention, the thickness width is usually set in the range of 0.05 to 1.5 mm, the interval between the fins is set to 0.05 to 3.0 mm, and In many cases, the width in the depth direction is set to 3.0 to 50 mm. *
上側方向に延設された冷媒蒸気流動用熱拡散枠2同士の距離としては、15~70mmとし、冷媒蒸気流動用熱拡散枠2の高さ方向幅を40~100mmとし、かつ奥行き方向幅を10~50mmに設定する場合が多い。  The distance between the refrigerant vapor flow heat diffusion frames 2 extending in the upper direction is 15 to 70 mm, the height direction width of the refrigerant vapor flow heat diffusion frame 2 is 40 to 100 mm, and the depth direction width is It is often set to 10 to 50 mm. *
上記厚み幅が大きいほど、上記間隔による熱放冷用空間が大きいことを必要とすることから、上記厚み幅と上記間隔とは概略比例関係となる傾向にある。  The larger the thickness width, the larger the space for heat cooling due to the interval, and therefore the thickness width and the interval tend to be approximately proportional. *
放冷用熱伝達器に使用する冷媒蒸気の典型例は水であるが、放冷用熱伝達器の素材として良好な熱伝導性を有するアルミニウム(Al)を採用した場合には、水素(H)の発生を伴う酸化反応による浸蝕を免れることができない。  A typical example of the refrigerant vapor used in the heat exchanger for cooling is water, but when aluminum (Al) having good thermal conductivity is adopted as the material of the heat exchanger for cooling, hydrogen (H 2 ) Erosion due to oxidation reaction accompanied by the occurrence of 2 ) cannot be avoided.
このため、冷媒として水を採用する場合には、放冷用熱伝達器の素材としては銅(Cu)の採用を余儀なくされるが、銅はアルミニウムに比べて極めて高価であり、かつ高重量である。  For this reason, when water is used as the refrigerant, copper (Cu) is inevitably adopted as the material for the heat transfer device for cooling, but copper is extremely expensive compared to aluminum and is heavy. is there. *
これに対し、冷媒として水を選択し、冷媒収納用熱拡散枠1、冷媒蒸気流動用熱拡散枠2、熱放冷用フィン3、板状体30、遮蔽板21の素材としてアルミニウム(Al)を選択し、かつ水又は水蒸気と接触する表面にニッケル(Ni)の塗膜又は銅(Cu)塗膜を形成していることを特徴とする実施形態を採用した場合には、アルミニウムを主たる素材としながら、銅のみを素材とする場合、又は銅を主たる素材とする場合よりも極めてコストが低く、かつ軽量な放冷用熱伝達器を実現することが可能となる。  On the other hand, water is selected as the refrigerant, and aluminum (Al) is used as the material for the refrigerant housing heat diffusion frame 1, the refrigerant vapor flow heat diffusion frame 2, the heat cooling fins 3, the plate 30, and the shielding plate 21. In the case of adopting an embodiment characterized in that a nickel (Ni) coating film or a copper (Cu) coating film is formed on the surface in contact with water or water vapor, aluminum is the main material. However, it is possible to realize a heat-cooling device for cooling that is extremely low in cost and lighter than the case where only copper is used or the case where copper is the main material. *
以下、実施例に即して説明する。 In the following, description will be made in accordance with examples.
実施例1は、基本構成(1)、(2)において、図1(a)、(b)、(c)、(d)、及び図2(a)、(b)、(c)、(d)に示すように、冷媒収納用熱拡散枠1から延設した熱放冷用フィン3と、冷媒蒸気流動用熱拡散枠2から延設した熱放冷用フィン3とを、板状体30を介して接続していることを特徴としている。  In Example 1, the basic configurations (1) and (2) are shown in FIGS. 1 (a), (b), (c), (d) and FIGS. 2 (a), (b), (c), ( As shown in d), the heat-dissipating fins 3 extending from the refrigerant-contained heat diffusion frame 1 and the heat-dissipating fins 3 extending from the refrigerant vapor flow heat-diffusing frame 2 are combined into a plate-like body. 30 is connected. *
このような板状体30による接合部を採用することによって、実施例1においては、熱放冷用フィン3の接合を堅固な状態とする一方、接合部自体に銅、アルミ等の導電性金属を採用することによって、熱放冷用フィン3としての機能を発揮させることができる。 尚、図2(c)、(d)に示すように、両側の冷媒蒸気流動用熱拡散枠2から横側方向に架設した熱放冷用フィン3との間に、板状体を介在させていることを特徴とする実施形態もまた採用可能である。 By adopting such a joint portion by the plate-like body 30, in the first embodiment, the joining of the heat-dissipating fins 3 is made solid, while the joint portion itself has a conductive metal such as copper or aluminum. By adopting the function, the function as the heat cooling fin 3 can be exhibited. As shown in FIGS. 2 (c) and 2 (d), a plate-like body is interposed between the heat diffusion frames 2 on both sides of the refrigerant vapor flow heat diffusion frames 2 and the heat cooling fins 3 installed in the lateral direction. Embodiments characterized in that are also possible.
実施例2は、基本構成(1)、(2)において、図1(d)に示すように、冷媒収納用熱拡散枠1の両端若しくはその近傍から上側方向に延設された冷媒蒸気流動用熱拡散枠2が、上下方向中間位置にて更に両側に突出した湾曲状態を呈していることを特徴としている(尚、図1(d)は、基本構成(1)の構成を図示しているが、図1(c)に示す基本構成(2)の場合においても、同様の湾曲状態を採用することは当然可能である。)。  In the basic configuration (1), (2), Example 2 is for refrigerant vapor flow extending upward from both ends of the refrigerant housing heat diffusion frame 1 or its vicinity as shown in FIG. 1 (d). The thermal diffusion frame 2 is characterized by exhibiting a curved state that protrudes further on both sides at an intermediate position in the vertical direction (FIG. 1 (d) shows the configuration of the basic configuration (1). However, in the case of the basic configuration (2) shown in FIG. 1 (c), it is naturally possible to adopt the same curved state. *
実施例2の場合には、ファンによる冷却空気を送風する領域面積を大きく設定し得る点において、技術上のメリットが存在する。 In the case of the second embodiment, there is a technical advantage in that the area area for blowing the cooling air by the fan can be set large.
図2(c)、及び図2(d)に示す実施形態においては、下側の冷媒収納用熱拡散枠1及び両側及び上側の冷媒蒸気流動用熱拡散枠2が、外側においては、熱放冷用フィン3に延設し、かつ相互に接続させている一方、内側においては、それぞれ冷媒収納に必要な空洞部分及び冷媒蒸気流動に必要な空洞部分を形成することを不可欠とするため、一挙に金型成型を行うことができない。  In the embodiment shown in FIGS. 2 (c) and 2 (d), the lower-side refrigerant housing thermal diffusion frame 1 and both the upper and lower refrigerant-vapor-flow thermal diffusion frames 2 have heat release on the outside. While extending to the cooling fins 3 and being connected to each other, on the inside, it is indispensable to form a cavity part necessary for refrigerant storage and a cavity part necessary for refrigerant vapor flow. It is not possible to perform mold molding. *
然るに、図9(a)に示す実施例3の1は、以下のような製造工程を採用することによって、図2(c)の示す実施形態による放冷用熱伝達器の製造を可能としている。(1)下側の冷媒収納用熱拡散枠1用の表面板、上側の冷媒蒸気流動用熱拡散枠2用の表面板、上側の冷媒蒸気流動用熱拡散枠2用の表面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各表面板を接続する上下方向の冷媒蒸気流動用熱拡散枠2用表面板、及び前記下側の表面板から上側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上側の表面板から下側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上下方向の各表面板から横側方向に延設され、かつ上側方向及び下側方向に延設された熱放冷用フィン3用板状片と個別に接続し合う5枚以上の熱放冷用フィン3用板状片、両側の冷媒蒸気流動用熱拡散枠2用の表面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン3用板状片、によって構成される1枚の結合表面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程(図8(a)の(1))、(2)下側の冷媒収納用熱拡散枠1用の内側中間板、上側の冷媒蒸気流動用熱拡散枠2用の内側中間板、上側の冷媒蒸気流動用熱拡散枠2用の内側中間板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各内側中間板を接続する上下方向の冷媒蒸気流動用熱拡散枠2用内側中間板、及び前記下側の内側中間板から上側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上側の内側中間板から下側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上下方向の各内側中間板から横側方向に延設され、かつ上側方向及び下側方向に延設された熱放冷用フィン3用板状片と個別に接続し合う5枚以上の熱放冷用フィン3用板状片、更には前記各内側中間板の外側にて当該内側中間板と複数箇所によって接続され、かつ冷媒収納用及び冷媒蒸気流動用の空洞を形成するための外側中間板、両側の冷媒蒸気流動用熱拡散枠2用の内側中間板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン3用板状片、によって構成される複数枚の結合中間板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程(図8(a)の(2))、(3)下側の冷媒収納用熱拡散枠1用の裏面板、上側の冷媒蒸気流動用熱拡散枠2用の裏面板、上側の冷媒蒸気流動用熱拡散枠2用の裏面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各裏面板を接続する上下方向の冷媒蒸気流動用熱拡散枠2用裏面板、及び前記下側の裏面板から上側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上側の裏面板から下側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上下方向の各裏面板から横側方向に延設され、かつ上側方向及び下側方向に延設された熱放冷用フィン3用板状片と個別に接続し合う5枚以上の熱放冷用フィン3用板状片、両側の冷媒蒸気流動用熱拡散枠2用の裏面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン3用板状片、によって構成される1枚の結合裏面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程(図8(a)の(3))、(4)前記(1)の1枚の結合表面板、前記(2)の複数枚の結合中間板、前記(3)の1枚の結合裏面板を順次積層し、かつビスによる締め付け又は接合部における溶融成分の拡散を伴う溶着によって相互に固着する工程(図8(a)の(4))。  However, Example 1 of Example 3 shown in FIG. 9 (a) makes it possible to manufacture a cooling heat transfer device according to the embodiment shown in FIG. 2 (c) by adopting the following manufacturing process. . (1) Both ends of the surface plate for the lower refrigerant storage heat diffusion frame 1, the upper surface plate for the upper refrigerant vapor flow heat diffusion frame 2, and the upper surface plate for the upper refrigerant vapor flow heat diffusion frame 2 In the vicinity thereof or in the middle of the both ends or the vicinity thereof, the surface plate for the heat diffusion frame 2 for the refrigerant vapor flow in the vertical direction connecting the respective surface plates, and the upper surface plate is extended upward. 10 or more heat-cooling fin 3 plate-like pieces, 10 or more heat-cooling fin 3 plate-like pieces extending downward from the upper surface plate, Five or more heat-dissipating fins 3 that extend laterally from each surface plate and are individually connected to the plate-like pieces for heat-dissipating fins 3 that extend in the upward and downward directions. Plate side piece, lateral side in the lower region of the surface plate for the heat diffusion frame 2 for refrigerant vapor flow on both sides and the middle region of the upper region A step of molding one bonded surface plate constituted by a plate-like piece for heat-dissipating fins 3 installed on a die, a punching press, or etching ((1 in FIG. 8A) )), (2) The inner intermediate plate for the lower refrigerant storage heat diffusion frame 1, the inner intermediate plate for the upper refrigerant vapor flow heat diffusion frame 2, and the upper refrigerant vapor flow heat diffusion frame 2 The inner intermediate plate for the heat diffusion frame 2 for refrigerant vapor flow in the vertical direction connecting the inner intermediate plates at both ends of the inner intermediate plate or in the vicinity thereof, or in the intermediate position between the both ends or the vicinity thereof, and the lower side Ten or more plate pieces for heat-cooling fins 3 extending upward from the inner intermediate plate, and ten or more heat-cooling fins extending downward from the upper inner intermediate plate 3 plate-like pieces, extending in the lateral direction from the inner intermediate plates in the vertical direction, and on the upper side And five or more plate pieces for heat-dissipating fins 3 that are individually connected to the plate-like pieces for heat-dissipating fins 3 extending in the lower direction, and further on the outside of each inner intermediate plate. The outer intermediate plate is connected to the inner intermediate plate at a plurality of locations and forms a cavity for refrigerant storage and refrigerant vapor flow, and the lower side of the inner intermediate plate for the heat diffusion frame 2 for refrigerant vapor flow on both sides A plurality of combined intermediate plates formed by plate-like pieces for heat-cooling fins 3 laid in the lateral direction in the intermediate region between the region and the upper region are formed by a die, a punching press, or etching. (2) in FIG. 8 (a), (3) a back plate for the lower refrigerant storage heat diffusion frame 1, a back plate for the upper refrigerant vapor flow heat diffusion frame 2, and an upper refrigerant Both ends of the back plate for the heat diffusion frame 2 for steam flow or the vicinity thereof, or both ends thereof or the vicinity thereof 10 or more heats extending upward from the lower back plate for the refrigerant vapor flow heat diffusion frame 2 in the vertical direction connecting the respective back plates at the middle position with the side, and the lower back plate. The plate pieces for the cooling fins 3, ten or more plate pieces for the heat cooling fins 3 extending in the lower direction from the upper back plate, and the lateral directions from the respective back plates in the vertical direction 5 or more plate pieces for heat-dissipating fins 3 that are individually connected to the plate-like pieces for heat-dissipating fins 3 extending in the upper direction and the lower direction. One combined back composed of plate-like pieces for heat-cooling fins 3 laid in the lateral direction in the lower region and the upper region of the back plate for the refrigerant vapor flow heat diffusion frame 2 Steps of forming the face plate by a die, a punching press, or etching ((3) in FIG. 8 (a)), (4) (1) One bonding surface plate, a plurality of bonding intermediate plates in (2) above, and one bonding back plate in (3) above are sequentially laminated and welded with fastening with screws or diffusion of molten components at the joint. (4) in FIG. 8 (a). *
前記(2)のプロセスにおいては、前記各空洞部分の形成と熱放冷用フィン3の延設状態とを順次実現していることから、当該プロセスによって形成された複数枚の結合中間板と前記(1)の結合表面板及び前記(3)の結合裏面板とを、前記(4)のプロセスによる積層及び結合によって、図2(c)に示す実施形態による放冷用熱伝達器の製造を実現している。  In the process (2), since the formation of the hollow portions and the extended state of the heat-dissipating fins 3 are sequentially realized, a plurality of coupled intermediate plates formed by the process and the The laminated front plate of (1) and the bonded back plate of (3) are laminated and bonded by the process of (4) to manufacture the heat transfer device for cooling according to the embodiment shown in FIG. Realized. *
同様に、図8(b)に示す実施例3の2は、以下のような製造工程を採用することによって、図2(d)の示す実施形態による放冷用熱伝達器の製造を可能としている。(1)下側の冷媒収納用熱拡散枠1用の表面板、上側の冷媒蒸気流動用熱拡散枠2用の表面板、上側の冷媒蒸気流動用熱拡散枠2用の表面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各表面板を接続する上下方向の冷媒蒸気流動用熱拡散枠2用表面板、及び前記下側の表面板から上側方向に延設された16枚以上の熱放冷用フィン3用板状片、前記上側の表面板から下側方向に延設された16枚以上の熱放冷用フィン3用板状片、前記上下方向の各表面板から横側方向に延設され、かつ上側方向及び下側方向に延設された16枚以上の熱放冷用フィン3用板状片の数の1/2の0.8倍以上の整数による数だけ延設され、かつそのうち最も上側又は下側に位置し、しかも上側方向又は下側方向に延設された複数枚の熱放冷用フィン3用板状片と共通状態にて接続している2枚の熱放冷用フィン3用板状片、及びその上側方向又は下側方向に延設された上記複数枚以外の熱放冷用フィン3用板状片と個別に接続し合うその余の熱放冷用フィン3用板状片、両側の冷媒蒸気流動用熱拡散枠2用の表面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン3用板状片、によって構成される1枚の結合表面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程(図8(b)の(1))、(2)下側の冷媒収納用熱拡散枠1用の内側中間板、上側の冷媒蒸気流動用熱拡散枠2用の内側中間板、上側の冷媒蒸気流動用熱拡散枠2用の内側中間板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各内側中間板を接続する上下方向の冷媒蒸気流動用熱拡散枠2用内側中間板、及び前記下側の内側中間板から上側方向に延設された16枚以上の熱放冷用フィン3用板状片、前記上側の内側中間板から下側方向に延設された16枚以上の熱放冷用フィン3用板状片、前記上下方向の各内側中間板から横側方向に延設され、かつ上側方向及び下側方向に延設された16枚以上の熱放冷用フィン3用板状片の数の1/2の0.8倍以上の整数による数だけ延設され、かつそのうち最も上側又は下側に位置し、しかも上側方向又は下側方向に延設された複数枚の熱放冷用フィン3用板状片と共通状態にて接続している2枚の熱放冷用フィン3用板状片、及びその上側方向又は下側方向に延設された上記複数枚以外の熱放冷用フィン3用板状片と個別に接続し合うその余の熱放冷用フィン3用板状片、両側の冷媒蒸気流動用熱拡散枠2用の内側中間板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン3用板状片によって構成される複数枚の結合中間板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程(図8(b)の(2))、(3)下側の冷媒収納用熱拡散枠1用の裏面板、上側の冷媒蒸気流動用熱拡散枠2用の裏面板、上側の冷媒蒸気流動用熱拡散枠2用の裏面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各裏面板を接続する上下方向の冷媒蒸気流動用熱拡散枠2用裏面板、及び前記下側の裏面板から上側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上側の裏面板から下側方向に延設された10枚以上の熱放冷用フィン3用板状片、前記上下方向の各裏面板から横側方向に延設され、かつ上側方向及び下側方向に延設された16枚以上の熱放冷用フィン3用板状片の数
の1/2の0.8倍以上の整数による数だけ延設され、かつそのうち最も上側又は下側に位置し、しかも上側方向又は下側方向に延設された複数枚の熱放冷用フィン3用板状片と共通状態にて接続している2枚の熱放冷用フィン3用板状片、及びその上側方向又は下側方向に延設された上記複数枚以外の熱放冷用フィン3用板状片と個別に接続し合うその余の熱放冷用フィン3用板状片、両側の冷媒蒸気流動用熱拡散枠2用の裏面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン3用板状片、によって構成される1枚の結合裏面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程(図8(b)の(3))、(4)前記(1)の1枚の結合表面板のうち、冷媒収納用熱拡散用の表面板及び上側並びに上下方向の冷媒蒸気流動用熱拡散用表面板、前記(2)の複数枚の結合中間板のうち、冷媒収納用熱拡散用の内側中間板及び上側並びに上下方向の冷媒蒸気流動用熱拡散用内側中間板、前記(3)の1枚の結合裏面板のうち、冷媒収納用熱拡散用の裏面板及び上側並びに上下方向の冷媒蒸気流動用熱拡散用裏面板を順次積層し、かつビスによる締め付け又は接合部における溶融成分の拡散を伴う溶着によって相互に固着する工程(図8(b)の(4))。 
Similarly, in Example 3-2 shown in FIG. 8 (b), by adopting the following manufacturing process, it is possible to manufacture the cooling heat transfer device according to the embodiment shown in FIG. 2 (d). Yes. (1) Both ends of the surface plate for the lower refrigerant storage heat diffusion frame 1, the upper surface plate for the upper refrigerant vapor flow heat diffusion frame 2, and the upper surface plate for the upper refrigerant vapor flow heat diffusion frame 2 In the vicinity thereof or in the middle of the both ends or the vicinity thereof, the surface plate for the heat diffusion frame 2 for the refrigerant vapor flow in the vertical direction connecting the respective surface plates, and the upper surface plate is extended upward. 16 or more heat-cooling fin 3 plate-like pieces, 16 or more heat-cooling fin 3 plate-like pieces extending downward from the upper surface plate, 0.8 times or more that is 1/2 of the number of plate pieces for heat-cooling fins 3 extending in the lateral direction from each surface plate and extending in the upward and downward directions Is extended by the number of integers, and is located at the uppermost or lower side, and extends upward or downward. Two plate-like pieces for heat-cooling fins 3 connected in common with a plurality of plate-like pieces for heat-cooling fins 3, and the above-mentioned extending in the upper or lower direction Other plate pieces for the heat-cooling fins 3 that are individually connected to the plate-like pieces for the heat-cooling fins 3 other than a plurality of sheets, under the surface plate for the heat diffusion frame 2 for refrigerant vapor flow on both sides One bonded surface plate composed of plate-like pieces for heat-cooling fins 3 laid in the lateral direction in the intermediate region between the side region and the upper region is formed by a die, a punching press, or etching. Steps of molding ((1) in FIG. 8B), (2) an inner intermediate plate for the lower refrigerant storage heat diffusion frame 1, an inner intermediate plate for the upper refrigerant vapor flow heat diffusion frame 2, Both ends of the inner intermediate plate for the upper refrigerant vapor flow heat diffusion frame 2 or the vicinity thereof, or an intermediate position between the both ends or the vicinity thereof In the above, the inner intermediate plate for the heat diffusion frame 2 for refrigerant vapor flow in the vertical direction connecting the inner intermediate plates, and 16 or more heat-cooling members extending upward from the lower inner intermediate plate Fin 3 plate-like pieces, 16 or more heat-cooling fin 3 plate-like pieces extending downward from the upper inner intermediate plate, and lateral directions from the inner intermediate plates in the vertical direction And an extension by a number equal to an integer greater than or equal to 0.8 times 1/2 of the number of plate-like pieces for fins 3 for heat-dissipating heat 3 extending upward and downward. And two sheets connected in common with a plurality of plate pieces for the heat-dissipating fins 3 located on the uppermost side or the lower side and extending in the upper side direction or the lower side direction. Plates for fins 3 for heat-cooling, and plates for fins 3 for heat-cooling other than the plurality of pieces extending in the upper or lower direction. Lateral side in the lower region of the inner intermediate plate for the heat diffusion frame 2 for the refrigerant vapor flow on both sides and the intermediate region of the upper region on the other plate pieces for the heat cooling fins 3 that are individually connected to the shape pieces A step of forming a plurality of bonded intermediate plates constituted by plate-like pieces for heat-dissipating fins 3 laid in the direction by a die, a punching press, or etching ((2 in FIG. 8B) )), (3) A back plate for the lower refrigerant storage heat diffusion frame 1, a back plate for the upper refrigerant vapor flow heat diffusion frame 2, and a back plate for the upper refrigerant vapor flow heat diffusion frame 2. The upper and lower sides of the back plate for the heat diffusion frame 2 for refrigerant vapor flow in the vertical direction connecting the respective back plates and the lower back plate at an intermediate position between the both ends or the vicinity thereof and the both ends or the vicinity thereof 10 or more plate-like pieces for heat-dissipating fins 3 extending from the upper back plate 10 or more plate-like pieces for heat-dissipating fins 3 extending in the lateral direction, extending in the lateral direction from the respective back plates in the vertical direction, and extending in the upper and lower directions. It extends by a number by an integer of 0.8 times or more half of the number of the plate pieces for 16 or more heat-dissipating fins 3, and is located on the uppermost side or the lower side, and in the upward direction or Two plate-like pieces for heat-cooling fins 3 connected in common with a plurality of plate-like pieces for heat-cooling fins 3 extending in the lower side direction, and the upper direction or lower side thereof Other plate pieces for heat-dissipating fins 3 that are individually connected to the plate pieces for heat-dissipating fins 3 other than the plurality of heat-dissipating fins extending in the lateral direction, heat diffusion for refrigerant vapor flow on both sides It is comprised by the plate-shaped piece for heat | fever cooling fins 3 constructed in the horizontal direction in the lower area | region of the back plate for frames 2, and the intermediate area of an upper area | region. (1) (3) in FIG. 8 (b), (4) one of the bonded surface plates of (1) above is formed by molding, punching press, or etching. Among them, among the heat diffusion surface plate for refrigerant storage and the upper and upper and lower heat diffusion surface plates for refrigerant vapor flow, the inner intermediate for heat storage for refrigerant storage among the plurality of combined intermediate plates of (2) above. Among the plate, the upper intermediate plate for heat diffusion in the vertical direction, and the heat diffusion inner intermediate plate for the refrigerant vapor flow in the above-mentioned (3), the back plate for heat storage for refrigerant storage and the refrigerant vapor flow in the vertical direction in the upper and lower directions. A step of sequentially laminating the back plates for heat diffusion for use and fixing them together by fastening with screws or welding accompanied by diffusion of the molten component at the joint ((4) in FIG. 8B).
実施例3の1及び同3の2において、熱放冷用フィン3については、各表面板、内側中間板、並びに外側中間板、裏面板同士の場合と同様に、単純な積層構成に限定される訳ではない。 即ち、図9に示すように、熱放冷用フィン3用板状片が断面略六角形状の複数本のラインによって構成されており、かつ隣接し合うフィンの位置が交互に変化し、しかも隣接し合う相互の間に隙間を有している縞状を呈する実施例を採用した場合には、前記積層に際し、横側方向に延設された熱放冷用フィン3用板状片において、交互に上下方向の位置が変化するような隣接状態とし、かつ当該隣接している相互間に隙間が形成されている一方、上側方向及び下側方向に延設されている熱放冷用フィン3用の板状片につき、横側方向の位置が交互に変化するような隣接状態とし、当該隣接状態において相互間に隙間を形成することができる。  In 1 of Example 3 and 2 of the same 3, about the heat | fever cooling fin 3, it is limited to a simple laminated structure similarly to the case of each surface plate, an inner side intermediate plate, an outer side intermediate plate, and back surface plates. It does n’t mean. That is, as shown in FIG. 9, the plate for heat-dissipating fins 3 is composed of a plurality of lines having a substantially hexagonal cross section, and the positions of adjacent fins change alternately and are adjacent to each other. In the case of adopting an embodiment exhibiting a striped shape having a gap between each other, in the laminating, the plate pieces for the heat cooling fins 3 extending in the lateral direction are alternately arranged. For the heat-dissipating fins 3 that are adjacent to each other so that the position in the vertical direction changes and that a gap is formed between the adjacent ones, while extending in the upper and lower directions. The plate-like pieces can be in an adjacent state in which the lateral position changes alternately, and a gap can be formed between the adjacent pieces in the adjacent state. *
このような図9に示す実施例の場合には、隣接し合う熱放冷用フィン3の表面が局所的に平行状態を呈し、空冷用のエアが当該隙間を流動し、かつ流動方向が順次規則的に変化する乱流を生成することができる。  In the case of the embodiment shown in FIG. 9, the surfaces of the adjacent heat-releasing fins 3 are locally parallel, air for cooling air flows through the gaps, and the flow direction is sequentially changed. Regularly changing turbulence can be generated. *
図6に示すような遮蔽板21を横側方向及び横側方向と直交する方向に設置する場合には、図9(a)、(b)の各(2)の工程において製造する結合中間板につき、横側方向の遮蔽板21を成形する場合には、図11(a)に示すように、内側中間板と外側中間板とを遮蔽板21によって接合し、横側方向と直交する方向の遮蔽板21を成形する場合には、図11(b)に示すように、冷媒収納用熱拡散枠1側から、遮蔽板21用の細長片を延設すると良い。 尚、図11(b)においては、横側方向と直交する方向の遮蔽板21用の細長片は、冷媒収納用熱拡散枠1に接続し、かつ冷媒収納用熱拡散枠1から延設されているが、遮蔽板21の一部が冷媒蒸気流動用熱拡散枠2の下側領域だけでなく、冷媒収納用熱拡散枠1内にも配設されるような実施形態もまた本来採用することができる。  When the shielding plate 21 as shown in FIG. 6 is installed in the lateral direction and in the direction orthogonal to the lateral direction, the coupling intermediate plate manufactured in each step (2) of FIGS. 9 (a) and 9 (b). On the other hand, when forming the shielding plate 21 in the lateral direction, as shown in FIG. 11A, the inner intermediate plate and the outer intermediate plate are joined together by the shielding plate 21, and in the direction orthogonal to the lateral direction. When the shielding plate 21 is formed, as shown in FIG. 11B, an elongated piece for the shielding plate 21 may be extended from the refrigerant housing heat diffusion frame 1 side. In FIG. 11B, the elongated strip for the shielding plate 21 in the direction orthogonal to the lateral direction is connected to the refrigerant storage heat diffusion frame 1 and extends from the refrigerant storage heat diffusion frame 1. However, an embodiment in which a part of the shielding plate 21 is disposed not only in the lower region of the refrigerant vapor flow heat diffusion frame 2 but also in the refrigerant storage heat diffusion frame 1 is also originally employed. be able to. *
但し、上記実施形態の場合には、横側方向と直交する方向の遮蔽板21については、冷媒収納用熱拡散枠1内の領域にて、冷媒が通過する孔を設けることによって、冷媒収容用熱拡散枠1の端部に到るまで冷媒が収納され得るような設計を採用するとよい。 However, in the case of the above embodiment, the shielding plate 21 in the direction orthogonal to the lateral direction is provided with a hole through which the refrigerant passes by providing a hole through which the refrigerant passes in the region within the refrigerant diffusion heat diffusion frame 1. It is advisable to adopt a design that allows the refrigerant to be stored until it reaches the end of the thermal diffusion frame 1.
本発明は、自動車、コンピュータなどの加熱素子が多数存在している装置において効率的な空冷を実現することができ、その利用価値は絶大である。 INDUSTRIAL APPLICABILITY The present invention can realize efficient air cooling in an apparatus having many heating elements such as an automobile and a computer, and its utility value is tremendous.
1  冷媒収納用熱拡散枠14 受熱ヘッダ16 伝熱パイプ2  冷媒蒸気流動用熱拡散枠20 冷媒注入口21 遮蔽板3  熱放冷用フィン30 板状体4  ヒートパイプ5  基板6  加熱素子7  板枠 1. Heat diffusion frame 14 for storing refrigerant, heat receiving header 16, heat transfer pipe 2, heat diffusion frame 20 for refrigerant vapor flow, refrigerant inlet 21, shield plate 3, heat-cooling fins 30, plate-like body 4, heat pipe 5, substrate 6, heating element 7, plate frame

Claims (23)

  1. 加熱素子から熱の伝達を受け、かつ真空状態にて冷媒を収納する冷媒収納用熱拡散枠の両端若しくはその近傍又は当該両端若しくはその近傍とその中間位置から上側方向に、下側領域にて冷媒が貯留し、かつその上側領域にて真空状態にて冷媒が流動する冷媒蒸気流動用熱拡散枠を連通状態にて延設し、冷媒収納用熱拡散枠のうち、両側に位置している冷媒蒸気流動用熱拡散枠に挟まれた領域内にて、10枚以上の熱放冷用フィンを上側方向に延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠のうち、下端から両側の冷媒蒸気流動用拡散枠間の内側幅以下の距離にある領域から当該上側方向と交差している横側方向に熱放冷用フィンを、それぞれ5枚以上延設し、かつ上側方向に延設された10枚以上の全熱放冷用フィンと個別に接続している放冷用熱伝達器。 Refrigerant in the lower region, receiving heat transfer from the heating element and storing refrigerant in a vacuum state at both ends of the heat storage frame for storing the refrigerant or in the vicinity thereof, or from both ends or the vicinity thereof and an intermediate position thereof upward. The refrigerant vapor flow heat diffusion frame in which the refrigerant flows in a vacuum state in the upper region thereof is extended in the communication state, and the refrigerant located on both sides of the refrigerant storage heat diffusion frame Within the region sandwiched between the steam flow thermal diffusion frames, 10 or more heat cooling fins are extended upward, and the refrigerant vapor flow thermal diffusion on both sides forming the sandwiched region. Five or more heat-cooling fins are respectively extended in the lateral direction intersecting the upper direction from a region at a distance equal to or smaller than the inner width between the refrigerant vapor flow diffusion frames on both sides from the lower end of the frame. And 10 or more total heat dissipated in the upward direction. Use fin and the cool heat transfer device that is connected separately.
  2. 加熱素子から熱の伝達を受け、かつ真空状態にて冷媒を収納する冷媒収納用熱拡散枠の両端若しくはその近傍又は当該両端若しくはその近傍とその中間位置から上側方向に、下側領域にて冷媒が貯留し、かつその上側領域にて真空状態にて冷媒が流動する冷媒蒸気流動用熱拡散枠を連通状態にて延設し、冷媒収納用熱拡散枠のうち、両側に位置している冷媒蒸気流動用熱拡散枠に挟まれた領域内にて、16枚以上の熱放冷用フィンを上側方向に延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠のうち、下端から両側の冷媒蒸気流動用拡散枠間の内側幅以下の距離にある領域から当該上側方向と交差している横側方向に熱放冷用フィンを、上側方向に延設された16枚以上の熱放冷用フィンの数の1/2の0.8倍以上の整数による数だけ延設し、かつそのうち最も上側に位置している熱放冷用フィンを上側方向に延設された複数枚の熱放冷用フィンと共通状態にて接続し、その余の熱放冷用フィンを上側方向に延設された上記複数枚以外の熱放冷用フィンと個別に接続している放冷用熱伝達器。 Refrigerant in the lower region, receiving heat transfer from the heating element and storing refrigerant in a vacuum state at both ends of the heat storage frame for storing the refrigerant or in the vicinity thereof, or from both ends or the vicinity thereof and an intermediate position thereof upward. The refrigerant vapor flow heat diffusion frame in which the refrigerant flows in a vacuum state in the upper region thereof is extended in the communication state, and the refrigerant located on both sides of the refrigerant storage heat diffusion frame In the region sandwiched between the steam flow thermal diffusion frames, 16 or more heat-cooling fins are extended upward and the refrigerant vapor flow thermal diffusion on both sides forming the sandwiched region. Among the frames, heat-dissipating fins are extended in the upward direction in the lateral direction intersecting with the upper direction from a region having a distance equal to or less than the inner width between the refrigerant vapor flow diffusion frames on both sides from the lower end. 1/2 of the number of fins for heat cooling of 16 or more, 0.8 Extend the number of the above integers and connect the heat-dissipating fin located on the uppermost side in common with a plurality of heat-dissipating fins extending upward. The heat-cooling heat transfer device in which the heat-cooling fins are individually connected to the heat-cooling fins other than the plurality of heat-extending fins extending upward.
  3. 冷媒収納用熱拡散枠から上側方向に延設した熱放冷用フィンと、両側の冷媒蒸気流動用熱拡散枠から横側方向に延設した熱放冷用フィンとを、板状体を介して接続していることを特徴とする請求項1、2の何れか一項に記載の放冷用熱伝達器。 A heat-dissipating fin extending upward from the refrigerant housing heat diffusion frame and a heat-dissipating fin extending laterally from the refrigerant vapor flow heat diffusion frame on both sides via the plate-like body. The heat transfer device for cooling according to any one of claims 1 and 2, wherein the heat transfer device is connected.
  4. 熱放冷用フィンが平板状、若しくは凹凸面状、又は横側方向と直交する方向の奥行き方向に沿った複数本のラインによって構成されており、かつ隣接し合うラインの上下方向の位置が交互に変化し、しかも隣接し合う相互の間に隙間を有している縞状の何れかであることを特徴とする請求項1、2、3の何れか一項に記載の放冷用熱伝達器。 The heat-cooling fin is composed of a plurality of lines along the depth direction in the form of a flat plate or uneven surface, or in the direction perpendicular to the lateral direction, and the vertical positions of adjacent lines are alternated. The heat transfer for cooling according to any one of claims 1, 2, and 3, wherein the heat transfer is one of stripes having a gap between adjacent ones. vessel.
  5. 両側の冷媒蒸気流動用熱拡散枠のうち、下端から両側の冷媒蒸気流動用熱拡散枠間の内側幅を超える領域にて、熱放冷用フィンを冷媒収納用熱拡散枠から上側方向に延設された熱放冷用フィンと接続しない状態にて架設していることを特徴とする請求項1、2、3、4の何れか一項に記載の放冷用熱伝達器。 In the heat diffusion frame for refrigerant vapor flow on both sides, the heat-dissipating fin extends upward from the heat diffusion frame for refrigerant storage in the region exceeding the inner width between the heat diffusion frames for refrigerant vapor flow on both sides from the lower end. The heat exchanger for cooling according to any one of claims 1, 2, 3, and 4, which is installed in a state where it is not connected to the fins for heat cooling.
  6. 両端若しくはその近傍から延設された冷媒蒸気流動用熱拡散枠の頂部にて、上側方向と交差している横側方向に、真空状態にて冷媒が流動する冷媒蒸気流動用熱拡散枠を架設していることを特徴とする請求項1、2、3、4、5の何れか一項に記載の放冷用熱伝達器。 At the top of the heat diffusion frame for refrigerant vapor flow extending from both ends or the vicinity thereof, a heat diffusion frame for refrigerant vapor flow in which the refrigerant flows in a vacuum state is installed in the lateral direction intersecting the upper direction. The heat transfer device for cooling according to any one of claims 1, 2, 3, 4, and 5.
  7. 冷媒収納用熱拡散枠の中間位置から上側方向に延設された冷媒蒸気流動用熱拡散枠が上側方向と交差する横側方向に架設された冷媒蒸気流動用熱拡散枠と連通状態にて接続していることを特徴とする請求項6記載の放冷用熱伝達器。 A refrigerant vapor flow heat diffusion frame extending upward from the intermediate position of the refrigerant storage heat diffusion frame is connected in communication with a refrigerant vapor flow heat diffusion frame extending in a lateral direction intersecting the upper direction. The heat transfer device for cooling according to claim 6, wherein the heat transfer device is for cooling.
  8. 上側方向と交差する横側方向に架設された冷媒蒸気流動用熱拡散枠のうち、冷媒蒸気流動用熱拡散枠によって挟まれた領域にて下側方向に10枚以上の熱放冷用フィンを延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠のうち、上端から両側の冷媒蒸気流動用拡散枠間の内側幅以下の距離にある領域から当該下側方向と交差している横側方向に熱放冷用フィンを、それぞれ5枚以上延設し、かつ下側方向に延設された10枚以上の全熱放冷用フィンと個別に接続していることを特徴とする請求項6、7の何れか一項に記載の放冷用熱伝達器。 Among the heat diffusion frames for refrigerant vapor flow installed in the lateral direction intersecting with the upper direction, ten or more heat cooling fins are provided in the lower direction in a region sandwiched by the heat diffusion frames for refrigerant vapor flow. Among the thermal diffusion frames for refrigerant vapor flow on both sides forming the sandwiched area, the lower side from the area at a distance equal to or smaller than the inner width between the upper and lower refrigerant vapor flow diffusion frames 5 or more heat-dissipating fins extending in the lateral direction intersecting the direction, and individually connected to 10 or more total heat-dissipating fins extending in the lower direction The heat transfer device for cooling according to any one of claims 6 and 7, wherein the heat transfer device is for cooling.
  9. 上側方向と交差する横側方向に架設された冷媒蒸気流動用熱拡散枠のうち、冷媒蒸気流動用熱拡散枠によって挟まれた領域にて下側方向に16枚以上の熱放冷用フィンを延設すると共に、上記挟んだ領域を形成している両側の冷媒蒸気流動用熱拡散枠のうち、上端から両側の冷媒蒸気流動用拡散枠間の内側幅以下の距離にある領域から当該下側方向と交差している横側方向に熱放冷用フィンを、下側方向に延設された16枚以上の熱放冷用フィンの1/2の0.8倍以上の整数だけそれぞれ延設し、かつ最も下側に位置している熱放冷用フィンを下側方向に延設された複数枚の熱放冷用フィンと共通状態にて接続し、その余の熱放冷用フィンを下側に延設された熱放冷用フィンと個別に接続していることを特徴とする請求項6、7の何れか一項に記載の放冷用熱伝達器。 Among the refrigerant vapor flow thermal diffusion frames installed in the lateral direction intersecting with the upper direction, 16 or more heat cooling fins are provided in the lower direction in the region sandwiched between the refrigerant vapor flow thermal diffusion frames. Among the thermal diffusion frames for refrigerant vapor flow on both sides forming the sandwiched area, the lower side from the area at a distance equal to or smaller than the inner width between the upper and lower refrigerant vapor flow diffusion frames The heat-dissipating fins in the transverse direction intersecting the direction are extended by an integer greater than 0.8 times 1/2 of 16 or more heat-dissipating fins extending in the lower direction. And connecting the heat-dissipating fin located on the lowermost side in common with a plurality of heat-dissipating fins extending in the downward direction, and connecting the remaining heat-dissipating fins 8. The heat-cooling fin extended to the lower side is individually connected to any one of claims 6 and 7. Cool heat transfer device according to.
  10. 上側方向に下側方向から延設された熱放冷用フィンと横側方向に延設された熱放冷用フィンとがそれぞれ接続している下側領域及び上側領域の中間領域において、両側の冷媒蒸気流動用熱拡散枠から熱放冷用フィンを上側方向及び下側方向に延設された熱放冷用フィンと接続しない状態にて横側方向に架設していることを特徴とする請求項8、9の何れか一項に記載の放冷用熱伝達器。 In the intermediate region between the lower region and the upper region where the heat-dissipating fins extending in the upper direction from the lower direction and the heat-dissipating fins extending in the lateral direction are respectively connected, The heat-dissipation fins are erected from the refrigerant vapor flow heat diffusion frame in a lateral direction without being connected to the heat-dissipation fins extending in the upper direction and the lower direction. Item 10. A heat transfer device for cooling according to any one of Items 8 and 9.
  11. 冷媒収納用熱拡散枠から下側方向に延設した熱放冷用フィンと、冷媒蒸気流動用熱拡散枠から横側方向に延設した熱放冷用フィンとを、板状体を介して接続していることを特徴とする請求項7、8、9、10の何れか一項に記載の放冷用熱伝達器。 A heat-releasing fin extending downward from the refrigerant housing heat diffusion frame and a heat-releasing fin extending laterally from the refrigerant vapor flow heat diffusion frame via a plate-like body The heat exchanger for cooling according to any one of claims 7, 8, 9, and 10, wherein the heat exchanger is connected.
  12. 両端における冷媒収納用熱拡散枠から放冷用熱伝達器の外側方向に熱放冷用フィンを更に延設すること、及び両側の冷媒蒸気流動用熱拡散枠から横側方向に架設された冷媒の蒸気流動用熱拡散枠から上側方向に複数枚の熱放冷用フィンを更に延設することの何れか一方又は双方を採用していることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11の何れか一項に記載の放冷用熱伝達器。 Further extending heat-dissipating fins from the refrigerant-containing heat diffusion frames at both ends to the outside of the heat-releasing heat transfer unit, and refrigerants extending laterally from the heat diffusion frames for refrigerant vapor flow on both sides One, or both of further extending a plurality of heat-dissipating fins in the upward direction from the heat diffusion frame for steam flow is adopted. The heat transfer device for cooling according to any one of 5, 6, 7, 8, 9, 10, and 11.
  13. 上側方向に延設されている冷媒蒸気流動用熱拡散枠において、上下方向の中間位置から下側領域にて、冷媒の移行を遮蔽する遮蔽板を横側方向及び当該横側方向と直交する方向にそれぞれ1枚又は複数枚配設していることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12の何れか一項に記載の放冷用熱伝達器。 In the heat diffusion frame for refrigerant vapor flow extending in the upper direction, the shielding plate that shields the transition of the refrigerant from the intermediate position in the vertical direction to the lower region is in the horizontal direction and the direction orthogonal to the horizontal direction. 1 or 2 each is arrange | positioned by any one of Claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 Cooling heat transfer device.
  14. 冷媒収納用熱拡散枠の両端若しくはその近傍から上側方向に延設された冷媒蒸気流動用熱拡散枠が、上下方向中間位置にて更に両側に突出した湾曲状態を呈していることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13の何れか一項に記載の放冷用熱伝達器。 The refrigerant vapor flow heat diffusion frame extending upward from both ends of the refrigerant storage heat diffusion frame or the vicinity thereof has a curved state projecting further to both sides at an intermediate position in the vertical direction. The heat exchanger for cooling according to any one of claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13.
  15. フィンの厚み幅を0.05~1.5mmとし、フィン同士の間隔を0.05~3.0mmとし、奥行き幅を3~50mmとすることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14の何れか一項に記載の放冷用熱伝達器。 The thickness width of the fins is 0.05 to 1.5 mm, the distance between the fins is 0.05 to 3.0 mm, and the depth width is 3 to 50 mm. The heat exchanger for cooling according to any one of 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.
  16. 上側方向に延設された冷媒蒸気流動用熱拡散枠同士の間隔を15~70mmとし、高さ幅を40~100mmとし、奥行きを10~50mmとすることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15の何れか一項に記載の放冷用熱伝達器。 The distance between the heat diffusion frames for refrigerant vapor flow extending in the upward direction is 15 to 70 mm, the height is 40 to 100 mm, and the depth is 10 to 50 mm. The heat transfer device for cooling according to any one of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15.
  17. 冷媒収納用熱拡散枠の下側に、上下方向又は横側方向に1個又は複数個の加熱素子を挟持し得る空隙を形成している板状枠体を設けたことを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16の何れか一項に記載の放冷用熱伝達器。 The plate-like frame body in which a gap capable of sandwiching one or a plurality of heating elements in the vertical direction or the lateral direction is provided below the heat diffusion frame for storing refrigerant. The heat transfer device for cooling according to any one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16.
  18. 板状枠体が冷媒蒸気流動用熱拡散枠であって、かつ上側に位置している冷媒収納用熱拡散枠と連通していることを特徴とする請求項17記載の放冷用熱伝達器。 18. The heat exchanger for cooling according to claim 17, wherein the plate-shaped frame is a heat diffusion frame for refrigerant vapor flow and communicates with a heat storage frame for storing refrigerant located on the upper side. .
  19. 冷媒として水を選択し、冷媒収納用
    熱拡散枠、冷媒蒸気流動用熱拡散枠、熱放冷用フィン、板状体、遮蔽板の素材としてアルミニウム(Al)を採用し、かつ水又は水蒸気と接触する表面にニッケル(Ni)又は銅(Cu)の塗膜を形成していることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18の何れか一項に記載の放冷用熱伝達器。
    Water is selected as the refrigerant, aluminum (Al) is adopted as the material for the heat storage frame for storing refrigerant, the heat diffusion frame for refrigerant vapor flow, the fin for heat cooling, the plate-like body, the shielding plate, and water or water vapor. A coating film of nickel (Ni) or copper (Cu) is formed on the surface to be contacted, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, The heat transfer device for cooling according to any one of 12, 13, 14, 15, 16, 17, and 18.
  20. 以下の順序に従った製造工程による請求項10記載の放冷用熱伝達器の製造方法。(1)下側の冷媒収納用熱拡散枠用の表面板、上側の冷媒蒸気流動用熱拡散枠用の表面板、上側の冷媒蒸気流動用熱拡散枠用の表面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各表面板を接続する上下方向の冷媒蒸気流動用熱拡散枠用表面板、及び前記下側の表面板から上側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上側の表面板から下側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上下方向の各表面板から横側方向に延設され、かつ上側方向及び下側方向に延設された熱放冷用フィン用板状片と個別に接続し合う5枚以上の熱放冷用フィン用板状片、両側の冷媒蒸気流動用熱拡散枠用の表面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン用板状片、によって構成される1枚の結合表面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程、(2)下側の冷媒収納用熱拡散枠用の内側中間板、上側の冷媒蒸気流動用熱拡散枠用の内側中間板、上側の冷媒蒸気流動用熱拡散枠用の内側中間板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各内側中間板を接続する上下方向の冷媒蒸気流動用熱拡散枠用内側中間板、及び前記下側の内側中間板から上側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上側の内側中間板から下側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上下方向の各内側中間板から横側方向に延設され、かつ上側方向及び下側方向に延設された熱放冷用フィン用板状片と個別に接続し合う5枚以上の熱放冷用フィン用板状片、更には前記各内側中間板の外側にて当該内側中間板と複数箇所によって接続され、かつ冷媒収納用及び冷媒蒸気流動用の空洞を形成するための外側中間板、両側の冷媒蒸気流動用熱拡散枠用の内側中間板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン用板状片、によって構成される複数枚の結合中間板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程、(3)下側の冷媒収納用熱拡散枠用の裏面板、上側の冷媒蒸気流動用熱拡散枠用の裏面板、上側の冷媒蒸気流動用熱拡散枠用の裏面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各裏面板を接続する上下方向の冷媒蒸気流動用熱拡散枠用裏面板、及び前記下側の裏面板から上側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上側の裏面板から下側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上下方向の各裏面板から横側方向に延設され、かつ上側方向及び下側方向に延設された熱放冷用フィン用板状片と個別に接続し合う5枚以上の熱放冷用フィン用板状片、両側の冷媒蒸気流動用熱拡散枠用の裏面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン用板状片、によって構成される1枚の結合裏面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程、(4)前記(1)の1枚の結合表面板、前記(2)の複数枚の結合中間板、前記(3)の1枚の結合裏面板を順次積層し、かつビスによる締め付け又は接合部における溶融成分の拡散を伴う溶着によって相互に固着する工程。 The manufacturing method of the heat exchanger for natural cooling of Claim 10 by the manufacturing process according to the following orders. (1) The surface plate for the lower refrigerant storage heat diffusion frame, the upper surface plate for the heat diffusion frame for refrigerant vapor flow, the both ends of the upper surface plate for the heat diffusion frame for refrigerant vapor flow or the vicinity thereof At the intermediate position between the both ends or the vicinity thereof, the surface plate for the heat diffusion frame for the refrigerant vapor flow in the vertical direction connecting the respective surface plates, and 10 sheets extending upward from the lower surface plate The above plate pieces for heat cooling fins, 10 or more plate pieces for heat cooling fins extending downward from the upper surface plate, and the lateral side from each surface plate in the vertical direction 5 or more heat-dissipating fin plate pieces individually connected to the heat-dissipating fin plate pieces extending in the direction and extending in the upper direction and the lower direction, and refrigerants on both sides Heat release constructed in the lateral direction in the lower region and upper region of the surface plate for the heat diffusion frame for steam flow (1) Inner intermediate for the lower-side refrigerant-contained heat diffusion frame, a step of forming one bonded surface plate composed of plate-like pieces for use with a die, punching press, or etching. The plate, the inner intermediate plate for the upper refrigerant vapor flow heat diffusion frame, the both ends of the inner intermediate plate for the upper refrigerant vapor flow heat diffusion frame, or the vicinity thereof, or the intermediate position between the two ends or the vicinity thereof, Inner intermediate plate for heat diffusion frame for refrigerant vapor flow in the vertical direction connecting each inner intermediate plate, and ten or more plate shapes for heat cooling fins extending upward from the lower inner intermediate plate 10 pieces or more of heat-cooling fin plate-like pieces extending downward from the upper inner intermediate plate, extending laterally from the upper and lower inner intermediate plates, and upper Plate with fins for heat-dissipating fins extending in the direction and downward Five or more plate pieces for heat-cooling fins to be connected to each other, and further connected to the inner intermediate plate at a plurality of locations outside the inner intermediate plates, and for storing the refrigerant and flowing the refrigerant vapor Plate for heat cooling fins installed in the lateral direction in the lower region of the inner intermediate plate for the heat diffusion frame for refrigerant vapor flow on both sides and the intermediate region of the upper region A step of forming a plurality of bonded intermediate plates constituted by a die, a punching press, or etching, (3) a back plate for a lower heat storage frame for storing refrigerant, and an upper refrigerant vapor flow The back plate for the thermal diffusion frame for the upper side, the upper side of the back plate for the thermal diffusion frame for the refrigerant vapor flow on the upper side or the vicinity thereof, or the intermediate position between the both ends or the vicinity thereof are connected in the vertical direction. Back plate for heat diffusion frame for refrigerant vapor flow and front 10 or more heat-dissipating fin plate-like pieces extending upward from the lower back plate, and 10 or more heat-releasing plates extending downward from the upper back plate The fin plate-like piece is connected to the fin plate piece for heat-dissipating fins extending in the lateral direction from the respective back plates in the vertical direction and extending in the upper direction and the lower direction 5 individually. One or more sheets for heat-cooling fins, for heat-cooling fins installed in the lateral direction in the lower region of the back plate for the heat diffusion frame for refrigerant vapor flow on both sides and the middle region of the upper region A step of forming one combined back plate constituted by a plate-shaped piece by a die, a punching press, or etching, (4) one combined surface plate of (1), (2) A plurality of coupling intermediate plates and a single coupling back plate of (3) above, and fastening or joining with screws Affixing to one another by welding with a diffusion of the definitive melting component.
  21. 以下の順序に従った製造工程による請求項10記載の放冷用熱伝達器の製造方法。(1)下側の冷媒収納用熱拡散枠用の表面板、上側の冷媒蒸気流動用熱拡散枠用の表面板、上側の冷媒蒸気流動用熱拡散枠用の表面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各表面板を接続する上下方向の冷媒蒸気流動用熱拡散枠用表面板、及び前記下側の表面板から上側方向に延設された16枚以上の熱放冷用フィン用板状片、前記上側の表面板から下側方向に延設された16枚以上の熱放冷用フィン用板状片、前記上下方向の各表面板から横側方向に延設され、かつ上側方向及び下側方向に延設された16枚以上の熱放冷用フィン用板状片の数の1/2の0.8倍以上の整数による数だけ延設され、かつそのうち最も上側又は下側に位置し、しかも上側方向又は下側方向に延設された複数枚の熱放冷用フィン用板状片と共通状態にて接続している2枚の熱放冷用フィン用板状片、及びその上側方向又は下側方向に延設された上記複数枚以外の熱放冷用フィン用板状片と個別に接続し合うその余の熱放冷用フィン用板状片、両側の冷媒蒸気流動用熱拡散枠用の表面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン用板状片、によって構成される1枚の結合表面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程、(2)下側の冷媒収納用熱拡散枠用の内側中間板、上側の冷媒蒸気流動用熱拡散枠用の内側中間板、上側の冷媒蒸気流動用熱拡散枠用の内側中間板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各内側中間板を接続する上下方向の冷媒蒸気流動用熱拡散枠用内側中間板、及び前記下側の内側中間板から上側方向に延設された16枚以上の熱放冷用フィン用板状片、前記上側の内側中間板から下側方向に延設された16枚以上の熱放冷用フィン用板状片、前記上下方向の各内側中間板から横側方向に延設され、かつ上側方向及び下側方向に延設された16枚以上の熱放冷用フィン用板状片の数の1/2の0.8倍以上の整数による数だけ延設され、かつそのうち最も上側又は下側に位置し、しかも上側方向又は下側方向に延設された複数枚の熱放冷用フィン用板状片と共通状態にて接続している2枚の熱放冷用フィン用板状片、及びその上側方向又は下側方向に延設された上記複数枚以外の熱放冷用フィン用板状片と個別に接続し合うその余の熱放冷用フィン用板状片、両側の冷媒蒸気流動用熱拡散枠用の内側中間板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン用板状片によって構成される複数枚の結合中間板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程、(3)下側の冷媒収納用熱拡散枠用の裏面板、上側の冷媒蒸気流動用熱拡散枠用の裏面板、上側の冷媒蒸気流動用熱拡散枠用の裏面板の両端若しくはその近傍又は当該両端若しくはその近傍との中間位置にて、上記各裏面板を接続する上下方向の冷媒蒸気流動用熱拡散枠用裏面板、及び前記下側の裏面板から上側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上側の裏面板から下側方向に延設された10枚以上の熱放冷用フィン用板状片、前記上下方向の各裏面板から横側方向に延設され、かつ上側方向及び下側方向に延設された16枚以上の熱放冷用フィン用板状片の数の1/2の0.8倍以上の整数による数だけ延設され、かつそのうち最も上側又は下側に位置し、しかも上側方向又は下側方向に延設された複数枚の熱放冷用フィン用板状片と共通状態にて接続している2枚の熱放冷用フィン用板状片、及びその上側方向又は下側方向に延設された上記複数枚以外の熱放冷用フィン用板状片と個別に接続し合うその余の熱放冷用フィン用板状片、両側の冷媒蒸気流動用熱拡散枠用の裏面板の下側領域及び上側領域の中間領域において横側方向に架設された熱放冷用フィン用板状片、によって構成される1枚の結合裏面板を、金型、又は打ち抜きプレス、又はエッチングにて成形する工程、(4)前記(1)の1枚の結合表面板のうち、冷媒収納用熱拡散用の表面板及び上側並びに上下方向の冷媒蒸気流動用熱拡散用表面板、前記(2)の複数枚の結合中間板のうち、冷媒収納用熱拡散用の内側中間板及び上側並びに上下方向の冷媒蒸気流動用熱拡散用内側中間板、前記(3)の1枚の結合裏面板のうち、冷媒収納用熱拡散用の裏面板及び上側並びに上下方向の冷媒蒸気流動用熱拡散用裏面板を順次積層し、かつビスによる締め付け又は接合部における溶融成分の拡散を伴う溶着によって相互に固着する工程。 The manufacturing method of the heat exchanger for natural cooling of Claim 10 by the manufacturing process according to the following orders. (1) The surface plate for the lower refrigerant storage heat diffusion frame, the upper surface plate for the heat diffusion frame for refrigerant vapor flow, the both ends of the upper surface plate for the heat diffusion frame for refrigerant vapor flow or the vicinity thereof At the intermediate position between the both ends or the vicinity thereof, the surface plate for the heat diffusion frame for the refrigerant vapor flow in the vertical direction connecting the respective surface plates, and 16 sheets extending upward from the lower surface plate The above plate pieces for heat-cooling fins, 16 or more plate pieces for heat-cooling fins extending downward from the upper surface plate, and the lateral sides from the respective surface plates in the vertical direction Extending in the direction and extending by an integer greater than 0.8 times 1/2 of the number of fin-like pieces for heat-cooling fins extending in the upward and downward directions. And a plurality of heat dissipating members located at the uppermost or lower side and extending in the upper or lower direction. Two plate pieces for heat-cooling fins connected in common with the plate-like pieces for fins, and for heat-cooling other than the plurality of pieces extending in the upper or lower direction Lateral side in the lower region of the surface plate for the heat diffusion frame for the refrigerant vapor flow on both sides and the intermediate region of the upper region on the other side of the fin plate for heat cooling that is individually connected to the fin plate piece A step of forming one combined surface plate by a mold, a punching press, or etching, comprising (2) a lower refrigerant storage. Inner intermediate plate for heat diffusion frame, upper intermediate plate for heat diffusion frame for refrigerant vapor flow, upper intermediate plate for heat diffusion frame for refrigerant vapor flow, or both ends thereof, or both ends thereof The refrigerant vapor flow in the vertical direction connecting the inner intermediate plates at an intermediate position An inner intermediate plate for a thermal diffusion frame, and 16 or more heat-cooling fin-like pieces extending upward from the lower inner intermediate plate, downward from the upper inner intermediate plate 16 or more extended plate-like pieces for heat-cooling, 16 or more extended from the inner intermediate plates in the vertical direction in the lateral direction, and extended in the upper and lower directions Is extended by a number equal to or greater than 0.8 times 1/2 of the number of fin-like pieces for heat-dissipating fins, and located at the uppermost or lower side, and in the upper or lower direction. Two heat-dissipating fin plate pieces connected in common with the plurality of heat-dissipating fin plate pieces, and extending in the upper or lower direction. The other heat-dissipating fin plate pieces individually connected to the heat-dissipating fin plate pieces other than the above-mentioned plural sheets, and the refrigerant vapor on both sides A plurality of combined intermediate plates made of heat-cooling fin plate-like pieces laid in the lateral direction in the lower region of the inner intermediate plate for the flow heat diffusion frame and the intermediate region of the upper region are made of gold. (3) a lower plate for the lower-side refrigerant housing thermal diffusion frame, a rear plate for the upper thermal diffusion frame, and an upper refrigerant vapor flow The back plate for the heat diffusion frame for refrigerant vapor flow in the vertical direction connecting the respective back plates at both ends of the back plate for the heat diffusion frame for use in the vicinity thereof or at an intermediate position between the two ends or the vicinity thereof, and 10 or more heat-dissipating fin plate-like pieces extending in the upward direction from the back plate on the side, and 10 or more heat-dissipating fins extending in the downward direction from the upper back plate A plate-like piece, extending in a lateral direction from each back plate in the vertical direction, and It is extended by a number by an integer equal to or more than 0.8 times 1/2 of the number of plate-like pieces for heat-cooling fins 16 or more extended in the lateral direction and the lower direction, and the uppermost or Two heat-dissipating fin plates connected in common to a plurality of heat-dissipating fin-like plate pieces located on the lower side and extending upward or downward And the other heat-dissipating fin plate pieces individually connected to the heat-dissipating fin plate pieces other than the plurality of sheets extending in the upper or lower direction thereof, One combined back plate composed of a plate piece for heat-cooling fins installed in the lateral direction in the lower region and the upper region of the back plate for the heat diffusion frame for refrigerant vapor flow A step of forming by die, die, punching press, or etching, (4) one bonded surface plate of (1) above A heat diffusion surface plate for refrigerant storage, an upper surface plate for heat diffusion for upper and lower refrigerant vapor flow, and an inner intermediate plate for heat diffusion for refrigerant storage among the plurality of combined intermediate plates in (2) above Among the inner diffusion plate for the heat diffusion of the refrigerant vapor flow in the upper side and the upper and lower directions, and the back plate for the heat diffusion for the refrigerant storage and the upper and the lower side of the vapor vapor flow in the upper and lower direction among the one combined back plate of the above (3). A step of sequentially laminating back plates for heat diffusion and fixing them to each other by fastening with screws or welding accompanied by diffusion of molten components at the joint.
  22. 前記積層に際し、横側方向に延設された熱放冷用フィン用板状片において、交互に上下方向の位置が変化するような隣接状態とし、かつ当該隣接している相互間に隙間が形成されている一方、上側方向及び下側方向に延設されている熱放冷用フィン用板状片につき、横側方向の位置が交互に変化するような隣接状態とし、当該隣接状態において相互間に隙間を形成していることを特徴とする請求項18、19の何れか一項に記載の放冷用熱伝達器の製造方法。 When laminating, in the plate pieces for heat-dissipating fins extending in the lateral direction, adjacent positions in which the positions in the vertical direction change alternately are formed, and a gap is formed between the adjacent ones. On the other hand, for the plate pieces for heat-dissipating fins extending in the upper direction and the lower direction, in the adjacent state in which the position in the lateral direction changes alternately, The manufacturing method of the heat exchanger for natural cooling as described in any one of Claim 18 and 19 characterized by the above-mentioned.
  23. 板状片の断面形状が六角形状であることを特徴する請求項20記載の放冷用熱伝達器の製造方法。 21. The method of manufacturing a heat exchanger for cooling according to claim 20, wherein the cross-sectional shape of the plate-like piece is a hexagonal shape.
PCT/JP2015/083360 2014-12-01 2015-11-27 Heat transfer unit for cooling and manufacturing method thereof WO2016088669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559366A JP6023965B1 (en) 2014-12-01 2015-11-27 Cooling heat transfer device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014243031 2014-12-01
JP2014-243031 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016088669A1 true WO2016088669A1 (en) 2016-06-09

Family

ID=56091614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083360 WO2016088669A1 (en) 2014-12-01 2015-11-27 Heat transfer unit for cooling and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6023965B1 (en)
WO (1) WO2016088669A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144236A (en) * 1990-11-09 2001-05-25 Toshiba Corp Radiator, radiating device and method for manufacturing the radiator
JP2001223308A (en) * 2000-02-07 2001-08-17 Ts Heatronics Co Ltd Heat sink
JP2003083688A (en) * 2001-09-07 2003-03-19 Furukawa Electric Co Ltd:The Plate heat-pipe integrated with fin and its manufacturing method
JP2005249226A (en) * 2004-03-01 2005-09-15 Furukawa Electric Co Ltd:The Plate-like heat pipe and method of manufacturing the same
US20070151706A1 (en) * 2006-01-05 2007-07-05 International Business Machines Corporation Heat sink for dissipating a thermal load
JP2007317876A (en) * 2006-05-25 2007-12-06 Fujitsu Ltd Heat sink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144236A (en) * 1990-11-09 2001-05-25 Toshiba Corp Radiator, radiating device and method for manufacturing the radiator
JP2001223308A (en) * 2000-02-07 2001-08-17 Ts Heatronics Co Ltd Heat sink
JP2003083688A (en) * 2001-09-07 2003-03-19 Furukawa Electric Co Ltd:The Plate heat-pipe integrated with fin and its manufacturing method
JP2005249226A (en) * 2004-03-01 2005-09-15 Furukawa Electric Co Ltd:The Plate-like heat pipe and method of manufacturing the same
US20070151706A1 (en) * 2006-01-05 2007-07-05 International Business Machines Corporation Heat sink for dissipating a thermal load
JP2007317876A (en) * 2006-05-25 2007-12-06 Fujitsu Ltd Heat sink

Also Published As

Publication number Publication date
JPWO2016088669A1 (en) 2017-04-27
JP6023965B1 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
US10598441B2 (en) Heat sink
US11150028B2 (en) Cooling device with superimposed fin groups and parallel heatpipes
US11543189B2 (en) Heat sink
CN212725282U (en) Heat radiator
US20130058042A1 (en) Laminated heat sinks
US9995537B2 (en) Heat pipe
JP6738226B2 (en) Cooling system
JP6667544B2 (en) heatsink
KR20180061271A (en) Multi-level oscillating heat pipe implementation in electronic circuit card module
WO2018123387A1 (en) Radiator for liquid cooling type cooling device and manufacturing method therefor
JP2016066639A (en) Heat sink having fins connected in different methods
JP6023965B1 (en) Cooling heat transfer device and manufacturing method thereof
JP7157591B2 (en) heatsink
JP5715352B2 (en) heatsink
JP6691651B2 (en) Heat transfer device for cooling
JP2012028720A (en) Cooling apparatus
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
WO2024024712A1 (en) Heat sink
JP2008205034A (en) Radiator
WO2021152668A1 (en) Heat-pipe-type cooler, and method for manufacturing heat-pipe-type cooler
JP2007129104A (en) Laminated junction heat sink
JP2018063977A (en) Cooler

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015559366

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15865417

Country of ref document: EP

Kind code of ref document: A1