WO2016088156A1 - 水トリー試験方法および水トリー試験装置 - Google Patents

水トリー試験方法および水トリー試験装置 Download PDF

Info

Publication number
WO2016088156A1
WO2016088156A1 PCT/JP2014/006100 JP2014006100W WO2016088156A1 WO 2016088156 A1 WO2016088156 A1 WO 2016088156A1 JP 2014006100 W JP2014006100 W JP 2014006100W WO 2016088156 A1 WO2016088156 A1 WO 2016088156A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
permeable member
aqueous solution
water
test
Prior art date
Application number
PCT/JP2014/006100
Other languages
English (en)
French (fr)
Inventor
博勇 中路
雄一 坪井
敏宏 津田
哲夫 吉満
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2014/006100 priority Critical patent/WO2016088156A1/ja
Priority to EP14907381.9A priority patent/EP3229032B1/en
Priority to JP2016562091A priority patent/JP6416283B2/ja
Priority to US15/532,684 priority patent/US10041990B2/en
Priority to CN201480083793.6A priority patent/CN107003349B/zh
Publication of WO2016088156A1 publication Critical patent/WO2016088156A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/20Preparation of articles or specimens to facilitate testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements

Definitions

  • the present invention relates to a water tree test method and a water tree test apparatus.
  • Some cables that can be placed in water include a copper wire, which is a conductor, covered with an insulating portion made of a polymer material or the like.
  • a thermosetting resin such as cross-linked polyethylene (hereinafter referred to as XLPE) or a thermoplastic material is often used as the polymer material.
  • Some insulated cables arranged in water are used for propagating AC voltage, inverter voltage (repetitive impulse bipolar voltage), and the like.
  • a water tree may be generated in an insulating part such as XLPE.
  • the water tree is a dendritic insulation deterioration phenomenon that occurs in the insulating material of the insulating portion when an electric field acts on the insulating portion in a state where water coexists for a long time. Water trees eventually induce dielectric breakdown.
  • Patent Document 1 As a water tree diagnosis technique, there is known an insulation diagnosis system that performs a power failure of a power system and performs insulation diagnosis of a lightning arrester and a power cable (see Patent Document 1).
  • FIG. 5 is an elevational sectional view showing a configuration of a conventional water tree test apparatus.
  • a test piece 10 in which a plurality of electrode holes (dents) 11 are formed in a flat plate shape of XLPE is used.
  • the test piece 10 is immersed in the application-side aqueous solution 23 on the side where the electrode holes 11 are formed, and the ground-side aqueous solution 33 on the opposite side. In this state, a relatively high electric field is generated in the vicinity of each electrode hole 11. Thereby, the water tree can be reproduced in XLPE around each electrode hole 11.
  • the test piece 10 is immersed in the liquid as described above. Further, in order to generate a relatively high electric field in the vicinity of each electrode hole 11 of the test piece 10, the application-side electrode 22 is inserted into the application-side aqueous solution 23 with the test piece 10 interposed therebetween, and the ground-side aqueous solution 33 The ground side electrodes 32 are inserted therein.
  • the application-side electrode 22 provided in the application-side aqueous solution 23 on the first surface 10a side where the electrode hole 11 of the test piece 10 is formed is the high-voltage side, and the ground-side aqueous solution 33 on the second surface 10b side on the back side. A voltage is applied to the ground side electrode 32 provided therein so as to be on the low voltage side.
  • the application side electrode 22 provided in the application side aqueous solution 23 on the first surface 10a side where the electrode hole 11 of the test piece 10 is formed and the voltage is unipolar is used.
  • the ground side electrode 32 provided in the ground side aqueous solution 33 on the second surface 10b side on the positive side and the back side thereof is applied with a voltage so as to be on the negative side or in the opposite direction.
  • the plurality of electrode holes 11 are planarly arranged in parallel with each other at a plurality of vertical heights and a plurality of horizontal positions. Therefore, it is desirable that the electric field formed by applying a voltage spread evenly along this plane.
  • the electrodes 22 and 32 are rod-shaped electrodes. For this reason, in the electric field formed by both electrodes 22 and 32, the electric field is not uniform for each electrode hole 11 of the test piece 10. In the test piece 10 to be tested by such a method, it cannot be said that a plurality of data is acquired in an equivalent environment because the respective electrode holes 11 are not placed in an equal electric field.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to improve test accuracy by applying a uniform electric field to a plurality of electrode holes in a water tree reproduction test.
  • the present invention is a flat plate made of the candidate material for the water-resistant tree evaluation of the candidate material for the insulating material, and the cross section of the first surface is reduced perpendicularly to the surface toward the bottom.
  • a water tree test apparatus that reproduces a water tree phenomenon using a test piece formed with a plurality of electrode holes formed so as to be in close contact with the first surface.
  • a conductive first permeable member having a liquid permeability that spreads in a plane so as to cover and a second surface that is the back side of the first surface, and is provided in close contact with the test piece.
  • a conductive second permeable member that spreads in a plane so as to face the first permeable member and has a liquid permeability, and a range covered by the first permeable member.
  • the first water so as to immerse the first surface of the test piece in the first aqueous solution.
  • a first water tank for storing the liquid and the second aqueous solution are stored so that the second surface of the test piece including the range covered by the second permeable member is immersed in the second aqueous solution.
  • a second water tank one end electrically connected to the first permeable member, and one end electrically connected to the second permeable member.
  • the second electrode is formed so that a voltage can be applied between the first electrode and the second electrode.
  • the present invention also provides a water tree test method for reproducing a water tree phenomenon using a test piece made of the candidate material for water-resistant tree evaluation of a candidate material for an insulating material.
  • a permeable member is brought into close contact with the first surface of the test piece in which a plurality of electrode holes formed so that the cross section becomes smaller toward the bottom perpendicular to the surface toward the bottom surface.
  • the first surface was immersed in the first aqueous solution
  • the permeable member was brought into close contact with the second surface, which is the back side of the first surface, and the second surface was immersed in the second aqueous solution.
  • a system setting step for setting a test system in a state; and after the system setting step, any one of a first electrode immersed in the first aqueous solution and a second electrode immersed in the second aqueous solution A voltage application step in which an AC voltage is applied to the other ground
  • the test accuracy in the water tree reproduction test, the test accuracy can be improved by applying an equal electric field to the plurality of electrode holes.
  • FIG. 1 is a flowchart showing a procedure related to the water tree test method according to the present embodiment. That is, the procedure of the entire insulation design method including the water tree test is shown.
  • the insulation design method is roughly classified into a water-resistant tree evaluation step S100 for evaluating the resistance of the insulating material used for the insulation member 53 for insulation of the stator 51 of the rotating electrical machine 50 and the coil of the rotor 52 to the water tree. And an insulation design step S200 for the rotating electrical machine.
  • the water-resistant tree evaluation step S100 is based on a step of selecting a candidate insulating material as a candidate (step S110), a water tree test step of performing a water tree test on the selected candidate insulating material (step S120), and a test result.
  • a insulating material evaluation step step S130 for evaluating the insulating performance characteristics of the insulating material tested as a candidate.
  • FIG. 2 is a flowchart showing the procedure of the water tree test method according to the present embodiment.
  • step S120 of the water tree test first, a test system and test conditions are set (step S121). The contents of the test system and test conditions will be described in the description of FIG.
  • step S121 a voltage is applied from the AC power supply 40 (see FIG. 3) to form a potential difference between the application-side aqueous solution 23 (see FIG. 3) and the ground-side aqueous solution 33 (see FIG. 3).
  • a voltage is applied to (see FIG. 3) (step S122).
  • step S122 the progress of the water tree is measured at time intervals (step S123). Further, it is determined whether or not a predetermined time, that is, a predetermined test time has elapsed (step S124). If the predetermined time has not elapsed (NO in step S124), step S122 and subsequent steps are repeated. If the predetermined time has elapsed (step S124: YES), the test is terminated.
  • a predetermined time that is, a predetermined test time has elapsed
  • FIG. 3 is an elevational sectional view showing the configuration of the water tree test apparatus of the present embodiment.
  • the test apparatus 5 performs a test using the test piece 10 and has an application side water tank 21, an application side electrode 22, a ground side water tank 31, and a ground side electrode 32.
  • the application side electrode 22 is connected to the AC power source 40 by a conductive wire 24.
  • a ground wire 34 is connected between the ground side electrode 32 and the ground point.
  • the application-side water tank 21 and the ground-side water tank 31 are metal containers. However, it is not limited to metal. For example, a container of a polymer compound such as polyethylene may be used.
  • the test piece 10 is made of an insulating material such as cross-linked polyethylene (XLPE).
  • the test piece 10 has a thick rectangular flat plate shape, and has a first surface 10a and a second surface 10b as wider surfaces. Both the first surface 10a and the second surface 10b are formed to be flat and parallel to each other.
  • a plurality of electrode holes 11 are formed on the first surface 10a from the flat surface perpendicular to the surface.
  • the tip of the electrode hole 11 is formed in a conical shape so that the cross section becomes smaller toward the bottom.
  • the bottom of the electrode hole 11 and the second surface 10b are formed to have a predetermined hole depth direction distance.
  • the number of electrode holes 11 may be set based on the reliability of statistical test results, the frequency of checking the state of the test piece 10 during the test time, and the like.
  • the electrode hole 11 can also be formed, for example, by pushing a material having a convex portion pointed from the surface in a state where the insulating material is warmed, cooling it, and then pulling it out.
  • the electrode hole 11 may be manufactured by, for example, a method of casting the insulating material into a mold. .
  • the shape of the electrode hole 11 can be accurately formed by using a mold having a convex portion corresponding to the shape of the space portion of the electrode hole 11 on the bottom surface.
  • the electrode hole 11 can be formed without affecting the characteristics of the insulating material around the electrode hole 11.
  • the test apparatus 5 in the present embodiment is a part of the first surface 10a and is electrically conductive and liquid so as to cover all of the electrode holes 11 and spread along the surface of the first surface 10a.
  • An application-side transmissive member 27 having transparency is attached.
  • the application side transparent member 27 is electrically connected to the application side electrode 22.
  • the ground side is conductive and has liquid permeability so as to spread along the surface of the second surface 10b so as to face the application-side permeable member 27.
  • a permeable member 37 is attached.
  • the ground side permeable member 37 is electrically connected to the ground side electrode 32.
  • the application-side permeable member 27 and the ground-side permeable member 37 may be, for example, a porous metal.
  • a hole diameter of about 500 ⁇ m and a porosity of 90% or more can be used.
  • it is not limited to a porous metal.
  • a conductive metal mesh may be used as long as it is conductive and liquid permeable.
  • the application-side water tank 21 and the ground-side water tank 31 are containers whose one side is opened, and the test piece 10 is configured to be sandwiched between the application-side water tank 21 and the ground-side water tank 31.
  • the material of the part is made of an elastic material or an O-ring or the like is interposed, and the opening end of the application-side water tank 21 and the first surface 10a, the opening end of the ground-side water tank 31 and the second surface 10b May be pressed against each other.
  • the gap between the open end of the application-side water tank 21 and the first surface 10a and the gap between the open end of the ground-side water tank 31 and the second surface 10b may be sealed with a sealing material or the like.
  • test piece 10 Most of the test piece 10, the application-side water tank 21, and the ground-side water tank 31 are surrounded by an insulating portion 38 except for the upper portions thereof. For this reason, electrical contact with the outside of the test apparatus 5 can be prevented.
  • an application side aqueous solution 23 is sealed.
  • a ground side aqueous solution 33 is sealed inside the ground side water tank 31.
  • the application-side aqueous solution 23 and the ground-side aqueous solution 33 may be neutral aqueous solutions such as a sodium chloride aqueous solution, for example.
  • the concentration of the application-side aqueous solution 23 and the ground-side aqueous solution 33 may be the same. Note that water may be used for the application-side aqueous solution 23 and the ground-side aqueous solution 33.
  • the application side electrode 22 extends through the wall of the application side water tank 21, one end of the application side electrode 22 is outside the application side water tank 21, and the other end is the application side in the application side water tank 21. It is immersed in the aqueous solution 23.
  • the outer end of the application-side water tank 21 of the application-side electrode 22 is connected to an AC power supply 40 via a conducting wire 24.
  • a ground side electrode 32 is attached to the ground side water tank 31.
  • the ground-side electrode 32 extends through the wall of the ground-side water tank 31, and one end of the ground-side electrode 32 is outside the ground-side water tank 31, and the other end is grounded in the ground-side water tank 31. It is immersed in the side aqueous solution 33.
  • the outer end of the ground-side water tank 31 of the ground-side electrode 32 is connected to a grounded part via a conducting wire 34.
  • the applied voltage is a voltage that the rotating electrical machine 50 is exposed to during operation, or a voltage obtained by multiplying this by a predetermined safety factor. Insulation or the like for the coil conductor is particularly important.
  • the voltage applied to the coil conductor includes a voltage corresponding to a line voltage, a ground voltage, a voltage between turns, and the like.
  • these voltage values and frequencies may be values that are theoretically obtained in advance for actual machines or experimentally measured values such as multiplication by a safety factor.
  • the conductive application-side permeable member 27 and the ground-side permeable member 37 that are spread in a plane are opposed to each other with the test piece 10 interposed therebetween.
  • a uniform electric field is generated in the region between the application-side transmissive member 27 and the ground-side transmissive member 37 in the strip 10 except for the end portion.
  • the conductivity of the aqueous solution is about 1 S / m to 10 S / m, whereas the conductivity of the metal is about 10 7 S / m.
  • the potential distribution can be regarded as uniform inside the transmissive member 37. For this reason, the potential difference applied between the plurality of electrode holes 11 and the second surface 10b on the back side is also uniform.
  • the accuracy of the water tree reproduction test can be improved by applying a uniform electric field to the plurality of electrode holes.
  • the electrode on the side where the electrode hole 11 is formed is the application side electrode 22, and the electrode on the opposite side is the ground side electrode 32.
  • the present invention is not limited to this. If a potential difference occurs between both sides of the test piece 10 of the insulating candidate material, conversely, the electrode on the side where the electrode hole 11 is formed is the ground side electrode, and the electrode on the opposite side is the application side electrode But you can.
  • a positive voltage is applied to the application side electrode 22 on the side where the electrode hole 11 is formed, and a negative voltage is applied to the ground side electrode 32 on the opposite side.
  • Variations such as reverse application are conceivable.
  • the conducting wire 25 from the application side electrode 22 and the conducting wire 35 from the ground side electrode 32 are connected to an AC power source 41, and an AC voltage is applied between the application side electrode 22 and the ground side electrode 32. May be applied.
  • the AC voltage application side is the conducting wire 24, the application side electrode 22 and the application side permeable member 27, and the ground side is the conducting wire 34, the ground side electrode 32, and the ground side permeable member 37, respectively.
  • the application side electrode 22 and the ground side electrode 32 may not be provided. That is, the conductive wire 24 may be directly connected to the application side transmissive member 27 and the conductive wire 34 may be directly connected to the ground side transmissive member 37.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

絶縁材料の候補材からなる平板状で第1の面(10a)に複数の電極穴(11)が形成された試験片(10)を用いる水トリー試験装置(5)は、第1の面(10a)に密着して設けられ複数の電極穴(11)を覆う液体の透過性を有する導電性の第1の透過性部材(27)と、第1の面(10a)の裏側である第2の面(10b)に密着して設けられ試験片(10)をはさんで第1の透過性部材(27)に対向して液体の透過性を有する導電性の第2の透過性部材(37)と、第1の透過性部材(27)に覆われた範囲を含む試験片(10)の第1の面(10a)を第1の水溶液(23)中に浸漬させる第1の水槽(21)と、第2の透過性部材(37)に覆われた範囲を含む試験片(10)の第2の面(10b)を第2の水溶液(33)中に浸漬させる第2の水槽(31)と、第1の電極(22)と第2の電極(32)とを有する。

Description

水トリー試験方法および水トリー試験装置
 本発明は、水トリー試験方法および水トリー試験装置に関する。
 水中に配置可能なケーブルには、導電体である銅線が高分子材料等からなる絶縁部で覆われているものがある。ここで、高分子材料には、例えば架橋ポリエチレン(Cross-Linked Polyethylene、以下、XLPEと呼ぶ。)等の熱硬化性樹脂や、熱可塑性材料が用いられることが多い。
 水中に配置される絶縁ケーブルには、交流電圧やインバータ電圧(繰り返しインパルス両極性電圧)等を伝播するために用いられているものがある。このような絶縁ケーブルは、インバータサージを含む交番繰り返しインパルス両極性電圧を作用させた状態で数年間使用すると、XLPE等の絶縁部に水トリーが発生する可能性がある。水トリーとは、長時間にわたって水が共存する状態で、絶縁部に電界が作用したときに、絶縁部の絶縁材料に生じる樹枝状の絶縁劣化現象である。水トリーは最終的に絶縁破壊を誘発する。
 水トリーの診断技術としては、電力系統を停電させて避雷器および電力ケーブルの絶縁診断を行う絶縁診断システム等が知られている(特許文献1参照)。
 一方、水中に配置する絶縁ケーブルの絶縁部に用いる材料の選定やその構造の設計のためには、予め水トリーの発生状況等を把握する必要がある。このために、水トリーを試験的に発生させる、すなわち再現させるための試験を行う必要がある。
 水トリーを発生させるためには、水電極法等が用いられる。図5は、従来の水トリー試験装置の構成を示す立断面図である。この水電極法は、XLPEの平板状で複数の電極穴(窪み)11が形成された試験片10を用いる。試験片10を、電極穴11が形成された側の面を印加側水溶液23中に、また反対側の面を接地側水溶液33に浸漬させる。この状態で、各電極穴11の付近に比較的高い電界を発生させる。これにより、各電極穴11の周辺のXLPEに水トリーを再現させることができる。
特開平11-350918号公報
 水電極法では、前述のように試験片10を液中に浸漬させる。また、試験片10の各電極穴11の付近に比較的高い電界を発生させるために、試験片10を挟んで、印加側水溶液23の中に印加側電極22を挿入し、接地側水溶液33の中に接地側電極32をそれぞれ挿入する。試験片10の電極穴11が形成されている第1の面10a側の印加側水溶液23中に設けられた印加側電極22は高圧側、その裏側の第2の面10b側の接地側水溶液33中に設けられた接地側電極32は低圧側となるように電圧を印加する。あるいは電圧の極性効果を調べる場合などは、電圧を単極性とし、試験片10の電極穴11が形成されている第1の面10a側の印加側水溶液23中に設けられた印加側電極22を正極側、その裏側の第2の面10b側の接地側水溶液33中に設けられた接地側電極32は負極側となるように、あるいはこれと逆方向に電圧を印加したりする。
 複数の電極穴11は、鉛直方向の複数の高さおよび水平方向の複数の位置に、互いに並列に平面的に配されている。したがって、電圧が印加されることにより形成される電場は、この平面に沿って均等に広がっていることが望ましい。
 通常、電極22、32は棒状電極である。このため、両電極22、32により形成される電場においては、試験片10の各電極穴11について均等な電界とはならない。このような方法で試験される試験片10では、それぞれの電極穴11が均等な電場におかれていないため、同等な環境における複数のデータの取得を行っているとは言えないことになる。
 本発明はかかる事情に鑑みてなされたものであって、水トリーの再現試験に際して、複数の電極穴に均等な電界を与えることにより試験の精度を向上させることを目的とする。
 上述の目的を達成するため、本発明は、絶縁材料の候補材の耐水トリー評価のため前記候補材からなる平板状で第1の面に該表面に垂直に底部に向かうにしたがって横断面が小さくなるように形成された複数の電極穴が形成された試験片を用いて水トリー現象を再現させる水トリー試験装置であって、前記第1の面に密着して設けられ前記複数の電極穴を覆うように平面的に広がった液体の透過性を有する導電性の第1の透過性部材と、前記第1の面の裏側である第2の面に密着して設けられ前記試験片をはさんで前記第1の透過性部材に対向するように平面的に広がって液体の透過性を有する導電性の第2の透過性部材と、前記第1の透過性部材に覆われた範囲を含む前記試験片の第1の面を第1の水溶液中に浸漬するように該第1の水溶液を収納する第1の水槽と、前記第2の透過性部材に覆われた範囲を含む前記試験片の第2の面を第2の水溶液中に浸漬するように該第2の水溶液を収納する第2の水槽と、一方の端部は前記第1の透過性部材に電気的に接続される第1の電極と、一方の端部は前記第2の透過性部材に電気的に接続される第2の電極と、を備え、前記第1の電極と前記第2の電極間に電圧を印加可能に形成されていることを特徴とする。
 また、本発明は、絶縁材料の候補材の耐水トリー評価のため前記候補材からなる試験片を用いて水トリー現象を再現させる水トリー試験方法であって、前記候補材からなる平板状で第1の面に該表面に垂直に底部に向かうにしたがって横断面が小さくなるように形成された複数の電極穴が形成された前記試験片の前記第1の面に透過性部材を密着させて該第1の面を第1の水溶液中に浸漬させ、前記第1の面の裏側である第2の面に透過性部材を密着させて該第2の面を第2の水溶液中に浸漬させた状態に試験体系を設定する体系設定ステップと、前記体系設定ステップの後に、前記第1の水溶液中に浸漬した第1の電極と前記第2の水溶液中に浸漬した第2の電極のいずれかを接地し、他方に交流電圧を印加した状態とする電圧印加ステップと、前記電圧印加ステップの開始後に、所定の時間間隔ごとに前記試験片中の水トリーの進展量を測定する測定ステップと、前記測定ステップの後に、試験時間が所定の時間を経過したか否かを判定し、所定の時間を経過した場合は当該測定ステップを終了し、所定の時間を経過していない場合は、前記電圧印加ステップおよび前記測定ステップを繰り返す繰り返しステップと、を有する、ことを特徴とする。
 本発明によれば、水トリーの再現試験に際して、複数の電極穴に均等な電界を与えることにより試験の精度を向上させることができる。
本実施形態に係る水トリー試験方法に関連する手順を示すフロー図である。 本実施形態に係る水トリー試験方法の手順を示すフロー図である。 本実施形態の水トリー試験装置の構成を示す立断面図である。 水トリー試験装置の変形例の構成を示す立断面図である。 従来の水トリー試験装置の構成を示す立断面図である。
 以下、図面を参照して、本発明に係る水トリー試験方法および水トリー試験装置の実施形態について説明する。
 図1は、本実施形態に係る水トリー試験方法に関連する手順を示すフロー図である。すなわち、水トリー試験を含む絶縁設計方法全体の手順を示している。絶縁設計方法は、大別して、回転電機50の固定子51および回転子52のコイル等の絶縁のための絶縁用部材53に用いる絶縁材料の水トリーへの耐性を評価する耐水トリー評価ステップS100と、回転電機の絶縁設計ステップS200を有する。
 耐水トリー評価ステップS100は、候補とする候補絶縁材料を選定するステップ(ステップS110)、選定された候補絶縁材料について水トリー試験を実施する水トリー試験ステップ(ステップS120)、および試験結果に基づいて候補として試験された絶縁材料の絶縁性能上の特性を評価する絶縁材料評価ステップ(ステップS130)を有する。
 図2は、本実施形態に係る水トリー試験方法の手順を示すフロー図である。水トリー試験のステップS120においては、先ず、試験体系および試験条件を設定する(ステップS121)。試験体系および試験条件の内容については、図3の説明において述べる。
 ステップS121の後に、交流電源40(図3参照)から電圧を印加して、印加側水溶液23(図3参照)と接地側水溶液33(図3参照)の間に電位差を形成し、試験片10(図3参照)に電圧を付加する(ステップS122)。
 ステップS122の後に、時間間隔をおいて、水トリーの進展量の測定を実施する(ステップS123)。また、所定時間すなわち所期の試験時間が経過したか否かを判定する(ステップS124)。所定時間が経過していなければ(ステップS124 NO)、ステップS122以下を繰り返す。所定時間が経過していれば(ステップS124 YES)、試験を終了する。
 図3は、本実施形態の水トリー試験装置の構成を示す立断面図である。試験装置5は、試験片10を用いて試験を行い、印加側水槽21、印加側電極22、接地側水槽31、および接地側電極32を有する。印加側電極22は導線24で交流電源40と結ばれている。接地側電極32と接地点間は導線34で結ばれている。印加側水槽21および接地側水槽31は、金属製の容器である。ただし、金属製には限定されない。たとえば、ポリエチレンなどの高分子化合物の容器であってもよい。
 試験片10は、絶縁材料、たとえば架橋ポリエチレン(XLPE)製である。試験片10は、厚みのある長方形平板状であり、広い方の面として第1の面10aおよび第2の面10bを有する。第1の面10aおよび第2の面10bはいずれも平坦でかつ互いに平行となるように形成されている。また、第1の面10aには、その平坦な表面からその表面に垂直に複数の電極穴11が形成されている。電極穴11は、底部に向かうにしたがって横断面が小さくなるように先端部が円錐状に形成されている。電極穴11の底部と第2の面10b間は、所定の穴深さ方向距離を有するように形成されている。なお、電極穴11の個数は統計上の試験結果の信頼度、試験時間中の試験片10の状態確認の頻度等から設定することでよい。
 電極穴11は、たとえば、絶縁材料を温めた状態で表面から尖った凸部を有するものを押し込み、冷却したのち、これを引き抜くことでも形成できる。一方、この方法で、電極穴11の周囲の絶縁材料の特性に影響を与える可能性がある場合は、電極穴11は、たとえば、絶縁材料を型に流し込んで成形する方法によって製造してもよい。この際、底面に、電極穴11の空間部の形状に対応した凸部を設けた型を使用することによって、電極穴11の形状を正確に形成できる。また、電極穴11の周囲の絶縁材料の特性に影響を与えずに電極穴11を形成することができる。
 本実施形態における試験装置5は、第1の面10aの一部で、かつ、電極穴11の全てを覆って第1の面10aの表面に沿って広がるように、導電性でありかつ液体の透過性を有する印加側透過性部材27が取り付けられている。印加側透過性部材27は印加側電極22に電気的に接続されている。
 また、第2の面10b側には、印加側透過性部材27に対向するように、第2の面10bの表面に沿って広がるように、導電性でありかつ液体の透過性を有する接地側透過性部材37が取り付けられている。接地側透過性部材37は接地側電極32に電気的に接続されている。
 印加側透過性部材27および接地側透過性部材37は、たとえば多孔性金属でよい。この場合、穴径はたとえば概ね500μm程度、気孔率90%以上のものが使用できる。なお、多孔性の金属には限定されない。導電性でかつ液体透過性を有するものであれば、導電性のある金属製のメッシュでもよい。
 試験装置5においては、印加側水槽21および接地側水槽31は1つの側面が開放された容器であり、試験片10が印加側水槽21と接地側水槽31によって挟み込まれるように構成されている。
 印加側水槽21の開口端と第1の面10aとの接触部、および接地側水槽31の開口端と第2の面10bとの接触部のそれぞれのシール性を確保するために、たとえば、縁部の材質を弾力性のある材料とし、あるいは、Oリング等を介在させた上で、印加側水槽21の開口端と第1の面10a、接地側水槽31の開口端と第2の面10bとが、それぞれにおいて互いに押し付けあうようにしてもよい。あるいは、印加側水槽21の開口端と第1表面10a間、接地側水槽31の開口端と第2の面10b間が、それぞれシール材などによってシールされていてもよい。
 試験片10、印加側水槽21および接地側水槽31は、それぞれの上部を除いて、大部分が、絶縁部38によって包囲されている。このため、試験装置5の外部との電気的な接触を防止できるようになっている。
 印加側水槽21の内部には、印加側水溶液23が封入されている。接地側水槽31の内部には、接地側水溶液33が封入されている。また、印加側水溶液23および接地側水溶液33は、たとえば、塩化ナトリウム水溶液などの中性の水溶液でよい。濃度は、印加側水溶液23および接地側水溶液33が同じでよい。なお、印加側水溶液23および接地側水溶液33には、水を使用してもよい。
 印加側電極22は印加側水槽21の壁を貫通して延びており、印加側電極22の一方の端部は印加側水槽21の外部に、他方の端部は印加側水槽21内の印加側水溶液23内に浸漬されている。印加側電極22の印加側水槽21の外側の端部は、導線24を介して交流電源40に接続されている。
 接地側水槽31には、接地側電極32が取り付けられている。接地側電極32は、接地側水槽31の壁を貫通して延びており、接地側電極32の一方の端部は接地側水槽31の外部に、他方の端部は接地側水槽31内の接地側水溶液33内に浸漬されている。接地側電極32の接地側水槽31の外側の端部は、導線34を介して接地された部分に接続されている。
 ここで、印加する電圧は、回転電機50が、運転中に晒されることになる電圧、あるいはこれに所定の安全係数を乗じた値の電圧である。特にコイル導線についての絶縁等が重要であり、たとえば、コイル導線に付加される電圧として、線間電圧、対地電圧、ターン間電圧等に相当する電圧がある。また、これらの電圧値および周波数は、あらかじめ実機について理論的に得られる値、もしくは安全係数を乗じるなど実験的に測定した値を用いればよい。
 以上のように構成された本実施形態においては、それぞれ平面的に広がった導電性のある印加側透過性部材27と接地側透過性部材37が試験片10を挟んで対向しているため、試験片10のうち印加側透過性部材27と接地側透過性部材37に挟まれた領域は、端部を除いて均一な電界が生ずる。
 これは、たとえば、水溶液の導電率が1S/mないし10S/m程度であるのに対して、金属の導電率は10S/m程度であり、印加側透過性部材27の内部および接地側透過性部材37の内部においてはそれぞれ、電位分布は均一とみなせるからである。このため、複数の電極穴11と裏側の第2の面10b間にかかる電位差も均一となる。
 このように、複数の電極穴に均等な電界を与えることにより水トリーの再現試験の精度を向上させることができる。
 以上、本発明の実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。たとえば、実施形態では、電極穴11が形成されている側の電極は印加側電極22であり、反対側の電極が接地側電極32の場合を示したが、これには限定されない。絶縁候補材料の試験片10の両側に電位差が生ずるのであれば、逆に、電極穴11が形成されている側の電極が接地側の電極、その反対側の電極が印加側の電極である場合でもよい。また電圧の極性効果などを調べる意図で、電極穴11が形成されている側の印加側電極22に正極性電圧を印加し、反対側の接地側電極32に負極性電圧を印加する、あるいはその逆に印加するなど変形例が考えられる。また図4に示すように、印加側電極22からの導線25と、接地側電極32からの導線35とを、交流電源41に接続して、印加側電極22と接地側電極32間に交流電圧を印加することでもよい。
 また、実施形態では、交流電圧の印加側は、導線24、印加側電極22および印加側透過性部材27、接地側は、導線34、接地側電極32および接地側透過性部材37のようにそれぞれ接続されている例を示したが、印加側電極22、接地側電極32はそれぞれ設けない場合でもよい。すなわち、導線24を直接に印加側透過性部材27に接続し、導線34を直接に接地側透過性部材37に接続することでもよい。
 また、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
 実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 5…試験装置、10…試験片、10a…第1の面、10b…第2の面、11…電極穴、21…印加側水槽(第1の水槽)、22…印加側電極(第1の電極)、23…印加側水溶液(第1の水溶液)、24、25…導線、27…印加側透過性部材(第1の透過性部材)、31…接地側水槽(第2の水槽)、32…接地側電極(第2の電極)、33…接地側水溶液(第2の水溶液)、34、35…導線、37…接地側透過性部材(第2の透過性部材)、38…絶縁部、40、41…交流電源、50…回転電機、51…固定子、52…回転子、53…絶縁用部材

Claims (4)

  1.  絶縁材料の候補材の耐水トリー評価のため前記候補材からなる平板状で第1の面において該表面に垂直に底部に向かうにしたがって横断面が小さくなるように形成された複数の電極穴が形成された試験片を用いて水トリー現象を再現させる水トリー試験装置であって、
     前記第1の面に密着して設けられ前記複数の電極穴を覆うように平面的に広がった液体の透過性を有する導電性の第1の透過性部材と、
     前記第1の面の裏側である第2の面に密着して設けられ前記試験片をはさんで前記第1の透過性部材に対向するように平面的に広がって液体の透過性を有する導電性の第2の透過性部材と、
     前記第1の透過性部材に覆われた範囲を含む前記試験片の第1の面を第1の水溶液中に浸漬するように該第1の水溶液を収納する第1の水槽と、
     前記第2の透過性部材に覆われた範囲を含む前記試験片の第2の面を第2の水溶液中に浸漬するように該第2の水溶液を収納する第2の水槽と、
     一方の端部は前記第1の透過性部材に電気的に接続される第1の電極と、
     一方の端部は前記第2の透過性部材に電気的に接続される第2の電極と、
     を備え、
     前記第1の電極と前記第2の電極間に電圧を印加可能に形成されていることを特徴とする水トリー試験装置。
  2.  前記第1の透過性部材および前記第2の透過性部材の少なくとも一方は、導電性を有する多孔性金属の板であることを特徴とする請求項1に記載の水トリー試験装置。
  3.  前記第1の透過性部材および前記第2の透過性部材の少なくとも一方は、導電性を有する線状の金属が板状に成形されたメッシュであることを特徴とする請求項1に記載の水トリー試験装置。
  4.  絶縁材料の候補材の耐水トリー評価のため前記候補材からなる試験片を用いて水トリー現象を再現させる水トリー試験方法であって、
     前記候補材からなる平板状で第1の面において該表面に垂直に底部に向かうにしたがって横断面が小さくなるように形成された複数の電極穴が形成された前記試験片の前記第1の面に透過性部材を密着させて該第1の面を第1の水溶液中に浸漬させ、前記第1の面の裏側である第2の面に透過性部材を密着させて該第2の面を第2の水溶液中に浸漬させた状態に試験体系を設定する体系設定ステップと、
     前記体系設定ステップの後に、前記第1の水溶液中に浸漬した第1の電極と前記第2の水溶液中に浸漬した第2の電極のいずれかを接地し、他方に交流電圧を印加した状態とする電圧印加ステップと、
     前記電圧印加ステップの開始後に、所定の時間間隔ごとに前記試験片中の水トリーの進展量を測定する測定ステップと、
     前記測定ステップの後に、試験時間が所定の時間を経過したか否かを判定し、所定の時間を経過した場合は当該測定ステップを終了し、所定の時間を経過していない場合は、前記電圧印加ステップおよび前記測定ステップを繰り返す繰り返しステップと、
     を有する、
     ことを特徴とする水トリー試験方法。
PCT/JP2014/006100 2014-12-05 2014-12-05 水トリー試験方法および水トリー試験装置 WO2016088156A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/006100 WO2016088156A1 (ja) 2014-12-05 2014-12-05 水トリー試験方法および水トリー試験装置
EP14907381.9A EP3229032B1 (en) 2014-12-05 2014-12-05 Water tree testing method and water tree testing device
JP2016562091A JP6416283B2 (ja) 2014-12-05 2014-12-05 水トリー試験方法および水トリー試験装置
US15/532,684 US10041990B2 (en) 2014-12-05 2014-12-05 Water tree testing method and water tree testing apparatus
CN201480083793.6A CN107003349B (zh) 2014-12-05 2014-12-05 水树试验方法及水树试验装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006100 WO2016088156A1 (ja) 2014-12-05 2014-12-05 水トリー試験方法および水トリー試験装置

Publications (1)

Publication Number Publication Date
WO2016088156A1 true WO2016088156A1 (ja) 2016-06-09

Family

ID=56091138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006100 WO2016088156A1 (ja) 2014-12-05 2014-12-05 水トリー試験方法および水トリー試験装置

Country Status (5)

Country Link
US (1) US10041990B2 (ja)
EP (1) EP3229032B1 (ja)
JP (1) JP6416283B2 (ja)
CN (1) CN107003349B (ja)
WO (1) WO2016088156A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045214A (ja) * 2017-08-30 2019-03-22 一般財団法人電力中央研究所 電力ケーブルの水トリー劣化評価システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10175289B2 (en) * 2013-09-20 2019-01-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Water-tree resistance evaluation method, insulation design method, and rotary electric machine
CN108458908A (zh) * 2018-03-22 2018-08-28 国网陕西省电力公司电力科学研究院 用于制备电、受潮联合老化交联聚乙烯样品的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628231A (en) * 1979-08-16 1981-03-19 Nippon Yunikaa Kk Polyolefin composition for electrical insulation
JPS57126004A (en) * 1981-01-30 1982-08-05 Nippon Unicar Co Ltd Semiconductive polyolefin composition and cable using same
US4535116A (en) * 1983-09-26 1985-08-13 Phillips Petroleum Company Inhibition of water treeing in polymers of ethylene
JPH04311742A (ja) * 1991-04-10 1992-11-04 Mitsubishi Cable Ind Ltd 絶縁組成物
JP2012103158A (ja) * 2010-11-11 2012-05-31 Toshiba Mitsubishi-Electric Industrial System Corp 水トリー発生試験方法並びに水トリー発生試験用試験片およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144202A (en) * 1977-12-27 1979-03-13 Union Carbide Corporation Dielectric compositions comprising ethylene polymer stabilized against water treeing with epoxy containing organo silanes
US4440671A (en) * 1982-03-31 1984-04-03 Union Carbide Corporation Compositions of hydrocarbon-substituted diphenyl amines and high molecular weight polyethylene glycols; and the use thereof as water-tree retardants for polymers
US5276401A (en) * 1990-01-09 1994-01-04 Hitachi Cable, Ltd. Method for diagnosing an insulation deterioration of an electric apparatus
JPH07105735A (ja) * 1993-10-08 1995-04-21 Fujikura Ltd 電気絶縁組成物
US6340891B1 (en) * 1998-04-14 2002-01-22 Furukawa Electric Co., Ltd. Method of diagnosing deterioration of the insulation of an electric power cable
JPH11350918A (ja) 1998-06-10 1999-12-21 Niigata Eng Co Ltd ガスタービン発電装置
CN101354425B (zh) * 2008-09-02 2011-01-26 浙江万马高分子材料股份有限公司 交联聚乙烯电缆料耐水树性能的试验装置
CN101713725B (zh) * 2009-11-24 2011-07-27 上海新上化高分子材料有限公司 高分子材料抗水树性能的检测方法
CN102096031A (zh) * 2010-12-20 2011-06-15 无锡江南电缆有限公司 一种测试中压电缆抗老化及抗水树性能的设备
CN201886100U (zh) * 2010-12-20 2011-06-29 无锡江南电缆有限公司 一种测试中压电缆抗老化及抗水树性能的设备
US8847606B2 (en) * 2011-06-02 2014-09-30 University Of California Method and system for assessing insulation deterioration in live underground power cables
CN102628906B (zh) * 2012-04-24 2014-04-02 国家电网公司 Xlpe中压电缆水树老化试验装置
KR101466623B1 (ko) * 2014-07-09 2014-11-28 한국전력공사 초저주파 탄델타의 측정 데이터를 이용한 전력 케이블의 상태 진단 및 잔존 수명 측정 장치 및 그 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628231A (en) * 1979-08-16 1981-03-19 Nippon Yunikaa Kk Polyolefin composition for electrical insulation
JPS57126004A (en) * 1981-01-30 1982-08-05 Nippon Unicar Co Ltd Semiconductive polyolefin composition and cable using same
US4535116A (en) * 1983-09-26 1985-08-13 Phillips Petroleum Company Inhibition of water treeing in polymers of ethylene
JPH04311742A (ja) * 1991-04-10 1992-11-04 Mitsubishi Cable Ind Ltd 絶縁組成物
JP2012103158A (ja) * 2010-11-11 2012-05-31 Toshiba Mitsubishi-Electric Industrial System Corp 水トリー発生試験方法並びに水トリー発生試験用試験片およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045214A (ja) * 2017-08-30 2019-03-22 一般財団法人電力中央研究所 電力ケーブルの水トリー劣化評価システム

Also Published As

Publication number Publication date
EP3229032B1 (en) 2019-09-18
JP6416283B2 (ja) 2018-10-31
US20170336466A1 (en) 2017-11-23
EP3229032A4 (en) 2018-08-01
EP3229032A1 (en) 2017-10-11
US10041990B2 (en) 2018-08-07
JPWO2016088156A1 (ja) 2017-09-07
CN107003349A (zh) 2017-08-01
CN107003349B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
US9063186B2 (en) Device for measuring electrical treeing of medium voltage cables
Wang et al. Characteristics of PD under square wave voltages and their influence on motor insulation endurance
CN110346677B (zh) 电缆老化过程中状态的确定方法和装置以及老化装置
JP6416283B2 (ja) 水トリー試験方法および水トリー試験装置
JP6147862B2 (ja) 耐水トリー評価方法、絶縁設計方法および回転電機
JP2018031743A (ja) 絶縁体の電荷分布の測定方法
JP5617179B2 (ja) 被膜付電線の絶縁破壊試験装置及び絶縁破壊試験方法
Harms et al. Application of Localized Electrochemical Impedance Spectroscopy to Lithium‐Ion Cathodes and in situ Monitoring of the Charging Process
Wang Partial discharge analysis of stator insulation at arbitrary voltage waveform stimulus
Liu et al. Partial discharge inception voltages of an inhibited mineral oil in quasi-uniform electric fields
Kumazawa Application of the AC Superposition Method to Degradation Diagnosis of 22/33‐kV Class XLPE Cables
JP2012037483A (ja) 部分放電発生ボイド種別の判定法
RU2630549C1 (ru) Устройство для определения стойкости изоляции эмалированных проводов к коронным разрядам
Hägerbrand Measurements of resistivity in transformer insulation liquids
Hao et al. Study of Space Charge Dynamics in Oil and Pressboard Composite System under Different Polarity Reversal Voltages.
Nguyen et al. Cavity discharge behaviors under trapezoid-based voltage at very low frequency
RU2491565C1 (ru) Способ определения стойкости изоляции эмалированных проводов к поверхностным разрядам
Grav et al. PD occurrence in liquids in ac stressed needle plane gap
RU156869U1 (ru) Проволочный датчик контактной коррозии
Azcarraga Partial Discharge Phenomena in Converter and Traction Transformers: Identification and Reliability
Chimunda et al. A comparative study of surface partial discharge parameters at very low frequency (VLF) and power frequency test voltages
Castellon et al. Reliability of Interfaces for HVDC Cable Accessories
Singla et al. Simulation and Experimental PD Study of Laboratory Test Setup
Shrestha Study of the dielectric degradation of XLPE and EPR power cables by switching impulses
Mosito et al. A comparative study of cavity partial discharge parameters at vlf and at 50 hz test voltages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562091

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15532684

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014907381

Country of ref document: EP