WO2016087047A1 - Mandrin d'outil rotatif, groupe de transformation d'un support plan, et procede de fonctionnement - Google Patents

Mandrin d'outil rotatif, groupe de transformation d'un support plan, et procede de fonctionnement Download PDF

Info

Publication number
WO2016087047A1
WO2016087047A1 PCT/EP2015/025086 EP2015025086W WO2016087047A1 WO 2016087047 A1 WO2016087047 A1 WO 2016087047A1 EP 2015025086 W EP2015025086 W EP 2015025086W WO 2016087047 A1 WO2016087047 A1 WO 2016087047A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
circuit
sleeve
cooling
pressure
Prior art date
Application number
PCT/EP2015/025086
Other languages
English (en)
Inventor
Philippe Clément
Pierre Robadey
Original Assignee
Bobst Mex Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bobst Mex Sa filed Critical Bobst Mex Sa
Priority to EP15801685.7A priority Critical patent/EP3227042B1/fr
Priority to JP2017529027A priority patent/JP6445159B2/ja
Priority to CN201580071120.3A priority patent/CN107107518B/zh
Priority to KR1020177016870A priority patent/KR20170086084A/ko
Priority to ES15801685T priority patent/ES2902695T3/es
Priority to US15/531,801 priority patent/US10464276B2/en
Publication of WO2016087047A1 publication Critical patent/WO2016087047A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/07Embossing, i.e. producing impressions formed by locally deep-drawing, e.g. using rolls provided with complementary profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/14Cutting, e.g. perforating, punching, slitting or trimming
    • B31B50/146Cutting, e.g. perforating, punching, slitting or trimming using tools mounted on a drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/14Cutting, e.g. perforating, punching, slitting or trimming
    • B31B50/16Cutting webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/25Surface scoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/25Surface scoring
    • B31B50/256Surface scoring using tools mounted on a drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/74Auxiliary operations
    • B31B50/741Moistening; Drying; Cooling; Heating; Sterilizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B50/00Making rigid or semi-rigid containers, e.g. boxes or cartons
    • B31B50/74Auxiliary operations
    • B31B50/88Printing; Embossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F1/00Mechanical deformation without removing material, e.g. in combination with laminating
    • B31F1/08Creasing
    • B31F1/10Creasing by rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/22Means for cooling or heating forme or impression cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31BMAKING CONTAINERS OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31B2100/00Rigid or semi-rigid containers made by folding single-piece sheets, blanks or webs
    • B31B2100/002Rigid or semi-rigid containers made by folding single-piece sheets, blanks or webs characterised by the shape of the blank from which they are formed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B31MAKING ARTICLES OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER; WORKING PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31FMECHANICAL WORKING OR DEFORMATION OF PAPER, CARDBOARD OR MATERIAL WORKED IN A MANNER ANALOGOUS TO PAPER
    • B31F2201/00Mechanical deformation of paper or cardboard without removing material
    • B31F2201/07Embossing
    • B31F2201/0707Embossing by tools working continuously
    • B31F2201/0715The tools being rollers
    • B31F2201/0723Characteristics of the rollers
    • B31F2201/073Rollers having a multilayered structure

Definitions

  • the present invention relates to a rotary tool mandrel for a group of transformation of a plane support.
  • the invention relates to a transformation unit comprising at least one rotary tool mandrel.
  • the invention also relates to a method of operating a transformation group of a plane support.
  • a support processing machine is intended for the manufacture of packaging.
  • an initial planar support such as a continuous strip of cardboard, is unwound and printed by a printing station comprising one or more printing units.
  • the planar support is then transferred to an introductory group and then to an embossing group, possibly followed by a push-up group.
  • the flat support is then cut in a cutting group. After ejection of the waste zones, the obtained poses are cut to obtain individualized boxes.
  • the rotary groups of transformation, embossing, crushing, cutting, ejection of waste, or printer comprise respectively an upper cylindrical tool for processing, and a lower cylindrical tool for transformation, between which the plane support circulates to be transformed.
  • the rotary transformation tools rotate at the same speed, but in opposite directions from each other.
  • the plane support passes into the gap between the rotary tools, which shape an embossed relief, shape a raised relief, cut the plane support into poses in a rotary cut, eject the waste, or print a pattern during the process. impression.
  • Cylinder change operations are long and tedious.
  • the operator mechanically disconnects the cylinder to remove it from its drive mechanism. Then the operator pulls the cylinder outside the processing machine, and puts the new cylinder back into the processing machine by reconnecting it to its drive.
  • the weight of a cylinder is important, of the order of 50 kg to 2 ⁇ 00 kg. To pull it out, the operator raises it with a hoist.
  • some processing groups provide for the use of rotary tools consisting of a mandrel and a removable sleeve carrying shape ensuring the transformation, insertable on the mandrel. Then simply change the sleeve, rather than the entire rotary tool. This facilitates the tool change due to the low weight of the sleeve and reduces costs because the sleeve is less expensive.
  • the passage of the planar support in the successive transformation groups tends to heat the plane support, especially during its passage in the printer groups.
  • the plane support heated, and in turn heats the rotary tools, because the latter, usually metallic, are very good thermal conductors.
  • the dimensions of a sleeve are therefore generally provided to limit the clearance between the sleeve and the mandrel during processing operations. A difficulty that results is that at the end of the transformation group, the sleeve which has a higher thermal conductivity than that of the mandrel, cools faster than the latter. The sleeve is then difficult to remove from the mandrel.
  • An object of the present invention is to provide a mandrel, a rotary tool, a group of transformation of a plane support, and a method of operation which at least partially solve the disadvantages of the state of the art.
  • the present invention relates to a rotary tool mandrel for a group of transformation of a plane support, on which a sleeve is intended to be inserted.
  • the rotary tool chuck comprises:
  • peripheral wall which is able to assume a rest position and which is able to assume a locking position by exerting a radial pressure on the sleeve to lock the sleeve in position on the rotary tool mandrel, and
  • a fluidic pressure circuit which is formed between the peripheral wall and the cylindrical core, to exert the radial pressure on the sleeve.
  • the rotary tool mandrel is characterized in that it comprises a fluidic cooling circuit, to allow circulation of a fluid at the cylindrical core, and to cool the tool mandrel rotary.
  • the present invention also relates to a rotary tool mandrel for a group of transformation of a plane support, on which a sleeve is intended to be inserted.
  • the rotary tool chuck comprises:
  • a fluidic cooling circuit to allow a circulation of a fluid at the cylindrical core, and to cool the rotary tool mandrel.
  • the rotary tool mandrel is characterized in that it comprises:
  • peripheral wall which is able to assume a rest position and which is able to assume a locking position by exerting a radial pressure on the sleeve to lock the sleeve in position on the rotary tool mandrel, and
  • a fluidic pressure circuit which is formed between the peripheral wall and the cylindrical core, to exert the radial pressure on the sleeve.
  • the fluidic pressure circuit for the tool is used for securing the sleeve to the mandrel and thus to form the complete tool.
  • the fluidic cooling circuit is used to circulate and cool a fluid to cool the mandrel. This fluidic cooling circuit for the tool makes it possible to rapidly cool the mandrel and the sleeve while the transformation unit is being stopped, making it easier to extract the sleeve.
  • the fluidic cooling circuit makes it possible to standardize the temperature of the mandrel and sleeve assembly.
  • the pressure circuit and the cooling circuit are connected together, thus forming a single circuit with a single fluid.
  • a connection port of the cooling circuit is arranged at a front end of the mandrel and a connection port of the pressure circuit is arranged at a rear end of the mandrel.
  • the connection ports are for example aligned on an axis of rotation of the mandrel.
  • connection ports comprise a respective connecting element of the mandrel, intended to cooperate with a complementary coupling element of the transformation unit for connecting the fluidic pressure circuit to the fluidic cooling circuit.
  • the connecting elements and the complementary coupling elements are of the quick-connect type, taking a closed position when they are disconnected, and an opening position allowing the passage of a fluid when connected. This automatically closes the pressure circuit when the additional coupling elements are disconnected.
  • the pressure circuit has a tube-shaped portion, coaxial with the axis of rotation of the mandrel, around the cylindrical core.
  • the pressure circuit has at least one axial duct portion formed in each mandrel spigot, the axial duct portion connecting a connection port.
  • the pressure circuit comprises at least one duct portion connecting each axial duct portion to the tube-shaped portion.
  • the subject of the invention is also a group for transforming a flat support such as a crushing, embossing, rotary cutting, waste ejection or printing unit comprising at least one mandrel as described and claimed below.
  • the cooling circuit for connection to a cooling module configured to cool the fluid.
  • the cooling circuit is connected to the pressure circuit and forms, for example, a closed circuit.
  • the invention further relates to a method of operating a transformation group, as described and claimed below.
  • the method comprises the steps of:
  • the circulation of the fluid in the pressure circuit for cooling the mandrel is for example carried out in a closed circuit.
  • the connection port of the pressure circuit connected to the cooling circuit for securing the sleeve to the mandrel for example is the connection port arranged at the rear of the mandrel, opposite side conductor.
  • control of the joining of the sleeve to the mandrel or the control of the cooling of the mandrel can be easily controlled and automated by the controls for connecting or disconnecting the pressure circuit to the cooling circuit.
  • FIG. 1 is a general view of an exemplary transformation line of a plane support
  • FIG. 2 shows a perspective view of an upper rotary tool and a lower rotary tool
  • FIG. 3 shows a perspective view of a mandrel
  • FIG. 4 shows a view of a pressure circuit connected to a cooling circuit forming a closed circuit
  • FIG. 5 shows a partial vertical sectional view of a transformation unit in which are mounted two rotary tools respectively comprising a mandrel and a sleeve secured to the mandrel.
  • the longitudinal, vertical and transverse directions indicated in FIG. 2 are defined by the trihedron L, V, T.
  • the transverse direction T is the direction perpendicular to the direction of longitudinal displacement L of the plane support.
  • the horizontal plane corresponds to the plane L, T.
  • the front and rear positions are defined relative to the transverse direction T, as being respectively the driver's side and the opposite driver's side.
  • a processing line of a flat support such as flat cardboard or roll-fed continuous strip paper, allows different operations to be performed and to obtain packaging such as folding boxes.
  • the transformation line comprises, disposed one after the other in the order of movement of the planar support, an unwinding station 1, several printing units 2, one or more series embossing groups followed by one or more series crushing units 3, followed by a rotating cutting unit 4 or platen cutter, and a receiving station 5 made objects.
  • the transformation unit 7 comprises an upper rotary tool 10 and a lower rotary tool 11, which modify the plane support by printing, embossing, crushing, cutting, ejection of waste, etc., in order to obtain a package.
  • the rotary tools 10 and 11, are mounted parallel to each other in the transformation group 7, one above the other, and extend in the transverse direction T, which is also the direction of the axes of rotation A1 and A2 of the rotary tools 10 and 11 (see Fig. 2).
  • the rear ends of the rotary tools 10 and 11, the opposite conductor side are rotated by motorized drive means. In operation, the rotary tools 10 and 11 rotate in opposite directions around each of the axes of rotation A1 and A2 (arrows Fs and Fi).
  • the plane support passes into the gap between the rotary tools 10 and 11, to be embossed, and / or discharged, and / or cut, and / or printed.
  • At least one of the two rotary tools, the upper rotary tool 10 or the lower rotary tool 11, comprises a mandrel 12 and a removable sleeve 13, insertable on the mandrel 12 in the transverse direction T (FIG 2, arrow G). .
  • a mandrel 12 and a removable sleeve 13, insertable on the mandrel 12 in the transverse direction T (FIG 2, arrow G).
  • the sleeves 13 are inexpensive compared to the price of the rotary tool 10 and 11 complete. It is therefore advantageous to use the same mandrel 12 in combination with several sleeves 13, rather than to provide the acquisition of several rotary tools 10 and 11 complete.
  • the sleeve 13 has a generally cylindrical shape. It is for example made of aluminum material.
  • the mandrel 12 comprises a cylindrical core 14, a front spigot 15, a rear spigot 16 on either side of the cylindrical core 14, forming a rotating shaft of the rotary tool, and a peripheral wall 17 surrounding the cylindrical core 14.
  • the front and rear trunnions 15 and 16 have a generally cylindrical shape. They are respectively held by front and rear bearings 18, 19 of the transformation unit 7.
  • the rear journals 16 of the rotary tools 10 and 11, opposite the conductive side are rotated by a motorized drive system 20.
  • the elements of the mandrel 12, that is to say the cylindrical core 14, the front and rear trunnions 15 and 16 and the peripheral envelope 17, are made of metallic material, such as steel.
  • the cylindrical peripheral wall 17 can take a rest position and a locking position in which the peripheral wall 17 exerts a radial pressure on the sleeve 13 to lock it in position on the mandrel 12, for example by radial deformation of the peripheral wall 17.
  • the mandrel 12 also comprises a fluid pressure circuit 21 formed in part between the peripheral wall 17 and the cylindrical core 14 (FIGS. 5), for controlling the exercise of the radial pressure by the peripheral wall 17.
  • the pressure circuit 21 is intended to receive a fluid for pressing the peripheral wall 17 against the inner envelope surface of the sleeve 13 to hold the sleeve 13 to the mandrel 12.
  • the sleeve 13 thus held firmly to the mandrel 12 can be rotated about the axis of rotation A1 and A2.
  • the fluid is for example oil.
  • the pressure circuit 21 comprises a connection port 22 to a cooling fluid circuit 24 of the transformation unit 7, to allow a circulation of a fluid in the pressure circuit 21 for cooling the mandrel 12.
  • a connection port 22 is arranged at a front end of the mandrel 12.
  • the pressure circuit 21 comprises another connection port 23 arranged at a rear end of the mandrel 12. The pressure circuit 21 can thus lead to the mandrel 12 by a port of the connection port 22 formed in the front trunnion 15 and by a port of the connection port 23 formed in the rear trunnion 16.
  • connection ports 22 and 23 are for example aligned on the axis of rotation A1 or A2 of the mandrel 12, arranged at the respective ends of the front and rear trunnions 15 and 16.
  • the pressure circuit 21 has an axial symmetry.
  • the pressure circuit 21 has a tube-shaped portion 21a, two axial duct portions 21b and two radial duct portions 21c ( Figure 5).
  • the axial and radial duct portions 21b, 21c are linear.
  • the tube-shaped portion 21a is coaxial with the axis of rotation A1 or A2 of the mandrel 12. It is formed around the cylindrical core 14.
  • the peripheral wall 17 is, for example, hooped and then welded to the cylindrical core 14 leaving an interstice a few millimeters forming the tube-shaped portion 21a of the pressure circuit 21.
  • the axial duct portions 21b are aligned on the axis of rotation A1 and A2 of the mandrel 12, and are formed in a respective pin 15 and 16. Each portion of axial duct 21b connects a connection port 22 and 23 to a radial duct portion 21c forming a right angle. Each radial duct portion 21c extends radially to connect an axial duct portion 21b in two diametrically opposite locations of one end of the tube-shaped portion 21a.
  • This embodiment of the pressure circuit 21 is simple to perform and keeps the sleeve 13 uniformly over its entire inner envelope surface.
  • the pressure circuit 21 is intended to be connected to the cooling circuit
  • Processing Group 7 also comprises a cooling module 25 configured to cool the fluid flowing in the cooling circuit 24.
  • the cooling module 25 comprises for example a pump for circulating the fluid in the cooling circuit 24 and a heat exchanger able to cool the fluid flowing in the cooling circuit 24.
  • connection ports 22 and 23 comprise a respective connecting element 26 of the mandrel 12 intended to cooperate with a complementary connecting element 27 of the transformation unit 7 to connect the pressure circuit 21 to the cooling circuit 24.
  • the connecting elements 26 are, for example, distinct elements mounted tightly in an orifice of the respective connection port 22 and 23 of the pressure circuit 21.
  • the connecting elements 26 and the complementary connecting elements 27 are for example of the type quick couplings.
  • the ends of the connecting elements 26 and 27 cooperating together are for example of the male-female type.
  • the quick couplings are further configured to assume a closed position when disconnected from each other and an open position permitting the passage of fluid when connected together. This automatically closes the pressure circuit 21 when disconnected, necessary for the exercise of the radial pressure by the peripheral wall 17 to secure the sleeve 13 to the mandrel 12.
  • one of the two connection ports 22 and 23 of the pressure circuit 21, such as the connection port 23 arranged at the rear of the mandrel 12 is only connected.
  • the connecting element 26 of the connection port 22 arranged at the front of the mandrel 12 is then in the closed position, closing the pressure circuit 21 (FIG 5).
  • a fluid is sent into the pressure circuit 21.
  • the cooling circuit 24 is isolated from the cooling module 25.
  • the pressure exerted by the fluid in the pressure circuit 21 then pushes the peripheral wall 17 radially, in the blocking position, pressing it against the inner envelope surface of the sleeve 13 , which fixes the sleeve 13 firmly to the mandrel 12.
  • At least one of the two connecting elements 26 of the mandrel 12 remains connected to the complementary connecting element 27 of the transformation unit 7.
  • the sleeve 13 thus firmly held to the mandrel 12 can be rotated by the mandrel 12 to produce the plane support transformation operations.
  • the pressure of the fluid is decreased to separate the sleeve 13 to the mandrel 12.
  • connection elements 26 then connected to the complementary coupling elements 27, allow the circulation of the fluid through the cooling circuit 24 , forming a closed circuit, to be cooled by the cooling module 25, and cool the mandrel 12.
  • the mandrel 12 and the sleeve 13 can then be cooled. When sufficiently cooled, and the peripheral wall 17 is in the rest position, the sleeve 13 can be easily removed.
  • the pressure circuit 21 used for the joining of the sleeve 13 to the mandrel 12 is thus also used for cooling the mandrel 12 to stop the transformation unit 7.
  • This second use of the pressure circuit 21 accelerates the cooling of the mandrel 12 to release more easily and quickly the sleeve 13.
  • the control of the connection of the sleeve 13 to the mandrel 12 or the cooling of the mandrel 12, can be easily controlled and automated by the controls of the connection or disconnection of the circuit pressure 21.
  • the present invention is not limited to the embodiments described and illustrated. Many modifications can be made, without departing from the scope defined by the scope of the set of claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
  • Drilling And Boring (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

Un mandrin d'outil rotatif pour un groupe de transformation d'un support plan, sur lequel un manchon (13) est destiné à être inséré, comprend un noyau cylindrique (14), une paroi périphérique (17), apte à prendre une position de repos et une position de blocage en exerçant une pression radiale sur le manchon (13) pour le bloquer en position sur le mandrin (12), un circuit fluidique de pression (21), ménagé entre la paroi périphérique (17) et le noyau cylindrique (14), pour exercer la pression radiale sur le manchon (13), et un circuit fluidique de refroidissement (24), pour permettre une circulation d'un fluide au niveau du noyau cylindrique (14), et refroidir le mandrin (12).

Description

MANDRIN D'OUTIL ROTATIF. GROUPE DE TRANSFORMATION D'UN SUPPORT PLAN. ET PROCEDE DE FONCTIONNEMENT
La présente invention concerne un mandrin d'outil rotatif pour un groupe de transformation d'un support plan. L'invention se rapporte à un groupe de transformation comportant au moins un mandrin d'outil rotatif. L'invention concerne également un procédé de fonctionnement d'un groupe de transformation d'un support plan.
Une machine de transformation de support est destinée à la fabrication d'emballages. Dans cette machine, un support plan initial, tel qu'une bande continue de carton, est déroulé et imprimé par une station d'impression comprenant un ou plusieurs groupes imprimeurs. Le support plan est ensuite transféré dans un groupe d'introduction, puis dans un groupe de gaufrage, éventuellement suivi par un groupe de refoulage. Le support plan est ensuite découpé dans un groupe de découpe. Après éjection des zones de déchets, les poses obtenues sont sectionnées pour obtenir des boîtes individualisées.
Les groupes rotatifs de transformation, de gaufrage, refoulage, découpe, éjection des déchets, ou imprimeur, comportent respectivement un outil supérieur cylindrique de transformation, et un outil inférieur cylindrique de transformation, entre lesquels circule le support plan pour être transformé. En fonctionnement, les outils rotatifs de transformation tournent à la même vitesse, mais en sens inverse l'un de l'autre. Le support plan passe dans l'interstice situé entre les outils rotatifs, qui façonnent un relief par gaufrage, façonnent un relief par refoulage, découpent le support plan en poses en découpe rotative, éjectent les déchets, ou qui impriment un motif lors de l'impression.
Les opérations de changement de cylindres s'avèrent longues et fastidieuses. L'opérateur déconnecte mécaniquement le cylindre pour l'enlever de son mécanisme d'entraînement. Puis l'opérateur sort le cylindre en dehors de la machine de transformation, et replace le nouveau cylindre dans la machine de transformation en le reconnectant à son entraînement. Le poids d'un cylindre est important, de l'ordre de 50 kg à 2Ό00 kg. Pour le sortir, l'opérateur le soulève à l'aide d'un palan.
En raison de son poids assez élevé, un changement de cylindre n'est pas très rapide à effectuer. En outre, de nombreux changements d'outils peuvent être nécessaires pour obtenir de très nombreuses boîtes différentes les unes des autres. Ces outils doivent être commandés longtemps à l'avance, ce qui devient incompatible avec les changements de productions demandés actuellement. De plus, des outils sont relativement coûteux à réaliser, et ils ne deviennent rentables qu'avec une production extrêmement importante.
Ainsi certains groupes de transformation prévoient l'utilisation d'outils rotatifs composés d'un mandrin et d'un manchon amovible porteur de forme assurant la transformation, insérable sur le mandrin. Il suffit alors de changer le manchon, plutôt que la totalité de l'outil rotatif. Ceci facilite le changement d'outil du fait du faible poids du manchon et diminue les coûts, car le manchon est moins onéreux.
Le passage du support plan dans les groupes de transformation successifs tend à chauffer le support plan, notamment lors de son passage dans les groupes imprimeurs. Le support plan chauffé, et chauffe à son tour les outils rotatifs, car ces derniers, généralement métalliques sont de très bons conducteurs thermiques. Les dimensions d'un manchon sont donc généralement prévues pour limiter le jeu entre le manchon et le mandrin lors des opérations de transformation. Une difficulté qui en résulte est qu'à l'arrêt du groupe de transformation, le manchon qui présente une conductivité thermique plus importante que celle du mandrin, se refroidit plus vite que ce dernier. Le manchon est alors difficile à retirer du mandrin.
Exposé de l'invention
Un but de la présente invention est de proposer un mandrin, un outil rotatif, ι groupe de transformation d'un support plan, et un procédé de fonctionnement q résolvent au moins en partie les inconvénients de l'état de la technique.
A cet effet, la présente invention a pour objet un mandrin d'outil rotatif pour un groupe de transformation d'un support plan, sur lequel un manchon est destiné à être inséré. Le mandrin d'outil rotatif comprend:
- un noyau cylindrique,
- une paroi périphérique, qui est apte à prendre une position de repos et qui est apte à prendre une position de blocage en exerçant une pression radiale sur le manchon pour bloquer le manchon en position sur le mandrin d'outil rotatif, et
- un circuit fluidique de pression, qui est ménagé entre la paroi périphérique et le noyau cylindrique, pour exercer la pression radiale sur le manchon.
Selon un premier aspect de l'invention, le mandrin d'outil rotatif est caractérisé en ce qu'il comprend un circuit fluidique de refroidissement, pour permettre une circulation d'un fluide au niveau du noyau cylindrique, et refroidir le mandrin d'outil rotatif. La présente invention a également pour objet un mandrin d'outil rotatif pour un groupe de transformation d'un support plan, sur lequel un manchon est destiné à être inséré. Le mandrin d'outil rotatif comprend:
- un noyau cylindrique, et
- un circuit fluidique de refroidissement, pour permettre une circulation d'un fluide au niveau du noyau cylindrique, et refroidir le mandrin d'outil rotatif.
Selon un deuxième aspect de l'invention, le mandrin d'outil rotatif est caractérisé en ce qu'il comprend :
- une paroi périphérique, qui est apte à prendre une position de repos et qui est apte à prendre une position de blocage en exerçant une pression radiale sur le manchon pour bloquer le manchon en position sur le mandrin d'outil rotatif, et
- un circuit fluidique de pression, qui est ménagé entre la paroi périphérique et le noyau cylindrique, pour exercer la pression radiale sur le manchon.
Le circuit fluidique de pression pour l'outil est utilisé pour la solidarisation du manchon au mandrin et ainsi pour former l'outil complet. Le circuit fluidique de refroidissement est utilisé pour faire circuler et refroidir un fluide, afin de refroidir le mandrin. Ce circuit fluidique de refroidissement pour l'outil permet de refroidir rapidement le mandrin et le manchon à l'arrêt du groupe de transformation, facilitant l'extraction du manchon. Le circuit fluidique de refroidissement permet d'uniformiser la température de l'ensemble mandrin et manchon.
Selon un exemple de réalisation particulièrement favorable, le circuit de pression et le circuit de refroidissement sont raccordés entre eux, formant ainsi un seul et même circuit avec un seul fluide. Selon un exemple de réalisation, un port de connexion du circuit de refroidissement est agencé à une extrémité avant du mandrin et un port de connexion du circuit de pression est agencé à une extrémité arrière du mandrin. Les ports de connexion sont par exemple alignés sur un axe de rotation du mandrin.
Selon un exemple de réalisation, les ports de connexion comportent un élément de raccord respectif du mandrin, destiné à coopérer avec un élément de raccord complémentaire du groupe de transformation pour raccorder le circuit fluidique de pression au circuit fluidique de refroidissement.
Par exemple, les éléments de raccord et les éléments de raccord complémentaires sont de type raccords rapides, prenant une position d'obturation lorsqu'ils sont déconnectés, et une position d'ouverture autorisant le passage d'un fluide lorsqu'ils sont raccordés. Cela permet de fermer automatiquement le circuit de pression lorsque les éléments de raccord complémentaires sont déconnectés.
Selon une forme de réalisation, le circuit de pression présente une portion en forme de tube, coaxiale à l'axe de rotation du mandrin, autour du noyau cylindrique. Le circuit de pression présente au moins une portion de conduit axiale ménagée dans chaque tourillon du mandrin, la portion de conduit axiale reliant un port de connexion. Le circuit de pression comporte au moins une portion de conduit reliant chaque portion de conduit axiale à la portion en forme de tube. Cette forme de réalisation du circuit de pression est simple à réaliser et permet de maintenir le manchon uniformément sur toute sa surface d'enveloppe intérieure. Cette forme de circuit permet également de faire circuler le fluide d'une extrémité à l'autre du mandrin.
L'invention a encore pour objet un groupe de transformation d'un support plan tel qu'un groupe de refoulage, de gaufrage, de découpe rotative, d'éjection des déchets, ou d'imprimerie, comportant au moins un mandrin tel que décrit et revendiqué ci- dessous. Le circuit de refroidissement destiné à être raccordé à un module de refroidissement configuré pour refroidir le fluide. Le circuit de refroidissement est raccordé au circuit de pression et forme par exemple un circuit fermé.
L'invention a encore pour objet un procédé de fonctionnement d'un groupe de transformation, tel que décrit et revendiqué ci-dessous. Le procédé comprend les étapes consistant à:
- raccorder seulement un des deux ports de connexion du circuit de pression au circuit de refroidissement,
- envoyer un fluide dans le circuit de pression pour que la paroi périphérique exerce une pression radiale sur le manchon, pour bloquer le manchon en position sur le mandrin, et
- raccorder les deux ports de connexion du circuit de pression au circuit de refroidissement et faire circuler un fluide refroidi dans le circuit de pression, pour refroidir le mandrin.
La circulation du fluide dans le circuit de pression pour le refroidissement du mandrin est par exemple réalisée en circuit fermé. Le port de connexion du circuit de pression raccordé au circuit de refroidissement pour solidariser le manchon au mandrin, est par exemple le port de connexion agencé à l'arrière du mandrin, côté opposé conducteur.
Ainsi, la commande de la solidarisation du manchon au mandrin ou la commande du refroidissement du mandrin, peuvent être facilement pilotés et automatisés par les commandes de raccordement ou de déconnection du circuit de pression au circuit de refroidissement.
Brève description des figures
D'autres avantages et caractéristiques apparaîtront à la lecture de la description de l'invention, ainsi que sur les figures annexées qui représentent un exemple de réalisation non limitatif de l'invention et sur lesquelles:
- la Figure 1 est une vue générale d'un exemple de ligne de transformation d'un support plan;
- la Figure 2 représente une vue en perspective d'un outil rotatif supérieur et d'un outil rotatif inférieur;
- la Figure 3 représente une vue en perspective d'un mandrin;
- la Figure 4 représente une vue d'un circuit de pression raccordé à un circuit de refroidissement en formant un circuit fermé; et
- la Figure 5 représente une vue partielle en coupe verticale d'un groupe de transformation dans laquelle sont montés deux outils rotatifs comportant respectivement un mandrin et un manchon solidarisé au mandrin.
Les directions longitudinale, verticale et transversale indiquées sur la Fig. 2 sont définies par le trièdre L, V, T. La direction transversale T est la direction perpendiculaire à la direction de déplacement longitudinale L du support plan. Le plan horizontal correspond au plan L, T. Les positions avant et arrière sont définies par rapport à la direction transversale T, comme étant respectivement le côté conducteur et le côté opposé conducteur. Exposé détaillé de modes de réalisation préférés
Une ligne de transformation d'un support plan, tel que du carton plat ou du papier en bande continue enroulé en bobine, permet de réaliser différentes opérations et d'obtenir des d'emballages comme des boîtes pliantes. Comme le représente la Fig. 1 , la ligne de transformation comprend, disposée l'une à la suite de l'autre dans l'ordre de défilement du support plan, une station dérouleur 1 , plusieurs groupes imprimeurs 2, un ou plusieurs groupes de gaufrage en série suivis d'un ou plusieurs groupes de refoulage en série 3, suivie d'un groupe de découpe rotative 4 ou de découpe à platine, et une station de réception 5 des objets confectionnés.
Le groupe de transformation 7 comprend un outil rotatif supérieur 10 et un outil rotatif inférieur 11 , qui modifient le support plan par impression, gaufrage, refoulage, découpe, éjection des déchets, etc., en vue d'obtenir un emballage. Les outils rotatifs 10 et 11 , sont montés parallèlement l'un par rapport à l'autre dans le groupe de transformation 7, l'un au-dessus de l'autre, et s'étendent selon la direction transversale T, qui est aussi la direction des axes de rotation A1 et A2 des outils rotatifs 10 et 11 (voir Fig. 2). Les extrémités arrière des outils rotatifs 10 et 11 , côté opposé conducteur, sont entraînées en rotation par des moyens d'entraînement motorisés. En fonctionnement, les outils rotatifs 10 et 11 tournent dans des sens opposés autour de chacun des axes de rotation A1 et A2 (Flèches Fs et Fi). Le support plan passe dans l'interstice situé entre les outils rotatifs 10 et 11 , pour y être gaufré, et/ou refoulé, et/ou découpé, et/ou imprimé.
Au moins un des deux outils rotatifs, l'outil rotatif supérieur 10 ou l'outil rotatif inférieur 11 , comporte un mandrin 12 et un manchon amovible 13, insérable sur le mandrin 12 dans la direction transversale T (Fig. 2, Flèche G). Ainsi, lorsqu'un opérateur souhaite changer les outils rotatifs 10 et 11 , il suffit de changer les manchons 13 plutôt que la totalité de l'outil rotatif 10 et 11 . La manipulation du manchon 13 étant facilitée par son faible poids relativement à celui de l'outil rotatif 10 et 11 complet, le changement de travail peut être effectué rapidement. En outre, les manchons 13 sont peu coûteux comparés au prix de l'outil rotatif 10 et 11 complet. Il est donc avantageux d'utiliser un même mandrin 12 en combinaison avec plusieurs manchons 13, plutôt que de prévoir l'acquisition de plusieurs outils rotatifs 10 et 11 complets. Le manchon 13 présente une forme générale cylindrique. Il est par exemple en matériau aluminium.
Le mandrin 12 comporte un noyau cylindrique 14, un tourillon avant 15, un tourillon arrière 16 de part et d'autre du noyau cylindrique 14, formant un arbre de rotation de l'outil rotatif, et une paroi périphérique 17 entourant le noyau cylindrique 14 (Fig. 3). Les tourillons avant et arrière 15 et 16, présentent une forme générale cylindrique. Ils sont respectivement maintenus par des paliers avant et arrière 18, 19 du groupe de transformation 7. En fonctionnement, les tourillons arrière 16 des outils rotatifs 10 et 11 , côté opposé conducteur, sont entraînés en rotation par un système d'entraînement motorisé 20. Les éléments du mandrin 12, c'est-à-dire le noyau cylindrique 14, les tourillons avant et arrière 15 et 16 et l'enveloppe périphérique 17, sont en matériau métallique, tel qu'en acier.
La paroi périphérique 17, cylindrique, peut prendre une position de repos et une position de blocage dans laquelle la paroi périphérique 17 exerce une pression radiale sur le manchon 13 pour bloquer celui-ci en position sur le mandrin 12, par exemple par déformation radiale de la paroi périphérique 17.
Le mandrin 12 comporte également un circuit fluidique de pression d'outil 21 ménagé en partie entre la paroi périphérique 17 et le noyau cylindrique 14 (Figs. 4 et 5), pour commander l'exercice de la pression radiale par la paroi périphérique 17. Le circuit de pression 21 est destiné à recevoir un fluide pour presser la paroi périphérique 17 contre la surface d'enveloppe intérieure du manchon 13 pour maintenir le manchon 13 au mandrin 12. Le manchon 13 ainsi maintenu fermement au mandrin 12 peut être entraîné en rotation autour de l'axe de rotation A1 et A2. Le fluide est par exemple de l'huile.
Le circuit de pression 21 comprend un port de connexion 22 à un circuit fluidique de refroidissement 24 du groupe de transformation 7, pour permettre une circulation d'un fluide dans le circuit de pression 21 pour le refroidissement du mandrin 12. Selon un exemple de réalisation, un port de connexion 22 est agencé à une extrémité avant du mandrin 12. Le circuit de pression 21 comprend un autre port de connexion 23 agencé à une extrémité arrière du mandrin 12. Le circuit de pression 21 peut ainsi déboucher du mandrin 12 par un orifice du port de connexion 22 ménagé dans le tourillon avant 15 et par un orifice du port de connexion 23 ménagé dans le tourillon arrière 16. Les ports de connexion 22 et 23 sont par exemple alignés sur l'axe de rotation A1 ou A2 du mandrin 12, agencés aux extrémités respectives des tourillons avant et arrière 15 et 16. Selon une forme de réalisation, le circuit de pression 21 présente une symétrie axiale.
Par exemple, le circuit de pression 21 présente une portion en forme de tube 21 a, deux portions de conduit axiales 21 b et deux portions de conduit radiales 21 c (Fig. 5). Les portions de conduit axiales et radiales 21 b, 21 c sont linéaires. La portion en forme de tube 21 a est coaxiale à l'axe de rotation A1 ou A2 du mandrin 12. Elle est ménagée autour du noyau cylindrique 14. La paroi périphérique 17 est par exemple frettée puis soudée au noyau cylindrique 14 en laissant un interstice de quelques millimètres formant la portion en forme de tube 21 a du circuit de pression 21 .
Les portions de conduit axiales 21 b sont alignées sur l'axe de rotation A1 et A2 du mandrin 12, et sont ménagées dans un tourillon 15 et 16 respectif. Chaque portion de conduit axiale 21 b relie un port de connexion 22 et 23 à une portion de conduit radiale 21 c en formant un angle droit. Chaque portion de conduit radiale 21 c s'étend radialement pour relier une portion de conduit axiale 21 b en deux endroits diamétralement opposés d'une extrémité de la portion en forme de tube 21 a. Cette forme de réalisation du circuit de pression 21 est simple à réaliser et permet de maintenir le manchon 13 de façon uniforme sur toute sa surface d'enveloppe intérieure.
Le circuit de pression 21 est destiné à être raccordé au circuit de refroidissement
24, par exemple en formant un circuit fermé (voir Fig. 4). Le groupe de transformation 7 comporte également un module de refroidissement 25 configuré pour refroidir le fluide circulant dans le circuit de refroidissement 24. Le module de refroidissement 25 comporte par exemple une pompe pour faire circuler le fluide dans le circuit de refroidissement 24 et un échangeur thermique apte à refroidir le fluide circulant dans le circuit de refroidissement 24.
Selon un exemple de réalisation, les ports de connexion 22 et 23 comportent un élément de raccord 26 respectif du mandrin 12, destiné à coopérer avec un élément de raccord complémentaire 27 du groupe de transformation 7 pour raccorder le circuit de pression 21 au circuit de refroidissement 24.
Les éléments de raccord 26 sont par exemple des éléments distincts, montés serrés dans un orifice du port de connexion 22 et 23 respectif du circuit de pression 21 . Les éléments de raccord 26 et les éléments de raccord complémentaires 27 sont par exemple de type raccords rapides. Les extrémités des éléments de raccord 26 et 27 coopérant ensemble sont par exemple de type male-femelle.
Les raccords rapides sont en outre configurés pour prendre une position d'obturation lorsqu'ils sont déconnectés l'un de l'autre et une position d'ouverture autorisant le passage du fluide lorsqu'ils sont raccordés ensemble. Cela permet de fermer automatiquement le circuit de pression 21 lorsqu'ils sont déconnectés, nécessaire pour l'exercice de la pression radiale par la paroi périphérique 17 afin de solidariser le manchon 13 au mandrin 12.
Dans un exemple de procédé de fonctionnement du groupe de transformation 7, pour bloquer le manchon 13 en position sur le mandrin 12, un des deux ports de connexion 22 et 23 du circuit de pression 21 , tel que le port de connexion 23 agencé à l'arrière du mandrin 12 est uniquement raccordé. L'élément de raccord 26 du port de connexion 22 agencé à l'avant du mandrin 12 est alors en position d'obturation, fermant le circuit de pression 21 (Fig. 5).
Puis, un fluide est envoyé dans le circuit de pression 21 . Le circuit de refroidissement 24 est isolé du module de refroidissement 25. La pression exercée par le fluide dans le circuit de pression 21 pousse alors la paroi périphérique 17 radialement, en position de blocage, la pressant contre la surface d'enveloppe intérieure du manchon 13, ce qui fixe le manchon 13 fermement au mandrin 12.
Au moins un des deux éléments de raccord 26 du mandrin 12 reste connecté de l'élément de raccord complémentaire 27 du groupe de transformation 7. Le manchon 13 ainsi fermement maintenu au mandrin 12 peut être entraîné en rotation par le mandrin 12 pour la réalisation des opérations de transformation du support plan. A la fin des opérations, une fois le groupe de transformation 7 à l'arrêt, c'est-à- dire lorsque les outils rotatifs ne tournent plus, la pression du fluide est diminuée pour désolidariser le manchon 13 au mandrin 12.
Puis, l'autre des deux ports de connexion 22 du circuit de pression 21 est raccordé au circuit de refroidissement 24. Les éléments de raccord 26 alors raccordés aux éléments de raccord complémentaire 27, autorisent la circulation du fluide à travers le circuit de refroidissement 24, en formant un circuit fermé, pour être refroidi par le module de refroidissement 25, et refroidir le mandrin 12. Le mandrin 12 et le manchon 13 peuvent alors être refroidis. Lorsqu'il est suffisamment refroidi, et que la paroi périphérique 17 est en position de repos, le manchon 13 peut être facilement retiré.
Le circuit de pression 21 utilisé pour la solidarisation du manchon 13 au mandrin 12 est ainsi également utilisé pour le refroidissement du mandrin 12 à l'arrêt du groupe de transformation 7. Cette seconde utilisation du circuit de pression 21 permet d'accélérer le refroidissement du mandrin 12 pour libérer plus facilement et rapidement le manchon 13. De plus, la commande de la solidarisation du manchon 13 au mandrin 12 ou le refroidissement du mandrin 12, peuvent être facilement pilotés et automatisés par les commandes du raccordement ou de la déconnection du circuit de pression 21 . La présente invention n'est pas limitée aux modes de réalisation décrits et illustrés. De nombreuses modifications peuvent être réalisées, sans pour autant sortir du cadre défini par la portée du jeu de revendications.

Claims

REVENDICATIONS
Mandrin d'outil rotatif pour un groupe de transformation d'un support plan, sur lequel un manchon (13) est destiné à être inséré, comprenant:
- un noyau cylindrique (14),
- une paroi périphérique (17), apte à prendre une position de repos et une position de blocage en exerçant une pression radiale sur le manchon (13) pour le bloquer en position sur le mandrin (12), et
- un circuit fluidique de pression (21 ), ménagé entre la paroi périphérique (17) et le noyau cylindrique (14), pour exercer la pression radiale sur le manchon (13),
caractérisé en ce qu'il comprend un circuit fluidique de refroidissement (24), pour permettre une circulation d'un fluide au niveau du noyau cylindrique (14), et refroidir le mandrin (12).
Mandrin d'outil rotatif pour un groupe de transformation d'un support plan, sur lequel un manchon (13) est destiné à être inséré, comprenant:
- un noyau cylindrique (14), et
- un circuit fluidique de refroidissement (24), pour permettre une circulation d'un fluide au niveau du noyau cylindrique (14), et refroidir le mandrin (12), caractérisé en ce qu'il comprend
- une paroi périphérique (17), apte à prendre une position de repos et une position de blocage en exerçant une pression radiale sur le manchon (13) pour le bloquer en position sur le mandrin (12), et
- un circuit fluidique de pression (21 ), ménagé entre la paroi périphérique (17) et le noyau cylindrique (14), pour exercer la pression radiale sur le manchon (13).
Mandrin selon la revendication 1 ou 2, dans lequel le circuit de pression (21 ) et le circuit de refroidissement (24) sont raccordés entre eux.
Mandrin selon l'une des revendications précédentes, dans lequel un port de connexion (22) du circuit de refroidissement (24) est agencé à une extrémité avant du mandrin (12) et un port de connexion (23) du circuit de pression (21 ) est agencé à une extrémité arrière du mandrin (12).
5. Mandrin selon la revendication 4, dans lequel les ports de connexion (22, 23) sont alignés sur un axe de rotation (A1 , A2) du mandrin (12).
6. Mandrin selon la revendication 4 ou 5, dans lequel les ports de connexion (22, 23) comportent un élément de raccord (26) respectif du mandrin (12), destiné à coopérer avec un élément de raccord complémentaire (27) du groupe de transformation (7) pour raccorder le circuit de pression (21 ) au circuit de refroidissement (24).
7. Mandrin selon la revendication 6, dans lequel les éléments de raccord (26) et les éléments de raccord complémentaires (27) sont de type raccords rapides, prenant une position d'obturation lorsqu'ils sont déconnectés, et une position d'ouverture autorisant le passage d'un fluide lorsqu'ils sont raccordés.
8. Mandrin selon l'une des revendications précédentes, dans lequel le circuit de pression (21 ) présente une portion en forme de tube (21 a), coaxiale à l'axe de rotation (A1 , A2) du mandrin (12), autour du noyau cylindrique (14). 9. Mandrin selon l'une des revendications précédentes, dans lequel le circuit de pression (21 ) présente au moins une portion de conduit axiale (21 b) ménagée dans chaque tourillon (15, 16) du mandrin (12), la portion de conduit axiale (21 b) reliant un port de connexion (22, 23). 10. Mandrin selon la revendication 9, dans lequel le circuit de pression (21 ) comporte au moins une portion de conduit (21 c) reliant chaque portion de conduit axiale (21 b) à la portion en forme de tube (21 a).
11 . Groupe de transformation d'un support plan, comportant au moins un mandrin (12) selon l'une des revendications précédentes.
12. Groupe selon la revendication 10, dans lequel le circuit de refroidissement (24) est raccordé à un module de refroidissement (25) pour refroidir le fluide. 13. Groupe selon la revendication précédente, dans lequel le circuit de pression (21 ) raccordé au circuit de refroidissement (24) forme un circuit fermé. Procédé de fonctionnement d'un groupe de transformation selon l'une des revendications 11 à 13, comprenant les étapes consistant à:
- raccorder seulement un des deux ports de connexion (22, 23) du circuit de pression (21 ) au circuit de refroidissement (24),
- envoyer un fluide dans le circuit de pression (21 ) pour que la paroi périphérique (17) exerce une pression radiale sur le manchon (13), pour bloquer le manchon (13) en position sur le mandrin (12), et
- raccorder les deux ports de connexion (22, 23) du circuit de pression (21 ) au circuit de refroidissement (24) et faire circuler un fluide refroidi dans le circuit de pression (21 ), pour refroidir le mandrin (12).
Procédé selon la revendication 14, dans lequel la circulation du fluide dans le circuit de pression (21 ) pour le refroidissement du mandrin (12) est réalisée en circuit fermé.
Procédé selon la revendication 14 ou 15, dans lequel le port de connexion (23) du circuit de pression (21 ) raccordé au circuit de refroidissement pour solidariser le manchon (13) au mandrin (12), est le port de connexion (23) agencé à l'arrière du mandrin (12), côté opposé conducteur.
PCT/EP2015/025086 2014-12-04 2015-11-20 Mandrin d'outil rotatif, groupe de transformation d'un support plan, et procede de fonctionnement WO2016087047A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15801685.7A EP3227042B1 (fr) 2014-12-04 2015-11-20 Mandrin d'outil rotatif, groupe de transformation d'un support plan, et procédé de fonctionnement
JP2017529027A JP6445159B2 (ja) 2014-12-04 2015-11-20 回転工具マンドレル、平坦基材変換用ユニット、及び動作方法
CN201580071120.3A CN107107518B (zh) 2014-12-04 2015-11-20 旋转工具心轴、加工平的基板的加工单元、和操作方法
KR1020177016870A KR20170086084A (ko) 2014-12-04 2015-11-20 회전 공구 척, 편평한 재료를 조정하기 위한 유닛, 및 작동 방법
ES15801685T ES2902695T3 (es) 2014-12-04 2015-11-20 Mandril de herramienta rotativa, grupo de transformación de un soporte plano y procedimiento de funcionamiento
US15/531,801 US10464276B2 (en) 2014-12-04 2015-11-20 Rotary-tool mandrel, unit for converting a flat substrate, and operating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14020104 2014-12-04
EP14020104.7 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016087047A1 true WO2016087047A1 (fr) 2016-06-09

Family

ID=52292603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/025086 WO2016087047A1 (fr) 2014-12-04 2015-11-20 Mandrin d'outil rotatif, groupe de transformation d'un support plan, et procede de fonctionnement

Country Status (7)

Country Link
US (1) US10464276B2 (fr)
EP (1) EP3227042B1 (fr)
JP (1) JP6445159B2 (fr)
KR (1) KR20170086084A (fr)
CN (1) CN107107518B (fr)
ES (1) ES2902695T3 (fr)
WO (1) WO2016087047A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109177314A (zh) * 2018-10-25 2019-01-11 宁夏金世纪包装印刷有限公司 一种包装加工用三头压合气缸

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021129739A1 (de) * 2021-11-15 2023-05-17 Matthews International GmbH Sleeve-Wechsel-Kalander für das rotative Verprägen einer mehrlagigen Tissue-Bahn

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111569A (en) * 1977-06-14 1978-09-05 Magnat Corp. Shell and shaft subassembly
US4651643A (en) * 1985-02-14 1987-03-24 Sidney Katz Adaptors for use with printing cylinder mandrels
DE10039744A1 (de) * 2000-08-16 2002-02-28 Hueck Folien Gmbh & Co Kg Spannzylinder
EP1442883A1 (fr) * 2003-01-31 2004-08-04 Giesecke & Devrient GmbH Cylindre de serrage pour tendre un cliché de gaufrage sur un rouleau de gaufrage
WO2005105422A1 (fr) * 2004-05-05 2005-11-10 Fabio Perini S.P.A. Cylindre a manchon interchangeable pour unites de gaufrage et unites de gaufrage comprenant ledit cylindre
WO2006061869A1 (fr) * 2004-12-10 2006-06-15 Fabio Perini S.P.A. Dispositif de gaufrage comprenant un cylindre de gaufrage compose d'une enveloppe interchangeable et de parties centrales de support
US20140060354A1 (en) * 2012-09-05 2014-03-06 Bunting Magnetics Co. Assembly for Axially Aligning a Print Die

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3832324A1 (de) * 1988-09-23 1990-04-05 Voith Gmbh J M Langspalt-presswalze
JPH0248694U (fr) * 1988-09-30 1990-04-04
IT1248446B (it) * 1990-12-19 1995-01-19 Componenti Grafici Srl Rullo pressore per macchina da stampa, con sistema di condizionamento e di lubrificazione ad olio
CH682893A5 (de) * 1991-05-03 1993-12-15 Escher Wyss Ag Walze und Kunststoffolien-Giessanlage mit einer Walze.
JPH04354605A (ja) * 1991-05-31 1992-12-09 Murata Mach Ltd 旋盤用油圧回路
CH684070A5 (de) * 1991-09-25 1994-07-15 Escher Wyss Ag Formzylinder einer Rotationsdruckmaschine.
DE4418549A1 (de) * 1993-06-02 1994-12-08 Barmag Barmer Maschf Drehbar gelagerte Walze
EP0652104B1 (fr) * 1993-11-05 2002-04-10 MAN Roland Druckmaschinen AG Unité d'impression pour impression offset sans eau de mouillage
US5481975A (en) * 1994-10-03 1996-01-09 Schulz; Werner Printing cylinder mandrel and image carrier sleeve
EP0889776B1 (fr) * 1996-03-16 2000-07-12 Brückner Maschinenbau GmbH Procede permettant d'influer sur l'ecartement des cylindres d'une calandre, et cylindre monte rotatif
JP3720152B2 (ja) * 1996-10-16 2005-11-24 トクデン株式会社 誘導発熱ローラ装置
US5788382A (en) * 1997-08-28 1998-08-04 Output Technology, Inc. Imaging drum
US6688223B1 (en) * 1999-10-08 2004-02-10 Koenig & Bauer Aktiengesellschaft Cylinder of a rotation printing machine having tempering medium distribution conduit
US6862989B2 (en) * 2001-09-19 2005-03-08 Goss International Americas, Inc. Blanket cylinder with integrated compressible layer
IT1402297B1 (it) * 2010-09-08 2013-08-28 Uteco Converting Spa Struttura di cilindro retinato particolarmente per macchine da stampa flessografiche

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111569A (en) * 1977-06-14 1978-09-05 Magnat Corp. Shell and shaft subassembly
US4651643A (en) * 1985-02-14 1987-03-24 Sidney Katz Adaptors for use with printing cylinder mandrels
DE10039744A1 (de) * 2000-08-16 2002-02-28 Hueck Folien Gmbh & Co Kg Spannzylinder
EP1442883A1 (fr) * 2003-01-31 2004-08-04 Giesecke & Devrient GmbH Cylindre de serrage pour tendre un cliché de gaufrage sur un rouleau de gaufrage
WO2005105422A1 (fr) * 2004-05-05 2005-11-10 Fabio Perini S.P.A. Cylindre a manchon interchangeable pour unites de gaufrage et unites de gaufrage comprenant ledit cylindre
WO2006061869A1 (fr) * 2004-12-10 2006-06-15 Fabio Perini S.P.A. Dispositif de gaufrage comprenant un cylindre de gaufrage compose d'une enveloppe interchangeable et de parties centrales de support
US20140060354A1 (en) * 2012-09-05 2014-03-06 Bunting Magnetics Co. Assembly for Axially Aligning a Print Die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109177314A (zh) * 2018-10-25 2019-01-11 宁夏金世纪包装印刷有限公司 一种包装加工用三头压合气缸

Also Published As

Publication number Publication date
JP2018505789A (ja) 2018-03-01
US10464276B2 (en) 2019-11-05
CN107107518A (zh) 2017-08-29
JP6445159B2 (ja) 2018-12-26
KR20170086084A (ko) 2017-07-25
EP3227042B1 (fr) 2021-12-08
CN107107518B (zh) 2020-11-06
ES2902695T3 (es) 2022-03-29
EP3227042A1 (fr) 2017-10-11
US20170305095A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
EP2475511B1 (fr) Dispositif de moulage équipé de moyens commandés de fixation avec serrage d'un demi-moule par des pênes de fixation coulissants
EP3230055A1 (fr) Procede et station de transformation d'un support plan
EP3227042B1 (fr) Mandrin d'outil rotatif, groupe de transformation d'un support plan, et procédé de fonctionnement
EP3363553A1 (fr) Machine de roulage de tôles, ainsi que procédé de roulage d'une tôle utilisant une telle machine de roulage
FR2692875A1 (fr) Appareil de pliage pour la réalisation d'exemplaires pliés à partir d'une bande de papier imprimée.
WO2014135276A1 (fr) Agencement de découpe et d'éjection des déchets, cassette, unité et machine ainsi équipée
EP3227068A1 (fr) Montant porte-outil, groupe de transformation d'un support plan, et procédés de démontage et montage d'un outil rotatif dans un groupe de transformation
FR2895305A1 (fr) Presse d'impression a engagement de bande ameliore et procede d'engagement de bande correspondant.
EP3638520A1 (fr) Chape d'attelage a verrouillage automatique
EP3227101B1 (fr) Tête porte-outil, chariot de transport et procédés de montage et de démontage d'outil pour groupe de transformation d'un support plan
CH363312A (fr) Presse à filer les métaux
EP3227102B1 (fr) Extracteur de manchons, groupe de transformation d'un support plan, et procédé d'extraction de manchons
CH621972A5 (fr)
BE1001291A4 (fr) Machine a traiter les recipients et, en particulier, machine de remplissage.
EP0787546A1 (fr) Unité de présertissage et de sertissage du bord d'une tÔle
FR2796930A1 (fr) Dispositif pour le reglage de phase de dispositifs de perforation en fonction du mode de pliage
WO2017178437A1 (fr) Organe de prehension, barre de pinces et machine de traitement d'elements en forme de feuilles
EP0981426B1 (fr) Dispositif de decorticage pour flans de cartons decoupes
BE1001273A6 (fr) Machines d'impression serigraphique.
FR2770502A1 (fr) Dispositif pour enrouler un ruban et equipement d'impression pourvu de ce dispositif
EP0030492A1 (fr) Procédé et dispositif d'accostage de deux pièces cylindriques destinées à être assemblées bord à bord
FR2773138A1 (fr) Systeme d'alimentation de documents
FR2563129A1 (fr) Procede et dispositif pour le formage de pieces par estampage
EP3638482A1 (fr) Procédé de solidarisation ou désolidarisation de deux parties d'un moule d'injection de matière plastique
FR2676378A1 (fr) Laminoir de tubes.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529027

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15531801

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015801685

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177016870

Country of ref document: KR

Kind code of ref document: A