WO2016084975A1 - アレイアンテナ装置 - Google Patents
アレイアンテナ装置 Download PDFInfo
- Publication number
- WO2016084975A1 WO2016084975A1 PCT/JP2015/083585 JP2015083585W WO2016084975A1 WO 2016084975 A1 WO2016084975 A1 WO 2016084975A1 JP 2015083585 W JP2015083585 W JP 2015083585W WO 2016084975 A1 WO2016084975 A1 WO 2016084975A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signals
- signal
- local
- antenna elements
- phase
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/30—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/10—Polarisation diversity; Directional diversity
Definitions
- the present invention relates to an array antenna device.
- the Automatic Identification System is a system that aims to contribute to safety and security in the ocean and to manage the traffic of ships.
- the AIS signal is mainly exchanged between the ships and between the ship and the coast station, and the coast station collects the received AIS signal.
- Japan is a maritime nation and has a vast exclusive economic zone.
- commercial ships from various countries have entered and exited.
- the coast station collects the received AIS signal, but the range that can be collected depends on the reach of the AIS signal. Therefore, it is limited to the range of about 50km from the coast. Therefore, the AIS-equipped ship in the exclusive economic zone cannot be grasped only by the coast station.
- the AIS is operated using two frequencies, and communication is performed on the AIS1 channel (centered at 161.975 MHz) or the AIS2 channel (centered at 162.025 MHz), and each channel has a width of 25 kHz.
- the data format of the AIS slot has a predetermined length as shown in FIG. 1, but the data portion includes static information (MMSI: maritime mobile service identification, ship name, etc.), dynamic information (ship speed, Latitude / longitude, route, etc.).
- AIS uses self-managed time division multiple access (SOTDMA).
- SOTDMA time division multiple access
- interference is not limited to AIS signals from ships. Interference waves from illegal terrestrial stations and radio stations that do not comply with international law, interference waves radiated into the space from satellite-mounted power supplies and other mission equipment, computers, harnesses, etc., all of these as AIS as noise Arrives at the receiving antenna and degrades the target signal.
- a directional antenna When using a directional antenna, it can be divided into (i) a case where a directional antenna such as a Yagi antenna is used, and (ii) a case where a plurality of antennas are used and a signal from each antenna is phase-synthesized.
- a directional antenna such as the Yagi antenna
- the signal of the optimal reception path in the desired incoming wave can change very quickly, so the antenna must be mechanically rotated, Implementation is difficult.
- phase control is performed by controlling a variable capacitance element, but generally the phase can be fixed or finely adjusted.
- strict control is to be performed, the element becomes large, so that there is a problem that an increase in the size of the antenna cannot be avoided.
- an analog phase shifter when used, there is a problem that the characteristics of the antenna are easily deteriorated under the severe condition of space. Due to the above problems, implementation is considered difficult.
- a method using digital signal processing is a method in which an output from an antenna is converted from an RF signal into a digital signal by an AD converter, and the phase of this digital signal is changed by a digital circuit and synthesized.
- a satellite receiver receives a command from the ground, and a digital circuit of a control circuit can change the phase for each antenna.
- the phase resolution it is necessary to increase the sampling frequency for sampling the analog signal and increase the resolution in the amplitude direction, and the amount of phase adjustment depends on the resolution of the AD converter and the sampling frequency.
- the circuit becomes complicated and parts are expensive, and that AD converters are required as many as the number of antennas, so that an increase in size is inevitable.
- the power consumption is increased as compared with the method of synthesizing with an analog phase shifter, which becomes a big problem under limited usable power such as a satellite.
- the conventional antenna apparatus for acquiring AIS information has the above problems. Therefore, it is a satellite antenna device for AIS information acquisition, it is possible to control the phase of signals received by a plurality of antenna elements by a command from the ground, and is compact enough to be put on a small satellite, There is also a need for an antenna device that can reduce power consumption to the same extent as an analog phase shifter.
- an array antenna apparatus including a plurality of antenna elements, wherein each of the plurality of antenna elements generates a plurality of local signals for mixing with each received RF signal.
- a plurality of frequency converters connected to the generation unit and each of the plurality of antenna elements and connected to the local signal generation unit, respectively, and each RF signal received by the plurality of antenna elements is mixed with each of the local signals
- each of the RF signals received by the plurality of antenna elements is connected to each of a plurality of frequency conversion units that convert each RF signal into an IF signal that is a difference between each RF signal and the local signal, and a plurality of frequency conversion units.
- a synthesis output unit that outputs a single synthesized signal by synthesizing each IF signal, and a local signal Forming unit, when phase of the local signal, and controls so that the phase match of the IF signal derived from the RF signals arriving from a predetermined direction, to provide an array antenna device.
- AD converters corresponding to the number of antenna elements are not required, and since there are fewer components required compared to a conventional antenna apparatus using digital signal processing, downsizing is easy and power consumption is low. .
- the phase can be varied with high accuracy, so that the conventional problems can be solved.
- a satellite array antenna apparatus for acquiring AIS information, wherein a plurality of antenna elements and a plurality of local elements for mixing with each RF signal received by each of the plurality of antenna elements are provided.
- a local signal generation unit that generates a signal and a plurality of frequency conversion units that are connected to each of the plurality of antenna elements and connected to the local signal generation unit, respectively, and each RF signal received by the plurality of antenna elements is locally
- a plurality of frequency conversion units that convert each RF signal received by a plurality of antenna elements into each IF signal that is the difference between each RF signal and each of the local signals by mixing with each of the signals, and a plurality of frequency conversions
- a combined output unit that outputs a single combined signal by combining each IF signal and a plurality of peripherals.
- a receiving unit for receiving from the ground station phase control information for determining each phase change amount of the local signal output to each of the number conversion units, and the local signal generating unit receives from the receiving unit Provided is an array antenna apparatus characterized by controlling the phase of each local signal based on phase control information so that the phase of each IF signal derived from an RF signal coming from a predetermined direction matches. According to this apparatus, an array antenna apparatus having an effect capable of solving the above-described conventional problems is mounted on a satellite and used for acquiring AIS information, thereby preventing interference of the AIS signal in the satellite. Can be resolved.
- the local signal generation unit of the device changes each phase of the local signal based on the phase control information received from the reception unit, and one (plural) phase of each IF signal derived from the noise signal arriving from a predetermined direction. , And the other (plural) phases can be further controlled to be inverted with respect to one phase.
- the apparatus can form a null point with respect to the direction in which the noise signal arrives, it is possible to eliminate noise interference with the AIS signal in the satellite described above.
- the antenna elements are effective to arrange the antenna elements at equal intervals with a half-wave interval.
- the main beam width can be reduced without increasing the number of side lobes compared to other arrangements when the number of arrangements is the same.
- the width of the main beam of the antenna can be reduced to a desired width of 20 degrees or less. it can.
- the number of SOTDMA cells in the antenna field of view can be reduced, and the power level of collision signals that interfere with reception can be reduced.
- the directivity can be made sharper.
- a configuration in which antenna elements are arranged at equal intervals with a half-wave interval is also effective in reducing the influence of noise.
- a null point is formed in the direction in which the noise signal arrives, thereby reducing the power level of the noise signal that interferes with reception, while reducing the power level of the target signal.
- the main beam can be narrowed. If the number of antenna elements is further increased, a plurality of null points can be formed, so that a plurality of noise sources can be handled.
- an amplifier or the like may actually be installed on the circuit, but is omitted for convenience of description.
- the present invention is not limited to this.
- the array antenna device includes a plurality of antenna elements 31, a plurality of frequency converters 32 connected to each antenna element 31, an AD converter 33 connected to each frequency converter 32, and each AD converter 33.
- a digital operation unit 34 connected, a control unit 35 connected to each AD converter 33 and the digital operation unit 34, and a reception unit 36 connected to the control unit 35 are provided.
- the frequency conversion unit 32 that performs this processing generally includes a mixer and an oscillator that outputs a local signal to the mixer, and converts the signal in the intermediate frequency band to a low frequency by extracting the signal.
- the phase synthesis method of the conventional array antenna apparatus will be described below. For simplicity, description will be made using a signal immediately before AD conversion.
- V ak (t) V k sin2 ⁇ (ft + ⁇ k ) (Formula 1)
- a signal obtained by AD-converting the signal V ak (t) is represented by the following expression.
- the sampling frequency is F s
- the sampling interval is T s
- the receiving unit receives a command from the ground, and the control unit can change the phase for each antenna according to the command.
- Equation 2 when T s is large, even if the phase is slightly changed, that is, even if t is slightly shifted, the output is the same and the phase does not change. That is, in order to increase the phase resolution, it is necessary to increase the sampling frequency (1 / T s ). In addition, considering the quantization error, it is necessary to increase the resolution in the amplitude direction. However, when the resolution is increased in this way, as described above, the problem is that the circuit becomes complicated and the parts are expensive, the AD converter is required as many as the number of antennas, and the increase in size is inevitable. There is a problem in that the power consumption increases as compared with a method of phase synthesis using an analog phase shifter.
- FIG. 4a shows a configuration diagram of an array antenna device according to one embodiment of the present invention.
- the array antenna device includes a plurality of antenna elements 41, a plurality of frequency conversion units 42 connected to each of the plurality of antenna elements 41, a local signal generation unit 43 connected to each of the frequency conversion units 42, A combined output unit 44 connected to each of the frequency conversion units 42.
- the type of each antenna element is not limited as long as it can receive incoming waves, and a dipole antenna or a monopole antenna can be used.
- the description of each unit is a configuration diagram of an antenna device according to an embodiment of the present invention, and will be described with reference to FIG. 4b which explains FIG. 4a more specifically.
- the frequency conversion unit 42 is provided for each antenna element 41 and includes a mixer (mixer) 421 and a low-pass filter 422.
- the mixer 421 multiplies (mixes) the RF signal received by each antenna element 41 and each of the local signals output from the numerically controlled oscillator 431, thereby obtaining the sum and difference frequencies of the multiplied signals.
- the signal which has is output.
- the low-pass filter 422 is disposed between the mixer 421 and the synthesis output unit 44, and outputs only a signal having a difference frequency (IF signal).
- the combination output unit 44 combines the IF signals output from the mixers 421 and outputs a single combined signal.
- the signal received by the array antenna apparatus is an AIS signal
- a 160 MHz band signal is received and converted to an IF signal of several tens of kHz to several tens of MHz.
- the AIS signal is modulated by the GMSK method
- the IF signal contains modulated information, and therefore it can be correctly demodulated by performing delay detection or synchronous detection.
- the local signal generation unit 43 includes a numerical control oscillator 431 and a control unit 432 that determines the frequency, phase, amplitude, and the like of the numerical control oscillator.
- the numerically controlled oscillator 431 generates a plurality of local signals and outputs them to each frequency converter 42 (mixer 421).
- the numerically controlled oscillator can change the frequency and phase of the local signal for each mixer, and can change the phase of each IF signal. As a result, only the phase of the radio wave (RF signal) coming from a predetermined direction can be aligned with respect to the synthesized signal output from the synthesized output unit, so that strong directivity can be provided.
- the numerically controlled oscillator is preferably a direct digital synthesizer (DDS) capable of generating a sine wave including a frequency in the 160 MHz band while accurately controlling the phase.
- DDS direct digital synthesizer
- the array antenna apparatus may further include an information acquisition unit 45 and a communication unit 46.
- the communication unit 45 includes a transmission unit and a reception unit.
- the receiving unit receives phase control information for determining each phase change amount of the local signal output from the numerically controlled oscillator 431 to each mixer 421. For example, when an antenna is mounted on a satellite, phase control information can be received from the ground (ground station) using the S band or the X band. Based on the phase control information received from the receiver, each phase of the local signal is controlled so that each phase of the IF signal derived from the RF signal arriving from a predetermined direction matches, so that the combined output unit
- the synthesized signal to be output can be a radio wave signal coming from a predetermined direction. In this way, only radio waves coming from a predetermined area can be received.
- the information acquisition unit 45 acquires and stores AIS information from the single combined signal output from the combined output unit 44. Specifically, AIS information is acquired and stored from the IF signal by delay detection or synchronous detection, or the IF signal is converted into a digital signal by an AD converter (not shown), and the digital information is stored.
- the array antenna device is an array antenna device mounted on a satellite for acquiring AIS information
- the transmission unit uses the S band or the X band for the AIS information or digital information stored in the information acquisition unit 45. To the ground station. When digital information is transmitted, the information is DA converted at the ground station.
- FIG. 5 is a diagram for explaining the delay of each RF signal received in a linear arrangement of array antenna elements.
- the signal V ak (t) received by the k-th antenna element is a frequency f 1 received by the antenna. And is represented by the following equation.
- V ak (t) V k cos2 ⁇ (f 1 t + ⁇ k ) (Formula 3)
- V LOk (t) Acos2 ⁇ (f LO t + ⁇ k ) (Formula 4)
- V MIXk (t) V k A / 2 * (cos2 ⁇ ((f 1 + f LO ) t + ⁇ k + ⁇ k ) + cos2 ⁇ ((f 1 -f LO ) t + ⁇ k - ⁇ k )) ( Formula 5)
- V k (t) V k A / 2 * (cos2 ⁇ ((f 1 -f LO ) t + ⁇ k - ⁇ k )) (Formula 6)
- phase delay “ ⁇ k ⁇ k ” of V k (t) can be changed by changing ⁇ k of the local signal V LOk (t).
- FIG. 5 shows an example of the arrangement of array antenna elements.
- the antenna elements are arranged at equal intervals, and the interval is d.
- V k + 1 (t) V k + 1 A / 2 * (cos2 ⁇ ((f 1 -f LO ) t + ⁇ k - ⁇ k + 1 + dsin ⁇ / ⁇ 1 )) (Formula 7)
- the directivity control described above can be performed only in the direction of the plane including the arrangement direction of the linear array and the extension direction of the antenna element, the directivity of the main beam is sharpened or the directivity direction is controlled only in that direction. You can do it.
- the main beam can be moved in a two-dimensional direction by moving the direction in which the antenna element faces mechanically, for example, by controlling the attitude in the case of a satellite.
- FIG. 6 shows a planar array of M ⁇ N identical antenna elements.
- the directivity can be controlled in the two-dimensional direction by controlling the phase of the numerically controlled oscillator in each of the vertical direction and the horizontal direction of the planar array. Can control the directivity and direction of the main beam. For example, in the case of a satellite, the above-described attitude control is not necessary.
- FIG. 7 shows a schematic diagram of an AIS network in the use of an array antenna apparatus in an AIS system .
- Each AIS-equipped ship 72 transmits an AIS message including data such as ship name, ship type, position, course, speed, destination, and load, and the surrounding ship 72, ground station (land station) 73, and satellite 71 are transmitted. These messages are received by the AIS receiver installed in the.
- the satellite 71 transmits the AIS information or digital information stored in the information acquisition unit to the ground station 73 using the S band or the X band.
- the array antenna apparatus for acquiring AIS information mounted on the satellite receives the AIS signal by narrowing the visible range of the satellite by the above-described phase control.
- the main beam width can be reduced without increasing the number of side lobes compared to other arrangements when the number of arrangements is the same.
- the width of the main beam of the antenna can be reduced to a desired width of 20 degrees or less.
- the directivity can be made sharper.
- a configuration in which antenna elements are arranged at equal intervals with a half wavelength interval is also effective. By controlling the amplitude and phase of the signal in this arrangement, a null point is formed in the direction in which the noise signal arrives, thereby reducing the power level of the noise signal that interferes with reception while reducing the power level of the target signal. It becomes possible to squeeze the beam.
- the array antenna device mounted on the satellite 81 narrows the satellite visible range so as to include one SOTDMA cell for receiving information. Even if the satellite visible range is wide enough to include two or more SOTDMA cells, it is desirable to move the satellite visible range so that the number of SOTDMA cells included in the satellite visible range is as small as possible.
- AIS information can be acquired.
- the satellite visible range can be moved by phase control and satellite attitude control for a linear array, and phase control for a planar array.
- Reference Signs List 31 antenna element 32 frequency conversion unit 33 AD converter 34 digital operation unit 35 control unit 36 reception unit 41 antenna element 42 frequency conversion unit 421 mixer 422 low-pass filter 43 local signal generation unit 431 numerically controlled oscillator 432 control unit 44 synthesis output unit 45 Information Acquisition Unit 46 Communication Unit 71 Satellite 72 AIS Ship 73 Ground Station 81 Satellite
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
AIS情報取得のための衛星用アンテナ装置が必要である。 複数のアンテナ素子と、各アンテナ素子が受信した各RF信号とミキシングするための各ローカル信号を生成するローカル信号生成部と、各アンテナ素子と各ローカル信号生成部に接続され、各アンテナ素子が受信した各RF信号を各ローカル信号とミキシングすることで、各アンテナ素子が受信した各RF信号を、各RF信号と各ローカル信号との差の各IF信号に変換する複数の周波数変換部と、各周波数変換部に接続され、各IF信号を合成することによって単一の合成信号を出力する合成出力部と、を備え、ローカル信号生成部は、各ローカル信号の位相を、所定の方向から到来するRF信号に由来する各IF信号の位相が一致するように制御する、アレイアンテナ装置を提供する。
Description
本発明は、アレイアンテナ装置に関する。
船舶自動識別システム(AIS:Automatic Identification System)は、海洋における安心及び安全への寄与並びに、船舶の交通管理を行うことを目的としたシステムである。AIS信号は主に船舶間及び船舶-海岸局間でやりとりされ、海岸局は受信したAIS信号を収集している。
日本は海洋国家であり、広大な排他的経済水域を持つ。また、様々な国の商業船舶が出入りしている。海岸局は受信したAIS信号を収集しているが、収集できる範囲はAIS信号の到達距離によって決まる。そのため海岸から50km程度の範囲に限られている。よって、海岸局のみでは排他的経済水域のAIS搭載船舶を把握しきれない。
日本の船舶は、海外においてしばしば海賊被害を受けている。ただし現状では、日本には全球的にAIS信号を収集する方法がない。よって、衛星によるAISデータの取得が望まれているが、以下に記載するような問題がある。
AISは、2周波を用いて運用され、(161.975MHzを中心とする)AIS1チャンネルまたは(162.025MHzを中心とする)AIS2チャンネルで通信が行われ、各チャンネルは25kHzの幅を有する。AISスロットのデータフォーマットは図1に示す通り所定の長さを有するものであるが、データ部分には、静的情報(MMSI:海上移動業務識別、船舶名等)、動的情報(船速、緯度・経度、航路等)を含む。
AISは自己管理型時分割多元接続(SOTDMA)を使用しており、図1のAISスロットのデータフォーマットに示す通り各通信チャンネルにおいては、1フレーム(60秒の長さ)は毎分2250個のスロットに分割される。すなわち、1スロットは約26.7msで256ビットを有する。通常の運用では1つのAISメッセージが各スロットを占有できるようになっている。通常のモードでは、各AIS搭載船は2つの通信チャンネルで自己のAISメッセージを交互に送信する。信号はブロードキャスティングで送信される。ここでAIS搭載船はAIS信号を送信すると共に、次の送信に備えて空きスロットを予約するが、AIS信号を送信するAIS搭載船が同じセル内にあれば、SOTDMAによって各船舶のAIS信号の送信タイミングが制御されるので、AIS信号同士の衝突を避けることができる。
しかし図2に示す通り、衛星に小型の線状アンテナを搭載して船舶からのAIS信号の受信を行う場合、衛星可視範囲が広いためにSOTDMAで制御されている複数のセルを捕捉してしまい、多数の船舶からの信号が到来する結果、スロット単位で干渉が発生してしまう。例えば船舶Aが送信した信号と船舶Tが送信した信号は同じタイミングとなってしまうため、衛星は干渉した信号を受信してしまう。このように、複数のセルの干渉に対し、1スロット、1信号の受信では通信容量が足らなくなり、受信できない信号が増加することとなる。
また干渉は船舶からのAIS信号だけにとどまらない。地上の違法局や国際法に準拠しない無線局からの妨害波、衛星搭載電源装置や搭載される他のミッション機器、計算機、ハーネスなどから空間に放射される妨害波など、これらがすべて雑音としてAIS受信アンテナに到来し、目的信号を劣化させる。
これらの問題を回避するには、周波数帯域を広くする又はアンテナに指向性をもたせる必要がある。現実的には、AISで使用できる周波数帯には制約があるため、指向性アンテナを使用する必要がある。指向性アンテナを使用するにあたっては、(i)八木アンテナのような指向性アンテナを用いる場合と、(ii)複数アンテナを用い各アンテナからの信号を位相合成する場合に分けることができる。しかし(i)八木アンテナのような指向性アンテナを用いる場合は、所望の到来波における最適な受信経路の信号が非常に高速に変化しうるため、アンテナを機械的に回転させなければならず、実施が困難である。よって、(ii)複数アンテナを用い各アンテナからの信号を位相合成する方式を用いる必要がある。本方式は、ビームフォーミングによりビームを狭くして視野を狭くすることで、衝突信号を減らし、またさらに位相を反転させたものを合成することでヌル点を形成し信号レベルを低減させることにより、雑音を減らすことができる。(ii)の場合はさらに、(1)アナログの位相器を用いる方式と(2)デジタル信号処理を用いる方式とが考えられる。
(1)アナログの位相器を用いる方式は、可変容量素子を制御することにより位相制御を行うが、一般的に位相は固定、あるいは微調整が出来る程度である。厳密な制御を行おうとする場合は素子が大型になってしまうため、アンテナの大型化が避けられないという問題がある。また衛星で使用する場合、打ち上げる前に各位相器の位相を決めておく必要があり、地上からの制御で位相値を変えることができないという問題がある。さらに、アナログ位相器を使用した場合、宇宙という過酷な条件下においてはアンテナの特性を劣化させやすいという問題がある。以上の問題から、実施が難しいと考えられる。
(2)デジタル信号処理を用いる方式は、アンテナからの出力をAD変換器でRF信号からデジタル信号に変換し、このデジタル信号をデジタル回路で位相を変えて、合成するという方式である。この方式は、衛星の受信機で地上からのコマンドを受けて、制御回路のデジタル回路にてアンテナ毎に位相を変えることができる。しかし、位相を変える場合は、アナログ信号をサンプリングするサンプリング周波数を高くして、振幅方向の分解能も上げる必要があり、位相の調整量はAD変換器の分解能とサンプリング周波数に依存することになる。位相分解能を上げるには、回路が複雑になり、部品が高価になるという問題、アンテナの数だけAD変換器が必要になるため大型化が避けられないという問題がある。また、アナログの位相器で合成する方式と比べると消費電力が増えるという問題があり、衛星等の限られた使用可能電力下では大きな問題になる。
AIS情報を取得するための従来のアンテナ装置は、上記のような課題を有している。したがって、AIS情報取得のための衛星用アンテナ装置であって、地上からのコマンドで複数のアンテナ素子が受信する信号の位相制御が可能であり、小型衛星に乗せることができる程度にコンパクトであり、及びアナログ位相器と同等程度に消費電力を小さくすることができる、アンテナ装置が必要とされている。
上記の課題は以下の特徴を有する本発明によって解決される。すなわち本発明は、その1つの態様において、複数のアンテナ素子を備えるアレイアンテナ装置であって、複数のアンテナ素子のそれぞれが受信した各RF信号とミキシングするための複数のローカル信号を生成するローカル信号生成部と、複数のアンテナ素子のそれぞれと接続され、ローカル信号生成部にそれぞれ接続される複数の周波数変換部であって、複数のアンテナ素子が受信した各RF信号をローカル信号のそれぞれとミキシングすることで、複数のアンテナ素子が受信した各RF信号を、各RF信号とローカル信号のそれぞれとの差の各IF信号に変換する複数の周波数変換部と、複数の周波数変換部のそれぞれに接続され、各IF信号を合成することによって、単一の合成信号を出力する合成出力部と、を備え、ローカル信号生成部は、ローカル信号のそれぞれの位相を、所定の方向から到来するRF信号に由来する各IF信号の位相が一致するように制御することを特徴とする、アレイアンテナ装置を提供する。当該装置によれば、アンテナ素子の数のAD変換器が不要であり、従来のデジタル信号処理を用いるアンテナ装置と比較して必要となる部品が少ないため小型化が容易であり、消費電力も少ない。従来のアナログの位相器を用いるアンテナ装置と比較しても、高精度で位相を可変できるため、従来の問題点を解消しうる。
本発明の別の態様においては、AIS情報取得のための衛星用アレイアンテナ装置であって、複数のアンテナ素子と、複数のアンテナ素子のそれぞれが受信した各RF信号とミキシングするための複数のローカル信号を生成するローカル信号生成部と、複数のアンテナ素子のそれぞれと接続され、ローカル信号生成部にそれぞれ接続される複数の周波数変換部であって、複数のアンテナ素子が受信した各RF信号をローカル信号のそれぞれとミキシングすることで、複数のアンテナ素子が受信した各RF信号を、各RF信号とローカル信号のそれぞれとの差の各IF信号に変換する複数の周波数変換部と、複数の周波数変換部のそれぞれに接続され、各IF信号を合成することによって、単一の合成信号を出力する合成出力部と、複数の周波数変換部のそれぞれに出力するローカル信号のそれぞれの位相変化量を決定するための位相制御情報を地上局から受信するための受信部と、を備え、ローカル信号生成部は、受信部から受信した位相制御情報に基づいてローカル信号のそれぞれの位相を、所定の方向から到来するRF信号に由来する各IF信号の位相が一致するように制御することを特徴とする、アレイアンテナ装置を提供する。当該装置によれば、前述した従来の問題点を解消しうる効果を有するアレイアンテナ装置は、AIS情報取得のために衛星に搭載して利用することで、前述した衛星でのAIS信号の干渉を解消することができる。また当該装置のローカル信号生成部は、受信部から受信した位相制御情報に基づいてローカル信号のそれぞれの位相を、所定の方向から到来する雑音信号に由来する各IF信号の一方(複数)の位相が一致し、他方(複数)の位相が一方の位相に対して反転するようにさらに制御することができる。この場合、当該装置は、雑音信号が到来する方向に対してヌル点を形成することができるため、前述した衛星でのAIS信号に対する雑音の干渉を解消することができる。
複数のアンテナ素子を有するアンテナのメインビームを絞るには、半波長の間隔を空けて等間隔にアンテナ素子を配置するのが有効である。このように配置すると、配置本数が同じ場合に他の配置と比較して、サイドローブの数を増やすことなく、メインビーム幅を狭くすることができる。また小型衛星に搭載可能な大きさのアレイアンテナ装置に、このような配置で複数本のアンテナ素子を配置することで、アンテナのメインビームの幅を所望の幅である20度以下にすることができる。これによって、アンテナ視野内のSOTDMAセルの数を減らすことや、受信の妨害となる衝突信号の電力レベルを下げることができる。なお、アンテナ素子の本数をさらに多くすると、より指向性を鋭くすることができる。また半波長の間隔を空けて等間隔にアンテナ素子を配置する構成は、雑音の影響を低減させることにも有効である。当該配置において信号の振幅と位相を制御することにより雑音信号が到来する方向に対してヌル点を形成することで、受信の妨害となる雑音信号の電力レベルを下げながらも、目的信号に対してメインビームを絞ることが可能となる。なお、アンテナ素子の本数をさらに多くすると、複数のヌル点を形成することができ、よって複数の雑音源に対応することができる。
これより図面を参照して、本発明に係るアレイアンテナ装置について説明する。なお、本実施形態として説明するアンテナ装置においては、実際には回路上に増幅器等が設置されうるが、説明の便宜上省略する。また、主としてAIS通信で使用されるVHF帯の周波数で用いることを想定しているが、これに限定されない。
従来型のアレイアンテナ装置の構成
まず従来型のアレイアンテナ装置の構成を図3に示す。当該アレイアンテナ装置は、複数のアンテナ素子31と、各アンテナ素子31に接続される複数の周波数変換部32と、各周波数変換部32に接続されるAD変換器33と、各AD変換器33に接続されるデジタル演算部34と、各AD変換器33及びデジタル演算部34に接続される制御部35と、並びに制御部35に接続された受信部36と、を備える。
まず従来型のアレイアンテナ装置の構成を図3に示す。当該アレイアンテナ装置は、複数のアンテナ素子31と、各アンテナ素子31に接続される複数の周波数変換部32と、各周波数変換部32に接続されるAD変換器33と、各AD変換器33に接続されるデジタル演算部34と、各AD変換器33及びデジタル演算部34に接続される制御部35と、並びに制御部35に接続された受信部36と、を備える。
一般的にRF信号を復調する場合、アナログ信号からデジタル信号に変換するAD変換器が対応する周波数にする必要があるため、低い周波数に変換して処理を行う。この処理を行う周波数変換部32は、一般的には混合器及び混合器にローカル信号を出力する発振器を備え、その中間周波数帯の信号を抽出することにより低い周波数に変換する。ここで、以下にこの従来型のアレイアンテナ装置の位相合成方法について記載する。簡単のため、AD変換される直前の信号を用いて説明する。
図3に示すM個のアンテナ素子よりなるアレイアンテナ装置において任意のk番目のアンテナ素子が受信し周波数変換された信号Vak(t)は、受信信号より低い中間周波数fに変換されたとすると、以下の式となる。
Vak(t)=Vksin2π(ft+αk) (式1)
Vak(t)=Vksin2π(ft+αk) (式1)
当該信号Vak(t)をAD変換した信号は、以下の式となる。ここでサンプリング周波数をFs、サンプリング間隔をTsとし、以下の式はt=nTs(n=0、1、…)であって、n=[t/Ts]Ts([]はガウス記号を表す)におけるn番目の信号を表すものとする。
Vakp(t)=Vak(nTs)=Vksin2π([t/Ts]Ts+αk) (式2)
Vakp(t)=Vak(nTs)=Vksin2π([t/Ts]Ts+αk) (式2)
当該信号Vakp(t)を、デジタル演算部が備えるデジタルフィルタに通すことで、各々の信号の位相のみを変更する。例えば、当該アンテナが衛星に搭載されている場合には、受信部で地上からのコマンドを受けて、制御部は当該コマンドに従って、アンテナ毎の位相を変更することができる。
しかし式2から分かる通り、Tsが大きい場合は、位相を少しだけ変えても、つまりtを少しずらしても、出力が同じとなり、位相は変化しないことになる。すなわち、位相分解能を上げるにはサンプリング周波数(1/Ts)を高くする必要がある。また量子化誤差を考量すると振幅方向の分解能についても高くする必要がある。しかしこのように分解能を上げると、前述したように、回路が複雑になり部品が高価になるという問題、アンテナの数だけAD変換器が必要になるため大型化が避けられないという問題、さらにはアナログの位相器で位相合成する方式と比べると消費電力が増えるという問題が発生する。
本発明のアレイアンテナ装置の構成
続いて本発明の1つの実施形態によるアレイアンテナ装置の構成図を図4aに示す。アレイアンテナ装置は、複数のアンテナ素子41と、複数のアンテナ素子41のそれぞれと接続される複数の周波数変換部42と、各周波数変換部42のそれぞれと接続されるローカル信号生成部43と、各周波数変換部42のそれぞれと接続される合成出力部44と、を備える。各アンテナ素子の種類は、到来波を受信できるアンテナであれば制限は無く、ダイポールアンテナまたはモノポールアンテナなどが使用できる。当該アンテナ素子を用いて直線状アレイを構成する場合、後述するように位相を制御することによって、直線状アレイの配列方向及びアンテナ素子の延長方向を含む平面の方向である縦方向においては、メインビームの指向性を高め、またメインビームの方向を制御することができる。一方、縦方向を含む平面に垂直の横方向にアレイは形成されていないため、各アンテナ素子の横方向の指向性がほぼアレイアンテナ装置全体の横方向の指向性となる。なお後述の通り、平面状アレイを構成する場合は、縦横方向においてアレイアンテナによる指向性制御を行うことができる。
続いて本発明の1つの実施形態によるアレイアンテナ装置の構成図を図4aに示す。アレイアンテナ装置は、複数のアンテナ素子41と、複数のアンテナ素子41のそれぞれと接続される複数の周波数変換部42と、各周波数変換部42のそれぞれと接続されるローカル信号生成部43と、各周波数変換部42のそれぞれと接続される合成出力部44と、を備える。各アンテナ素子の種類は、到来波を受信できるアンテナであれば制限は無く、ダイポールアンテナまたはモノポールアンテナなどが使用できる。当該アンテナ素子を用いて直線状アレイを構成する場合、後述するように位相を制御することによって、直線状アレイの配列方向及びアンテナ素子の延長方向を含む平面の方向である縦方向においては、メインビームの指向性を高め、またメインビームの方向を制御することができる。一方、縦方向を含む平面に垂直の横方向にアレイは形成されていないため、各アンテナ素子の横方向の指向性がほぼアレイアンテナ装置全体の横方向の指向性となる。なお後述の通り、平面状アレイを構成する場合は、縦横方向においてアレイアンテナによる指向性制御を行うことができる。
各部についての説明は、本発明の1つの実施形態によるアンテナ装置の構成図であって、図4aをより具体的に説明する図4bを用いて行う。周波数変換部42は、それぞれのアンテナ素子41毎に設けられ、混合器(ミキサ)421及びローパスフィルタ422を備える。混合器421は、各アンテナ素子41が受信したRF信号と、数値制御発振器431から出力されるローカル信号のそれぞれとを掛け合わせる(ミキシングする)ことにより、掛け合わせた信号の和及び差の周波数を有する信号を出力する。ローパスフィルタ422は混合器421と合成出力部44の間に配置され、差の周波数を有する信号(IF信号)のみ出力する。合成出力部44は、各混合器421から出力された各IF信号を合成し、単一の合成信号を出力する。アレイアンテナ装置が受信する信号がAIS信号である場合、160MHz帯の信号を受信し、数10kHz~数10MHz帯のIF信号に変換する。AIS信号はGMSK方式で変調されているが、IF信号には変調された情報が含まれているため、遅延検波や同期検波をすることで、正しく復調することができる。
ローカル信号生成部43は、数値制御発振器431及び数値制御発振器の周波数、位相、振幅等を決定する制御部432を備える。数値制御発振器431は複数のローカル信号を生成し、各周波数変換部42(混合器421)へと出力する。数値制御発振器は混合器毎にローカル信号の周波数と位相を変更することができ、IF信号のそれぞれの位相を変更することができる。これによって合成出力部が出力する合成信号について、所定の方向から到来する電波(RF信号)の位相のみを揃えることができるため、強力な指向性を持たせることができる。また一方で、合成出力部が出力する合成信号について、複数のアンテナ毎のIF信号の振幅及び位相(反転)を調整することにより雑音信号が到来する方向に対してヌル点を形成することで、雑音の影響を低減することができる。数値制御発振器は、好ましくは160MHz帯の周波数を含む正弦波を、位相を正確に制御したまま生成することができるダイレクトデジタルシンセサイザー(DDS)である。これによって本発明は実現されうる。
アレイアンテナ装置は、情報取得部45及び通信部46をさらに備えうる。通信部45は、送信部と受信部を備える。受信部は、数値制御発振器431がそれぞれの混合器421に出力するローカル信号のそれぞれの位相変化量を決定するための位相制御情報を受信する。例えばアンテナが衛星に搭載される場合に位相制御情報をSバンドやXバンドを利用して地上(地上局)から受信することができる。受信部から受信した位相制御情報に基づいてローカル信号のそれぞれの位相を、所定の方向から到来するRF信号に由来するIF信号のそれぞれの位相が一致するように制御することで、合成出力部が出力する合成信号を所定の方向から到来する電波の信号とすることができる。このようにして、所定の領域から到来する電波のみを受信することができる。
情報取得部45は、合成出力部44から出力された単一の合成信号から、AIS情報を取得し記憶する。具体的には、IF信号から遅延検波又は同期検波でAIS情報を取得し記憶するか、またはIF信号をAD変換器(図示せず)でデジタル信号に変換し、そのデジタル情報を記憶する。アレイアンテナ装置が、AIS情報取得のための衛星に搭載されるアレイアンテナ装置である場合、送信部は、情報取得部45に記憶されたAIS情報又はデジタル情報を、SバンドやXバンドを利用して地上局へ送信する。デジタル情報が送信された場合、当該情報は地上局においてDA変換される。
続いて、アレイアンテナ装置を用いたビームフォーミングについて以下に説明する。アレイアンテナを構成する複数のアンテナ素子の配列方法は、直線状、平面状、曲面状などいろいろ考えられるが、ここでは本発明の1つの実施形態による図4bの構成を用いて、M個の同一アンテナ素子よりなる直線状アレイについて説明する。
図5はアレイアンテナ素子の直線配置での受信する各RF信号の遅延を説明する図であるが、k番目のアンテナ素子が受信した信号Vak(t)は、アンテナが受信する周波数f1を用いて、以下の式で表される。
Vak(t)=Vkcos2π(f1t+αk) (式3)
Vak(t)=Vkcos2π(f1t+αk) (式3)
数値制御発振器から、k番目のアンテナ素子と接続された混合器に出力する、ローカル信号VLOk(t)は、ローカル周波数fLOを用いて、以下の式で表される。
VLOk(t)=Acos2π(fLOt+βk) (式4)
VLOk(t)=Acos2π(fLOt+βk) (式4)
よって、これらの式をミキシングした信号VMIXk(t)は以下の通りになる。
VMIXk(t)=VkA/2*(cos2π((f1+fLO)t+αk+βk)+cos2π((f1-fLO)t+αk-βk)) (式5)
VMIXk(t)=VkA/2*(cos2π((f1+fLO)t+αk+βk)+cos2π((f1-fLO)t+αk-βk)) (式5)
上記より得られる差分の中間周波数Vk(t)は、以下の式で表される。
Vk(t)=VkA/2*(cos2π((f1-fLO)t+αk-βk)) (式6)
Vk(t)=VkA/2*(cos2π((f1-fLO)t+αk-βk)) (式6)
上記の式より理解されるように、ローカル信号VLOk(t)のβkを変えることにより、Vk(t)の位相遅延『αk-βk』を変えることができる。
ここでアンテナ素子が向いている方向に対して、角度θ傾いている方向から到来する電波の受信について説明する。図5はアレイアンテナ素子の配置の一例であるが、ここではアンテナ素子は等間隔で並んでおり、その間隔はdである。k番目とk+1番目のアンテナ素子へ電波が到達する時間Δtは、光速をcとすると、Δt=dsinθ/cずれ、位相は2πf1dsinθ/c(=2πdsinθ/λ1)ずれる。よってk番目の方がk+1番目のアンテナ素子より先に電波が到達するとした場合、k+1番目のアンテナ素子より得られる中間周波数Vk+1(t)は、以下の式で表される。
Vk+1(t)=Vk+1A/2*(cos2π((f1-fLO)t+αk-βk+1+dsinθ/λ1)) (式7)
Vk+1(t)=Vk+1A/2*(cos2π((f1-fLO)t+αk-βk+1+dsinθ/λ1)) (式7)
式6と式7より、
βk+1=βk-(dsinθ/λ1)±m [mは整数] (式8)
となるように数値制御発振器の位相を制御することで、それぞれのアンテナ素子が受信するθ方向(所定の方向)から到来する電波の位相を一致させることができ、当該電波の信号を受信することができる。また一方で、雑音信号が到来する方向(θ´方向)に対して、
βk+1=βk-(dsinθ´/λ1)±m+π(rad) [mは整数] (式9)
となるように数値制御発振器の位相を制御することで、それぞれのアンテナ素子が受信するθ´方向から到来する雑音電波の信号レベルを低減させることができる。なお上記のような位相制御を実際に行う場合は、MMSE法やMUSIC法等の周知の技術を用いることができる。
βk+1=βk-(dsinθ/λ1)±m [mは整数] (式8)
となるように数値制御発振器の位相を制御することで、それぞれのアンテナ素子が受信するθ方向(所定の方向)から到来する電波の位相を一致させることができ、当該電波の信号を受信することができる。また一方で、雑音信号が到来する方向(θ´方向)に対して、
βk+1=βk-(dsinθ´/λ1)±m+π(rad) [mは整数] (式9)
となるように数値制御発振器の位相を制御することで、それぞれのアンテナ素子が受信するθ´方向から到来する雑音電波の信号レベルを低減させることができる。なお上記のような位相制御を実際に行う場合は、MMSE法やMUSIC法等の周知の技術を用いることができる。
前述した指向性の制御は、直線状アレイの配列方向及びアンテナ素子の延長方向を含む平面の方向においてのみ行うことができるため、当該方向においてのみメインビームの指向性を鋭くしたり指向方向を制御したりすることができる。当該方向以外にメインビームを動かしたい場合は、機械的にアンテナ素子が向く方向を動かすことにより、例えば衛星の場合は姿勢制御することにより、二次元方向にメインビームを動かすことができる。
続いて、本発明の実施形態による平面状アレイについて説明する。図6に、M×N個の同一アンテナ素子よりなる平面状アレイを示す。前述した直線状アレイの方法と同様に、平面状アレイの縦方向及び横方向それぞれについて数値制御発振器の位相を制御することで、二次元方向において指向性制御を行うことができるため、二次元方向においてメインビームの指向性や指向方向を制御することができ、例えば衛星の場合は前述の姿勢制御の必要がなくなる。
AISシステムにおけるアレイアンテナ装置の利用について
図7は、AISのネットワーク概要図を示したものである。各AIS搭載船72は、船名、船種、位置、針路、速度、目的地、積載物等のデータを含むAISメッセージを送信し、周辺の船舶72、地上局(陸上局)73及び衛星71に搭載したAIS受信機によりこれらメッセージが受信される。前述したように衛星71は、情報取得部に記憶されたAIS情報又はデジタル情報を、SバンドやXバンドを利用して地上局73へ送信する。衛星に搭載されたAIS情報取得のためのアレイアンテナ装置は、前述した位相制御により衛星可視範囲を狭くしてAIS信号を受信する。衛星可視範囲を狭くする、すなわち衛星に搭載された複数のアンテナ素子を有するアレイアンテナ装置のメインビームを絞るには、半波長の間隔を空けて等間隔にアンテナ素子を配置するのが有効である。このように配置すると、配置本数が同じ場合に他の配置と比較して、サイドローブの数を増やすことなく、メインビーム幅を狭くすることができる。また小型衛星用アレイアンテナ装置に、このような配置で複数本のアンテナ素子を配置することで、アンテナのメインビームの幅を所望の幅である20度以下にすることができる。これによって、アンテナ視野内のSOTDMAセルの数を減らすことや、受信の妨害となる衝突信号の電力レベルを下げることができる。なお、アンテナ素子の本数をさらに多くすると、より指向性を鋭くすることができる。また一方で雑音の影響を低減させるためには、同様に半波長の間隔を空けて等間隔にアンテナ素子を配置する構成が有効である。当該配置において信号の振幅と位相を制御することにより雑音信号が到来する方向に対してヌル点を形成することで、受信の妨害となる雑音信号の電力レベルを下げながらも目的信号に対してメインビームを絞ることが可能となる。
図7は、AISのネットワーク概要図を示したものである。各AIS搭載船72は、船名、船種、位置、針路、速度、目的地、積載物等のデータを含むAISメッセージを送信し、周辺の船舶72、地上局(陸上局)73及び衛星71に搭載したAIS受信機によりこれらメッセージが受信される。前述したように衛星71は、情報取得部に記憶されたAIS情報又はデジタル情報を、SバンドやXバンドを利用して地上局73へ送信する。衛星に搭載されたAIS情報取得のためのアレイアンテナ装置は、前述した位相制御により衛星可視範囲を狭くしてAIS信号を受信する。衛星可視範囲を狭くする、すなわち衛星に搭載された複数のアンテナ素子を有するアレイアンテナ装置のメインビームを絞るには、半波長の間隔を空けて等間隔にアンテナ素子を配置するのが有効である。このように配置すると、配置本数が同じ場合に他の配置と比較して、サイドローブの数を増やすことなく、メインビーム幅を狭くすることができる。また小型衛星用アレイアンテナ装置に、このような配置で複数本のアンテナ素子を配置することで、アンテナのメインビームの幅を所望の幅である20度以下にすることができる。これによって、アンテナ視野内のSOTDMAセルの数を減らすことや、受信の妨害となる衝突信号の電力レベルを下げることができる。なお、アンテナ素子の本数をさらに多くすると、より指向性を鋭くすることができる。また一方で雑音の影響を低減させるためには、同様に半波長の間隔を空けて等間隔にアンテナ素子を配置する構成が有効である。当該配置において信号の振幅と位相を制御することにより雑音信号が到来する方向に対してヌル点を形成することで、受信の妨害となる雑音信号の電力レベルを下げながらも目的信号に対してメインビームを絞ることが可能となる。
実際のAIS情報取得においては、図8に示すように衛星81に搭載されたアレイアンテナ装置は、情報を受信するSOTDMAセルの数を1つ含むように衛星可視範囲を狭くする。SOTDMAセルの数を2つ以上含みうる程度に衛星可視範囲が広い場合であっても、衛星可視範囲内に含まれるSOTDMAセルの数を可能な限り少なくするように衛星可視範囲を動かすことで所望のAIS情報を取得することができる。直線状アレイであれば位相制御及び衛星の姿勢制御によって、平面状アレイであれば位相制御によって、衛星可視範囲を動かすことができる。
以上に説明してきた各実施例は、組み合わせることが可能である。これにより、2以上の実施例を組み合わせて1つの実施例にすることができる。また以上に説明してきた各実施例は、本発明を説明するための例示であり、本発明はこれらの実施例に限定されるものではない。本発明は、その要旨を逸脱しない限り、種々の形態で実施することができる。
31 アンテナ素子
32 周波数変換部
33 AD変換器
34 デジタル演算部
35 制御部
36 受信部
41 アンテナ素子
42 周波数変換部
421 混合器
422 ローパスフィルタ
43 ローカル信号生成部
431 数値制御発振器
432 制御部
44 合成出力部
45 情報取得部
46 通信部
71 衛星
72 AIS搭載船
73 地上局
81 衛星
32 周波数変換部
33 AD変換器
34 デジタル演算部
35 制御部
36 受信部
41 アンテナ素子
42 周波数変換部
421 混合器
422 ローパスフィルタ
43 ローカル信号生成部
431 数値制御発振器
432 制御部
44 合成出力部
45 情報取得部
46 通信部
71 衛星
72 AIS搭載船
73 地上局
81 衛星
Claims (3)
- 複数のアンテナ素子を備えるアレイアンテナ装置であって、
前記複数のアンテナ素子のそれぞれが受信した各RF信号とミキシングするための複数のローカル信号を生成するローカル信号生成部と、
前記複数のアンテナ素子のそれぞれと接続され、前記ローカル信号生成部にそれぞれ接続される複数の周波数変換部であって、前記複数のアンテナ素子が受信した前記各RF信号を前記ローカル信号のそれぞれとミキシングすることで、前記複数のアンテナ素子が受信した前記各RF信号を、前記各RF信号と前記ローカル信号のそれぞれとの差の各IF信号に変換する複数の周波数変換部と、
前記複数の周波数変換部のそれぞれに接続され、前記各IF信号を合成することによって、単一の合成信号を出力する合成出力部と、を備え、
前記ローカル信号生成部は、前記ローカル信号のそれぞれの位相を、所定の方向から到来する前記RF信号に由来する前記各IF信号の位相が一致するように制御することを特徴とする、アレイアンテナ装置。 - AIS情報取得のための衛星用アレイアンテナ装置であって、
複数のアンテナ素子と、
前記複数のアンテナ素子のそれぞれが受信した各RF信号とミキシングするための複数のローカル信号を生成するローカル信号生成部と、
前記複数のアンテナ素子のそれぞれと接続され、前記ローカル信号生成部にそれぞれ接続される複数の周波数変換部であって、前記複数のアンテナ素子が受信した前記各RF信号を前記ローカル信号のそれぞれとミキシングすることで、前記複数のアンテナ素子が受信した前記各RF信号を、前記各RF信号と前記ローカル信号のそれぞれとの差の各IF信号に変換する複数の周波数変換部と、
前記複数の周波数変換部のそれぞれに接続され、前記各IF信号を合成することによって、単一の合成信号を出力する合成出力部と、
前記複数の周波数変換部のそれぞれに出力する前記ローカル信号のそれぞれの位相変化量を決定するための位相制御情報を地上局から受信するための受信部と、を備え、
前記ローカル信号生成部は、前記受信部から受信した前記位相制御情報に基づいて前記ローカル信号のそれぞれの位相を、所定の方向から到来する前記RF信号に由来する前記各IF信号の位相が一致するように制御することを特徴とする、アレイアンテナ装置。 - 前記複数のアンテナ素子は半波長の間隔を空けて等間隔に配置される、請求項1又は請求項2に記載のアレイアンテナ装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016561976A JP6679089B2 (ja) | 2014-11-28 | 2015-11-30 | アレイアンテナ装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014241773 | 2014-11-28 | ||
JP2014-241773 | 2014-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084975A1 true WO2016084975A1 (ja) | 2016-06-02 |
Family
ID=56074518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/083585 WO2016084975A1 (ja) | 2014-11-28 | 2015-11-30 | アレイアンテナ装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6679089B2 (ja) |
WO (1) | WO2016084975A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019106664A (ja) * | 2017-12-14 | 2019-06-27 | 富士通株式会社 | プローブアンテナ及び測定装置 |
CN110601730A (zh) * | 2019-09-18 | 2019-12-20 | 北京邮电大学 | 一种自适应的数字模拟混合天线结构及预编码方法 |
CN111600647A (zh) * | 2020-05-22 | 2020-08-28 | 上海航天电子通讯设备研究所 | 一种星载ais信号多重时隙冲突能量检测系统及检测方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11330841A (ja) * | 1998-05-14 | 1999-11-30 | Toshiba Corp | アクティブアレイアンテナシステム |
WO2011108397A1 (ja) * | 2010-03-04 | 2011-09-09 | 三菱電機株式会社 | アレイアンテナ装置 |
JP2012029285A (ja) * | 2010-07-13 | 2012-02-09 | Thales | 船の自動識別装置のカバレージ、情報、およびロバストネスを強化するシステム |
-
2015
- 2015-11-30 WO PCT/JP2015/083585 patent/WO2016084975A1/ja active Application Filing
- 2015-11-30 JP JP2016561976A patent/JP6679089B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11330841A (ja) * | 1998-05-14 | 1999-11-30 | Toshiba Corp | アクティブアレイアンテナシステム |
WO2011108397A1 (ja) * | 2010-03-04 | 2011-09-09 | 三菱電機株式会社 | アレイアンテナ装置 |
JP2012029285A (ja) * | 2010-07-13 | 2012-02-09 | Thales | 船の自動識別装置のカバレージ、情報、およびロバストネスを強化するシステム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019106664A (ja) * | 2017-12-14 | 2019-06-27 | 富士通株式会社 | プローブアンテナ及び測定装置 |
CN110601730A (zh) * | 2019-09-18 | 2019-12-20 | 北京邮电大学 | 一种自适应的数字模拟混合天线结构及预编码方法 |
CN111600647A (zh) * | 2020-05-22 | 2020-08-28 | 上海航天电子通讯设备研究所 | 一种星载ais信号多重时隙冲突能量检测系统及检测方法 |
CN111600647B (zh) * | 2020-05-22 | 2021-07-06 | 上海航天电子通讯设备研究所 | 一种星载ais信号多重时隙冲突能量检测系统及检测方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6679089B2 (ja) | 2020-04-15 |
JPWO2016084975A1 (ja) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3427394B1 (en) | Digital beam forming system and method | |
CN108140943B (zh) | 低成本卫星用户终端天线 | |
US7373127B2 (en) | Digital beam forming for communications systems | |
US10530445B2 (en) | Increasing data transfer rates | |
US10312984B2 (en) | Distributed airborne beamforming system | |
US9031165B2 (en) | Efficient signal processing for receive and transmit DBF arrays | |
EP2602778B1 (en) | Systems and methods for receiving aircraft position reports | |
EP3353906A1 (en) | Acquiring leo satellites without compass | |
WO2016139466A1 (en) | Process and apparatus for communicating with a user antenna | |
EP3353969A1 (en) | Frequency tracking with sparse pilots | |
WO2016139468A1 (en) | Generation and use of similar multiple beams | |
WO2016139467A1 (en) | Means of improving data transfer | |
Chiba et al. | Digital beam forming (DBF) antenna system for mobile communications | |
CN106033985B (zh) | 一种星地通信系统和方法 | |
WO2016084975A1 (ja) | アレイアンテナ装置 | |
CN102544751A (zh) | 多目标中频数字相控阵天线 | |
JP2018007212A (ja) | Ais信号受信システム及びais信号の受信方法 | |
US9143374B2 (en) | Efficient signal processing for receive and transmit DBF arrays | |
CN112305517B (zh) | 一种具有柱形全方位覆盖的模数混合多波束接收阵列系统 | |
US12040557B1 (en) | Energy efficient phase shifting in digital beamforming circuits for phased array antennas | |
JPH09119970A (ja) | 通信測位装置 | |
CN112311437B (zh) | 一种具有柱形全方位覆盖的模数混合多波束接收阵列的接收方法 | |
US20240267091A1 (en) | Wireless communication device and wireless communication method | |
CN112305516B (zh) | 一种模数混合多波束形成及其在接收阵列中的应用 | |
JP2000068730A (ja) | アンテナ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15863327 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016561976 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15863327 Country of ref document: EP Kind code of ref document: A1 |