WO2016084906A1 - Vane-type air motor and air tool provided with vane-type air motor - Google Patents

Vane-type air motor and air tool provided with vane-type air motor Download PDF

Info

Publication number
WO2016084906A1
WO2016084906A1 PCT/JP2015/083256 JP2015083256W WO2016084906A1 WO 2016084906 A1 WO2016084906 A1 WO 2016084906A1 JP 2015083256 W JP2015083256 W JP 2015083256W WO 2016084906 A1 WO2016084906 A1 WO 2016084906A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotor
type air
air motor
vane type
Prior art date
Application number
PCT/JP2015/083256
Other languages
French (fr)
Japanese (ja)
Inventor
崇太 藤森
Original Assignee
日東工器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東工器株式会社 filed Critical 日東工器株式会社
Priority to CN201580050595.4A priority Critical patent/CN106715832B/en
Priority to EP15863474.1A priority patent/EP3184733B1/en
Priority to KR1020177006968A priority patent/KR20170042342A/en
Priority to KR1020197022722A priority patent/KR20190093700A/en
Priority to AU2015354583A priority patent/AU2015354583B2/en
Publication of WO2016084906A1 publication Critical patent/WO2016084906A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3441Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3442Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01C13/02Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby for driving hand-held tools or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present invention relates to a vane type air motor and an air tool provided with a vane type air motor.
  • a vane type air motor used as a driving means of an air driven type polishing machine for example, as disclosed in Patent Document 1, includes a housing including a rotor storage chamber having a cylindrical inner peripheral surface, and the rotor in the rotor storage chamber. And a rotor rotatably held so that the central axis of rotation is eccentric to the storage chamber, and a vane slidably disposed in a plurality of vane housing grooves provided on the outer peripheral surface of the rotor.
  • the housing is provided with an air inlet and an air outlet opening to the rotor chamber, and when compressed air flows from the air inlet to the air outlet in one direction around the rotor in the rotor chamber.
  • the rotor is driven to rotate by acting on vanes protruding outward from the outer peripheral surface of the rotor.
  • the present invention A housing comprising a rotor chamber having a cylindrical inner circumferential surface; A rotor rotatably held around a rotation center axis parallel to a center axis of the inner peripheral surface in the rotor housing chamber, wherein the rotor is directed inward from the outer peripheral surface of the rotor A rotor having a vane receiving groove extending parallel to the central axis of rotation; And a vane slidably disposed in the vane receiving groove;
  • the compressed air is supplied from an air supply port opened to the inner circumferential surface, passed in one direction around the rotor, and discharged from an exhaust port located at a position circumferentially away from the air supply port.
  • a vane type air motor in which compressed air acts on the vanes to rotationally drive the rotor, there is provided a vane type air motor characterized in that the rotor has a notch for promoting vane extrusion which is provided on the outer peripheral surface and intersects the vane housing groove.
  • the notch may be provided so as to intersect only the rear side in the rotational direction of the vane housing groove when the rotor is rotationally driven.
  • the notch may be provided at a position deviated from the air supply port in the direction of the central axis of rotation.
  • the intake port is provided at a central position of the inner peripheral surface in the direction of the central axis of rotation, and the notch intersects both ends of the vane housing groove in the direction of the central axis of rotation Can be provided as such.
  • the notch may be provided to intersect with the central position of the vane housing groove in the direction of the central axis of rotation.
  • the notches may be grooves extending in the circumferential direction of the outer circumferential surface of the rotor, and the grooves may be spaced apart from each other in the direction of the central rotation axis. it can.
  • the present invention The above-mentioned vane type air motor, A tool body for holding the vane type air motor; And a driven part drivingly connected to the vane type air motor.
  • FIG. 2 is a cross-sectional view of the vane type air motor taken along line AA of FIG. 1;
  • FIG. 2 is a cross-sectional view of the vane type air motor taken along line BB in FIG. 1;
  • FIG. 6 is an exploded perspective view of a rotor and a vane of a vane type air motor according to another embodiment of the present invention. It is a disassembled perspective view of the rotor and vane of a vane type air motor concerning another embodiment of the present invention.
  • the pneumatic polishing machine 10 is, as shown in FIG. 1, driven by a vane-type air motor 12, a tool body 14 holding the vane-type air motor 12, and the vane-type air motor 12. And an abrasive holding member 18 for holding the abrasive 16 in the lower surface portion 18b.
  • the tool body 14 is provided with a compressed air supply passage 20 extending from the rear end 14 a to the vane type air motor 12 and a valve body 22 disposed in the middle of the compressed air supply passage 20.
  • the valve body 22 sealingly engages with a valve seat 23 provided in the compressed air supply passage 20 to close the compressed air supply passage 20.
  • a control lever 24 for performing opening and closing operations of the valve body 22 is pivotably attached to the tool body 14.
  • a safety lock 26 is attached to the control lever 24.
  • the safety lock 26 In the state of FIG. 1, the safety lock 26 is engaged with the tool main body 14 so that the control lever 24 can not be pivoted to the tool main body 14 side. It has become.
  • the operation part 26a of the safety lock 26 When driving the polishing machine 10, the operation part 26a of the safety lock 26 is pushed forward and the safety lock 26 is turned counterclockwise as viewed in the figure to release the engagement with the tool main body 14 Then, the control lever 24 is pivoted to the tool body 14 side. Then, the valve operating shaft 28 protruding from the tool main body 14 is pushed in by the operation lever 24 so that the valve body 22 is inclined.
  • the vane type air motor 12 is rotationally driven by the compressed air.
  • the abrasives holding member 18 drivingly connected to the rotary drive shaft 30 of the vane type air motor 12 is rotatably supported around an eccentric axis E eccentric to the rotation center axis R of the vane type air motor 12.
  • the sliding engagement projection 34 located on the upper surface 18a of the abrasive holding member 18 is allowed to move in the front-rear direction (left and right direction in the figure) by the slide receiving portion 36 of the tool body 14
  • the movement in the lateral direction is in sliding engagement so as to be limited. Therefore, when the vane type air motor 12 is driven to rotate, the abrasive holding member 18 causes the abrasive 16 attached to the tip lower surface portion 18b to reciprocate elliptically in a plane perpendicular to the rotation center axis R. It is driven.
  • the polishing machine 10 is an air tool configured to polish the polishing target member by pressing the polishing material 16 having the reciprocating elliptical motion in this manner against the polishing target member.
  • the vane type air motor 12 disposed in the tool main body 14 of the polishing machine 10 is, as shown in FIGS. 1 to 4, a housing 38 having a rotor receiving chamber 38b having a cylindrical inner circumferential surface 38a; A rotor 40 rotatably held in 38 b and a vane 42 slidably disposed in a vane receiving groove 40 a formed in the rotor 40 are provided.
  • the central axis C of the inner circumferential surface 38a defining the rotor accommodation chamber 38b and the central axis R of rotation of the rotor 40 are parallel to each other at eccentric positions relative to each other (FIGS. 2 and 3). As shown in FIG.
  • four vane housing grooves 40a of the rotor 40 are provided at equal intervals in the circumferential direction of the outer peripheral surface 40b of the rotor 40, and the rotation center axis of the rotor 40 is formed on the outer peripheral surface 40b. It is formed to extend in parallel with R and to extend inward from the outer peripheral surface 40 b toward the rotation center axis R. Further, on the outer peripheral surface 40b of the rotor 40, notches 44 for promoting vane extrusion which intersect with the vane housing groove 40a at a predetermined depth from the outer peripheral surface 40b are provided at both ends of the vane housing groove 40a.
  • each notch 44 is approximately one fifth of the length in the direction of the rotation center axis R of the rotor 40 and has a notch plane orthogonal to the vane storage groove 40a. There is. These notches 44 are provided only on the rotational direction rear side (upstream side of the flow of the compressed air) of the vane housing groove 40a when the rotor 40 is rotationally driven.
  • the vanes 42 disposed in the respective vane housing grooves 40 a have an outer side surface 42 a facing the radially outer side of the rotor 40 and an inner side surface 42 b facing the radial direction inner side of the rotor 40.
  • the housing 38 has an air supply port 38c (FIG. 2) opened to the inner peripheral surface 38a at a central position in the axial direction so as to receive compressed air, and an inner periphery at positions near both ends in the axial direction.
  • An exhaust port 38d (FIG.
  • the notch 144 provided in the rotor 140 is provided so that the center position of the vane accommodation groove 140a may be crossed.
  • the notch 144 forms an arc-shaped surface which becomes gradually shallower from the center in the direction of the rotation center axis R of the rotor 140 toward both ends of the rotor 140.
  • the notches 144 do not cross the both ends of the vane housing groove 140a.
  • the notch 244 provided in the rotor 240 is a groove having a rectangular cross section extending in the circumferential direction of the outer peripheral surface 240 b of the rotor 240. It is formed.
  • the groove-shaped notches 244 are provided so as to extend continuously around the outer circumferential surface 240 b of the rotor 240 in the circumferential direction while traversing the respective vane housing grooves 240 a. Further, the notches 244 are provided so as to extend in parallel at intervals in the direction of the central axis R of rotation of the rotor 240.
  • a grinder having a conventional vane type air motor which is different from that used in the experiment shown in Table 1 and which has no notch, and each vane type air motor 12 shown in FIGS. 4 to 6 of the present invention. , 112 and 212 were compared with the prior art, when 28 start failures occurred in 100 times, the vane type air motor shown in FIG. In the vane type air motor 112 shown in FIG. 5, the start failures occurred twice, and in the vane type air motor 212 shown in FIG. That is, in the vane type air motors 12, 112, 212 according to any of the embodiments of the present invention, the improvement in the start failure with respect to the conventional vane type air motor was observed. In particular, the vane type air motor 12 of FIG.
  • notches 44, 144, 244 are formed on the outer peripheral surfaces 40b, 140b, 240b of the rotors 40, 140, 240 so as to intersect the vane housing grooves 40a, 140a, 240a. Since it is provided, it is considered that compressed air can easily flow into the vane housing grooves 40a, 140a, 240a as compared with the conventional vane type air motor without a notch. Therefore, the pressure in the space inside the vanes 42, 142, 242 increases in the vane housing grooves 40a, 140a, 240a, and the pressure difference between the vanes 42, 142, 242 where compressed air flows at high speed.
  • V.sub.2 makes it easier for the vanes 42, 142, 242 to be displaced outward of the rotors 40, 140, 240.
  • FIG. That is, in the vane type air motor 12, 112, 212 according to the present invention, even when the vanes 42, 142, 242 are completely pushed into the vane housing grooves 40a, 140a, 240a, the action of the compressed air Since the vanes 42, 142, 242 can be easily displaced outward, it is considered that the occurrence frequency of the start failure is reduced as compared with the conventional vane type air motor.
  • the vane housing grooves 40a, 140a, 240a are provided so as to extend in the radial direction toward the center of the rotors 40, 140, 240, but extend in the direction deviated from the radial direction You may do so.
  • the number of the vane housing grooves 40a, 140a, 240a and the vanes 42, 142, 242 can be set arbitrarily.
  • the air tool including the vane type air motor 12, 112, 212 the polishing machine 10 in which the driven portion driven by the vane type air motor 12, 112, 212 is the abrasive material holding member 18 will be described
  • the driven part may be replaced with another element, it may be another air tool such as a grinder or a drill.
  • Polishing machine 10 Vane type air motor 12; Tool main body 14; Rear end 14a; Abrasive 16; Abrasive material holding member 18; Upper surface 18a; Tip lower surface 18b; Compressed air supply passage 20; Valve body 22; Operating lever 24; safety lock 26; operating portion 26a; valve operating shaft 28; rotary drive shaft 30; bearing 32; sliding engagement projection 34; sliding receiving portion 36; housing 38; inner circumferential surface 38a; 38b: air supply port 38c; exhaust port 38d; rotor 40; vane housing groove 40a; outer peripheral surface 40b; vane 42; outer surface 42a; inner surface 42b; side surface 42c; notch 44; space 46; Vane type air motor 112; rotor 140; vane housing groove 140a; vane 142; notch 144; vane type air motor 212; rotor 240; vane housing groove 240a; outer peripheral surface 24 b; vane 242; notch 244; rotation center axis R; eccentric axis E; center axis C

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Portable Power Tools In General (AREA)

Abstract

 Provided are a vane-type air motor which can start running more reliably even by means of low-pressure compressed air, and an air tool which is provided with the vane-type air motor. The vane-type air motor (12, 112, 212) is provided with notches (44, 144, 244) for facilitating vane extrusion that meet with vane-accommodating grooves (40a, 140a, 240a) at a position of a specific depth from the outer peripheral surface (40b, 140b, 240b) of a rotor (40, 140, 240).

Description

ベーン式エアモータ及びベーン式エアモータを備えるエア工具Air tool with vane type air motor and vane type air motor
 本発明は、ベーン式エアモータ及びベーン式エアモータを備えるエア工具に関する。 The present invention relates to a vane type air motor and an air tool provided with a vane type air motor.
 空気駆動式の研磨機などの駆動手段として用いられるベーン式エアモータは、例えば特許文献1に示されるように、円筒状の内周面を有するロータ収納室を備えるハウジングと、ロータ収容室内に該ロータ収納室に対して回転中心軸線が偏心するように回転自在に保持されたロータと、ロータの外周面に設けられた複数のベーン収容溝内に摺動可能に配置されたベーンと、を備えている。ハウジングにはロータ収容室に開口する給気口と排気口とが設けられており、圧縮空気が、給気口から排気口に向かってロータ収容室内でロータの周囲を一方向に流れていくときにロータの外周面から外方に飛び出しているベーンに作用して、該ロータを回転駆動させるようになっている。 A vane type air motor used as a driving means of an air driven type polishing machine, for example, as disclosed in Patent Document 1, includes a housing including a rotor storage chamber having a cylindrical inner peripheral surface, and the rotor in the rotor storage chamber. And a rotor rotatably held so that the central axis of rotation is eccentric to the storage chamber, and a vane slidably disposed in a plurality of vane housing grooves provided on the outer peripheral surface of the rotor. There is. The housing is provided with an air inlet and an air outlet opening to the rotor chamber, and when compressed air flows from the air inlet to the air outlet in one direction around the rotor in the rotor chamber. The rotor is driven to rotate by acting on vanes protruding outward from the outer peripheral surface of the rotor.
特開2010-159689号Japanese Patent Laid-Open No. 2010-159689
 しかし、このようなベーン式エアモータにおいては、圧縮空気を供給してもロータが回転しない起動不良が生じることがある。その原因としては次のようなことが考えられる。圧縮空気によってロータが高速で回転駆動されているときには、ベーンは、大きな遠心力を受けて外方に変位しようとするので、ベーンの外側縁がハウジングの内周面に接触した状態を維持しながらロータと共に回転する。ハウジングの内周面はロータの外周面に対して偏心して設定されており、ベーンはベーン収納溝内に完全に押し込まれた位置から大きく押し出された位置との間を半径方向で往復動するように変位する。しかし、当該ベーン式エアモータを駆動停止するために圧縮空気の供給を止めると、ロータの回転速度は徐々に遅くなっていき、それに伴ってベーンが受ける遠心力も徐々に小さくなっていくため、ベーンがハウジングの内周面によってベーン収容溝内に完全に押し込まれると、ロータの回転が続いても、その位置から外側に飛び出さずにベーン収納溝内に収納されたままの状態となることがある。そのような状態でこのベーン式エアモータを再び駆動するために圧縮空気を供給すると、圧縮空気がベーンに有効に作用せず、ロータが回転しない起動不良が生じると考えられる。 However, in such a vane type air motor, even when compressed air is supplied, a start failure may occur in which the rotor does not rotate. The following can be considered as the cause. When the rotor is driven to rotate at high speed by compressed air, the vanes tend to be displaced outward by a large centrifugal force, so that the outer edge of the vane is kept in contact with the inner circumferential surface of the housing It rotates with the rotor. The inner peripheral surface of the housing is set eccentrically to the outer peripheral surface of the rotor, and the vane reciprocates in the radial direction between the position completely pushed into the vane housing groove and the position largely pushed out. Displace. However, when the supply of compressed air is stopped to stop driving the vane-type air motor, the rotational speed of the rotor gradually decreases, and the centrifugal force that the vane receives gradually decreases accordingly, so the vane If the inner circumferential surface of the housing is completely pushed into the vane housing groove, even if the rotation of the rotor continues, it may be kept housed in the vane housing groove without jumping out from the position. . If compressed air is supplied to drive the vane type air motor again in such a state, it is considered that the compressed air does not effectively act on the vane and a start failure occurs in which the rotor does not rotate.
 本発明は、このような原因の想定に立ち、より確実に駆動を開始することが可能なベーン式エアモータ、及びそのようなベーン式エアモータを備えるエア工具を提供することを目的とするものである。 It is an object of the present invention to provide a vane type air motor capable of more reliably starting driving based on the assumption of such a cause, and an air tool provided with such a vane type air motor. .
 すなわち本発明は、
 円筒状の内周面を有するロータ収容室を備えるハウジングと、
 該ロータ収容室内に、該内周面の中心軸線に対して平行にされた回転中心軸線の周りで回転自在に保持されたロータであって、当該ロータの外周面から内方に向かって且つ該回転中心軸線に平行に延びるベーン収容溝を有するロータと、
 該ベーン収容溝内に摺動可能に配置されたベーンと、を備え、
 圧縮空気を、該内周面に開口する給気口から供給し、該ロータの周囲を一方向に通し、該給気口から周方向で離れた位置にある排気口から排出することにより、該圧縮空気が該ベーンに作用して該ロータを回転駆動するようにしたベーン式エアモータにおいて、
 該ロータが、該外周面に設けられ該ベーン収容溝と交わるベーン押出促進用の切欠きを有することを特徴とする、ベーン式エアモータを提供する。
That is, the present invention
A housing comprising a rotor chamber having a cylindrical inner circumferential surface;
A rotor rotatably held around a rotation center axis parallel to a center axis of the inner peripheral surface in the rotor housing chamber, wherein the rotor is directed inward from the outer peripheral surface of the rotor A rotor having a vane receiving groove extending parallel to the central axis of rotation;
And a vane slidably disposed in the vane receiving groove;
The compressed air is supplied from an air supply port opened to the inner circumferential surface, passed in one direction around the rotor, and discharged from an exhaust port located at a position circumferentially away from the air supply port. In a vane type air motor in which compressed air acts on the vanes to rotationally drive the rotor,
There is provided a vane type air motor characterized in that the rotor has a notch for promoting vane extrusion which is provided on the outer peripheral surface and intersects the vane housing groove.
 上述のような起動不良の生じやすい従来のベーン式エアモータに上記の如きベーン押出促進用の切り欠きを設けて実験を行った結果、起動不良の明らかな改善が見られた。この原因は明確には解明されていないが、圧縮空気が供給されたときにベーン押出促進用の切欠きからベーン収容溝内に圧縮空気が流入しやすくなり、それによって、ベーン収容溝内の圧力が高まって、圧縮空気が高速で流れているベーンの外側の空間との間での圧力差が大きくなり、ベーンがロータの外方に向かって変位しやすくなるためだと考えられる。 As a result of conducting experiments by providing the above-mentioned notch for promoting vane extrusion to the conventional vane-type air motor which is prone to the occurrence of the above-mentioned startup failure, a clear improvement of the startup failure was observed. Although the cause is not clearly understood, when the compressed air is supplied, the compressed air tends to flow into the vane housing groove from the notch for promoting the vane extrusion, thereby causing the pressure in the vane housing groove The pressure difference with the space outside the vane where the compressed air is flowing at a high speed is increased, and the vane is likely to be displaced outward of the rotor.
 好ましくは、該切欠きが、該ロータが回転駆動されるときの該ベーン収容溝の回転方向後方側にのみ交わるように設けられているようにすることができる。 Preferably, the notch may be provided so as to intersect only the rear side in the rotational direction of the vane housing groove when the rotor is rotationally driven.
 このようにすることで、切欠きがハウジング内での圧縮空気の流れの上流側に位置することになるので、ベーン収容溝内に圧縮空気がより流れ込みやすくなる。 By doing this, since the notch is located upstream of the flow of compressed air in the housing, the compressed air can more easily flow into the vane housing groove.
 好ましくは、該切欠きが、該回転中心軸線の方向において該給気口からずれた位置に設けられているようにすることができる。 Preferably, the notch may be provided at a position deviated from the air supply port in the direction of the central axis of rotation.
 具体的には、該吸気口が該内周面の該回転中心軸線の方向での中央位置に設けられ、該切欠きが、該回転中心軸線の方向での該ベーン収容溝の両端部に交わるように設けられているようにすることができる。 Specifically, the intake port is provided at a central position of the inner peripheral surface in the direction of the central axis of rotation, and the notch intersects both ends of the vane housing groove in the direction of the central axis of rotation Can be provided as such.
 または、該切欠きが、該回転中心軸線の方向での該ベーン収容溝の中心位置に交わるように設けられているようにすることができる。 Alternatively, the notch may be provided to intersect with the central position of the vane housing groove in the direction of the central axis of rotation.
 または、該切欠きが、該ロータの該外周面の周方向に延在する溝であって、該回転中心軸線の方向で互いに間隔をあけて設けられた複数の溝であるようにすることができる。 Alternatively, the notches may be grooves extending in the circumferential direction of the outer circumferential surface of the rotor, and the grooves may be spaced apart from each other in the direction of the central rotation axis. it can.
 また本発明は、
 上記のベーン式エアモータと、
 該ベーン式エアモータを保持する工具本体と、
 該ベーン式エアモータに駆動連結された被駆動部と、を備えるエア工具を提供する。
The present invention
The above-mentioned vane type air motor,
A tool body for holding the vane type air motor;
And a driven part drivingly connected to the vane type air motor.
 以下、本発明に係るベーン式エアモータ及びエア工具の実施形態を添付図面に基づき説明する。 Hereinafter, embodiments of a vane type air motor and an air tool according to the present invention will be described based on the attached drawings.
本発明の実施形態に係るベーン式エアモータを備える空気式の研磨機の断面図である。It is a sectional view of a pneumatic polisher provided with a vane type air motor concerning an embodiment of the present invention. 図1のA-A線におけるベーン式エアモータの断面図である。FIG. 2 is a cross-sectional view of the vane type air motor taken along line AA of FIG. 1; 図1のB-B線におけるベーン式エアモータの断面図である。FIG. 2 is a cross-sectional view of the vane type air motor taken along line BB in FIG. 1; 本発明の実施形態に係るベーン式エアモータのロータとベーンの分解斜視図である。It is an exploded perspective view of a rotor and a vane of a vane type air motor concerning an embodiment of the present invention. 本発明の別の実施形態に係るベーン式エアモータのロータとベーンの分解斜視図である。FIG. 6 is an exploded perspective view of a rotor and a vane of a vane type air motor according to another embodiment of the present invention. 本発明のさらに別の実施形態に係るベーン式エアモータのロータとベーンの分解斜視図である。It is a disassembled perspective view of the rotor and vane of a vane type air motor concerning another embodiment of the present invention.
 本発明の実施形態に係る空気式の研磨機10は、図1に示すように、ベーン式エアモータ12と、ベーン式エアモータ12を保持する工具本体14と、ベーン式エアモータ12に駆動連結されその先端下面部18bにおいて研磨材16を保持する研磨材保持部材18とを備える。工具本体14には、その後端14aからベーン式エアモータ12にまで延在する圧縮空気供給路20と、この圧縮空気供給路20の途中に配置された弁体22が設けられている。図1の状態では、弁体22は圧縮空気供給路20内に設けられた弁座23に密封係合して圧縮空気供給路20を閉止している。工具本体14にはさらに、弁体22の開閉操作を行うための操作レバー24が枢動可能に取付けられている。操作レバー24には安全ロック26が取付けられており、図1の状態においては安全ロック26が工具本体14と係合しており、操作レバー24を工具本体14側に枢動させることができないようになっている。当該研磨機10を駆動する際には、安全ロック26の操作部26aを前方に押して該安全ロック26を図で見て反時計回りに回動させて工具本体14との係合を解除してから、操作レバー24を工具本体14側に枢動させるようにする。そうすると、工具本体14から突出している弁操作軸28が操作レバー24によって押し込まれて弁体22を傾いた状態とする。弁体22が傾くと、弁体22と弁座23との間の密封係合が解除されて、閉止されていた圧縮空気供給路20が開通し、圧縮空気がベーン式エアモータ12にまで供給されてベーン式エアモータ12が圧縮空気によって回転駆動される。ベーン式エアモータ12の回転駆動軸30に駆動連結されている研磨材保持部材18は、ベーン式エアモータ12の回転中心軸線Rに対して偏心した偏心軸線Eの周りで回転自在となるように軸受32によって保持されている。また、研磨材保持部材18の上面部18aに位置する摺動係合突起部34が、工具本体14の摺動受部36によって、前後方向(図で見て左右方向)への移動は許容されるが横方向(図で見て奥行き方向)での移動は制限されるように摺動係合されている。従って、ベーン式エアモータ12を回転駆動すると、研磨材保持部材18は、その先端下面部18bに取付けられている研磨材16が回転中心軸線Rに直交する面内で往復楕円状運動をするように駆動される。当該研磨機10は、このようにして往復楕円状運動をする研磨材16を研磨対象部材に押し当てることで該研磨対象部材を研磨するようにしたエア工具である。 The pneumatic polishing machine 10 according to the embodiment of the present invention is, as shown in FIG. 1, driven by a vane-type air motor 12, a tool body 14 holding the vane-type air motor 12, and the vane-type air motor 12. And an abrasive holding member 18 for holding the abrasive 16 in the lower surface portion 18b. The tool body 14 is provided with a compressed air supply passage 20 extending from the rear end 14 a to the vane type air motor 12 and a valve body 22 disposed in the middle of the compressed air supply passage 20. In the state of FIG. 1, the valve body 22 sealingly engages with a valve seat 23 provided in the compressed air supply passage 20 to close the compressed air supply passage 20. Further, a control lever 24 for performing opening and closing operations of the valve body 22 is pivotably attached to the tool body 14. A safety lock 26 is attached to the control lever 24. In the state of FIG. 1, the safety lock 26 is engaged with the tool main body 14 so that the control lever 24 can not be pivoted to the tool main body 14 side. It has become. When driving the polishing machine 10, the operation part 26a of the safety lock 26 is pushed forward and the safety lock 26 is turned counterclockwise as viewed in the figure to release the engagement with the tool main body 14 Then, the control lever 24 is pivoted to the tool body 14 side. Then, the valve operating shaft 28 protruding from the tool main body 14 is pushed in by the operation lever 24 so that the valve body 22 is inclined. When the valve body 22 is tilted, the sealing engagement between the valve body 22 and the valve seat 23 is released, the closed compressed air supply passage 20 is opened, and the compressed air is supplied to the vane type air motor 12. The vane type air motor 12 is rotationally driven by the compressed air. The abrasives holding member 18 drivingly connected to the rotary drive shaft 30 of the vane type air motor 12 is rotatably supported around an eccentric axis E eccentric to the rotation center axis R of the vane type air motor 12. Is held by Further, the sliding engagement projection 34 located on the upper surface 18a of the abrasive holding member 18 is allowed to move in the front-rear direction (left and right direction in the figure) by the slide receiving portion 36 of the tool body 14 However, the movement in the lateral direction (the depth direction as viewed in the figure) is in sliding engagement so as to be limited. Therefore, when the vane type air motor 12 is driven to rotate, the abrasive holding member 18 causes the abrasive 16 attached to the tip lower surface portion 18b to reciprocate elliptically in a plane perpendicular to the rotation center axis R. It is driven. The polishing machine 10 is an air tool configured to polish the polishing target member by pressing the polishing material 16 having the reciprocating elliptical motion in this manner against the polishing target member.
 研磨機10の工具本体14内に配置されたベーン式エアモータ12は、図1乃至図4に示すように、円筒状の内周面38aを有するロータ収容室38bを備えるハウジング38と、ロータ収容室38b内において回転自在に保持されたロータ40と、ロータ40に形成されたベーン収容溝40a内において摺動可能に配置されたベーン42とを備える。ロータ収容室38bを画定する内周面38aの中心軸線Cとロータ40の回転中心軸線Rとは、互いに対して偏心した位置で平行となっている(図2及び図3)。ロータ40のベーン収容溝40aは、図4に示すように、ロータ40の外周面40bの周方向で均等な間隔で4つ設けられており、それぞれ、外周面40b上でロータ40の回転中心軸線Rに平行に延びると共に外周面40bから回転中心軸線Rに向かって内方に延びるように形成されている。また、ロータ40の外周面40bには、外周面40bから所定深さの位置でベーン収容溝40aに交わるベーン押出促進用の切欠き44がベーン収容溝40aの両端部に設けられている。具体的には、各切欠き44はロータ40の回転中心軸線Rの方向での長さの略5分の1程度の長さでベーン収納溝40aと直交する切り欠き平面を有するものとされている。これらの切欠き44は、ロータ40が回転駆動されるときのベーン収容溝40aの回転方向後方側(圧縮空気の流れの上流側)にのみ設けられている。各ベーン収容溝40a内に配置されているベーン42は、ロータ40の径方向外側に面する外側面42aと、ロータ40の径方向内側に面する内側面42bとを有し、図2で見て上方位置にあるベーン42のようにロータ収容室38bの内周面38aによってベーン収容溝40a内に押し込まれた位置と、図2における他のベーン42のようにロータ40の回転に伴う遠心力によりベーン収容溝40aからロータ40の外周面40bの外方に飛び出してハウジング38の内周面38aと接触する位置との間で径方向に摺動可能となっている。ハウジング38には、その軸線方向での中央位置で内周面38aに開口して圧縮空気を受入れるようにされた給気口38c(図2)と、軸線方向での両端近くの位置で内周面38aに開口して圧縮空気を排気するようにされた排気口38d(図3)とが設けられており、圧縮空気供給路20から給気口38cを通して供給された圧縮空気がハウジング38の内周面38aとロータ40の外周面40bとの間の空間46を一方向(図2及び図3で見て時計回り)に流れて排気口38dから当該ベーン式エアモータ12の外に出て圧縮空気排気路48を通って排気されるようになっている。圧縮空気は、ハウジング38内を給気口38cから排気口38dに向かって流れる過程で、ロータ40のベーン収容溝40aから外方に飛び出したベーン42の側面42cに当たってこのベーン42を押圧し、これによってロータ40は回転駆動される。 The vane type air motor 12 disposed in the tool main body 14 of the polishing machine 10 is, as shown in FIGS. 1 to 4, a housing 38 having a rotor receiving chamber 38b having a cylindrical inner circumferential surface 38a; A rotor 40 rotatably held in 38 b and a vane 42 slidably disposed in a vane receiving groove 40 a formed in the rotor 40 are provided. The central axis C of the inner circumferential surface 38a defining the rotor accommodation chamber 38b and the central axis R of rotation of the rotor 40 are parallel to each other at eccentric positions relative to each other (FIGS. 2 and 3). As shown in FIG. 4, four vane housing grooves 40a of the rotor 40 are provided at equal intervals in the circumferential direction of the outer peripheral surface 40b of the rotor 40, and the rotation center axis of the rotor 40 is formed on the outer peripheral surface 40b. It is formed to extend in parallel with R and to extend inward from the outer peripheral surface 40 b toward the rotation center axis R. Further, on the outer peripheral surface 40b of the rotor 40, notches 44 for promoting vane extrusion which intersect with the vane housing groove 40a at a predetermined depth from the outer peripheral surface 40b are provided at both ends of the vane housing groove 40a. Specifically, each notch 44 is approximately one fifth of the length in the direction of the rotation center axis R of the rotor 40 and has a notch plane orthogonal to the vane storage groove 40a. There is. These notches 44 are provided only on the rotational direction rear side (upstream side of the flow of the compressed air) of the vane housing groove 40a when the rotor 40 is rotationally driven. The vanes 42 disposed in the respective vane housing grooves 40 a have an outer side surface 42 a facing the radially outer side of the rotor 40 and an inner side surface 42 b facing the radial direction inner side of the rotor 40. The position pushed into the vane housing groove 40a by the inner peripheral surface 38a of the rotor housing chamber 38b like the vane 42 located at the upper position, and the centrifugal force accompanying the rotation of the rotor 40 like the other vane 42 in FIG. As a result, the vane housing groove 40a can slide in the radial direction between the position where it protrudes outward from the outer peripheral surface 40b of the rotor 40 and contacts the inner peripheral surface 38a of the housing 38. The housing 38 has an air supply port 38c (FIG. 2) opened to the inner peripheral surface 38a at a central position in the axial direction so as to receive compressed air, and an inner periphery at positions near both ends in the axial direction. An exhaust port 38d (FIG. 3) is provided in the surface 38a to exhaust the compressed air, and the compressed air supplied from the compressed air supply passage 20 through the air supply port 38c is provided inside the housing 38. The space 46 between the circumferential surface 38a and the outer circumferential surface 40b of the rotor 40 flows in one direction (clockwise as viewed in FIGS. 2 and 3) and exits the vane type air motor 12 from the exhaust port 38d to be compressed air. It is exhausted through the exhaust passage 48. In the process of flowing in the housing 38 from the air inlet 38c to the air outlet 38d, the compressed air hits the side surface 42c of the vane 42 protruding outward from the vane housing groove 40a of the rotor 40 and presses the vane 42. Thus, the rotor 40 is rotationally driven.
 従来のベーン式エアモータを備える研削機と本発明のベーン式エアモータ12を備える研削機とにおいて、使用する圧縮空気の圧力を変えたときの研削機の起動不良の発生頻度を比較した実験の結果を表1に示す。当該実験は、各ベーン式エアモータを備える研削機の起動操作と停止操作とを100回繰返して、その中でベーン式エアモータが起動しなかったときの回数をカウントしたものである。実験に使用した研削機はベーン式エアモータの切欠き44の有無以外は同じである。表1から分かるように、いずれの空気圧力においても本発明のベーン式エアモータ12を備える研削機には、従来のベーン式エアモータを備える研削機に対して大幅な起動不良の改善が見られた。
Figure JPOXMLDOC01-appb-T000001
In the grinding machine equipped with the conventional vane type air motor and the grinding machine equipped with the vane type air motor 12 of the present invention, the results of experiments comparing the frequency of occurrence of start failures of the grinding machine when the pressure of the compressed air used is changed It is shown in Table 1. The said experiment repeats the start operation and stop operation of a grinder provided with each vane type air motor 100 times, and counts the frequency | count when a vane type air motor did not start in it. The grinding machine used in the experiment is the same except for the presence or absence of the notch 44 of the vane type air motor. As can be seen from Table 1, the grinder provided with the vane-type air motor 12 of the present invention at any air pressure showed a significant improvement in start-up failure over the grinder equipped with the conventional vane-type air motor.
Figure JPOXMLDOC01-appb-T000001
 別の実施形態に係るベーン式エアモータ112においては、図5に示すように、ロータ140に設けられた切欠き144がベーン収容溝140aの中心位置に交わるように設けられている。この切欠き144は、ロータ140の回転中心軸線Rの方向での中心からロータ140の両端部に向かうに従って徐々に浅くなるような円弧状の面を形成している。なお、切欠き144はベーン収容溝140aの両端部には交わらないようになっている。 In the vane type air motor 112 which concerns on another embodiment, as shown in FIG. 5, the notch 144 provided in the rotor 140 is provided so that the center position of the vane accommodation groove 140a may be crossed. The notch 144 forms an arc-shaped surface which becomes gradually shallower from the center in the direction of the rotation center axis R of the rotor 140 toward both ends of the rotor 140. The notches 144 do not cross the both ends of the vane housing groove 140a.
 さらに別の実施形態に係るベーン式エアモータ212においては、図6に示すように、ロータ240に設けられた切欠き244がロータ240の外周面240bの周方向に延在する断面矩形状の溝として形成されている。この溝状の切欠き244は、各ベーン収容溝240aを横断しながらロータ240の外周面240bを周方向に一周して連続するように設けられている。またこの切欠き244は、ロータ240の回転中心軸線Rの方向で互いに間隔をあけて3つが平行して延在するように設けられている。 In the vane type air motor 212 according to still another embodiment, as shown in FIG. 6, the notch 244 provided in the rotor 240 is a groove having a rectangular cross section extending in the circumferential direction of the outer peripheral surface 240 b of the rotor 240. It is formed. The groove-shaped notches 244 are provided so as to extend continuously around the outer circumferential surface 240 b of the rotor 240 in the circumferential direction while traversing the respective vane housing grooves 240 a. Further, the notches 244 are provided so as to extend in parallel at intervals in the direction of the central axis R of rotation of the rotor 240.
 上記表1に示す実験で使用したものとは別の研削機であって、切欠きがない従来のベーン式エアモータを備える研削機と、本発明の図4乃至図6に示す各ベーン式エアモータ12、112、212を備える研削機とにおける起動不良の発生頻度を比較する実験を行ったところ、従来のものでは100回中28回の起動不良が発生したのに対して、図4のベーン式エアモータ12では2回、図5のベーン式エアモータ112では16回、図6のベーン式エアモータ212では2回の起動不良がそれぞれ発生した。すなわち、本発明のいずれの実施形態に係るベーン式エアモータ12、112、212においても、従来のベーン式エアモータに対する起動不良の改善が見られた。特に、切欠き44がロータ40の両端に設けられている図4のベーン式エアモータ12、及び切欠き244がロータ240の周方向に延びる3つの溝として設けられている図6のベーン式エアモータ240において、大きな改善効果が見られた。この実験に用いたベーン式エアモータは、いずれも、給気口38cがハウジング38の軸線方向での中央位置に設けられ、排気口38dが軸線方向での両端位置近くに設けられたものである。 A grinder having a conventional vane type air motor which is different from that used in the experiment shown in Table 1 and which has no notch, and each vane type air motor 12 shown in FIGS. 4 to 6 of the present invention. , 112 and 212 were compared with the prior art, when 28 start failures occurred in 100 times, the vane type air motor shown in FIG. In the vane type air motor 112 shown in FIG. 5, the start failures occurred twice, and in the vane type air motor 212 shown in FIG. That is, in the vane type air motors 12, 112, 212 according to any of the embodiments of the present invention, the improvement in the start failure with respect to the conventional vane type air motor was observed. In particular, the vane type air motor 12 of FIG. 4 in which the notches 44 are provided at both ends of the rotor 40, and the vane type air motor 240 of FIG. 6 in which the notches 244 are provided as three grooves extending in the circumferential direction of the rotor 240. There was a great improvement in the In each of the vane type air motors used in this experiment, the air supply port 38c is provided at the central position in the axial direction of the housing 38, and the exhaust port 38d is provided near both end positions in the axial direction.
 本発明に係るベーン式エアモータ12、112、212においては、ロータ40、140、240の外周面40b、140b、240bにベーン収容溝40a、140a、240aと交わるように切欠き44、144、244が設けられているので、切欠きがない従来のベーン式エアモータに比べて圧縮空気がベーン収容溝40a、140a、240a内に流れ込みやすくなると考えられる。そのため、ベーン収容溝40a、140a、240a内においてベーン42、142、242の内側の空間の圧力が高まり、圧縮空気が高速で流れているベーン42、142、242の外側との間での圧力差が大きくなることによって、ベーン42、142、242がロータ40、140、240の外方に向かって変位しやすくなると考えられる。すなわち、本発明に係るベーン式エアモータ12、112、212においては、各ベーン42、142、242がベーン収容溝40a、140a、240a内に完全に押し込まれた状態であっても圧縮空気の作用によってベーン42、142、242を外方により容易に変位させることができるために、従来のベーン式エアモータに比べて起動不良の発生頻度が低減していると考えられる。 In the vane type air motor 12, 112, 212 according to the present invention, notches 44, 144, 244 are formed on the outer peripheral surfaces 40b, 140b, 240b of the rotors 40, 140, 240 so as to intersect the vane housing grooves 40a, 140a, 240a. Since it is provided, it is considered that compressed air can easily flow into the vane housing grooves 40a, 140a, 240a as compared with the conventional vane type air motor without a notch. Therefore, the pressure in the space inside the vanes 42, 142, 242 increases in the vane housing grooves 40a, 140a, 240a, and the pressure difference between the vanes 42, 142, 242 where compressed air flows at high speed. It is believed that the increase in V.sub.2 makes it easier for the vanes 42, 142, 242 to be displaced outward of the rotors 40, 140, 240. As shown in FIG. That is, in the vane type air motor 12, 112, 212 according to the present invention, even when the vanes 42, 142, 242 are completely pushed into the vane housing grooves 40a, 140a, 240a, the action of the compressed air Since the vanes 42, 142, 242 can be easily displaced outward, it is considered that the occurrence frequency of the start failure is reduced as compared with the conventional vane type air motor.
 上記実施形態においては、ベーン収容溝40a、140a、240aがロータ40、140、240の中心に向かって径方向に延在するように設けられているが、径方向からずれた方向に延在するようにしてもよい。また、ベーン収容溝40a、140a、240a及びベーン42、142、242の数は任意に設定可能である。さらに、当該ベーン式エアモータ12、112、212を備えるエア工具の一実施形態として、ベーン式エアモータ12、112、212によって駆動される被駆動部が研磨材保持部材18である研磨機10について説明をしてきたが、被駆動部を他の要素に替えて研削機やドリルなどの他のエア工具とすることもできる。 In the above embodiment, the vane housing grooves 40a, 140a, 240a are provided so as to extend in the radial direction toward the center of the rotors 40, 140, 240, but extend in the direction deviated from the radial direction You may do so. Further, the number of the vane housing grooves 40a, 140a, 240a and the vanes 42, 142, 242 can be set arbitrarily. Furthermore, as one embodiment of the air tool including the vane type air motor 12, 112, 212, the polishing machine 10 in which the driven portion driven by the vane type air motor 12, 112, 212 is the abrasive material holding member 18 will be described Although the driven part may be replaced with another element, it may be another air tool such as a grinder or a drill.
研磨機10;ベーン式エアモータ12;工具本体14;後端14a;研磨材16;研磨材保持部材18;上面部18a;先端下面部18b;圧縮空気供給路20;弁体22;弁座23;操作レバー24;安全ロック26;操作部26a;弁操作軸28;回転駆動軸30;軸受32;摺動係合突起部34;摺動受部36;ハウジング38;内周面38a;ロータ収容室38b;給気口38c;排気口38d;ロータ40;ベーン収容溝40a;外周面40b;ベーン42;外側面42a;内側面42b;側面42c;切欠き44;空間46;圧縮空気排気路48;ベーン式エアモータ112;ロータ140;ベーン収容溝140a;ベーン142;切欠き144;ベーン式エアモータ212;ロータ240;ベーン収容溝240a;外周面240b;ベーン242;切欠き244;回転中心軸線R;偏心軸線E;中心軸線C Polishing machine 10; Vane type air motor 12; Tool main body 14; Rear end 14a; Abrasive 16; Abrasive material holding member 18; Upper surface 18a; Tip lower surface 18b; Compressed air supply passage 20; Valve body 22; Operating lever 24; safety lock 26; operating portion 26a; valve operating shaft 28; rotary drive shaft 30; bearing 32; sliding engagement projection 34; sliding receiving portion 36; housing 38; inner circumferential surface 38a; 38b: air supply port 38c; exhaust port 38d; rotor 40; vane housing groove 40a; outer peripheral surface 40b; vane 42; outer surface 42a; inner surface 42b; side surface 42c; notch 44; space 46; Vane type air motor 112; rotor 140; vane housing groove 140a; vane 142; notch 144; vane type air motor 212; rotor 240; vane housing groove 240a; outer peripheral surface 24 b; vane 242; notch 244; rotation center axis R; eccentric axis E; center axis C

Claims (7)

  1.  円筒状の内周面を有するロータ収容室を備えるハウジングと、
     該ロータ収容室内に、該内周面の中心軸線に対して平行にされた回転中心軸線の周りで回転自在に保持されたロータであって、当該ロータの外周面から内方に向かって且つ該回転中心軸線に平行に延びるベーン収容溝を有するロータと、
     該ベーン収容溝内に摺動可能に配置されたベーンと、を備え、
     圧縮空気を、該内周面に開口する給気口から供給し、該ロータの周囲を一方向に通し、該給気口から周方向で離れた位置にある排気口から排出することにより、該圧縮空気が該ベーンに作用して該ロータを回転駆動するようにしたベーン式エアモータにおいて、
     該ロータが、該外周面に設けられ該ベーン収容溝と交わるベーン押出促進用の切欠きを有することを特徴とする、ベーン式エアモータ。
    A housing comprising a rotor chamber having a cylindrical inner circumferential surface;
    A rotor rotatably held around a rotation center axis parallel to a center axis of the inner peripheral surface in the rotor housing chamber, wherein the rotor is directed inward from the outer peripheral surface of the rotor A rotor having a vane receiving groove extending parallel to the central axis of rotation;
    And a vane slidably disposed in the vane receiving groove;
    The compressed air is supplied from an air supply port opened to the inner circumferential surface, passed in one direction around the rotor, and discharged from an exhaust port located at a position circumferentially away from the air supply port. In a vane type air motor in which compressed air acts on the vanes to rotationally drive the rotor,
    A vane type air motor, characterized in that the rotor has a notch for promoting vane extrusion which is provided on the outer peripheral surface and intersects the vane housing groove.
  2.  該切欠きが、該ロータが回転駆動されるときの該ベーン収容溝の回転方向後方側にのみ交わるように設けられている、請求項1に記載のベーン式エアモータ。 The vane type air motor according to claim 1, wherein the notch is provided so as to intersect only the rear side in the rotational direction of the vane housing groove when the rotor is rotationally driven.
  3.  該切欠きが、該回転中心軸線の方向において該給気口からずれた位置に設けられている、請求項2に記載のベーン式エアモータ。 The vane type air motor according to claim 2, wherein the notch is provided at a position shifted from the air supply port in the direction of the rotation center axis.
  4.  該吸気口が該内周面の該回転中心軸線の方向での中央位置に設けられ、該切欠きが、該回転中心軸線の方向での該ベーン収容溝の両端部に交わるように設けられている、請求項3に記載のベーン式エアモータ。 The intake port is provided at a central position of the inner peripheral surface in the direction of the central axis of rotation, and the notch is provided to intersect both ends of the vane housing groove in the direction of the central axis of rotation The vane type air motor according to claim 3.
  5.  該切欠きが、該回転中心軸線の方向での該ベーン収容溝の中心位置に交わるように設けられている、請求項2に記載のベーン式エアモータ。 The vane type air motor according to claim 2, wherein the notch is provided to intersect the center position of the vane housing groove in the direction of the rotation center axis.
  6.  該切欠きが、該ロータの該外周面の周方向に延在する溝であって、該回転中心軸線の方向で互いに間隔をあけて設けられた複数の溝である、請求項1に記載のベーン式エアモータ。 The notch according to claim 1, wherein the notch is a groove extending in the circumferential direction of the outer peripheral surface of the rotor, and the plurality of grooves are spaced apart from each other in the direction of the rotation center axis. Vane type air motor.
  7.  請求項1乃至6の何れか一項に記載のベーン式エアモータと、
     該ベーン式エアモータを保持する工具本体と、
     該ベーン式エアモータに駆動連結された被駆動部と、を備えるエア工具。
    A vane type air motor according to any one of claims 1 to 6,
    A tool body for holding the vane type air motor;
    An air tool comprising: a driven part drivingly connected to the vane type air motor.
PCT/JP2015/083256 2014-11-28 2015-11-26 Vane-type air motor and air tool provided with vane-type air motor WO2016084906A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580050595.4A CN106715832B (en) 2014-11-28 2015-11-26 Pneumatic vane motor and the pneumatic tool for having pneumatic vane motor
EP15863474.1A EP3184733B1 (en) 2014-11-28 2015-11-26 Vane-type air motor and air tool provided with vane-type air motor
KR1020177006968A KR20170042342A (en) 2014-11-28 2015-11-26 Vane-type air motor and air tool provided with vane-type air motor
KR1020197022722A KR20190093700A (en) 2014-11-28 2015-11-26 Vane air motor and air tool having vane air motor
AU2015354583A AU2015354583B2 (en) 2014-11-28 2015-11-26 Vane-type air motor and air tool provided with vane-type air motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014242287A JP6420644B2 (en) 2014-11-28 2014-11-28 Vane type air motor and air tool equipped with vane type air motor
JP2014-242287 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084906A1 true WO2016084906A1 (en) 2016-06-02

Family

ID=56074456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083256 WO2016084906A1 (en) 2014-11-28 2015-11-26 Vane-type air motor and air tool provided with vane-type air motor

Country Status (7)

Country Link
EP (1) EP3184733B1 (en)
JP (1) JP6420644B2 (en)
KR (2) KR20170042342A (en)
CN (1) CN106715832B (en)
AU (1) AU2015354583B2 (en)
TW (1) TWI566886B (en)
WO (1) WO2016084906A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019132786A1 (en) * 2017-12-28 2019-07-04 Altunzade Emirhan Pneumatic and electro-pneumatic automobile and all purpose hybrid engine
CN109514432A (en) * 2018-11-12 2019-03-26 苏州丰川电子科技有限公司 Grinding head for metal parts processing
CN109352514A (en) * 2018-11-15 2019-02-19 苏州丰川电子科技有限公司 Grinding head is used in metal surface processing
CN109531410A (en) * 2018-11-15 2019-03-29 苏州丰川电子科技有限公司 High-precision grinding head
CN109500727A (en) * 2018-11-15 2019-03-22 苏州丰川电子科技有限公司 Wear-resistant grinding head
CN109623566A (en) * 2018-12-10 2019-04-16 苏州丰川电子科技有限公司 Processing integrated machine for notebook computer shell
CN110359962B (en) * 2019-07-17 2021-01-05 顾新钿 Pneumatic motor
EP3839207A1 (en) * 2019-12-20 2021-06-23 EXDL Co., Ltd. Vane motor
KR102428799B1 (en) * 2020-11-30 2022-08-04 이엑스디엘 주식회사 vane motor
KR102491034B1 (en) * 2021-02-19 2023-01-26 이엑스디엘 주식회사 vane motor
KR102491035B1 (en) * 2021-03-15 2023-01-26 이엑스디엘 주식회사 vane motor
CN114320476B (en) * 2022-01-05 2023-04-21 苏州明志科技股份有限公司 Vane type pneumatic motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221665A (en) * 1962-01-11 1965-12-07 Hartmann Mfg Co Hydraulic pump or motor with hydraulic pressure-responsive vane
JPS56101001A (en) * 1980-01-11 1981-08-13 Matsushita Electric Ind Co Ltd Vane-type fluidic machine
JPS6238401U (en) * 1985-08-27 1987-03-07
JP2007535639A (en) * 2004-04-30 2007-12-06 ジ アンスパック エフォート,インコーポレイテッド Surgical pneumatic motor
US20090313989A1 (en) * 2008-06-23 2009-12-24 Doss Lee E Rotary stirling cycle machine
JP2010159689A (en) * 2009-01-08 2010-07-22 Nitto Kohki Co Ltd Vane type air motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040101B2 (en) * 2000-08-28 2006-05-09 Sharp Kabushiki Kaisha Air refining device and ion generator used for the device
US7255546B1 (en) * 2004-04-30 2007-08-14 The Anspach Effort, Inc. Spindle for a vane motor
WO2008095129A2 (en) * 2007-01-31 2008-08-07 Turbodyne Technologies, Inc. Generation and management of mass air flow
US8436489B2 (en) * 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
WO2012037580A2 (en) * 2010-09-13 2012-03-22 Graco Minnesota Inc. Rotary air motor locking assembly
CN103061821A (en) * 2013-01-14 2013-04-24 北京航空航天大学 Pneumatic-magnetic combined energy-saving and efficient blade type motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3221665A (en) * 1962-01-11 1965-12-07 Hartmann Mfg Co Hydraulic pump or motor with hydraulic pressure-responsive vane
JPS56101001A (en) * 1980-01-11 1981-08-13 Matsushita Electric Ind Co Ltd Vane-type fluidic machine
JPS6238401U (en) * 1985-08-27 1987-03-07
JP2007535639A (en) * 2004-04-30 2007-12-06 ジ アンスパック エフォート,インコーポレイテッド Surgical pneumatic motor
US20090313989A1 (en) * 2008-06-23 2009-12-24 Doss Lee E Rotary stirling cycle machine
JP2010159689A (en) * 2009-01-08 2010-07-22 Nitto Kohki Co Ltd Vane type air motor

Also Published As

Publication number Publication date
TWI566886B (en) 2017-01-21
JP6420644B2 (en) 2018-11-07
AU2015354583A1 (en) 2017-03-09
CN106715832A (en) 2017-05-24
JP2016102472A (en) 2016-06-02
KR20190093700A (en) 2019-08-09
CN106715832B (en) 2019-05-28
AU2015354583B2 (en) 2019-03-07
TW201630688A (en) 2016-09-01
KR20170042342A (en) 2017-04-18
EP3184733A1 (en) 2017-06-28
EP3184733B1 (en) 2019-10-23
EP3184733A4 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
WO2016084906A1 (en) Vane-type air motor and air tool provided with vane-type air motor
JP5901446B2 (en) Rotary compressor
JP2011169199A (en) Vane rotary type fluid device and compressor
JP5938054B2 (en) Compressor
CN105074216B (en) Variable capacity vane pump
JP6533386B2 (en) Air tool
WO2014136646A1 (en) Vane pump
WO2014132977A1 (en) Vane pump
TWI566882B (en) Pneumatic grinding machine
WO2013057752A1 (en) Vane-type hydraulic device
WO2020090817A1 (en) Vane pump
KR20070091840A (en) Device for protecting abrasion of rotary compressor
EP3350447B1 (en) Multi-vane impeller device
JP6355389B2 (en) Vane pump
JPH0286982A (en) Vane type compressor
JPH0618681U (en) Vane pump
JP2005002826A (en) Vane rotary type compressor
JP2007120436A (en) Vane pump
JP2008223548A (en) Vane pump
JP6399820B2 (en) AIR MOTOR AND AIR TOOL WITH AIR MOTOR
KR20160145251A (en) Vane pump
JP2008184978A (en) Vane rotary compressor
TWM452255U (en) Blade type fluid transmission structure
JP2021076066A (en) Rotary compressor
JP2008128117A (en) Vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863474

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015863474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015863474

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015354583

Country of ref document: AU

Date of ref document: 20151126

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177006968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE