JP6355389B2 - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
JP6355389B2
JP6355389B2 JP2014075879A JP2014075879A JP6355389B2 JP 6355389 B2 JP6355389 B2 JP 6355389B2 JP 2014075879 A JP2014075879 A JP 2014075879A JP 2014075879 A JP2014075879 A JP 2014075879A JP 6355389 B2 JP6355389 B2 JP 6355389B2
Authority
JP
Japan
Prior art keywords
discharge
rotor
groove
vane
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014075879A
Other languages
Japanese (ja)
Other versions
JP2015197077A5 (en
JP2015197077A (en
Inventor
彰信 永田
彰信 永田
恵史 三浦
恵史 三浦
秀記 清水
秀記 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2014075879A priority Critical patent/JP6355389B2/en
Publication of JP2015197077A publication Critical patent/JP2015197077A/en
Publication of JP2015197077A5 publication Critical patent/JP2015197077A5/ja
Application granted granted Critical
Publication of JP6355389B2 publication Critical patent/JP6355389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Description

本発明は、ロータの回転駆動により、ロータの半径方向へ摺動自在に設けた複数のベーンをカム面に摺接し、流体を吸入ポートから吸入して吐出ポートから吐出するベーンポンプに関する。   The present invention relates to a vane pump in which a plurality of vanes provided so as to be slidable in the radial direction of a rotor are slidably contacted with a cam surface and fluid is sucked from a suction port and discharged from the discharge port.

この種のベーンポンプは、ロータに形成した複数のベーン収納用スリット溝にベーンを半径方向へ摺動自在に挿入し、ロータの回転駆動により、ベーンの先端をカム面に摺接し、ロータとベーンとカム面により区画形成するポンプ室に、吸入領域に開口する吸入ポートより流体を吸入し、ポンプ室に吸入した流体を吐出領域に開口する吐出ポートより吐出している。そして、ロータの側面が摺接する側壁には、吸入領域に位置して吸入側に連通する吸入側の円弧状溝部と、吐出領域に位置して、吐出側に連通する吐出側の円弧状溝部とを窪み形成し、ロータの回転駆動により、ベーン収納用スリット溝の基端部が吸入領域に位置すると、吸入側の円弧状溝部より吸入圧を導入すると共に、ベーン収納用スリット溝の基端部が吐出領域に位置すると、吐出側の円弧状溝部より吐出圧を導入し、ベーンをカム面に押し付け、ポンプ室のシール性の低下を抑制している。   In this type of vane pump, a vane is slidably inserted in a plurality of vane storage slit grooves formed in a rotor in a radial direction, and the tip of the vane is slidably contacted with a cam surface by the rotational drive of the rotor. Fluid is sucked into a pump chamber defined by a cam surface from a suction port that opens to the suction region, and fluid sucked into the pump chamber is discharged from a discharge port that opens to the discharge region. And on the side wall where the side surface of the rotor is slidably contacted, there is a suction-side arc-shaped groove portion that is located in the suction region and communicates with the suction side, and a discharge-side arc-shaped groove portion that is located in the discharge region and communicates with the discharge side. When the base end of the vane storage slit groove is positioned in the suction area by the rotation of the rotor, suction pressure is introduced from the arc-shaped groove on the suction side and the base end of the vane storage slit groove Is positioned in the discharge region, the discharge pressure is introduced from the arc-shaped groove on the discharge side, and the vane is pressed against the cam surface to suppress a decrease in the sealing performance of the pump chamber.

特開平7−259754号公報JP-A-7-259754

ところが、かかる従来のベーンポンプでは、ベーン収納用スリット溝の基端部に吐出圧を導入する吐出側の円弧状溝部が、ロータの回転方向において吸入ポートの終端を越えて吸入領域に延在しているため、吸入領域においてベーンがカム面に過度に押し付けられ、ロータを回転する回転駆動力が増大するという問題があった。   However, in such a conventional vane pump, the arc-shaped groove on the discharge side for introducing discharge pressure to the base end of the slit groove for vane storage extends to the suction region beyond the end of the suction port in the rotation direction of the rotor. Therefore, there is a problem that the vane is excessively pressed against the cam surface in the suction region, and the rotational driving force for rotating the rotor is increased.

本発明の課題は、ロータを回転する回転駆動力を低減し得るベーンポンプを提供するものである。   The subject of this invention is providing the vane pump which can reduce the rotational drive force which rotates a rotor.

かかる課題を達成すべく、本発明は次の手段をとった。即ち、
ポンプ本体内へ回転自在に設けたロータと、ロータに形成し、ベーンを半径方向へ摺動自在に挿入して、ロータ外周面に開口した複数のベーン収納用スリット溝と、ロータの外周を囲み、ベーンの先端が摺接するカム面と、ロータとベーンとカム面により区画形成され、ロータの回転により容積変化して流体を吸入吐出するポンプ室と、ロータの回転に応じて前記ポンプ室の容積が拡大する吸入領域に開口する吸入ポートと、ロータの回転に応じて前記ポンプ室の容積が縮小する吐出領域に開口する吐出ポートと、吸入領域に位置するベーン収納用スリット溝の基端部に連通して吸入圧を導入する吸入側円弧状溝部と、吐出領域に位置するベーン収納用スリット溝の基端部に連通して吐出圧を導入する吐出側円弧状溝部とを備え、吐出側円弧状溝部には、ロータの回転方向における始端に絞り溝部を連設し、絞り溝部は吐出側円弧状溝部より溝幅および窪み深さを小さい寸法にして流路断面積を小さく形成すると共に、吐出側円弧状溝部に連設する基端から周方向の先端まで流路断面積を略同一に設け、絞り溝部は、ロータの回転方向における吸入ポートの終端側を越えて周方向に延在し、吸入領域に位置するベーン収納用スリット溝の基端部に連通すると共に、吸入側円弧状溝部と離間して設けたことを特徴とするベーンポンプがそれである。
In order to achieve this problem, the present invention has taken the following measures. That is,
A rotor provided rotatably in the pump body, a plurality of vane storage slit grooves formed in the rotor and slidably inserted in the radial direction, and opened on the outer peripheral surface of the rotor, and surrounding the outer periphery of the rotor A pump chamber in which the tip of the vane is in sliding contact with the rotor, the vane and the cam surface, the volume of the pump chamber is changed by the rotation of the rotor, and fluid is sucked and discharged; A suction port that opens to a suction region where the volume of the pump chamber expands, a discharge port that opens to a discharge region in which the volume of the pump chamber decreases as the rotor rotates, and a base end portion of a slit groove for storing a vane located in the suction region A discharge-side arc-shaped groove portion that communicates and introduces suction pressure, and a discharge-side arc-shaped groove portion that communicates with the proximal end portion of the vane storage slit groove located in the discharge region and introduces discharge pressure. The groove, with the groove aperture starting end in the rotational direction of the rotor consecutively provided, throttle groove is small to form a flow path cross-sectional area in the small size of the groove width and recess depth from the discharge side arcuate groove portion, the discharge side The cross-sectional area of the flow path is substantially the same from the base end connected to the arc-shaped groove to the tip in the circumferential direction, and the throttle groove extends in the circumferential direction beyond the terminal end of the suction port in the rotation direction of the rotor. This is a vane pump characterized in that it communicates with the base end portion of the slit groove for vane storage located in the region and is provided apart from the arcuate groove portion on the suction side.

また、前記ロータの外周を囲んで偏心移動自在に可動リングを配置し、可動リングの内周面を前記カム面とし、可動リングをロータとの偏心量増加方向へ付勢してフルカットオフ圧力を設定するばねを設け、吐出圧力がカットオフ圧力を上回ると、可動リングがばねのばね力に抗して偏心量を減少するよう移動して吐出量を減少し、吐出圧力がフルカットオフ圧力に達すると、可動リングの偏心量がなくなり吐出量を略零とする可変容量形としても良い。   Further, a movable ring is disposed so as to be eccentrically movable around the outer periphery of the rotor, the inner peripheral surface of the movable ring is used as the cam surface, and the movable ring is biased in the direction of increasing the amount of eccentricity with the rotor to achieve a full cutoff pressure. When the discharge pressure exceeds the cutoff pressure, the movable ring moves against the spring force of the spring to reduce the eccentric amount, reducing the discharge amount, and the discharge pressure is the full cutoff pressure. When the value reaches, the eccentric amount of the movable ring disappears, and a variable displacement type in which the discharge amount is substantially zero may be used.

以上詳述したように、請求項1に記載の発明は、吐出側円弧状溝部には、ロータの回転方向における始端に絞り溝部を連設し、絞り溝部は吐出側円弧状溝部より溝幅および窪み深さを小さい寸法にして流路断面積を小さく形成すると共に、吐出側円弧状溝部に連設する基端から周方向の先端まで流路断面積を略同一に設け、絞り溝部は、ロータの回転方向における吸入ポートの終端側を越えて周方向に延在し、吸入領域に位置するベーン収納用スリット溝の基端部に連通すると共に、吸入側円弧状溝部と離間して設けた。このため、吸入ポートの終端側において、絞り溝部より、ベーン収納用スリット溝の基端部に絞り制御した吐出圧を導入するから、ベーンをカム面に過度に押し付けることなくでき、ロータを回転する回転駆動力を低減することができる。また、ロータの回転方向における吐出側円弧状溝部の始端に、吸入ポートの終端側を越えて周方向に延在した絞り溝部を連設しているため、ロータの回転方向における吐出側円弧状溝部の始端を、吸入ポートの終端側を越えて周方向に延在した従来ポンプに比し、吐出側円弧状溝部から吸入ポートへの流体漏れ量を低減でき、ポンプの容積効率を向上することができる。 As described above in detail, in the invention described in claim 1, the discharge-side arc-shaped groove portion is provided with the throttle groove portion continuously provided at the start end in the rotation direction of the rotor, and the throttle groove portion has a groove width and a width larger than those of the discharge-side arc-shaped groove portion. The recess depth is made small and the channel cross-sectional area is made small, and the channel cross-sectional area is provided substantially the same from the base end connected to the discharge-side arcuate groove to the tip in the circumferential direction. And extending in the circumferential direction beyond the terminal end side of the suction port in the rotation direction, communicating with the base end portion of the vane storage slit groove located in the suction region, and spaced apart from the suction-side arcuate groove portion. For this reason, since the discharge pressure controlled to be throttled is introduced from the throttle groove portion to the base end portion of the vane housing slit groove on the terminal end side of the suction port, the vane can be prevented from being excessively pressed against the cam surface and the rotor is rotated. The rotational driving force can be reduced. In addition, since the throttle groove portion extending in the circumferential direction beyond the terminal end side of the suction port is connected to the start end of the discharge-side arc-shaped groove portion in the rotation direction of the rotor, the discharge-side arc-shaped groove portion in the rotation direction of the rotor Compared to a conventional pump that extends in the circumferential direction beyond the end of the suction port, the amount of fluid leakage from the discharge-side arcuate groove to the suction port can be reduced, and the volumetric efficiency of the pump can be improved. it can.

また、請求項に記載の発明は、絞り溝部は吐出側円弧状溝部に連設する基端から周方向の先端まで流路断面積を略同一に設けた。このため、流路断面積を先端に向けて漸減する形状の絞り溝部とするものに比し、絞り溝部の周方向全域にわたり、吐出圧をスムーズに導入できて、ベーンを円滑にカム面に押し付けることができる。 The invention according to claim 1, aperture Ri groove provided a flow path cross-sectional area from the base end to continuously provided on the discharge side arcuate groove portion to the circumferential direction of the distal end at substantially the same. For this reason, compared to a throttle groove with a shape in which the flow path cross-sectional area gradually decreases toward the tip, the discharge pressure can be smoothly introduced over the entire circumferential direction of the throttle groove, and the vane is pressed against the cam surface smoothly. be able to.

また、請求項に記載の発明は、請求項1の発明に加え、ロータの外周を囲んで偏心移動自在に可動リングを配置し、可動リングの内周面をカム面とし、可動リングをロータとの偏心量増加方向へ付勢してフルカットオフ圧力を設定するばねを設け、吐出圧力がカットオフ圧力を上回ると、可動リングがばねのばね力に抗して偏心量を減少するよう移動して吐出量を減少し、吐出圧力がフルカットオフ圧力に達すると、可動リングの偏心量がなくなり吐出量を略零とする可変容量形とした。このため、吐出量を略一定とした定容量形のものに比し、フルカットオフ圧力で吐出量を略零とし、回転駆動力を一層低減できる。 In addition to the invention of claim 1, the invention of claim 2 is arranged such that a movable ring is arranged so as to be eccentrically movable around the outer periphery of the rotor, the inner peripheral surface of the movable ring is a cam surface, and the movable ring is the rotor. When the discharge pressure exceeds the cutoff pressure, the movable ring moves against the spring force of the spring to decrease the amount of eccentricity. When the discharge amount is reduced and the discharge pressure reaches the full cut-off pressure, the movable ring is decentered and the variable displacement type is set so that the discharge amount is substantially zero. For this reason, as compared with the constant capacity type in which the discharge amount is substantially constant, the discharge amount can be made substantially zero at the full cutoff pressure, and the rotational driving force can be further reduced.

本発明の一実施形態を示した可変容量形ベーンポンプの縦断面図である。1 is a longitudinal sectional view of a variable displacement vane pump showing an embodiment of the present invention. 図1の線A−Aに沿った断面図である。It is sectional drawing along line AA of FIG. ロータ、ベーン、可動リングを想像線で示した図2の線B−Bに沿った拡大断面図である。It is an expanded sectional view along line BB of FIG. 2 which showed a rotor, a vane, and a movable ring by the imaginary line. ロータ、ベーン、可動リングを想像線で示した図2の線C−Cに沿った拡大断面図である。It is an expanded sectional view along line CC of FIG. 2 which showed the rotor, the vane, and the movable ring by an imaginary line.

以下、可変容量ベーンポンプとした本発明の一実施形態を図面に基づき説明する。
図1および図2において、1はポンプ本体で、円筒孔2を穿設すると共に、円筒孔2に連接して円筒孔2の穿設方向と直交方向に収装孔3を穿設したハウジング4と、円筒孔2を閉塞するカバー5から構成している。6は円筒孔2に収装した円板状の第2側板で、円筒孔2の底面に当接して回転不能に配置している。7は円板状の第1側板で、第2側板6と軸方向に離間して円筒孔2へ回転不能に配置している。8は円筒孔2へ回転自在に収装したロータで、第1側板7と第2側板6との間に配置し、軸方向の一方の側面を第2側板6に、軸方向の他方の側面を第1側板7にそれぞれ摺接している。ロータ8には一方の側面に第1軸部8Aを突設すると共に、他方の側面に第2軸部8Bを突設している。第1軸部8Aはハウジング4に軸支し、先端を外部に突出して図示しない電動機と連結する。第2軸部8Bはカバー5に軸支する。9はロータ8へ半径方向に穿設したベーン収納用スリット溝で、ロータ8の外周面に開口し、ロータ8の周方向へ11個を等間隔に設けている。ベーン収納用スリット溝9は半径方向の内方に基端部10を有し、基端部10は円形状に形成している。11はベーンで、ベーン収納用スリット溝9に半径方向へ摺動自在に挿入している。12はロータ8の外周を囲んで配置した可動リングで、円筒孔2の第1側板7と第2側板6との間に配置し、図1の左右方向へロータ8に対して偏心移動自在に設けている。可動リング12はその内周面をカム面13とし、ベーン11の先端を摺接している。14はポンプ室で、ロータ8とベーン11と可動リング12のカム面13により区画形成し、ロータ8の矢印B方向への回転により容積変化する。
Hereinafter, an embodiment of the present invention that is a variable displacement vane pump will be described with reference to the drawings.
1 and 2, reference numeral 1 denotes a pump body, which has a cylindrical hole 2 and a housing 4 that is connected to the cylindrical hole 2 and has a receiving hole 3 formed in a direction perpendicular to the direction in which the cylindrical hole 2 is drilled. And a cover 5 that closes the cylindrical hole 2. Reference numeral 6 denotes a disc-shaped second side plate housed in the cylindrical hole 2, which is disposed in contact with the bottom surface of the cylindrical hole 2 so as not to rotate. Reference numeral 7 denotes a disk-shaped first side plate that is spaced apart from the second side plate 6 in the axial direction and is disposed so as not to rotate in the cylindrical hole 2. A rotor 8 is rotatably accommodated in the cylindrical hole 2 and is arranged between the first side plate 7 and the second side plate 6. One side surface in the axial direction is the second side plate 6 and the other side surface in the axial direction. Are in sliding contact with the first side plate 7, respectively. The rotor 8 has a first shaft portion 8A protruding from one side surface and a second shaft portion 8B protruding from the other side surface. The first shaft portion 8A is pivotally supported on the housing 4 and has a tip projecting outside to be connected to an electric motor (not shown). The second shaft portion 8B is pivotally supported on the cover 5. Reference numeral 9 denotes a vane storage slit groove formed in the rotor 8 in the radial direction. The slit 9 opens on the outer peripheral surface of the rotor 8, and 11 are provided at equal intervals in the circumferential direction of the rotor 8. The vane storage slit groove 9 has a base end portion 10 inward in the radial direction, and the base end portion 10 is formed in a circular shape. A vane 11 is inserted into the slit groove 9 for storing the vane so as to be slidable in the radial direction. A movable ring 12 is disposed around the outer periphery of the rotor 8 and is disposed between the first side plate 7 and the second side plate 6 of the cylindrical hole 2 so as to be movable eccentrically with respect to the rotor 8 in the left-right direction in FIG. Provided. The inner surface of the movable ring 12 is a cam surface 13 and the tip of the vane 11 is in sliding contact. A pump chamber 14 is defined by the rotor 8, the vane 11, and the cam surface 13 of the movable ring 12, and the volume changes as the rotor 8 rotates in the arrow B direction.

15は流体を吸入する吸入流路、16は流体を吐出する吐出流路で、それぞれカバー5に穿設している。17はポンプ室14の容積が拡大する吸入領域に開口する吸入ポートで、第1吸入ポート部17Aと第2吸入ポート部17Bから構成している。図3および図4に示す如き、第1吸入ポート部17Aはロータ8の他方の側面が摺接する第1側板7の側面へ半円弧状に窪み形成し、底面に連設して第1側板7を貫通する連通孔17C、17Dで吸入流路15と連通している。第2吸入ポート部17Bは第1吸入ポート部17Aと略同一形状で、第1吸入ポート部17Aとロータ8を介した軸方向の対向位置に、ロータ8の一方の側面が摺接する第2側板6の側面へ半円弧状に窪み形成している。18はポンプ室14の容積が縮小する吐出領域に開口する吐出ポートで、第1吐出ポート部18Aと第2吐出ポート部18Bから構成している。第1吐出ポート部18Aは第1吸入ポート部17Aと中心を介した半径方向の対向位置で、ロータ8の他方の側面が摺接する第1側板7の側面へ半円弧状に窪み形成し、底面に連設して第1側板7を貫通する連通孔18C、18D、18Eで吐出流路16と連通している。第2吐出ポート部18Bは第1吐出ポート部18Aと略同一形状で、第1吐出ポート部18Aとロータ8を介した軸方向の対向位置に、ロータ8の一方の側面が摺接する第2側板6の側面へ半円弧状に窪み形成している。   Reference numeral 15 denotes a suction flow path for sucking fluid, and 16 denotes a discharge flow path for discharging fluid, each of which is formed in the cover 5. Reference numeral 17 denotes a suction port that opens into a suction region in which the volume of the pump chamber 14 is increased, and includes a first suction port portion 17A and a second suction port portion 17B. As shown in FIGS. 3 and 4, the first suction port portion 17 </ b> A is formed in a semicircular recess in the side surface of the first side plate 7 that is in sliding contact with the other side surface of the rotor 8. Communicating with the suction flow path 15 through the communication holes 17C and 17D penetrating therethrough. The second suction port portion 17B has substantially the same shape as the first suction port portion 17A, and a second side plate in which one side surface of the rotor 8 is in sliding contact with the first suction port portion 17A and the axially opposed position via the rotor 8. A recess is formed in a semicircular shape on the side surface of 6. Reference numeral 18 denotes a discharge port that opens to a discharge region in which the volume of the pump chamber 14 is reduced, and includes a first discharge port portion 18A and a second discharge port portion 18B. The first discharge port portion 18A is formed at a position opposed to the first suction port portion 17A in the radial direction through a center, and is formed in a semicircular arc shape on the side surface of the first side plate 7 in which the other side surface of the rotor 8 is in sliding contact. Are connected to the discharge flow path 16 through communication holes 18C, 18D, and 18E that pass through the first side plate 7. The second discharge port portion 18B has substantially the same shape as the first discharge port portion 18A, and a second side plate in which one side surface of the rotor 8 is in sliding contact with the first discharge port portion 18A and the axially opposed position via the rotor 8. A recess is formed in a semicircular shape on the side surface of 6.

ポンプ室14は、ロータ8の矢印B方向への回転により容積変化し、吸入ポート17から吸入した流体を搬送して吐出ポート18から吐出する。ポンプ室14は内部に発生する吐出圧力による作用力を可動リング12のカム面13に、可動リング12をロータ8との偏心量減少方向(図1の左方向)へ移動するよう作用させる。19は収装孔3の開口を閉塞する蓋部材で、ハウジング4に固定している。20は収装孔3に収装したばねで、一端部にホルダ21を装着すると共に、一端部と軸方向に対向する他端部にばね受け部材22を装着している。ばね20はホルダ21を介して可動リング12の外周面に当接し、可動リング12を偏心量増加方向(図1の右方向)へ付勢している。23は蓋部材19に回動自在に螺合した調圧部材で、ばね受け部材22を介してばね20の他端部に当接し、回動操作で進退自在に設けている。調圧部材23は回動操作で進退し、ばね20を伸縮してばね力を変更し、フルカットオフ圧力を変更操作自在に設けている。24は調圧部材23に螺合したロックナット部材で、蓋部材19へ接離自在に設け、蓋部材19への当接で調圧部材23の回動操作を規制する。   The volume of the pump chamber 14 is changed by the rotation of the rotor 8 in the direction of arrow B, and the fluid sucked from the suction port 17 is transported and discharged from the discharge port 18. The pump chamber 14 acts on the cam surface 13 of the movable ring 12 so as to move the movable ring 12 in the direction of decreasing the amount of eccentricity with the rotor 8 (leftward in FIG. 1). Reference numeral 19 denotes a lid member that closes the opening of the collection hole 3 and is fixed to the housing 4. Reference numeral 20 denotes a spring accommodated in the accommodation hole 3, and a holder 21 is attached to one end portion, and a spring receiving member 22 is attached to the other end portion facing the one end portion in the axial direction. The spring 20 abuts on the outer peripheral surface of the movable ring 12 via the holder 21 and urges the movable ring 12 in the direction of increasing the amount of eccentricity (right direction in FIG. 1). A pressure adjusting member 23 is screwed to the lid member 19 so as to be rotatable. The pressure adjusting member 23 is brought into contact with the other end of the spring 20 via a spring receiving member 22, and is provided so as to be movable forward and backward by a rotating operation. The pressure adjusting member 23 is advanced and retracted by a turning operation, and the spring 20 is expanded and contracted to change the spring force, so that the full cut-off pressure can be freely changed. Reference numeral 24 denotes a lock nut member screwed to the pressure adjusting member 23, which is provided so as to be able to come into contact with and separate from the lid member 19, and restricts the rotation operation of the pressure regulating member 23 by contact with the lid member 19.

25はハウジング4に螺合した案内ねじ部材で、可動リング12におけるホルダ21の当接個所と略直角方向の外周面に当接し、吐出ポート18の位置に対応して可動リング12のカム面13に作用する吐出圧力による作用力の図1上方向分力を受け、可動リング12の図1左右方向への移動を案内するよう設けている。そして、案内ねじ部材25は回動操作により進退自在に設けて可動リング12の図1上下方向位置を調整自在に設けている。26は案内ねじ部材25に螺合したロックナット部材で、ハウジング4へ接離自在に設け、ハウジング4への当接で案内ねじ部材25の回動操作を規制する。27はハウジング4に螺合した吐出量調整部材で、ホルダ21との対向位置で可動リング12の外周面に当接し、可動リング12の最大偏心量を規制して最大吐出量を設定する。28は吐出量調整部材27に螺合したロックナット部材で、ポンプ本体1へ接離自在に設け、ポンプ本体1への当接で吐出量調整部材27の回動操作を規制する。   Reference numeral 25 denotes a guide screw member screwed into the housing 4, which is in contact with the outer peripheral surface of the movable ring 12 in a direction substantially perpendicular to the contact portion of the holder 21, and the cam surface 13 of the movable ring 12 corresponding to the position of the discharge port 18. 1 is received so as to guide the movement of the movable ring 12 in the left-right direction in FIG. The guide screw member 25 is provided so as to be able to advance and retract by a turning operation, and the position of the movable ring 12 in the vertical direction in FIG. Reference numeral 26 denotes a lock nut member screwed into the guide screw member 25, which is provided so as to be able to contact with and separate from the housing 4, and restricts the rotation operation of the guide screw member 25 by contact with the housing 4. A discharge amount adjusting member 27 screwed into the housing 4 is in contact with the outer peripheral surface of the movable ring 12 at a position facing the holder 21 and regulates the maximum eccentric amount of the movable ring 12 to set the maximum discharge amount. Reference numeral 28 denotes a lock nut member screwed into the discharge amount adjusting member 27, which is provided so as to be able to come into contact with and separate from the pump main body 1, and regulates the turning operation of the discharge amount adjusting member 27 by contact with the pump main body 1.

29は吸入領域に位置するベーン収納用スリット溝9の基端部10に連通して吸入圧を導入する吸入側円弧状溝部、30は吐出領域に位置するベーン収納用スリット溝9の基端部10に連通して吐出圧を導入する吐出側円弧状溝部で、以下、図3および図4に基づき詳述する。
吸入側円弧状溝部29は、第1側板7に設けた第1吸入側円弧状溝部29Aと第2側板6に設けた第2吸入側円弧状溝部29Bとから構成している。第1吸入側円弧状溝部29Aは、図3に示す如く、第1吸入ポート部17Aより半径方向の内方位置でベーン収納用スリット溝9の基端部10と半径方向で略同一位置に設け、半円弧状に窪み形成し、周方向長さ寸法をポンプ室14の2個分と略等しく設けている。そして、第1吸入側円弧状溝部29Aは、底面に連設して第1側板7を貫通する連通孔29Cで吸入流路15と連通している。第2吸入側円弧状溝部29Bは、図4に示す如く、第1吸入側円弧状溝部29Aと略同一形状で、第1吸入側円弧状溝部29Aとロータ8を介した軸方向の対向位置で、第2側板6に窪み形成している。第2吸入側円弧状溝部29Bは、ロータ8の回転方向Bにおける始端に略V字状の溝29Dを形成している。溝29Dはロータ8の回転においてベーン収納用スリット溝9を第2吸入側円弧状溝部29Bに徐々に連通させるものである。
Reference numeral 29 denotes a suction-side arcuate groove portion that communicates with the base end portion 10 of the vane storage slit groove 9 located in the suction region and introduces suction pressure. Reference numeral 30 denotes a base end portion of the vane storage slit groove 9 positioned in the discharge region. A discharge-side arcuate groove portion that communicates with 10 and introduces discharge pressure will be described in detail below with reference to FIGS. 3 and 4.
The suction-side arcuate groove 29 is composed of a first suction-side arcuate groove 29A provided in the first side plate 7 and a second suction-side arcuate groove 29B provided in the second side plate 6. As shown in FIG. 3, the first suction-side arcuate groove 29A is provided at substantially the same position in the radial direction as the base end portion 10 of the vane storage slit groove 9 at a radially inward position from the first suction port portion 17A. In addition, a recess is formed in a semicircular arc shape, and the circumferential length is approximately equal to the two pump chambers 14. The first suction-side arc-shaped groove 29A communicates with the suction flow path 15 through a communication hole 29C that is continuous with the bottom surface and penetrates the first side plate 7. As shown in FIG. 4, the second suction side arcuate groove portion 29 </ b> B has substantially the same shape as the first suction side arcuate groove portion 29 </ b> A, and is opposed to the first suction side arcuate groove portion 29 </ b> A in the axial direction via the rotor 8. A depression is formed in the second side plate 6. The second suction-side arcuate groove portion 29 </ b> B forms a substantially V-shaped groove 29 </ b> D at the start end in the rotation direction B of the rotor 8. The groove 29D gradually communicates the vane storage slit groove 9 with the second suction-side arcuate groove portion 29B in the rotation of the rotor 8.

吐出側円弧状溝部30は、第1側板7に設けた第1吐出側円弧状溝部30Aと第2側板6に設けた第2吐出側円弧状溝部30Bとから構成している。第1吐出側円弧状溝部30Aは、図3に示す如く、第1吸入側円弧状溝部29Aと同心状でベーン収納用スリット溝9の基端部10と半径方向で略同一位置に設け、半円弧状に窪み形成し、周方向長さ寸法をポンプ室14の6個分と略等しく設けている。そして、第1吐出側円弧状溝部30Aは、底面に連設して第1側板7を貫通する連通孔30C、30D、30Eで吐出流路16と連通している。第2吐出側円弧状溝部30Bは、図4に示す如く、第1吐出側円弧状溝部30Aと略同一形状で、第1吐出側円弧状溝部30Aとロータ8を介した軸方向の対向位置で、第2側板6に窪み形成している。   The discharge-side arcuate groove 30 is composed of a first discharge-side arcuate groove 30A provided on the first side plate 7 and a second discharge-side arcuate groove 30B provided on the second side plate 6. As shown in FIG. 3, the first discharge-side arcuate groove portion 30A is concentric with the first suction-side arcuate groove portion 29A and is provided at substantially the same position in the radial direction as the base end portion 10 of the vane storage slit groove 9. A recess is formed in an arc shape, and the circumferential length is approximately equal to that of the six pump chambers 14. The first discharge-side arcuate groove portion 30A communicates with the discharge flow path 16 through communication holes 30C, 30D, and 30E that are connected to the bottom surface and penetrate the first side plate 7. As shown in FIG. 4, the second discharge-side arcuate groove portion 30 </ b> B has substantially the same shape as the first discharge-side arcuate groove portion 30 </ b> A, and is opposed to the first discharge-side arcuate groove portion 30 </ b> A in the axial direction via the rotor 8. A depression is formed in the second side plate 6.

31は吐出側円弧状溝部30の流体を絞り制御してベーン収納用スリット溝9に導入する絞り溝部で、吐出側円弧状溝部30のロータ8の回転方向Bにおける始端に連設している。絞り溝部31は、第1吐出側円弧状溝部30Aの始端に連設した第1絞り溝部31Aと第2吐出側円弧状溝部30Bの始端に連設した第2絞り溝部31Bとから構成している。両絞り溝部31A、31Bは両吐出側円弧状溝部30A、30Bと同心状でベーン収納用スリット溝9の基端部10と半径方向で略同一位置に設け、半円弧状に窪み形成している。両絞り溝部31A、31Bは吸入ポート17を構成する両吸入ポート部17A、17Bの終端側を越えて周方向に延在し、周方向長さ寸法をポンプ室14の1個分と略等しく設け、先端を両吸入側円弧状溝部29A、29Bの終端と離間している。両絞り溝部31A、31B先端と両吸入側円弧状溝部29A、29B終端との間の離間寸法は、ベーン収納用スリット溝9の基端部10の円形寸法より若干大きく設け、ロータ8の回転によりベーン収納用スリット溝9の基端部10が、両吸入側円弧状溝部29A、29Bとの連通を遮断した後に両絞り溝部31A、31Bに連通するように設定している。両絞り溝部31A、31Bは両吐出側円弧状溝部30A、30Bより溝幅および窪み深さを小さい寸法にして流路断面積を小さく形成している。両絞り溝部31A、31Bは両吐出側円弧状溝部30A、30Bに連設する基端から先端までの周方向全域で流路断面積を略同一に設けている。   Reference numeral 31 denotes a throttle groove portion that throttles the fluid in the discharge-side arcuate groove portion 30 and introduces it into the vane storage slit groove 9, and is connected to the starting end of the discharge-side arcuate groove portion 30 in the rotational direction B of the rotor 8. The throttle groove 31 is composed of a first throttle groove 31A provided continuously with the start end of the first discharge-side arcuate groove 30A and a second throttle groove 31B provided continuously with the start end of the second discharge-side arcuate groove 30B. . Both throttle groove portions 31A, 31B are concentric with both discharge-side arcuate groove portions 30A, 30B, are provided at substantially the same position in the radial direction as the base end portion 10 of the vane storage slit groove 9, and are recessed in a semicircular arc shape. . Both throttle groove portions 31A and 31B extend in the circumferential direction beyond the end sides of both suction port portions 17A and 17B constituting the suction port 17, and are provided with a circumferential length dimension substantially equal to that of one pump chamber 14. The tip is separated from the end of both suction side arcuate grooves 29A, 29B. The separation dimension between the distal ends of both throttle grooves 31A, 31B and the terminal ends of both suction side arcuate grooves 29A, 29B is provided slightly larger than the circular dimension of the base end portion 10 of the vane storage slit groove 9, and the rotor 8 rotates. The base end portion 10 of the vane storage slit groove 9 is set so as to communicate with both throttle groove portions 31A and 31B after blocking communication with both suction side arcuate groove portions 29A and 29B. Both throttle groove portions 31A and 31B are formed so that the groove width and the recess depth are smaller than those of both discharge-side arcuate groove portions 30A and 30B, and the flow passage cross-sectional area is made smaller. Both throttle groove portions 31A and 31B have substantially the same channel cross-sectional area in the entire circumferential direction from the base end to the tip end connected to both discharge-side arcuate groove portions 30A and 30B.

図4に示す如く、32は第2側板6に窪み形成した溝で、吸入ポート17を構成する第2吸入ポート部17Bのロータ8の回転方向Bにおける終端に設け、先端に向けて流路断面積を漸減する略V字状に形成し、周方向長さ寸法をベーン11の厚み寸法より若干小さく設けている。溝32はロータ8の回転において吸入領域から移行するポンプ室14が閉じ込み状態となる直前まで、ポンプ室14の圧力を第2吸入ポート部17Bに逃がし、ポンプ室14の閉じ込み圧の大幅な上昇を抑制する。吐出側円弧状溝部30を構成する第2吐出側円弧状溝部30Bのロータ8の回転方向Bにおける始端と、吸入ポート17を構成する第2吸入ポート部17Bのロータ8の回転方向Bにおける終端に設けた溝32の先端との間の離間寸法は、ベーン11の厚み寸法より若干小さく設けている。33は第2吸入ポート部17Bのロータ8の回転方向Bにおける始端に設けた溝で、先端に向けて流路断面積を漸減する略V字状に形成し、周方向長さ寸法をベーン11の厚み寸法の略2.5倍としている。溝33はロータ8の回転においてポンプ室14が閉じ込み状態から吸入領域に移行する際に、閉じ込み状態にあるポンプ室14の第2吸入ポート部17Bへの連通開度を漸増し、ポンプ室14の閉じ込み圧の急激な低下を抑制する。34は第2吐出ポート部18Bのロータ8の回転方向Bにおける始端に設けた溝で、先端に向けて流路断面積を漸減する略V字状に形成し、周方向長さ寸法をベーン11の厚み寸法の略2.5倍としている。溝34はロータ8の回転においてポンプ室14が閉じ込み状態から吐出領域に移行する際に、閉じ込み状態にあるポンプ室14の第2吐出ポート部18Bへの連通開度を漸増し、ポンプ室14の閉じ込み圧の急激な上昇を抑制する。35は第2吐出ポート部18Bのロータ8の回転方向Bにおける終端に設けた溝で、先端に向けて流路断面積を漸減する略V字状に形成し、周方向長さ寸法をベーン11の厚み寸法より若干小さく設けている。溝35はロータ8の回転において吐出領域から移行するポンプ室14が閉じ込み状態となる直前までポンプ室14の圧力を第2吐出ポート部18Bに逃がし、ポンプ室14の閉じ込み圧の大幅な上昇を抑制する。   As shown in FIG. 4, 32 is a groove formed in the second side plate 6, which is provided at the end in the rotational direction B of the rotor 8 of the second suction port portion 17 </ b> B constituting the suction port 17, and cuts off the flow path toward the tip. It is formed in a substantially V shape that gradually reduces the area, and the circumferential length is slightly smaller than the thickness of the vane 11. The groove 32 allows the pressure in the pump chamber 14 to escape to the second suction port portion 17B until the pump chamber 14 that moves from the suction region in the rotation of the rotor 8 is in a closed state. Suppresses the rise. At the start end in the rotation direction B of the rotor 8 of the second discharge side arcuate groove portion 30B constituting the discharge side arcuate groove portion 30B and at the end of the second suction port portion 17B constituting the suction port 17 in the rotation direction B of the rotor 8 The distance from the tip of the provided groove 32 is slightly smaller than the thickness of the vane 11. Reference numeral 33 denotes a groove provided at the start end of the second suction port portion 17B in the rotation direction B of the rotor 8, and is formed in a substantially V shape that gradually reduces the cross-sectional area of the flow path toward the tip, and the circumferential length is set to the vane 11. The thickness dimension is approximately 2.5 times. The groove 33 gradually increases the opening degree of communication with the second suction port portion 17B of the pump chamber 14 in the closed state when the pump chamber 14 shifts from the closed state to the suction region in the rotation of the rotor 8. 14 to suppress a sudden drop in the confining pressure. Reference numeral 34 denotes a groove provided at the start end of the second discharge port portion 18B in the rotation direction B of the rotor 8 and is formed in a substantially V shape that gradually decreases the cross-sectional area of the flow path toward the tip, and the circumferential length is set to the vane 11. The thickness dimension is approximately 2.5 times. The groove 34 gradually increases the opening degree of communication with the second discharge port portion 18B of the pump chamber 14 in the closed state when the pump chamber 14 shifts from the closed state to the discharge region when the rotor 8 rotates. The rapid increase of the 14 confinement pressure is suppressed. A groove 35 is provided at the end of the second discharge port portion 18B in the rotational direction B of the rotor 8, and is formed in a substantially V shape that gradually decreases the cross-sectional area of the flow path toward the tip, and the circumferential length is set to the vane 11. It is provided slightly smaller than the thickness dimension. The groove 35 allows the pressure in the pump chamber 14 to escape to the second discharge port portion 18B until the pump chamber 14 moving from the discharge region in the rotation of the rotor 8 is in a closed state, and the pump chamber 14 has a significant increase in the closing pressure. Suppress.

次にかかる構成の作動を説明する。
図1の状態は、可動リング12が最大偏心位置にあり、ロータ8を矢印B方向に回転すると、吸入ポート17よりポンプ室14に吸入した流体を吐出ポート18より吐出して最大吐出量が得られる。そして、可動リング12のカム面13に図1の左方向へ作用する吐出圧力による作用力がばね20のばね力による設定圧力を上回ると、可動リング12は図1の左方向へ偏心量を減少するよう案内ねじ部材25で案内されて移動して吐出量を減少し、可動リング12がロータ8と略同心位置になることで吐出量が零になる。そして、吐出量の減少により吐出圧力が設定圧力より低下すると、可動リング12はばね20のばね力により図1の右方向へ案内ねじ部材25で案内されて移動して吐出量を増加する。
Next, the operation of this configuration will be described.
In the state of FIG. 1, when the movable ring 12 is at the maximum eccentric position and the rotor 8 is rotated in the direction of arrow B, the fluid sucked into the pump chamber 14 from the suction port 17 is discharged from the discharge port 18 to obtain the maximum discharge amount. It is done. When the acting force due to the discharge pressure acting in the left direction in FIG. 1 on the cam surface 13 of the movable ring 12 exceeds the set pressure due to the spring force of the spring 20, the movable ring 12 decreases the eccentric amount in the left direction in FIG. 1. The discharge amount is reduced by being guided by the guide screw member 25 and the movable ring 12 is substantially concentric with the rotor 8, so that the discharge amount becomes zero. When the discharge pressure decreases below the set pressure due to the decrease in the discharge amount, the movable ring 12 is guided by the guide screw member 25 in the right direction in FIG. 1 by the spring force of the spring 20 and moves to increase the discharge amount.

ロータ8の矢印B方向への回転で、ベーン収納用スリット溝9の基端部10には、吸入領域において、吸入側円弧状溝部29より吸入圧を導入し、吐出領域において吐出側円弧状溝部30より吐出圧を導入し、ベーン11をカム面13に押し付けている。また、吸入領域と吐出領域との間において、ベーン収納用スリット溝9の基端部10には、絞り溝部31より絞り制御した吐出圧を導入し、ベーン11をカム面13に押し付けている。   As the rotor 8 rotates in the direction of arrow B, suction pressure is introduced from the suction-side arcuate groove 29 in the suction region to the base end portion 10 of the vane storage slit groove 9, and the discharge-side arcuate groove in the discharge region. The discharge pressure is introduced from 30 and the vane 11 is pressed against the cam surface 13. Further, between the suction region and the discharge region, a discharge pressure controlled by the throttle groove 31 is introduced into the base end portion 10 of the vane housing slit groove 9 to press the vane 11 against the cam surface 13.

かかる作動で、吐出側円弧状溝部30には、ロータ8の回転方向Bにおける始端に絞り溝部31を連設し、絞り溝部31は吐出側円弧状溝部30より流路断面積を小さく形成し、絞り溝部31は、ロータ8の回転方向Bにおける吸入ポート17の終端側を越えて周方向に延在し、吸入領域に位置するベーン収納用スリット溝9の基端部10に連通すると共に、吸入側円弧状溝部29と離間して設けた。このため、吸入ポート17の終端部側において、絞り溝部31より、ベーン収納用スリット溝9の基端部10に絞り制御した吐出圧を導入するから、ベーン11をカム面13に過度に押し付けることなくでき、ロータ8を回転する回転駆動力を低減することができる。また、ロータ8の回転方向Bにおける吐出側円弧状溝部30の始端に、吸入ポート17の終端を越えて周方向に延在した絞り溝部31を連設しているため、ロータの回転方向における吐出側円弧状溝部の始端を、吸入ポートの終端側を越えて周方向に延在した従来ポンプに比し、吐出側円弧状溝部30から吸入ポート17への流体漏れ量を低減でき、ポンプの容積効率を向上することができる。   With this operation, the discharge-side arc-shaped groove 30 is continuously provided with the throttle groove 31 at the start end in the rotation direction B of the rotor 8, and the throttle groove 31 has a smaller channel cross-sectional area than the discharge-side arc-shaped groove 30. The throttle groove portion 31 extends in the circumferential direction beyond the terminal end side of the suction port 17 in the rotation direction B of the rotor 8, communicates with the base end portion 10 of the vane storage slit groove 9 located in the suction region, and sucks the suction groove 17. The side arc-shaped groove 29 was provided apart from the side arc-shaped groove 29. For this reason, since the discharge pressure controlled to be throttled is introduced from the throttle groove 31 to the base end portion 10 of the slit groove 9 for vane storage on the terminal end side of the suction port 17, the vane 11 is excessively pressed against the cam surface 13. The rotational driving force for rotating the rotor 8 can be reduced. Further, since the throttle groove 31 extending in the circumferential direction beyond the terminal end of the suction port 17 is connected to the start end of the discharge-side arc-shaped groove 30 in the rotation direction B of the rotor 8, the discharge in the rotation direction of the rotor is performed. Compared to a conventional pump in which the starting end of the side arc-shaped groove portion extends in the circumferential direction beyond the terminal end side of the suction port, the amount of fluid leakage from the discharge-side arc-shaped groove portion 30 to the suction port 17 can be reduced, and the volume of the pump Efficiency can be improved.

また、絞り溝部31は、吐出側円弧状溝部30に連設する基端から周方向の先端まで流路断面積を略同一に設けた。このため、流路断面積を先端に向けて漸減する形状の絞り溝部とするものに比し、絞り溝部31の全域にわたり、吐出圧を導入しやすくできるから、ベーン11を円滑にカム面13に押し付けることができる。   In addition, the throttle groove 31 has substantially the same flow path cross-sectional area from the base end connected to the discharge-side arcuate groove 30 to the tip in the circumferential direction. For this reason, it is possible to easily introduce the discharge pressure over the entire area of the throttle groove 31 as compared with a throttle groove having a shape in which the cross-sectional area of the flow path gradually decreases toward the tip. Can be pressed.

また、吐出側円弧状溝部30のロータ8の回転方向Bにおける始端と、吸入ポート17の終端との間の離間寸法を、ベーン11の厚み寸法より若干小さく設けた。このため、ロータ8の回転方向Bにおいて、ベーン11が吸入ポート17の終端を通過して直ちに、ベーン収納用スリット溝9の基端部10の連通を絞り溝部31から吐出側円弧状溝部30に移行できるから、ベーン11が吸入領域から吐出領域へ移行するのに応じてベーン収納用スリット溝9の基端部10に導入する圧力を増加でき、ベーン11をカム面13に良好に押し付け、ポンプ室14のシール性を低減することなくできる。   Further, a separation dimension between the starting end of the discharge-side arcuate groove portion 30 in the rotation direction B of the rotor 8 and the terminal end of the suction port 17 is set slightly smaller than the thickness dimension of the vane 11. For this reason, in the rotational direction B of the rotor 8, immediately after the vane 11 passes the end of the suction port 17, the communication of the base end portion 10 of the vane storage slit groove 9 is changed from the throttle groove portion 31 to the discharge-side arcuate groove portion 30. Therefore, as the vane 11 moves from the suction region to the discharge region, the pressure introduced into the base end portion 10 of the vane storage slit groove 9 can be increased, and the vane 11 can be pressed well against the cam surface 13 and the pump This can be done without reducing the sealing performance of the chamber 14.

また、吸入ポート17の、ロータ8の回転方向Bにおける終端に溝32を設け、溝32の周方向長さ寸法をベーン11の厚み寸法より若干小さく設けた。このため、吸入領域から移行するポンプ室14が、閉じ込み状態となる直前まで、ポンプ室14の圧力を溝32から吸入ポート17に逃がすことができ、ポンプ室14の閉じ込み圧の大幅な上昇を抑制することができる。   Further, a groove 32 is provided at the end of the suction port 17 in the rotation direction B of the rotor 8, and the circumferential length of the groove 32 is slightly smaller than the thickness of the vane 11. For this reason, the pressure in the pump chamber 14 can be released from the groove 32 to the suction port 17 until the pump chamber 14 that moves from the suction region is in a closed state, and the pumping pressure in the pump chamber 14 is significantly increased. Can be suppressed.

また、ロータ8の外周を囲んで偏心移動自在に可動リング12を配置し、可動リング12の内周面をカム面13とし、可動リング12をロータ8との偏心量増加方向へ付勢してフルカットオフ圧力を設定するばね20を設け、吐出圧力がカットオフ圧力を上回ると、可動リング12がばね20のばね力に抗して偏心量を減少するよう移動して吐出量を減少し、吐出圧力がフルカットオフ圧力に達すると、可動リング12の偏心量がなくなり吐出量を略零とする可変容量形とした。このため、フルカットオフ圧力で吐出量を略零とし、回転駆動力を一層低減できる。   Further, a movable ring 12 is disposed so as to be movable eccentrically around the outer periphery of the rotor 8, the inner peripheral surface of the movable ring 12 is a cam surface 13, and the movable ring 12 is urged in an increasing amount of eccentricity with the rotor 8. When a spring 20 for setting a full cut-off pressure is provided, and the discharge pressure exceeds the cut-off pressure, the movable ring 12 moves so as to reduce the eccentric amount against the spring force of the spring 20 to reduce the discharge amount, When the discharge pressure reaches the full cut-off pressure, the movable ring 12 is decentered and the variable displacement type is set so that the discharge amount is substantially zero. For this reason, the discharge amount can be made substantially zero at the full cutoff pressure, and the rotational driving force can be further reduced.

なお、前述の実施形態では、吸入ポート17、吐出ポート18、吸入側円弧状溝部29、吐出側円弧状溝部30、絞り溝部31を、それぞれ第1側板7と第2側板6との両方に設けたが、少なくともいずれか一つに設けても良い。また、吸入ポート17の終端に設けた溝32は、第2吸入ポート部17Bに設けたが、第1吸入ポート部17Aに設けたり、両方の吸入ポート部17A、17Bに設けても良い。また、吐出圧がフルカットオフ圧力に達すると、吐出量を略零とする可変容量形としたが、吐出量を略一定とする定容量形としても良いことは勿論である。   In the above-described embodiment, the suction port 17, the discharge port 18, the suction side arcuate groove portion 29, the discharge side arcuate groove portion 30, and the throttle groove portion 31 are provided on both the first side plate 7 and the second side plate 6, respectively. However, at least one of them may be provided. Further, the groove 32 provided at the end of the suction port 17 is provided in the second suction port portion 17B, but may be provided in the first suction port portion 17A or in both suction port portions 17A and 17B. Further, when the discharge pressure reaches the full cut-off pressure, the variable displacement type is set so that the discharge amount is substantially zero. However, it is needless to say that a constant capacity type where the discharge amount is substantially constant may be used.

1:ポンプ本体
8:ロータ
9:ベーン収納用スリット溝
10:基端部
11:ベーン
13:カム面
14:ポンプ室
17:吸入ポート
17A:第1吸入ポート
17B:第2吸入ポート
18:吐出ポート
18A:第1吐出ポート
18B:第2吐出ポート
29:吸入側円弧状溝部
29A:第1吸入側円弧状溝部
29B:第2吸入側円弧状溝部
30:吐出側円弧状溝部
30A:第1吐出側円弧状溝部
30B:第2吐出側円弧状溝部
31:絞り溝部
31A:第1絞り溝部
31B:第2絞り溝部
1: pump main body 8: rotor 9: slit groove 10 for storing vanes: base end portion 11: vane 13: cam surface 14: pump chamber 17: suction port 17A: first suction port portion 17B: second suction port portion 18: Discharge port 18A: first discharge port portion 18B: second discharge port portion 29: suction side arcuate groove portion 29A: first suction side arcuate groove portion 29B: second suction side arcuate groove portion 30: discharge side arcuate groove portion 30A: First discharge side arcuate groove portion 30B: second discharge side arcuate groove portion 31: throttle groove portion 31A: first throttle groove portion 31B: second throttle groove portion

Claims (2)

ポンプ本体内へ回転自在に設けたロータと、ロータに形成し、ベーンを半径方向へ摺動自在に挿入して、ロータ外周面に開口した複数のベーン収納用スリット溝と、ロータの外周を囲み、ベーンの先端が摺接するカム面と、ロータとベーンとカム面により区画形成され、ロータの回転により容積変化して流体を吸入吐出するポンプ室と、ロータの回転に応じて前記ポンプ室の容積が拡大する吸入領域に開口する吸入ポートと、ロータの回転に応じて前記ポンプ室の容積が縮小する吐出領域に開口する吐出ポートと、吸入領域に位置するベーン収納用スリット溝の基端部に連通して吸入圧を導入する吸入側円弧状溝部と、吐出領域に位置するベーン収納用スリット溝の基端部に連通して吐出圧を導入する吐出側円弧状溝部とを備え、吐出側円弧状溝部には、ロータの回転方向における始端に絞り溝部を連設し、絞り溝部は吐出側円弧状溝部より溝幅および窪み深さを小さい寸法にして流路断面積を小さく形成すると共に、吐出側円弧状溝部に連設する基端から周方向の先端まで流路断面積を略同一に設け、絞り溝部は、ロータの回転方向における吸入ポートの終端側を越えて周方向に延在し、吸入領域に位置するベーン収納用スリット溝の基端部に連通すると共に、吸入側円弧状溝部と離間して設けたことを特徴とするベーンポンプ。 A rotor provided rotatably in the pump body, a plurality of vane storage slit grooves formed in the rotor and slidably inserted in the radial direction, and opened on the outer peripheral surface of the rotor, and surrounding the outer periphery of the rotor A pump chamber in which the tip of the vane is slidably contacted, a rotor, the vane, and the cam surface, the volume of which is changed by the rotation of the rotor and the fluid is sucked and discharged, and the volume of the pump chamber according to the rotation of the rotor A suction port that opens to a suction region where the volume of the pump chamber expands, a discharge port that opens to a discharge region in which the volume of the pump chamber decreases as the rotor rotates, and a base end portion of a slit groove for storing a vane located in the suction region A discharge-side arc-shaped groove portion that communicates and introduces suction pressure, and a discharge-side arc-shaped groove portion that communicates with the proximal end portion of the vane storage slit groove located in the discharge region and introduces discharge pressure. The groove, with the groove aperture starting end in the rotational direction of the rotor consecutively provided, throttle groove is small to form a flow path cross-sectional area in the small size of the groove width and recess depth from the discharge side arcuate groove portion, the discharge side The cross-sectional area of the flow path is substantially the same from the base end connected to the arc-shaped groove to the tip in the circumferential direction, and the throttle groove extends in the circumferential direction beyond the terminal end of the suction port in the rotation direction of the rotor. A vane pump, wherein the vane pump communicates with a base end portion of a slit groove for storing vanes located in a region and is separated from an arcuate groove portion on the suction side. 前記ロータの外周を囲んで偏心移動自在に可動リングを配置し、可動リングの内周面を前記カム面とし、可動リングをロータとの偏心量増加方向へ付勢してフルカットオフ圧力を設定するばねを設け、吐出圧力がカットオフ圧力を上回ると、可動リングがばねのばね力に抗して偏心量を減少するよう移動して吐出量を減少し、吐出圧力がフルカットオフ圧力に達すると、可動リングの偏心量がなくなり吐出量を略零とする可変容量形とした事を特徴とする請求項1に記載のベーンポンプ。 A movable ring is arranged around the outer periphery of the rotor so that it can be moved eccentrically. The inner peripheral surface of the movable ring is used as the cam surface, and the movable ring is biased in the direction of increasing the amount of eccentricity with the rotor to set the full cutoff pressure. When the discharge pressure exceeds the cutoff pressure, the movable ring moves against the spring force of the spring to reduce the eccentric amount, reducing the discharge amount, and the discharge pressure reaches the full cutoff pressure. The vane pump according to claim 1, wherein the variable ring type is configured such that the eccentric amount of the movable ring disappears and the discharge amount is substantially zero.
JP2014075879A 2014-04-02 2014-04-02 Vane pump Active JP6355389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014075879A JP6355389B2 (en) 2014-04-02 2014-04-02 Vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014075879A JP6355389B2 (en) 2014-04-02 2014-04-02 Vane pump

Publications (3)

Publication Number Publication Date
JP2015197077A JP2015197077A (en) 2015-11-09
JP2015197077A5 JP2015197077A5 (en) 2017-04-27
JP6355389B2 true JP6355389B2 (en) 2018-07-11

Family

ID=54546915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014075879A Active JP6355389B2 (en) 2014-04-02 2014-04-02 Vane pump

Country Status (1)

Country Link
JP (1) JP6355389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6628601B2 (en) 2015-12-25 2020-01-08 株式会社ショーワ Vane pump device
JP2019206919A (en) * 2018-05-28 2019-12-05 豊興工業株式会社 Motor direct-coupling type hydraulic pump device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197889A (en) * 1993-11-26 1995-08-01 Aisin Seiki Co Ltd Vane pump
JPH07293455A (en) * 1994-04-28 1995-11-07 Toyooki Kogyo Co Ltd Vane pump
JP5395713B2 (en) * 2010-01-05 2014-01-22 日立オートモティブシステムズ株式会社 Vane pump

Also Published As

Publication number Publication date
JP2015197077A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP6355389B2 (en) Vane pump
US9664188B2 (en) Variable displacement vane pump
JP6111093B2 (en) Vane pump
WO2014132977A1 (en) Vane pump
JP6444166B2 (en) Variable displacement pump
JP6770370B2 (en) Vane pump
US9353744B2 (en) Vane-type hydraulic device having vane formed with engaging groove
JP6708534B2 (en) Vane oil pump
CN108496007A (en) Vane pump
JP6867935B2 (en) Vane pump
JP7153534B2 (en) vane pump
JP7424773B2 (en) vane pump
JP7150870B2 (en) vane pump device
JP6307619B2 (en) Vane pump
JP5983687B2 (en) Variable vane pump
JP2010265852A (en) Vane pump
JP2003097453A (en) Variable displacement vane pump
JP2021134690A (en) Vane pump
JP7324098B2 (en) vane pump
WO2020026338A1 (en) Vane pump device
JP3613123B2 (en) Vane pump
JP4410528B2 (en) Variable displacement vane pump
WO2020059559A1 (en) Vane pump
JP2023078505A (en) vane pump
JP2017206962A (en) pump

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170321

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6355389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350