WO2016084869A1 - 多心ケーブル及びその製造方法 - Google Patents

多心ケーブル及びその製造方法 Download PDF

Info

Publication number
WO2016084869A1
WO2016084869A1 PCT/JP2015/083138 JP2015083138W WO2016084869A1 WO 2016084869 A1 WO2016084869 A1 WO 2016084869A1 JP 2015083138 W JP2015083138 W JP 2015083138W WO 2016084869 A1 WO2016084869 A1 WO 2016084869A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
insulated
bundle
bundles
conductors
Prior art date
Application number
PCT/JP2015/083138
Other languages
English (en)
French (fr)
Inventor
豪 田邉
智弘 安達
Original Assignee
株式会社 潤工社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015172403A external-priority patent/JP5935054B1/ja
Application filed by 株式会社 潤工社 filed Critical 株式会社 潤工社
Priority to US15/531,614 priority Critical patent/US10096402B2/en
Priority to CN201580064922.1A priority patent/CN107004471B/zh
Priority to EP15863557.3A priority patent/EP3226256A4/en
Publication of WO2016084869A1 publication Critical patent/WO2016084869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a multi-core cable and a manufacturing method thereof.
  • Patent Document 1 describes a multi-core cable having five insulated conductors and one non-insulated conductor.
  • five insulated conductors and one non-insulated conductor are arranged in a row on the outer periphery of the tension member and wound helically.
  • the multi-core cable described in Patent Document 1 can have good flexibility because the insulated conductors and the non-insulated conductors are arranged in a row and wound helically.
  • the multi-core cable described in Patent Document 1 does not include a coaxial cable, the diameter can be reduced and the manufacturing cost can be reduced.
  • the present invention provides a cross section of a plurality of insulated conductors and a plurality of non-insulated conductors in which the non-insulated conductor is always disposed near the insulated conductor, and the insulated conductors and the insulated conductors and
  • An object of the present invention is to provide a multi-core cable in which the transmission performance is unlikely to deteriorate by randomly changing the positional relationship of non-insulated conductors.
  • the multi-core cable according to the present invention includes n conductor bundles, each of the n conductor bundles having at least one insulated conductor and at least one non-insulated conductor, and the length of the conductor bundle.
  • the ratio of the number of insulated conductors to the number of non-insulated conductors in each of the n conductor bundles is in the range of 2: 3 to 4: 1, and the non-insulated conductors paired with the insulated conductors are not fixed.
  • the insulated conductors are paired with non-insulated conductors of the same conductor bundle and / or non-insulated conductors of different conductor bundles.
  • the crosstalk can be reduced by varying the sexual coupling in the longitudinal direction.
  • the multi-core cable according to the present invention has a ratio of the number of insulated conductors to the number of non-insulated conductors in each conductor bundle in a range of 2: 3 to 4: 1 so that the insulated conductors are non-insulated conductors. Arranged nearby, the variation in capacitance of the insulated conductor can be reduced.
  • the non-insulated conductor paired with the insulated conductor is not fixed. That is, an insulated conductor and a non-insulated conductor in the same bundle may be paired, or an insulated conductor and a non-insulated conductor in another adjacent conductor bundle may be paired. For this reason, the state becomes more random than the apparent structure, and the crosstalk reduction effect is improved. Furthermore, even in the configuration of many insulated conductors and fewer non-insulated conductors, there must be non-insulated conductors near the insulated conductors in the entire cable, not just in the conductor bundle. Thus, the effect of reducing the variation in capacitance is further improved.
  • the ratio of the number of insulated conductors to the number of non-insulated conductors in each of the n conductor bundles is preferably in the range of 1: 1 to 4: 1.
  • the ratio of the number of insulated conductors to the number of non-insulated conductors in each of the n conductor bundles is in the range of 2: 3 or more and less than 1: 1, It is preferable that the ratio of the average value of the diameter of the insulated conductor and the average value of the diameter of the non-insulated conductor in the conductor bundle is in a range of 1.2: 1 or more and 4: 1 or less.
  • the shortest distance from the center of each insulated conductor of the n conductor bundles to the surface of the adjacent non-insulated conductor is the center of the insulated conductor.
  • the average value divided by the distance from the outermost surface of the insulated conductor to the outermost surface is preferably in the range of 1 to 1.3.
  • the multi-core cable according to the present invention has an average value of 1 to 1 obtained by dividing the shortest distance from the center of each insulated conductor to the surface of the adjacent non-insulated conductor by the distance from the center of the insulated conductor to the outermost surface of the insulated conductor. Since the range is 1.3, it is possible to prevent a decrease in transmission performance due to an increase in noise and reflected waves due to characteristic impedance mismatch.
  • the frequency of appearance of the same surface in a cross section perpendicular to the longitudinal direction of the entire conductor bundle in the n conductor bundles may be 0.01 times / m or less. preferable.
  • the frequency of appearance of the same surface in the cross section perpendicular to the longitudinal direction of the entire conductor bundle is 0.01 times / m or less in the entire n conductor bundle, and is 100 m or more.
  • the cross-sectional shape is not the same, and the capacitive coupling between the insulated conductors can be varied in the longitudinal direction of the entire conductor bundle to reduce the far-end crosstalk.
  • the combined resistance when the insulated conductors of the n conductor bundles are connected in parallel is more than the combined resistance when the non-insulated conductors of the n conductor bundles are connected in parallel. Larger is preferred.
  • the non-insulated conductor functions as a signal line by making the combined resistance when each insulated conductor is connected in parallel larger than the combined resistance when each non-insulated conductor is connected in parallel, It is possible to prevent noise from increasing.
  • a non-insulated conductor paired with an insulated conductor is not fixed, and each insulated conductor is paired with a non-insulated conductor of the same conductor bundle and / or a non-insulated conductor of a different conductor bundle.
  • the multi-core cable according to the present invention since the insulated conductor and the non-insulator are different from those of other conductor bundles in at least one of the number of twists per unit length, the capacitive coupling between the insulated conductors is varied in the longitudinal direction. Far-end crosstalk can be reduced.
  • the multi-core cable according to the present invention can reduce the capacitance of the insulated conductor by setting the ratio of the number of insulated conductors to the number of non-insulated conductors in each conductor bundle in the range of 2: 3 to 4: 1. Variations can be reduced.
  • the method of manufacturing a multi-core cable includes: n conductor bundles each having at least one insulated conductor and at least one non-insulated conductor; and at least one insulated conductor and at least one non-insulated conductor.
  • n conductor bundles each having at least one insulated conductor and at least one non-insulated conductor; and at least one insulated conductor and at least one non-insulated conductor.
  • T (N) (N 1 to n) per unit length in the longitudinal direction of the conductor bundle, and T1 per unit length in the longitudinal direction of the conductor group as a conductor group in which the twisted n conductor bundles are combined.
  • the ratio of the number of insulated conductors to the number of non-insulated conductors in each of the n conductor bundles is in the range of 2: 3 to 4: 1, and is a non-insulated pair with the insulated conductor
  • the conductors are not fixed and each insulated conductor is paired with a non-insulated conductor of the same conductor bundle and / or a non-insulated conductor of a different conductor bundle.
  • the method for manufacturing a multi-core cable according to the present invention is a method of twisting insulated conductors and non-insulators per unit length in the longitudinal direction of the conductor bundle, preparing n such conductor bundles, and unit length of each conductor bundle. Since at least one of the number of twists per twist is twisted so as to be different from the others, the capacitive coupling between the insulated conductors can be varied in the longitudinal direction to reduce far-end crosstalk.
  • the multi-core cable according to the present invention can reduce the capacitance of the insulated conductor by setting the ratio of the number of insulated conductors to the number of non-insulated conductors in each conductor bundle in the range of 2: 3 to 4: 1. Variations can be reduced.
  • the present invention it is possible to provide a multi-core cable in which the positions in the cross section of the plurality of insulated conductors and the plurality of non-insulated conductors are randomly changed over the longitudinal direction and the transmission performance is unlikely to deteriorate.
  • FIG. 1 It is a disassembled perspective view of the multi-core cable which concerns on embodiment. It is a figure which illustrates the cross section perpendicular
  • FIG. 2 is a diagram showing a phase relationship of a cross section perpendicular to the longitudinal direction before and after the first conductor bundle to the fourth conductor bundle shown in FIG. 1 are twisted together. It is a flowchart which shows the manufacturing process of the multi-core cable which concerns on embodiment.
  • FIG. 1 is a 2nd figure explaining the process which determines "the frequency which the same surface appears in a cross section perpendicular
  • (b) is the 2nd figure explaining the process which "the same surface appears in a cross section perpendicular
  • It is the 3rd figure explaining the process which determines "frequency”.
  • the crosstalk frequency characteristics of the eight cables of the comparative example, the first example, the second example, the third example, the fourth example, the fifth example, the sixth example, and the seventh example are shown.
  • FIG. It is a figure which shows the change of crosstalk when the ratio of the number of the insulated conductors contained in a cable and the number of non-insulated conductors is changed when the frequency of a signal is 20 [MHz].
  • (A) is a 2nd figure explaining the process which determines "the frequency which the same surface appears in a cross section perpendicular
  • (b) is the 2nd figure explaining the process which "the same surface appears in a cross section perpendicular
  • the multi-core cable according to the present invention includes n conductor bundles in which the ratio of the number of insulated conductors to the number of non-insulated conductors is in the range of 2: 3 to 4: 1.
  • at least one of the n conductor bundles is different from the other (n ⁇ 1) conductor bundles in that the shape of the cross section perpendicular to the longitudinal direction of the conductor bundle is the same.
  • the frequency of the cross section perpendicular to the longitudinal direction of the entire n conductor bundles is the same.
  • the frequency with which the cross-sectional shape of these conductor bundles is the same is lower than the frequency of the same cross-section, and the frequency with which the same cross-section appears up to a predetermined length in the longitudinal direction of the cable is lower.
  • the non-insulated conductor paired with the insulated conductor is not fixed. That is, an insulated conductor and a non-insulated conductor in the same bundle may be paired, or an insulated conductor and a non-insulated conductor in another adjacent conductor bundle may be paired. For this reason, the state becomes more random than the apparent structure, and the crosstalk reduction effect is improved. Furthermore, even in the configuration of many insulated conductors and fewer non-insulated conductors, there must be non-insulated conductors near the insulated conductors in the entire cable, not just in the conductor bundle. Thus, the effect of reducing the variation in capacitance is further improved.
  • FIG. 1 is an exploded perspective view of a multi-core cable according to an embodiment.
  • the multi-core cable 1 has a first conductor bundle 10, a second conductor bundle 20, a third conductor bundle 30, a fourth conductor bundle 40, an external shield 50, and a sheath 60.
  • the first conductor bundle 10 includes an eleventh insulated conductor 11, a twelfth insulated conductor 12, a thirteenth insulated conductor 13, and a first non-insulated conductor 14.
  • the second conductor bundle 20 includes a twenty-first insulating conductor 21, a twenty-second insulating conductor 22, a twenty-third insulating conductor 23, and a second non-insulating conductor 24.
  • the third conductor bundle 30 includes a 31st insulated conductor 31, a 32nd insulated conductor 32, a 33rd insulated conductor 33, and a third non-insulated conductor 34.
  • the fourth conductor bundle 40 includes a 41st insulated conductor 41, a 42nd insulated conductor 42, a 43rd insulated conductor 43, and a fourth non-insulated conductor 44.
  • each of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 includes three insulated conductors and one non-insulated conductor.
  • the ratio of the number of insulated conductors and non-insulated conductors may be in the range of 2: 3 to 4: 1.
  • the average value of values obtained by dividing the shortest distance from the center of each insulated conductor to the surface of the adjacent non-insulated conductor by the distance from the center of the insulated conductor to the outermost surface of the insulated conductor is The total number of insulated conductors and non-insulated conductors included in each conductor bundle is preferably 10 or less so as to be in the range of 1 to 1.3.
  • the total number of insulated conductors and non-insulated conductors included in each conductor bundle is three. The above is preferable.
  • FIG. 2 is a diagram illustrating a cross section perpendicular to the longitudinal direction of a conductor of a multi-core cable having a ratio of the number of insulated conductors to non-insulated conductors of 2: 3 to 4: 1.
  • FIG. 2A is an example when the ratio of the number of insulated conductors and non-insulated conductors is 1: 1
  • FIG. 2B is the example when the ratio of the number of insulated conductors and non-insulated conductors is 2: 1.
  • FIG. 2C is an example when the ratio of the number of insulated conductors and non-insulated conductors is 4:
  • FIG. 2D is the example where the ratio of the number of insulated conductors and non-insulated conductors is 2: 3 is an example.
  • the broken line conceptually shows the region of the conductor bundle.
  • the conductor portion (hereinafter referred to as “core”) 200 of the cable in which the ratio of the number of insulated conductors and non-insulated conductors is 1: 1 has a first conductor bundle 210 to a fourth conductor bundle 240.
  • Each of the insulated conductor 211 of the first conductor bundle 210 to the insulated conductor 241 of the fourth conductor bundle 240 is adjacent to any of the non-insulated conductor 212 of the first conductor bundle 210 to the non-insulated conductor 242 of the fourth conductor bundle 240. Be placed.
  • the core 300 in which the ratio of the number of insulated conductors and non-insulated conductors is 2: 1 includes a first conductor bundle 310 to a fourth conductor bundle 340.
  • Each of the insulated conductors 311 and 312 of the first conductor bundle 310 to the insulated conductors 341 and 342 of the fourth conductor bundle 340 is any of the non-insulated conductor 313 of the first conductor bundle 310 to the non-insulated conductor 343 of the fourth conductor bundle 340. It is arranged close to the heel.
  • the core 500 in which the ratio of the number of insulated conductors and non-insulated conductors is 4: 1 includes a first conductor bundle 510 to a fourth conductor bundle 540.
  • the insulated conductors 511 to 514, 521 to 524, 531 to 534, and 541 to 544 of the conductor part 500 are the non-insulated conductors 515 of the first conductor bundle 510 to the non-insulated conductors 545 of the fourth conductor bundle 540 except for the insulated conductor 542. It arrange
  • the insulated conductor 542 is far from the non-insulated conductor 545 of the same fourth conductor bundle 540, but is close to the non-insulated conductor 535 of the third conductor bundle 530 that is a different conductor bundle. And in the conductor part 500, the average value of the distance between each insulated conductor and a non-insulated conductor is 1.3 times or less of the aperture of a non-insulated conductor.
  • the term “average value of the distance between each of the insulated conductors and the non-insulated conductor” means that a plurality of cross sections perpendicular to the longitudinal direction of the multi-core cable 1 are sampled, and the insulated conductors in each cross section are not Measured at multiple locations in the relationship with insulated conductors, the value obtained by dividing the shortest distance from the center of each insulated conductor of the conductor bundle to the surface of the adjacent non-insulated conductor by the distance from the center of the insulated conductor to the outermost surface of the insulated conductor The average value of the measured values (hereinafter the same).
  • the number of cross-sections to be sampled is 5, and “the shortest distance from the center of each insulated conductor of the conductor bundle to the surface of the adjacent non-insulated conductor is measured in one cross-section from the center of the insulated conductor to the insulated conductor.
  • the number of “values divided by the distance to the outermost surface” is 12 (the cross section is radially divided into 12 equal parts, and each of the above-mentioned values in each equally divided space is 1 each).
  • the core 600 having a ratio of the number of insulated conductors and non-insulated conductors of 2: 3 includes a first conductor bundle 610 to a fourth conductor bundle 640.
  • the insulated conductors 612, 613, 621, 623, 632, 633, 642 and 644 of the core 600 are any of the non-insulated conductors 611, 614, 615, 622, 624, 625, 631, 634, 635, 641, 643 and 645. It is arranged close to the heel.
  • the average value of the distance between each of the insulated conductors and the non-insulated conductor is 1.3 times or less the diameter of the non-insulated conductor.
  • the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are respectively T (1), T (2), T per unit length in the longitudinal direction of the conductor bundle. Twisted in the left direction by (3) and T (4) times.
  • the twist pitch L1 at which the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are twisted together is 60 mm.
  • the twist pitches of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 at this time are 4 mm, 6 mm, 7 mm, and 9 mm, respectively, for example.
  • the insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are each made of a core material made of a copper alloy containing silver plating tin and polytetrafluoroethylene (PFA). And a covering layer formed around the core material.
  • the insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 function as signal lines for transmitting signals.
  • the insulated conductor diameters of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are equal to each other.
  • the diameters of the cores of the insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are equal to each other.
  • the non-insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are made of a silver-plated tin-containing copper alloy, like the core material of the insulated conductor.
  • the non-insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are each grounded and function as drain lines.
  • the diameters of the non-insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are equal to each other, and the first conductor bundle 10, the second conductor bundle 20, and the third conductor bundle 30 are the same. And the diameter of the core of the insulated conductor of the fourth conductor bundle 40 is larger.
  • FIG. 3 is a side view before each of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 is twisted with another conductor bundle.
  • 3A is a side view of the first conductor bundle 10
  • FIG. 3B is a side view of the second conductor bundle 20
  • FIG. 3C is a side view of the third conductor bundle 30
  • FIG. 3D is a side view of the fourth conductor bundle 40.
  • the first conductor bundle 10 is wound in the order of the eleventh insulated conductor 11, the twelfth insulated conductor 12, the thirteenth insulated conductor 13, and the first non-insulated conductor 14 in the order of T (1) turns per unit length in the longitudinal direction of the conductor bundle. It is formed by being twisted.
  • the second conductor bundle 20 is T (2) times per unit length in the longitudinal direction of the conductor bundle in the order of the 21st insulated conductor 21, the 22nd insulated conductor 22, the 23rd insulated conductor 23, and the second non-insulated conductor 24 in the left-handed direction. It is formed by being twisted.
  • the third conductor bundle 30 is T (3) times per unit length in the longitudinal direction of the conductor bundle in the order of the 31st insulated conductor 31, the 32nd insulated conductor 32, the 33rd insulated conductor 33, and the third non-insulated conductor 34 in the left-handed direction. It is formed by being twisted.
  • the fourth conductor bundle 40 is T (4) times per unit length in the longitudinal direction of the conductor bundle in the order of the 41st insulated conductor 41, the 42nd insulated conductor 42, the 43rd insulated conductor 43 and the fourth non-insulated conductor 44 in the left-handed direction. It is formed by being twisted.
  • the frequency AF (1) at which the same surface appears in a cross section perpendicular to the longitudinal direction in the first conductor bundle 10 is equal to the number of twists T (1) per unit length of the first conductor bundle 10.
  • the frequency AF (2) at which the same surface appears in a cross section perpendicular to the longitudinal direction is equal to the number of twists T (2) per unit length of the second conductor bundle 20.
  • the frequency AF (3) at which the same surface appears in the cross section perpendicular to the longitudinal direction in the third conductor bundle 30 is equal to the number of twists T (3) per unit length of the third conductor bundle 30, and the fourth conductor bundle
  • the frequency AF (4) at which the same surface appears in a cross section perpendicular to the longitudinal direction at 40 is equal to the number of twists T (4) per unit length of the fourth conductor bundle 40.
  • the twist pitch L (1) of the first conductor bundle 10 is 4 mm
  • the twist pitch L (2) of the second conductor bundle 20 is 6 mm
  • the twist pitch L (3) of the third conductor bundle 30 is 7 mm
  • the twist pitch L (4) of the fourth conductor bundle 40 is 9 mm.
  • Each of the number of twists T (1) to T (4) per unit length of the first conductor bundle 10 to the fourth conductor bundle 40 is the twist pitch L (1) to T (1) to T (4) of the first conductor bundle 10 to the fourth conductor bundle 40. Defined as the reciprocal of L (4).
  • the number of twists T (1) per unit length of the first conductor bundle 10 when the twist pitch L (1) is 4 mm is 250 times / m
  • the second when the twist pitch L (2) is 6 mm
  • the number of twists T (2) per unit length of the conductor bundle 20 is 166 times / m
  • the number of twists T (3) per unit length of the third conductor bundle 30 when the twist pitch L (3) is 7 mm is 142 times / m
  • the number of twists T (4) per unit length of the conductor bundle 40 is 111 times / m.
  • the frequencies AF (1) to AF (4) at which the same surface appears in the cross section perpendicular to the longitudinal direction of the conductor bundle are the per unit length.
  • the number of twists is the same as T (1) to T (4).
  • the state in which the cross section perpendicular to the longitudinal direction is the same plane requires that the phase relationship of the cross sections be the same in addition to the same positional relationship between the insulated conductor and the non-insulated conductor. is there.
  • each of the first conductor bundle 10 to the fourth conductor bundle 40 twists the insulated conductor and the non-insulated conductor at the same twist pitch along the longitudinal direction of the conductor bundle, it is between the insulated conductor and the non-insulated conductor.
  • the positional relationship does not change over the longitudinal direction.
  • the phase of the cross section perpendicular to the longitudinal direction gradually changes with the twist pitch as one period. Therefore, here, although the positional relationship between the insulated conductor and the non-insulated conductor is the same, if the phase of the cross section does not match, the cross section perpendicular to the longitudinal direction is not considered to be the same plane.
  • FIG. 4 is a diagram conceptually showing the progress of the phase relationship until the same cross section appears in each cross section in the longitudinal direction in a state where the conductor bundle is twisted.
  • the upper stage shows a state before the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30 and the fourth conductor bundle 40 are twisted together
  • the lower stage shows a state after the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are twisted together.
  • the twist pitches L (1) to L (4) of the first conductor bundle 10 to the fourth conductor bundle 40 are, for example, 4 mm, 6 mm, 7 mm, and 9 mm, respectively.
  • FIG. 4A shows a state in which the phases of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 match.
  • 4 (b) to 4 (i) respectively show states at positions 30 mm, 45 mm, 60 mm, 100 mm, 200 mm, 220 mm, 240 mm and 252 mm away from the position shown in FIG. 4 (a).
  • FIGS. 1-10 show states at positions 30 mm, 45 mm, 60 mm, 100 mm, 200 mm, 220 mm, 240 mm and 252 mm away from the position shown in FIG. 4 (a).
  • the numbers surrounded by circles correspond to the numbers of the conductor bundles, and the numbers surrounded by circles and Y-shaped symbols (hereinafter referred to as “Y”).
  • Direction is changed corresponding to the change in the phase of the cross section of each conductor bundle. That is, the first conductor bundle 10 is indicated by a circle 1, the second conductor bundle 20 is indicated by a circle 2, the third conductor bundle 30 is indicated by a circle 3, and the fourth conductor bundle 40 is indicated by a circle 4.
  • each of circle 1 to circle 4 represents a notation in which numbers “1” to “4” are arranged inside the circle, respectively.
  • the symbol “Y” indicates the phase of each of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 in the cross section. Indicates.
  • the phase is “0”, and each of the circles 1 to 4 is clamped to the right and the symbol “Y” is The phase when tilted 90 degrees to the right is “ ⁇ / 2”.
  • the phase when the symbol “Y” is inverted with each of the circles 1 to 4 held downward is “ ⁇ ”, and each of the circles 1 to 4 is clamped to the left and the symbol “Y” "Is tilted 90 degrees to the left, the phase is" 3 ⁇ / 2 ".
  • the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 each have a twist pitch L (1 ) To L (4) are different from each other, the phases appearing in the respective cross sections are different. All of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30 and the fourth conductor bundle 40 until the length corresponding to the least common multiple of the twist pitches L (1) to L (4) reaches 252 mm. Cross sections having the same phase do not appear.
  • the phase appearing in each cross section further changes according to the twist pitch L1. That is, when twisted at the twist pitch L1, the first conductor bundle 10, the second conductor bundle 20, and the third conductor bundle until the minimum common multiple of the twist pitches L (1) to L (4) and L1 is 1260 mm. A cross section in which all 30 and the fourth conductor bundle 40 have the same phase does not appear.
  • the outer shield 50 is formed by braiding conductive wires made of a tin-plated tin-plated copper alloy, and the first conductor bundle 10, the second conductor bundle 20, and the third conductor twisted together. It arrange
  • the sheath 60 is a protective coating layer formed of polyvinyl chloride (PVC) and is disposed on the outer periphery of the outer shield 50.
  • PVC polyvinyl chloride
  • FIG. 5 is a flowchart showing the manufacturing process of the multi-core cable 1
  • FIG. 6 shows when the first conductor bundle 10 to the fourth conductor bundle 40 are twisted and when the first conductor bundle 10 to the fourth conductor bundle 40 are twisted. It is a figure which shows the twist machine used when twisting collectively.
  • FIG. 7 is a figure which shows the operation state of the twister shown in FIG.
  • each of the first conductor bundle 10 to the fourth conductor bundle 40 is twisted (S101).
  • the first conductor bundle 10 to the fourth conductor bundle 40 twisted in S101 are twisted together to form a conductor group (S102).
  • the conductor group corresponds to the entire n conductor bundles.
  • the twister 80 includes a first rotary plate 81, a second rotary plate 82, a third rotary plate 83, a rotary shaft 84, a throttle port 85, and four unwinding devices 86 (only three are shown). Have. Each of the first rotating plate 81, the second rotating plate 82, and the third rotating plate 83 is rotatably disposed around the rotation shaft 84. The first rotating plate 81 rotatably supports the four unwinding devices 86 at positions shifted from each other by 90 degrees on one surface.
  • the second rotating plate 82 has four second cable through holes 87 formed therein.
  • the third rotating plate 83 has twelve third cable through holes 88 formed therein.
  • Each of the twelve third cable through holes 88 is formed at a position closer to the rotation shaft 84 than the second cable through hole 87.
  • Each of the four unwinding devices 86 is wound with an insulated conductor, a non-insulated conductor, or a conductor bundle in which the insulated conductor and the non-insulated conductor are twisted. The leading ends of the conductors wound around each of the four unwinding devices 86 are arranged so as to penetrate the throttle port 85 via the second cable through port 87 and the third cable through port 88.
  • the first rotary plate 81, the second rotary plate 82, and the third rotary plate 83 are rotated at the same predetermined rotational speed, and the tip end portion of the conductor disposed so as to penetrate the aperture port 85 is horizontally leveled at the predetermined speed.
  • By moving in the direction for example, four conductors can be twisted at a desired pitch.
  • the eleventh insulated conductor 11, the twelfth insulated conductor 12, the thirteenth insulated conductor 13 and the first non-insulated conductor 14 are wound around each of the four unwinding devices 86 and wound. It arrange
  • the first rotating plate 81, the second rotating plate 82, and the third rotating plate 83 are rotated at a predetermined rotational speed so that the twist pitch L (1) is 4 mm, and the tip of the conductor is moved at a predetermined speed. To move horizontally.
  • the first conductor bundle 10 to the fourth conductor bundle 40 are twisted together, the first conductor bundle 10 to the fourth conductor bundle 40 are wound around each of the four unwinding devices 86, and the wound four pieces are wound. It arrange
  • the outer shield 50 is formed on the outer peripheral surfaces of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 twisted together (S103).
  • the outer shield 50 is formed by weaving conductors around the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 twisted together via an EPTFE tape. Is done.
  • the sheath 60 is formed on the outer peripheral surface of the outer shield 50 (S104). In one example, the sheath 60 is formed by extruding molten PVC to the outer peripheral surface of the outer shield 50.
  • the multi-core cable manufacturing method described with reference to FIGS. 5 to 7 is an example of the cable manufacturing method according to the present invention, and the cable according to the present invention may be manufactured by other manufacturing methods.
  • the cable according to the present invention may employ a twister that rotates a throttle port that receives the fed cable, instead of the twister 80 in which the first to third rotating plates 81 to 83 rotate.
  • the multi-core cable according to the embodiment reduces the periodicity in the longitudinal direction by randomly arranging the insulated conductors by collectively twisting a plurality of conductor bundles twisted at different twist pitches, Far end crosstalk can be reduced.
  • the far-end crosstalk occurs when the signal lines are arranged in parallel in the longitudinal direction and the state where the capacitive coupling between the signal lines does not change continues.
  • the capacitive coupling between the insulated conductors is varied in the longitudinal direction to reduce far-end crosstalk.
  • the cross section perpendicular to the longitudinal direction of the multi-core cable according to the embodiment has the same shape between the twist pitch of each conductor bundle and the length corresponding to the least common multiple of the twist pitch when the conductor bundle is twisted together. It will not be.
  • the frequency is about several MHz to several tens of MHz, and the cable length is about 4 to 5 m.
  • the twist pitch of each conductor bundle and the length corresponding to the least common multiple of the twist pitch when the conductor bundle is twisted together should be about 5 to 10 m. That's fine.
  • the twist pitch of each conductor bundle and the length corresponding to the least common multiple of the twist pitch when twisting the conductor bundle together are preferably 100 m or more.
  • the shape of the cross section perpendicular to the longitudinal direction of the entire n conductor bundles can be set to 0.01 times / m.
  • the term “frequency of occurrence of the same surface in a cross section perpendicular to the longitudinal direction” is defined based on the twist pitch of each conductor bundle and the twist pitch when the conductor bundle is twisted together, as will be described later.
  • the frequency at which the same surface appears in the cross section perpendicular to the longitudinal direction of each conductor bundle is defined as the reciprocal of the twist pitch of each conductor bundle.
  • the “frequency with which the cross-sectional shape perpendicular to the longitudinal direction is the same” of the first conductor bundle 10 in the multi-core cable 1 is 250 times because the twist pitch L (1) of the first conductor bundle 10 is 4 mm. / M.
  • the frequency at which the same surface appears in the cross section perpendicular to the longitudinal direction in the entire n conductor bundles is the length corresponding to the twist pitch of each conductor bundle and the least common multiple of the twist pitches when the conductor bundles are twisted together. It is defined as the reciprocal of
  • the insulated conductor and the non-insulated conductor included in the conductor bundle fill the gap by the tension when the conductor bundle is twisted together. Will be arranged in close proximity. Since the size of the air gap formed in the multi-core cable is reduced by arranging the insulated conductor and the non-insulated conductor included in the conductor bundle close to each other, the diameter of the multi-core cable according to the embodiment is reduced.
  • each of the conductor bundles has at least one insulated conductor and at least one non-insulated conductor. Since each of the conductor bundles has at least one of the insulated conductor and the non-insulated conductor, the minimum distance between each of the plurality of insulated conductors and each of the plurality of non-insulated conductors is shorter than a predetermined length. can do.
  • the ratio of the number of insulated conductors to the number of non-insulated conductors in each conductor bundle is preferably in the range of 2: 3 to 4: 1.
  • the multi-core cable according to the embodiment has a variation in the capacitance of the insulated conductors. Can be small.
  • the multi-core cable according to the embodiment can prevent a decrease in transmission performance due to an increase in noise and reflected waves due to characteristic impedance mismatch by reducing variations in capacitance of the insulated conductor.
  • the ratio of the number of insulated conductors to the number of non-insulated conductors is in a range of 2: 3 or more and less than 1: 1, and the ratio of the average value of the diameters of the insulated conductors to the average value of the diameters of the non-insulated conductors
  • the ratio in the range of 1.2: 1 or more and 4: 1 or less, the number of non-insulated conductors paired with the insulated conductors can be increased, so that the effect of reducing crosstalk can be improved.
  • the ratio of the average value of the diameter of the conductor and the average value of the diameter of the non-insulated conductor is in the range of more than 1: 1 and 4: 1 or less, so the average value of the diameter of the insulated conductor and the average of the diameter of the non-insulated conductor Compared with a value ratio of 1: 1 or less, the overall outer diameter of all the insulated conductors and non-insulated conductors can be made smaller, and the cable can be made thinner.
  • the multi-core cable 1 has four conductor bundles in which the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are twisted together.
  • the cable may have a plurality of conductor bundles. That is, the multi-core cable according to the embodiment may have two or three conductor bundles twisted together, or may have five or more conductor bundles twisted together.
  • a core of the multicore cable may be formed by twisting a plurality of conductor groups obtained by twisting n conductor bundles together. That is, the multi-core cable according to the embodiment may be a cable twisted over three or more layers.
  • each of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 is formed by twisting three insulated conductors and one non-insulated conductor. Is formed.
  • each of the plurality of conductor bundles has at least one insulated conductor and at least one non-insulated conductor, and the number of insulated conductors in each of the conductor bundles is not insulated.
  • the ratio of the number of conductors may be in the range of 2: 3 to 4: 1.
  • the number of insulated conductors and the number of non-insulated conductors included in the conductor bundle may be different for each conductor bundle.
  • the twist pitches L (1) to L (4) of the first conductor bundle 10 to the fourth conductor bundle 40 are 4 mm, 6 mm, 7 mm, and 9 mm, respectively.
  • the twist pitch L1 when the fourth conductor bundle 40 is twisted together is 60 mm.
  • the twist direction of each conductor bundle and the twist direction when the conductor bundle is twisted together are the same, but in the multi-core cable according to the embodiment, The twist direction of some conductor bundles may be opposite to the twist direction of other conductor bundles and the twist direction in which conductor bundles are twisted together. In the multi-core cable according to the embodiment, some of the conductor bundles may not be twisted.
  • the twist pitch of the conductor bundle twisted in the opposite direction is the twist pitch of the other conductor bundles. The pitch is very large compared to the pitch.
  • the conductor bundle twisted in the opposite direction twists while interfering with other conductor bundles. Will be.
  • the insulated conductor of the conductor bundle twisted in the opposite direction can reduce the periodicity of the distance between insulated conductors in the longitudinal direction similarly to the insulated conductors of other conductor bundles.
  • the diameters of the non-insulated conductors of the first conductor bundle 10, the second conductor bundle 20, the third conductor bundle 30, and the fourth conductor bundle 40 are larger than the diameter of the core material of the insulated conductor.
  • the diameter of the insulated conductor may be smaller than the diameter of the core material of the insulated conductor.
  • the combined resistance of the non-insulated conductor is preferably larger than the combined resistance of the insulated conductor.
  • the combined resistance of the non-insulated conductor is the resistance value when the non-insulated conductors included in the multi-core cable of a predetermined length are connected in parallel
  • the combined resistance of the insulated conductor is the combined resistance of the non-insulated conductor. It is the resistance value when the insulated conductors of the same multi-core cable as the measured cable are connected in parallel.
  • FIG. 8 is a flowchart showing a process for determining “frequency of appearance of the same surface in a cross section perpendicular to the longitudinal direction”.
  • FIGS. 9, 10 (a) and 10 (b) are “cross section perpendicular to the longitudinal direction”. It is a figure explaining the process which determines "the frequency that the same surface appears in”.
  • FIG. 10A the same conductor bundle is hatched in the same manner.
  • FIG. 10B is an enlarged view of a portion surrounded by a circle indicated by an arrow A in FIG.
  • the operator prepares a cable used for determining “frequency with which the same plane appears in a cross section perpendicular to the longitudinal direction” (S201), and at least a part of the cable is a desired one.
  • the cable is fixed so as to extend in the horizontal direction over the distance (S202).
  • the operator removes the sheath of the cable (S203), and then removes the outer shield (S204), thereby taking out the core of the cable (S205).
  • the core used for determining “frequency with which the same surface appears in a cross section perpendicular to the longitudinal direction” will be described as being twisted over three layers. That is, as shown in FIG.
  • the core formed by being twisted over three layers is obtained by twisting an insulated conductor and a non-insulated conductor with a small twist pitch L (1) or L (2) 4
  • Four conductor groups are formed by twisting one conductor bundle with medium twist pitch L1 and further twisting with a large twist pitch L0.
  • the twister 80 shown in FIG. 6 is used when a conductor bundle is formed by a small twist, when a conductor group is formed by a medium twist, and when a core is formed by a large twist.
  • the large twist pitch L0 is measured by measuring the interval at which the same conductor group appears in the longitudinal direction of the core taken out in S205.
  • the intervals at which the same conductor group appears at a plurality of positions for a plurality of conductor groups are measured, and the average value of the measured values Is preferably a large twist pitch L0.
  • the medium twist pitch L1 is measured by measuring the interval at which the same conductor bundle appears in the winding direction of the conductor group in which each of the medium twist conductor groups is largely twisted.
  • the length of the medium twist pitch L1 may change for each position of the core, the intervals at which the same conductor bundle appears at a plurality of positions for each conductor group are measured, and the average value of the measured values is calculated.
  • a medium twist pitch L1 is preferable.
  • the small twist pitches L (1) and L (2) are measured by measuring the intervals at which the same insulated conductor or non-insulated conductor appears in the longitudinal direction of the conductor bundle.
  • the length of the small twist pitches L (1) and L (2) may change for each conductor position, the same insulated conductor or non-insulated conductor appears at a plurality of positions for each conductor bundle. It is preferable to measure the distance to be measured and set the average value of the measured values to the small twist pitches L (1) and L (2).
  • the operator determines the frequency with which the same surface appears in the cross section perpendicular to the longitudinal direction for each conductor bundle (S209).
  • the operator determines the reciprocals of the small twist pitches L (1) and L (2) measured in S208 as the frequency at which the same surface appears in the cross section perpendicular to the longitudinal direction.
  • the frequency at which the same surface appears in the cross section perpendicular to the longitudinal direction of the conductor bundle whose small twist pitch is measured as L (1) in S208 is the reciprocal of the small twist pitch L (1).
  • the frequency at which the same surface appears in the cross section perpendicular to the longitudinal direction of the conductor bundle whose small twist pitch is measured as L (2) in S208 is the reciprocal of the small twist pitch L (2).
  • the operator determines the frequency with which the same surface appears in the cross section perpendicular to the longitudinal direction in the entire conductor group formed of the four conductor bundles (S210).
  • the operator sets the reciprocal of the least common multiple of the medium twist pitch L1 measured in S207 and the small twist pitch L (1) and L (2) measured in S208 to be perpendicular to the longitudinal direction of the four conductors as a whole. This is determined as the frequency at which the same surface appears in a simple cross section.
  • Example 1 Next, the crosstalk of the eight cables of the comparative example, the first example, the second example, the third example, the fourth example, the fifth example, the sixth example, and the seventh example is described. Compare.
  • Each of these cores is formed of three layers of four conductor bundles, four conductor groups, and cores.
  • each of the four conductor bundles is formed by twisting four insulated conductors and one non-insulated conductor in the comparative example and the first example, and in the second example, Four insulated conductors and two non-insulated conductors are formed by twisting, and in the third and sixth embodiments, two insulated conductors and three non-insulating conductors are twisted and formed.
  • the fourth, fifth and seventh embodiments are formed by twisting four insulated conductors and six non-insulated conductors.
  • Each of the four conductor groups is formed by twisting four conductor bundles.
  • Each core of the cable twisted over three layers is formed by twisting four conductor groups.
  • the size of the core material of the insulated conductors of the three cables of the comparative example, the first example, the second example and the third example is 42 AWG (7 twists, outer diameter 0.075 mm), and the thickness is 0.0225 mm. It is insulated and the size of the non-insulated conductor is 38 AWG (outer diameter 0.12 mm).
  • the size of the core material of the insulated conductor is 42 AWG (7 twists, outer diameter 0.075 mm) and is insulation-coated with a thickness of 0.0225 mm, and the size of the non-insulated conductor is 42 AWG ( The outer diameter is 0.075 mm).
  • the size of the core material of the insulated conductor is 44 AWG (7 twists, outer diameter 0.06 mm) and is coated with a thickness of 0.03 mm, and the size of the non-insulated conductor is 44 AWG (outer diameter 0.06 mm). mm).
  • the size of the core material of the insulated conductor is 42 AWG (7 twists, outer diameter 0.075 mm) and is insulation-coated with a thickness of 0.11 mm, and the size of the non-insulated conductor is 42 AWG (outer diameter 0.075 mm). mm).
  • each of the conductor bundles has four insulated conductors and one non-insulated conductor, and the average value of the distance between each of the insulated conductors and the non-insulated conductor is The diameter of the non-insulated conductor is 1.3 times or less.
  • the average value of values obtained by dividing the shortest distance from the center of each insulated conductor to the surface of the adjacent non-insulated conductor by the distance from the center of the insulated conductor to the outermost surface of the insulated conductor is 1 to 1.3.
  • each of the conductor bundles has four insulated conductors and two non-insulated conductors, and the average value of the distance between each of the insulated conductors and the non-insulated conductor is non-insulated. It is 1.3 times or less the diameter of the conductor.
  • each conductor bundle has two insulated conductors and three non-insulated conductors, and the average distance between each of the insulated conductors and the non-insulated conductor is The diameter of the non-insulated conductor is 1.3 times or less.
  • each of the conductor bundles has four insulated conductors and six non-insulated conductors, and the distance between each of the insulated conductors and the non-insulated conductor is The average value is 1.3 times or less the diameter of the non-insulated conductor.
  • the shortest distance from the center of each insulated conductor to the surface of the adjacent non-insulated conductor is set from the center of the insulated conductor to the insulated conductor.
  • the average value divided by the distance to the outermost surface is in the range of 1 to 1.3.
  • Tables 1 to 5 show the twist pitches of the comparative example, the first example, the second example, the third example, the fourth example, and the fifth example.
  • S represents the number of insulated conductors
  • G represents the number of non-insulated conductors.
  • the four conductor bundles are each formed with a small twist pitch of 10 mm, the four conductor groups are formed with a medium twist pitch of 25 mm, and the core is formed with a large twist pitch of 80 mm. Therefore, in the comparative example, the same surface appears in the cross section in the longitudinal direction of the core in the vicinity of 400 mm, which is the least common multiple of the pitch.
  • each of the four conductor bundles is different in the small twist pitches L (1) to L (4), and the length corresponding to the least common multiple becomes longer, and the longitudinal direction Are formed at a small twist pitch so that the frequency of appearance of the same surface in a cross section perpendicular to the angle is small.
  • the same surface appears in the cross section at a value (mm) exceeding 10 17 that is the least common multiple of the pitches shown in Table 2.
  • the least common multiple of the small twist pitches L (1) to L (4) and the medium twist pitch L1 is larger than that of the comparative example, and the entire length of the four conductors in the longitudinal direction is increased. It is formed with a medium twist pitch so that the frequency of appearance of the same surface in a cross section perpendicular to is small.
  • the core is formed with a large twist pitch with a larger prime number than each of the medium twist pitches.
  • each of the four conductor bundles is formed with the same small twist pitch as in the first embodiment. Further, in the second embodiment, the four conductors as a whole have the same cross-section perpendicular to the longitudinal direction by twisting at a medium twist pitch that is a prime number larger than each of the medium twist pitch L1 of the first embodiment. The frequency of appearance of the surface is reduced. In the second embodiment, the core is formed with a larger twist pitch than that of the first embodiment.
  • each of the four conductor bundles is formed with the same small twist pitch as in the first embodiment.
  • the four conductors as a whole are perpendicular to the longitudinal direction by twisting at a medium twist pitch that is a prime number larger than the medium twist pitch L1 of each of the first embodiments. It is formed so that the frequency of appearance of the same surface in the cross section is reduced.
  • the core is formed with a larger twist pitch than that of the first embodiment.
  • FIG. 11 is a diagram showing the crosstalk frequency characteristics of the comparative example and the first to seventh cables.
  • the horizontal axis represents the signal frequency [MHz]
  • the vertical axis represents the crosstalk magnitude [dB].
  • the graph indicated by the arrow A indicates the characteristics of the comparative example
  • the graph indicated by the arrow B indicates the characteristics of the first embodiment
  • the graph indicated by the arrow C indicates the characteristics of the second embodiment
  • the graph indicated by the arrow D Indicates the characteristics of the third embodiment
  • the graph indicated by the arrow E indicates the characteristics of the fourth embodiment
  • the graph indicated by the arrow F indicates the characteristics of the fifth embodiment
  • the graph indicated by the arrow G indicates the sixth embodiment.
  • the graph indicated by the arrow H indicates the characteristics of the seventh embodiment.
  • the outer diameter of the entire conductor in a state where all of the respective insulated conductors and specific insulated conductors are twisted together is 1.95 mm in the first embodiment, and 2.1 in the second embodiment.
  • the ratio of the average value of the diameter of the insulated conductor and the average value of the diameter of the non-insulated conductor is By setting 8: 5 in the embodiment, 2: 1 in the fifth embodiment, and approximately 4: 1 in the seventh embodiment, the number of insulated conductors is the same as that in the first and second embodiments. Even in a state where the number of non-insulated conductors is large, the overall outer diameter of all the insulated conductors and non-insulated conductors can be made equal to or less than those of the first and second embodiments, and the small diameter of the cable It was confirmed that the effect of reducing crosstalk was achieved.
  • the third embodiment (D) has the lowest crosstalk, and then the sixth embodiment (G), the fourth embodiment (E), the seventh embodiment (H), and the fifth embodiment. It becomes large in order of an Example (F), a 2nd Example (C), a 1st Example (B), and a comparative example (A).
  • the crosstalk is less than 20 [dB] in any band up to about 20 [MHz].
  • the twist is performed in the order of small twist, medium twist, and large twist.
  • the pitch is formed to be large, in the cable according to the embodiment, it is not necessary to increase the twist pitch every time the level is raised.
  • one of the twist pitches of the small twist may be larger than the twist pitch of the medium twist.
  • Example 2 Next, crosstalk is compared when the ratio between the number of non-insulated conductors and the number of insulated conductors is changed.
  • the ratio of the number of non-insulated conductors to the number of insulated conductors is 0:16, 1:16, 1: 8 (2:16), 1: 4 (4:16), 1: 3 (6 : 18), 1: 2 (8:16) and 1: 1 (16:16).
  • the numbers in parentheses above represent the ratio between the number of non-insulated conductors and the number of insulated conductors when the number of insulators is unified to 16.
  • the size of the core material of the insulated conductor is 42 AWG
  • the size of the non-insulated conductor is 38 AWG.
  • FIG. 12 is a diagram showing a change in crosstalk when the ratio between the number of insulated conductors included in the cable and the number of non-insulated conductors is changed when the signal frequency is 20 [MHz].
  • the horizontal axis indicates the ratio between the number of insulated conductors and the number of non-insulated conductors
  • the vertical axis indicates the magnitude [dB] of crosstalk.
  • the crosstalk is about -10 [dB]
  • the number of insulated conductors included in the cable and the number of non-insulated conductors When the ratio to is 1: 4, the crosstalk is about ⁇ 20 [dB]. Further, when the ratio of the number of insulated conductors included in the cable to the number of non-insulated conductors is 1: 1, the crosstalk is about ⁇ 35 [dB].
  • FIG. 13A shows the signal state when the crosstalk is smaller than ⁇ 20 [dB]
  • FIG. 13B shows the signal state when the crosstalk is larger than ⁇ 20 [dB].
  • Example 3 compare the characteristic impedance and loss when changing the value obtained by dividing the distance from the center of the insulated conductor to the surface of the adjacent non-insulated conductor by the distance from the center of the insulated conductor to the outermost surface of the insulated conductor. .
  • Table 6 shows the values when the distance (L) from the center of the insulated conductor to the surface of the adjacent non-insulated conductor is divided by the distance (l) from the center of the insulated conductor to the outermost surface of the insulated conductor. Changes in characteristic impedance (Zo) and loss (loss) are shown.
  • each of the combined resistance of the insulated conductor and the non-insulated conductor indicates a resistance value per unit length when the insulated conductor and the non-insulated conductor included in the cable are respectively connected in parallel.
  • the combined resistance of the non-insulated conductors indicates the resistance value per unit length of one non-insulated conductor, and the combined number of the insulated conductors The resistance indicates a resistance value per unit length when 16 insulated conductors are connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Communication Cables (AREA)

Abstract

【課題】複数の絶縁導体及び複数の非絶縁導体の断面における位置を長手方向に亘って変化させ且つ伝送性能が低下するおそれが低い多心ケーブルを提供する。 【解決手段】多心ケーブル1は、n本の導体束10~40を備え、n本の導体束10~40は、それぞれ少なくとも1本の絶縁導体11~13と、少なくとも1本の非絶縁導体14と、を有し、長手方向に垂直な断面に同一面が出現する頻度は、単位長当りAF(N)(N=1~n)であり、AF(N)(N=1~n)の少なくとも1つが他と異なり、n本の導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3~4:1の範囲であり、絶縁導体とペアとなる非絶縁導体は固定されていなく、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる。

Description

多心ケーブル及びその製造方法
 本発明は多心ケーブル及びその製造方法に関する。
 超音波プローブケーブルのような多心ケーブルを細径化し且つ製造コストを低減するために、信号を伝送する信号線に同軸ケーブルを使用しない構成とすることが知られている。特許文献1には、5本の絶縁導体と、1本の非絶縁導体とを有する多心ケーブルが記載されている。特許文献1に記載される多心ケーブルでは、5本の絶縁導体及び1本の非絶縁導体は、耐張力部材の外周に列状に配置され且つヘリカル状に巻回されている。特許文献1に記載される多心ケーブルは、絶縁導体及び非絶縁導体を列状に配置してヘリカル状に巻回するので、良好な可撓性を有することができる。また、特許文献1に記載される多心ケーブルは、同軸ケーブルを含まないので、細径化できると共に製造コストを低減することができる。
 しかしながら、特許文献1に記載される多心ケーブルでは、非絶縁導体を介さずに絶縁導体が隣接する場合、5本のうち2本は非絶縁導体と隣接するものの、3本は非絶縁導体と隣接することなく、絶縁導体同士で隣接し、これらの隣接する絶縁導体は、信号線として絶縁導体の長手方向に亘って平行に配列されて信号線間の容量性カップリングが変化しない状態が連続するため、クロストークが増大する。このように、同一の間隔で平行に配置されることになり、クロストークが増大し、信号強度及び信号品質が劣化するおそれがある。
特開平11-162268号公報
 以上のように、絶縁導体同士のみが隣接して配置される場合には、クロストークが増大し、信号強度及び信号品質が劣化するおそれがある。また、絶縁導体と非絶縁導体との位置を長手方向に亘ってランダムに変化させた場合であっても、これらの絶縁導体と非絶縁導体との互いの距離が大きく変動している場合には、特性インピーダンスが整合しなくなりノイズ及び反射波が増加して、多心ケーブルの伝送性能が低下するおそれがある。
 そこで、本発明は、複数の絶縁導体及び複数の非絶縁導体の断面において、絶縁導体の近くに必ず非絶縁導体が配置されるとともに、ケーブルの長手方向に亘って、絶縁導体同士並びに絶縁導体及び非絶縁導体の位置関係がランダムに変化させることによって、伝送性能が低下するおそれが低い多心ケーブルを提供することを目的とする。
 本発明に係る多心ケーブルは、n本の導体束を備え、n本の導体束は、それぞれ少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体と、を有し、導体束の長手方向に垂直な断面に同一面が出現する頻度は、単位長当りAF(N)(N=1~n)であり、AF(N)(N=1~n)の少なくとも1つが他と異なり、n本の導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3~4:1の範囲であり、絶縁導体とペアとなる非絶縁導体は固定されていなく、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる。
 本発明に係る多心ケーブルは、導体束の長手方向に垂直な断面に同一面が出現する頻度AF(N)(N=1~n)の少なくとも1つが他と異なるので、絶縁導体間の容量性カップリングを長手方向で変動させてクロストークを低減させることができる。また、本発明に係る多心ケーブルは、導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比を2:3~4:1の範囲にすることで、絶縁導体が非絶縁導体の近くに配置され、絶縁導体の静電容量のバラツキを小さくすることができる。
 ツイストペアと違って、本発明に係る多心ケーブルでは、絶縁導体とペアとなる非絶縁導体は固定されていない。つまり、同じ束にある絶縁導体と非絶縁導体がペアになることもあるし、隣接する別の導体束にある、絶縁導体と非絶縁導体がペアになることもある。そのような理由から、見た目の構造以上にランダムな状態となり、クロストーク低減効果を向上させている。更に、多数の絶縁導体とそれ以下の本数の非絶縁導体という構成であっても、導体束の中だけでなく、ケーブル全体の中で、絶縁導体の近くには必ず非絶縁導体が存在することにより、静電容量のバラツキ低減効果を一層向上させている。
 また、本発明に係る多心ケーブルでは、n本の導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、1:1~4:1の範囲であることが好ましい。
さらに、本発明に係る多心ケーブルでは、n本の導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3以上、1:1未満の範囲であり、n本の導体束の、絶縁導体の直径の平均値と非絶縁導体の直径の平均値の比が、1.2:1以上、4:1以下の範囲であることが好ましい。
 また、本発明に係る多心ケーブルでは、導体束の長手方向に垂直な断面において、n本の導体束の各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心からこの絶縁導体の最外面までの距離で除した値の平均値は、1~1.3の範囲であることが好ましい。
 本発明に係る多心ケーブルは、各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心から絶縁導体の最外面までの距離で除した値の平均値が1~1.3の範囲であるので、特性インピーダンスの不整合に起因するノイズ及び反射波の増加による伝送性能の低下を防止できる。
 また、本発明に係る多心ケーブルでは、n本の導体束の全体で、導体束全体の長手方向に垂直な断面に同一面が出現する頻度は、0.01回/m以下であることが好ましい。
 本発明に係る多心ケーブルでは、n本の導体束の全体で、導体束全体の長手方向に垂直な断面に同一面が出現する頻度が0.01回/m以下であるで、100m以上に亘って同一の断面形状となることがなく、絶縁導体間の容量性カップリングを導体束全体の長手方向で変動させて遠端クロストークを低減させることができる。
 さらに、本発明に係る多心ケーブルでは、n本の導体束の各絶縁導体を並列接続したときの合成抵抗は、n本の導体束の各非絶縁導体を並列接続したときの合成抵抗よりも大きいことが好ましい。
 本発明に係る多心ケーブルでは、各絶縁導体を並列接続したときの合成抵抗を各非絶縁導体を並列接続したときの合成抵抗よりも大きくすることにより、非絶縁導体が信号線として機能し、ノイズが増加することを防止できる。
 さらに、本発明に係る多心ケーブルは、n本の導体束を備え、n本の導体束は、それぞれ少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体と、を有し、少なくとも1本の絶縁導体および少なくとも1本の非絶縁導体は、単位長当たりT(N)(N=1~n)回撚られており、n本の導体束は、単位長当たりT1回撚られており、T(N)(N=1~n)のうち、少なくとも1つが他と異なり、n本の導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3~4:1の範囲であり、絶縁導体とペアとなる非絶縁導体は固定されておらず、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる。
 本発明に係る多心ケーブルは、絶縁導体および非絶縁体は単位長当たりの撚り回数の少なくとも1つが他の導体束のものと異なるので、絶縁導体間の容量性カップリングを長手方向で変動させて遠端クロストークを低減させることができる。また、本発明に係る多心ケーブルは、導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比を2:3~4:1の範囲にすることで、絶縁導体の静電容量のバラツキを小さくすることができる。
 さらに、多心ケーブルの製造方法は、それぞれ少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体とを有するn本の導体束を、少なくとも1本の絶縁導体および少なくとも1本の非絶縁導体が導体束の長手方向における単位長当たりT(N)(N=1~n)回撚り、撚られたn本の導体束をまとめた導体群として当該導体群の長手方向における、単位長当たりT1回撚る、ことを含み、n本の導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3~4:1の範囲であり、絶縁導体とペアとなる非絶縁導体は固定されていなく、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる。
 本発明に係る多心ケーブルの製造方法は、絶縁導体および非絶縁体を導体束の長手方向における単位長当たりの撚り回数撚り、このような導体束をn本準備し、各導体束の単位長当たりの撚り回数の少なくとも1つが他と異なるように撚るので、絶縁導体間の容量性カップリングを長手方向で変動させて遠端クロストークを低減させることができる。また、本発明に係る多心ケーブルは、導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比を2:3~4:1の範囲にすることで、絶縁導体の静電容量のバラツキを小さくすることができる。
 本発明によれば、複数の絶縁導体及び複数の非絶縁導体の断面における位置を長手方向に亘ってランダムに変化させ且つ伝送性能が低下するおそれが低い多心ケーブルを提供することができる。
実施形態に係る多心ケーブルの分解斜視図である。 絶縁導体及び非絶縁導体の本数の比が1:1~4:1の多心ケーブルの導体群の長手方向に垂直な断面を例示する図であり、(a)は絶縁導体及び非絶縁導体の本数の比が1:1のときの一例であり、(b)は絶縁導体及び非絶縁導体の本数の比が2:1のときの一例であり、(c)は絶縁導体及び非絶縁導体の本数の比が4:1のときの一例であり、(d)は絶縁導体及び非絶縁導体の本数の比が2:3のときの一例である。 図1に示す第1導体束、第2導体束、第3導体束及び第4導体束のそれぞれが他の導体束と撚られる前の側面図であり、(a)は第1導体束の側面図であり、(b)は第2導体束の側面図であり、(c)は第3導体束の側面図であり、(d)は第4導体束の側面図である。 図1に示す第1導体束~第4導体束のそれぞれがまとめて撚られる前後の長手方向に垂直な断面の位相関係を示す図である。 実施形態に係る多心ケーブルの製造工程を示すフローチャートである。 導体束のそれぞれを撚るとき、及び導体束をまとめて撚るときに使用される撚り機を示す図である。 図6に示す撚り機の動作状態を示す図である。 「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を示すフローチャートである。 「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を説明する第1の図である。 (a)は「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を説明する第2の図であり、(b)は「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を説明する第3の図である。 比較例、第1実施例、第2実施例、第3実施例、第4実施例、第5実施例、第6実施例、第7実施例の8本のケーブルのクロストークの周波数特性を示す図である。 信号の周波数が20〔MHz〕のときに、ケーブルの含まれる絶縁導体の本数と非絶縁導体の本数との比率を変化させたときのクロストークの変化を示す図である。 (a)は「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を説明する第2の図であり、(b)は「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を説明する第3の図である。
 以下図面を参照して、本発明に係る多心ケーブル及びその製造方法について説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明との均等物に及ぶ点に留意されたい。
 (本発明に係る多心ケーブルの概要)
 本発明に係る多心ケーブルは、それぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3~4:1の範囲であるn本の導体束を備える。ここで、n本の導体束の少なくとも1本は、導体束の長手方向に垂直な断面の形状が同一である頻度が他の(n-1)本の導体束と異なる。このような構成を採用することにより、ケーブルを構成する導体束として、絶縁導体の近くに必ず非絶縁導体が隣り合う状態となる。また、n本の導体束の少なくとも1本は、n本の導体束の全体の長手方向に垂直な断面の形状が同一である頻度が他の(n-1)本の導体束と異なるため、これらの導体束の断面の形状が同一である頻度が互いに同じ導体束で構成されたケーブルと比較して、ケーブルの長手方向において所定の長さまで同一の断面が出現する頻度が低下する。このように、本発明に係る多心ケーブルでは、複数の絶縁導体及び複数の非絶縁導体の断面における位置を長手方向に亘ってランダムに変化させ且つ伝送性能が低下するおそれを低くすることができる。
 また、本発明に係る多心ケーブルでは、絶縁導体とペアとなる非絶縁導体は固定されていない。つまり、同じ束にある絶縁導体と非絶縁導体がペアになることもあるし、隣接する別の導体束にある、絶縁導体と非絶縁導体がペアになることもある。そのような理由から、見た目の構造以上にランダムな状態となり、クロストーク低減効果を向上させている。更に、多数の絶縁導体とそれ以下の本数の非絶縁導体という構成であっても、導体束の中だけでなく、ケーブル全体の中で、絶縁導体の近くには必ず非絶縁導体が存在することにより、静電容量のバラツキ低減効果を一層向上させている。
 (実施形態に係る多心ケーブルの構成)
 図1は、実施形態に係る多心ケーブルの分解斜視図である。
 多心ケーブル1は、第1導体束10と、第2導体束20と、第3導体束30と、第4導体束40と、外部シールド50と、シース60とを有する。第1導体束10は、第11絶縁導体11と、第12絶縁導体12と、第13絶縁導体13と、第1非絶縁導体14とを有する。第2導体束20は、第21絶縁導体21と、第22絶縁導体22と、第23絶縁導体23と、第2非絶縁導体24とを有する。第3導体束30は、第31絶縁導体31と、第32絶縁導体32と、第33絶縁導体33と、第3非絶縁導体34とを有する。第4導体束40は、第41絶縁導体41と、第42絶縁導体42と、第43絶縁導体43と、第4非絶縁導体44とを有する。なお、多心ケーブル1では、第1導体束10、第2導体束20、第3導体束30及び第4導体束40はそれぞれ、3本の絶縁導体と、1本の非絶縁導体とを有するが、本発明に係る多心ケーブルでは、絶縁導体及び非絶縁導体の本数の比は、2:3~4:1の範囲であればよい。また、本発明に係る多心ケーブルでは、各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心から絶縁導体の最外面までの距離で除した値の平均値が1~1.3の範囲になるように、それぞれの導体束に含まれる絶縁導体及び非絶縁導体の合計の本数は10本以下であることが好ましい。導体束において絶縁導体1本と非絶縁導体1本では、信号線数が少ないわりにケーブル全体径が大きくなりすぎるので、それぞれの導体束に含まれる絶縁導体及び非絶縁導体の合計の本数は3本以上が好ましい。
 図2は、絶縁導体及び非絶縁導体の本数の比が2:3~4:1の多心ケーブルの導体の長手方向に垂直な断面を例示する図である。図2(a)は絶縁導体及び非絶縁導体の本数の比が1:1のときの一例であり、図2(b)は絶縁導体及び非絶縁導体の本数の比が2:1のときの一例であり、図2(c)は絶縁導体及び非絶縁導体の本数の比が4:1のときの一例であり、図2(d)は絶縁導体及び非絶縁導体の本数の比が2:3のときの一例である。図2(a)~2(d)において、破線は導体束の領域を概念的に示すものである。
 絶縁導体及び非絶縁導体の本数の比が1:1であるケーブルの導体部(以下、「コア」という)200は、第1導体束210~第4導体束240を有する。第1導体束210の絶縁導体211~第4導体束240の絶縁導体241のそれぞれは、第1導体束210の非絶縁導体212~第4導体束240の非絶縁導体242の何れかと近接して配置される。
 絶縁導体及び非絶縁導体の本数の比が2:1であるコア300は、第1導体束310~第4導体束340を有する。第1導体束310の絶縁導体311、312~第4導体束340の絶縁導体341、342のそれぞれは、第1導体束310の非絶縁導体313~第4導体束340の非絶縁導体343の何れかと近接して配置される。
 絶縁導体及び非絶縁導体の本数の比が4:1であるコア500は、第1導体束510~第4導体束540を有する。導体部500の絶縁導体511~514、521~524、531~534及び541~544は、絶縁導体542を除き、第1導体束510の非絶縁導体515~第4導体束540の非絶縁導体545の何れかと近接して配置される。絶縁導体542は、同じ第4導体束540の非絶縁導体545とは遠いが、異なる導体束となる第3導体束530の非絶縁導体535と近接している。そして、導体部500では、絶縁導体のそれぞれと非絶縁導体との間の距離の平均値は、非絶縁導体の口径の1.3倍以下となっている。なお、ここで用語「絶縁導体のそれぞれと非絶縁導体との間の距離の平均値」は、多心ケーブル1の長手方向に垂直な断面を複数ヶ所サンプリングし、その各断面における絶縁導体と非絶縁導体との関係における「導体束の各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心から絶縁導体の最外面までの距離で除した値」を複数ヶ所計測した計測値の平均値をいう(以下、同じ)。一例では、サンプリングされる断面の数は5であり、1つの断面で計測される「導体束の各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心から絶縁導体の最外面までの距離で除した値」の数は12(断面を放射状に12等分し、その等分された各スペースにおける任意の上記値を各1つずつ)である。
 絶縁導体及び非絶縁導体の本数の比が2:3であるコア600は、第1導体束610~第4導体束640を有する。コア600の絶縁導体612、613、621、623、632、633、642及び644は、非絶縁導体611、614、615、622、624、625、631、634、635、641、643及び645の何れかと近接して配置される。そして、コア600では、絶縁導体のそれぞれと非絶縁導体との間の距離の平均値は、非絶縁導体の口径の1.3倍以下となっている。
 図1において、第1導体束10、第2導体束20、第3導体束30及び第4導体束40はそれぞれ、導体束の長手方向において単位長当たりT(1)、T(2)、T(3)、及びT(4)回の回数で左方向に撚られている。一例では、第1導体束10、第2導体束20、第3導体束30及び第4導体束40がまとめて撚られる撚りピッチL1は、60mmである。このときの第1導体束10、第2導体束20、第3導体束30及び第4導体束40の撚りピッチは、それぞれ、一例では4mm、6mm、7mm、9mmである。
 第1導体束10、第2導体束20、第3導体束30及び第4導体束40の絶縁導体はそれぞれ、銀メッキすず入り銅合金で形成された心材と、ポリテトラフルオロエチレン(PFA)で形成され、心材の周囲に配置される被覆層とを有する。第1導体束10、第2導体束20、第3導体束30及び第4導体束40の絶縁導体は、信号を伝送する信号線として機能する。第1導体束10、第2導体束20、第3導体束30及び第4導体束40の絶縁導体口径は互いに等しい。また、第1導体束10、第2導体束20、第3導体束30及び第4導体束40の絶縁導体の心材の口径は互いに等しい。
 第1導体束10、第2導体束20、第3導体束30及び第4導体束40の非絶縁導体は、絶縁導体の心材と同様に、銀メッキすず入り銅合金で形成される。第1導体束10、第2導体束20、第3導体束30及び第4導体束40の非絶縁導体はそれぞれ、接地されドレイン線として機能する。第1導体束10、第2導体束20、第3導体束30及び第4導体束40の非絶縁導体の口径は互いに等しく且つ第1導体束10、第2導体束20、第3導体束30及び第4導体束40の絶縁導体の心材の口径よりも大きい。
 図3は第1導体束10、第2導体束20、第3導体束30及び第4導体束40のそれぞれが他の導体束と撚られる前の側面図である。図3(a)は第1導体束10の側面図であり、図3(b)は第2導体束20の側面図であり、図3(c)は第3導体束30の側面図であり、図3(d)は第4導体束40の側面図である。
 第1導体束10は、第11絶縁導体11、第12絶縁導体12、第13絶縁導体13及び第1非絶縁導体14の順で左巻きに導体束の長手方向において単位長当たりT(1)回撚られることにより形成される。第2導体束20は、第21絶縁導体21、第22絶縁導体22、第23絶縁導体23及び第2非絶縁導体24の順で左巻きに導体束の長手方向において単位長当たりT(2)回撚られることにより形成される。第3導体束30は、第31絶縁導体31、第32絶縁導体32、第33絶縁導体33及び第3非絶縁導体34の順で左巻きに導体束の長手方向において単位長当たりT(3)回撚られることにより形成される。第4導体束40は、第41絶縁導体41、第42絶縁導体42、第43絶縁導体43及び第4非絶縁導体44の順で左巻きに導体束の長手方向において単位長当たりT(4)回撚られることにより形成される。
 第1導体束10において長手方向に垂直な断面に同一面が出現する頻度AF(1)は、第1導体束10の単位長当たりの撚り回数T(1)と等しく、第2導体束20において長手方向に垂直な断面に同一面が出現する頻度AF(2)は、第2導体束20の単位長当たりの撚り回数T(2)と等しい。また、第3導体束30において長手方向に垂直な断面に同一面が出現する頻度AF(3)は、第3導体束30の単位長当たりの撚り回数T(3)と等しく、第4導体束40において長手方向に垂直な断面に同一面が出現する頻度AF(4)は、第4導体束40の単位長当たりの撚り回数T(4)と等しい。
 一例では、第1導体束10の撚りピッチL(1)は4mmであり、第2導体束20の撚りピッチL(2)は6mmであり、第3導体束30の撚りピッチL(3)は7mmであり、第4導体束40の撚りピッチL(4)は9mmである。第1導体束10~第4導体束40の単位長当たりの撚り回数T(1)~T(4)のそれぞれは、第1導体束10~第4導体束40の撚りピッチL(1)~L(4)の逆数として規定される。すなわち、撚りピッチL(1)が4mmのときの第1導体束10の単位長当たりの撚り回数T(1)は250回/mであり、撚りピッチL(2)が6mmのときの第2導体束20の単位長当たりの撚り回数T(2)は166回/mである。また、撚りピッチL(3)が7mmのときの第3導体束30の単位長当たりの撚り回数T(3)は142回/mであり、撚りピッチL(4)が9mmのときの第4導体束40の単位長当たりの撚り回数T(4)は111回/mである。また、第1導体束10~第4導体束40のそれぞれにおいて、導体束の長手方向に垂直な断面に同一面が出現する頻度AF(1)~AF(4)は、それぞれの単位長当たりの撚り回数T(1)~T(4)と同一回数になる。ここで、長手方向に垂直な断面が同一面である状態とは、絶縁導体及び非絶縁導体との間の位置関係が同一であることに加えて、断面の位相が同一であることが必要である。第1導体束10~第4導体束40のそれぞれは、導体束の長手方向に亘って同一の撚りピッチで絶縁導体及び非絶縁導体を撚っているため、絶縁導体及び非絶縁導体との間の位置関係は長手方向に亘って変化しない。しかしながら、第1導体束10~第4導体束40のそれぞれでは、長手方向に垂直な断面が、撚りピッチを1周期として徐々に位相が変化する。そこで、ここでは、絶縁導体及び非絶縁導体との間の位置関係が同一であるものの、断面の位相が一致しない場合は、長手方向に垂直な断面が同一面であるとしない。
 図4は導体束が撚られた状態の長手方向の各断面において、同一断面が出現するまでの位相関係の経過を概念的に示す図である。図4(a)~4(i)のそれぞれにおいて、上段は第1導体束10、第2導体束20、第3導体束30及び第4導体束40がまとめて撚られる前の状態を示し、下段は第1導体束10、第2導体束20、第3導体束30及び第4導体束40がまとめて撚られた後の状態を示す。第1導体束10~第4導体束40の撚りピッチL(1)~L(4)はそれぞれ、例えば4mm、6mm、7mm及び9mmである。また、第1導体束10、第2導体束20、第3導体束30及び第4導体束40がまとめて撚られた導体群の長手方向における撚りピッチL1は、60mmである。図4(a)は第1導体束10、第2導体束20、第3導体束30及び第4導体束40の位相が一致している状態を示す。図4(b)~4(i)のそれぞれは、図4(a)に示す位置から30mm、45mm、60mm、100mm、200mm、220mm、240mm及び252mm離れた位置の状態を示す。図4(a)~4(i)のそれぞれにおいて、丸で囲まれた数字はそれぞれ導体束の番号に対応するとともに、丸で囲まれた数字およびY字状の記号(以下、記号「Y」という)の向きは、各導体束の断面の位相の変化に対応して変化させたものである。すなわち、第1導体束10は丸1で示され、第2導体束20は丸2で示され、第3導体束30は丸3で示され、第4導体束40は丸4で示される。ここで、丸1~丸4のそれぞれは、円の内部にそれぞれ「1」~「4」の数字が配置された表記を示す。また、図4(a)~4(i)のそれぞれにおいて、記号「Y」は断面における第1導体束10、第2導体束20、第3導体束30及び第4導体束40のそれぞれの位相を示す。丸1~丸4のそれぞれを上方に挟持して記号「Y」が直立しているときの位相は「0」であり、丸1~丸4のそれぞれを右側に挟持して記号「Y」が右向きに90度倒れているときの位相は「π/2」である。また、丸1~丸4のそれぞれを下方に挟持して記号「Y」が倒立しているときの位相は「π」であり、丸1~丸4のそれぞれを左側に挟持して記号「Y」が左向きに90度倒れているときの位相は「3π/2」である。
 図4(a)~4(i)の上段にそれぞれ示すように、第1導体束10、第2導体束20、第3導体束30及び第4導体束40のそれぞれは、撚りピッチL(1)~L(4)が互いに異なるので、それぞれの断面に現れる位相が相違する。撚りピッチL(1)~L(4)の最小公倍数に当たる長さである252mmになるまで、第1導体束10、第2導体束20、第3導体束30及び第4導体束40の全てが同一の位相となる断面は現れない。
 図4(a)~4(i)の下段にそれぞれ示すように、第1導体束10、第2導体束20、第3導体束30及び第4導体束40を撚りピッチL1で撚ったとき、それぞれの断面に現れる位相は、撚りピッチL1に応じて更に変化する。すなわち、撚りピッチL1で撚ったとき、撚りピッチL(1)~L(4)及びL1の最小公倍数である1260mmになるまで、第1導体束10、第2導体束20、第3導体束30及び第4導体束40の全てが同一の位相となる断面は現れない。
 前述した図1に示すように、外部シールド50は、すずメッキ鈴入り銅合金からなる導線を編組して形成され、まとめて撚られた第1導体束10、第2導体束20、第3導体束30及び第4導体束40の外周面を不図示のEPTFEテープを介して覆うように配置される。シース60は、ポリ塩化ビニル(Polyvinyl Chloride、PVC)で形成される保護被膜層であり、外部シールド50の外周に配置される。
 (実施形態に係る多心ケーブルの製造方法)
 図5は多心ケーブル1の製造工程を示すフローチャートであり、図6は第1導体束10~第4導体束40のそれぞれを撚るとき、及び第1導体束10~第4導体束40をまとめて撚るときに使用される撚り機を示す図である。また、図7は、図6に示す撚り機の動作状態を示す図である。
 まず、第1導体束10~第4導体束40のそれぞれを撚る(S101)。次いで、S101において撚られた第1導体束10~第4導体束40をまとめて撚って導体群を形成する(S102)。ここで導体群とは、n本の導体束の全体に対応する。
 撚り機80は、第1回転板81と、第2回転板82と、第3回転板83と、回転軸84と、絞り口85と、4つの巻き出し装置86(3つのみ図示)とを有する。第1回転板81、第2回転板82及び第3回転板83のそれぞれは、回転軸84の周囲に回転可能に配置される。第1回転板81は、一方の面に互いに90度ずれた位置に、4つの巻き出し装置86を回転可能に支持する。第2回転板82は、4つの第2ケーブル貫通口87が形成される。第3回転板83は、12個の第3ケーブル貫通口88が形成される。12個の第3ケーブル貫通口88のそれぞれは、第2ケーブル貫通口87よりも回転軸84に近い位置に形成される。4つの巻き出し装置86のそれぞれは、絶縁導体、非絶縁導体、又は絶縁導体及び非絶縁導体が撚られた導体束が巻き回される。4つの巻き出し装置86のそれぞれに巻き回された導体の先端部は、第2ケーブル貫通口87及び第3ケーブル貫通口88を介して絞り口85を貫通するように配置される。第1回転板81、第2回転板82及び第3回転板83を同一の所定の回転速度で回転させると共に、絞り口85を貫通するように配置された導体の先端部を所定の速度で水平方向に移動させることにより、所望のピッチで例えば4本の導体を撚ることができる。
 第1導体束10を撚るとき、4つの巻き出し装置86のそれぞれに第11絶縁導体11、第12絶縁導体12、第13絶縁導体13及び第1非絶縁導体14を巻き回し、巻き回した4本の導体の先端が絞り口85を貫通するように配置する。そして、撚りピッチL(1)が4mmになるように、第1回転板81、第2回転板82及び第3回転板83を所定の回転速度で回転させると共に、導体の先端部を所定の速度で水平方向に移動させる。また、第1導体束10~第4導体束40をまとめて撚るとき、4つの巻き出し装置86のそれぞれに第1導体束10~第4導体束40を巻き回し、巻き回した4本の導体束の先端が絞り口85を貫通するように配置する。そして、第1回転板81、第2回転板82及び第3回転板83を所定の回転速度で回転させると共に、導体束の先端部を所定の速度で水平方向に移動させる。
 次いで、まとめて撚られた第1導体束10、第2導体束20、第3導体束30及び第4導体束40の外周面に外部シールド50が形成される(S103)。一例では、外部シールド50は、まとめて撚られた第1導体束10、第2導体束20、第3導体束30及び第4導体束40の回りにEPTFEテープを介して導線を編むことによって形成される。そして、外部シールド50の外周面にシース60が形成される(S104)。一例では、シース60は、溶解したPVCを外部シールド50の外周面に押し出すことにより形成される。
 なお、図5~7を参照して説明した多心ケーブルの製造方法は、本発明に係るケーブルの製造方法の一例であり、他の製造方法によって、本発明に係るケーブルを製造してもよい。例えば、本発明に係るケーブルは、第1回転板81~第3回転板83が回転する撚り機80の代わりに、送り出されたケーブルを受ける絞り口を回転させる撚り機を採用してもよい。
 (実施形態に係る多心ケーブルの作用効果)
 実施形態に係る多心ケーブルは、互いに異なる撚りピッチで撚られた複数の導体束をまとめて更に撚ることにより、絶縁導体をランダムに配置することで、長手方向の周期性を低減して、遠端クロストークを低減できる。遠端クロストークは、信号線が長手方向に亘って平行に配列されて信号線間の容量性カップリングが変化しない状態が連続する場合に発生する。実施形態に係る多心ケーブルでは、絶縁導体をランダムに配置することにより、絶縁導体間の容量性カップリングを長手方向で変動させて遠端クロストークを低減させている。すなわち、実施形態に係る多心ケーブルでは、導体束は何れも被覆されていないので、導体束をまとめて撚るときに互いに干渉しながら撚られる。このため、実施形態に係る多心ケーブルの長手方向に垂直な断面は、導体束それぞれの撚りピッチ、及び導体束をまとめて撚るときの撚りピッチの最小公倍数に当たる長さの間は同一の形状とはならない。
 例えば、実施形態に係る多心ケーブルを超音波プローブケーブルとして使用する場合、周波数は数MHz~数10MHz程度であり、ケーブル長は4~5m程度である。実施形態に係る多心ケーブルをこのような条件で使用する場合、導体束それぞれの撚りピッチ、及び導体束をまとめて撚るときの撚りピッチの最小公倍数に当たる長さは、5~10m程度とすればよい。しかしながら、導体束それぞれの撚りピッチ、及び導体束をまとめて撚るときの撚りピッチの最小公倍数に当たる長さは、100m以上であることが好ましい。導体束それぞれの撚りピッチ、及び導体束をまとめて撚るときの撚りピッチの最小公倍数に当たる長さを100m以上にすることにより、n本の導体束の全体で、長手方向に垂直な断面の形状が同一である頻度は、0.01回/mとすることができる。
 ここで、用語「長手方向に垂直な断面に同一面が出現する頻度」は、後述するように、導体束それぞれの撚りピッチ、及び導体束をまとめて撚るときの撚りピッチに基づいて規定される。導体束のそれぞれの長手方向に垂直な断面に同一面が出現する頻度は、導体束それぞれの撚りピッチの逆数として規定される。例えば、多心ケーブル1における第1導体束10の「長手方向に垂直な断面の形状が同一である頻度」は、第1導体束10の撚りピッチL(1)が4mmであるので、250回/mとなる。また、n本の導体束の全体で、長手方向に垂直な断面に同一面が出現する頻度は、導体束それぞれの撚りピッチ、及び導体束をまとめて撚るときの撚りピッチの最小公倍数に当たる長さの逆数として規定される。
 また、実施形態に係る多心ケーブルでは、導体束は何れも被覆されていないので、導体束に含まれる絶縁導体及び非絶縁導体は、導体束をまとめて撚るときの張力により、空隙を埋めるように近接して配置されることになる。導体束に含まれる絶縁導体及び非絶縁導体が近接して配置されることにより多心ケーブル内に形成される空隙の大きさが小さくなるので、実施形態に係る多心ケーブルの口径は小さくなる。
 また、実施形態に係る多心ケーブルでは、導体束のそれぞれは、少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体とを有する。導体束のそれぞれが絶縁導体及び非絶縁導体のそれぞれを少なくとも1本有することにより、複数の絶縁導体のそれぞれと複数の非絶縁導体のそれぞれとの間の最小の距離は、所定の長さよりも短くすることができる。実施形態に係る多心ケーブルでは、導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が、2:3~4:1の範囲であることが好ましい。導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比を2:3~4:1の範囲にすることで、実施形態に係る多心ケーブルは、絶縁導体の静電容量のバラツキを小さくすることができる。実施形態に係る多心ケーブルは、絶縁導体の静電容量のバラツキを小さくすることにより、特性インピーダンスの不整合に起因するノイズ及び反射波の増加による伝送性能の低下を防止できる。
 また、絶縁導体の本数と非絶縁導体の本数の比が、2:3以上、1:1未満の範囲であり、絶縁導体の直径の平均値と非絶縁導体の直径の平均値の比が、1.2:1以上、4:1以下の範囲に設定することにより、絶縁導体とペアとなる非絶縁導体の本数が増えることにより、クロストークの低減効果を向上させることができるだけでなく、絶縁導体の直径の平均値と非絶縁導体の直径の平均値の比が、1:1よりも大きく4:1以下の範囲であるため、絶縁導体の直径の平均値と非絶縁導体の直径の平均値の比が1:1以下のものと比較して、すべての絶縁導体および非絶縁導体の全体の外径をより小さくすることができ、ケーブルの細径化を図ることができる。
 (実施形態に係る多心ケーブルの変形例)
 多心ケーブル1は、第1導体束10、第2導体束20、第3導体束30及び第4導体束40のまとめて撚られた4本の導体束を有するが、実施形態に係る多心ケーブルは、複数の導体束を有していればよい。すなわち、実施形態に係る多心ケーブルは、まとめて撚られた2本又は3本の導体束を有してもよく、まとめて撚られた5本以上の導体束を有してもよい。また、実施形態に係る多心ケーブルでは、n本の導体束をまとめて撚った導体群を更に複数本まとめて撚って多心ケーブルのコアを形成してもよい。すなわち、実施形態に係る多心ケーブルは、3階層以上の階層に亘って撚られたケーブルとしてもよい。
 また、多心ケーブル1では、第1導体束10、第2導体束20、第3導体束30及び第4導体束40のそれぞれは、3本の絶縁導体と1本の非絶縁導体とを撚ることにより形成される。しかしながら、実施形態に係る多心ケーブルでは、複数の導体束のそれぞれは、少なくとも1本の絶縁導体と少なくとも1本の非絶縁導体とを有し且つ導体束のそれぞれにおける絶縁導体の本数と非絶縁導体の本数の比が2:3~4:1の範囲であればよい。また、実施形態に係る多心ケーブルでは、導体束に含まれる絶縁導体の本数及び非絶縁導体の本数は、導体束毎に相違してもよい。
 また、多心ケーブル1では、第1導体束10~第4導体束40のそれぞれの撚りピッチL(1)~L(4)は4mm、6mm、7mm及び9mmであり、第1導体束10~第4導体束40をまとめて撚ったときの撚りピッチL1は60mmである。しかしながら、実施形態に係る多心ケーブルでは、n本の導体束の撚りピッチL(N)(N=1~n)の少なくとも1本が他と異なればよい。一方、n本の導体束の撚りピッチL(N)(N=1~n)及びn本の導体束をまとめて撚ったときの撚りピッチL1の最小公倍数がより大きくなるようにL(N)及びL1規定すると、より長い距離に亘って絶縁導体をランダムに配置することができる。また、実施形態に係る多心ケーブルでは、n本の導体束の撚りピッチL(N)(N=1~n)の何れかは、一定の周期を有さずに、長さ方向に亘って変動するように形成されてもよい。
 また、多心ケーブル1では、柔軟性および耐久性の観点から、導体束それぞれの撚り方向、及び導体束をまとめて撚るときの撚り方向は同一であるが、実施形態に係る多心ケーブルでは、導体束のいくつかの撚り方向を他の導体束の撚り方向及び導体束をまとめて撚る撚り方向と反対にしてもよい。また、実施形態に係る多心ケーブルでは、導体束のいくつかは、撚っていなくてもよい。導体束のいくつかの撚り方向を他の導体束の撚り方向及び導体束をまとめて撚る撚り方向と反対にする場合、反対方向に撚られる導体束の撚りピッチは、他の導体束の撚りピッチと比べて非常に大きなピッチとする。反対方向に撚られる導体束の撚りピッチを非常に大きなピッチとすることにより、導体束をまとめて撚るときに、反対方向に撚られた導体束は、他の導体束と互いに干渉しながら撚られることになる。これにより、反対方向に撚られた導体束の絶縁導体は、他の導体束の絶縁導体と同様に、絶縁導体間の距離の長手方向の周期性を低減することができる。
 また、多心ケーブル1では、第1導体束10、第2導体束20、第3導体束30及び第4導体束40の非絶縁導体の口径は絶縁導体の心材の口径よりも大きいが、非絶縁導体の口径は絶縁導体の心材の口径よりも小さくてもよい。しかしながら、実施形態に係る多心ケーブルでは、非絶縁導体の合成抵抗が、絶縁導体の合成抵抗よりも大きいことが好ましい。ここで、非絶縁導体の合成抵抗は、所定の長さの多心ケーブルに含まれる非絶縁導体を並列接続したときの抵抗値であり、絶縁導体の合成抵抗は、非絶縁導体の合成抵抗を測定したケーブルと同一の多心ケーブルの絶縁導体を並列接続したときの抵抗値である。
 (「長手方向に垂直な断面に同一面が出現する頻度」の決定方法)
 図8は「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を示すフローチャートであり、図9、10(a)及び10(b)のそれぞれは「長手方向に垂直な断面に同一面が出現する頻度」を決定する処理を説明する図である。図10(a)において、同一の導体束には同一のハッチングがされている。図10(b)は、図10(a)に矢印Aで示される円で囲まれた部分の拡大図である。
 図8に示すように、まずオペレータは、「長手方向に垂直な断面に同一面が出現する頻度」を決定するために使用されるケーブルを準備し(S201)、ケーブルの少なくとも一部が所望の距離に亘って水平方向に延伸するようにケーブルを固定する(S202)。次いで、オペレータは、ケーブルのシースを除去した(S203)後に、外部シールドを除去する(S204)ことにより、ケーブルのコアを取り出す(S205)。ここでは、長手方向に垂直な断面に同一面が出現する頻度」を決定するために使用されるコアは、3階層に亘って撚られたものについて説明する。すなわち、図9に示すように、3階層に亘って撚られて形成されたコアは、それぞれが小撚りピッチL(1)又はL(2)で絶縁導体及び非絶縁導体を小撚りされた4つの導体束を、中撚りピッチL1で中撚りしてまとめた4つの導体群を更に大撚りピッチL0で大撚りして形成される。小撚りして導体束を形成するとき、中撚りして導体群を形成するとき、及び大撚りしてコアを形成するときのいずれも、図6に示す撚り機80が使用される。
 次いで、オペレータは、4本の導体群を大撚りしたときの大撚りピッチL0を測定する(S206)。大撚りピッチL0は、S205で取り出されたコアの長手方向に同一の導体群が出現する間隔を測定することによって、測定する。なお、大撚りピッチL0は、コアの位置毎に長さが変化するおそれがあるので、複数の導体群について複数の位置で、同一の導体群が出現する間隔を測定し、測定値の平均値を大撚りピッチL0とすることが好ましい。
 次いで、オペレータは、4本の導体束を中撚りしたときの中撚りピッチL1を測定する(S207)。中撚りピッチL1は、中撚りの導体群のそれぞれが大撚りされた導体群が巻回する方向に同一の導体束が出現する間隔を測定することによって、測定する。なお、中撚りピッチL1は、コアの位置毎に長さが変化するおそれがあるので、導体群毎に複数の位置で、同一の導体束が出現する間隔を測定し、測定値の平均値を中撚りピッチL1とすることが好ましい。
 次いで、オペレータは、4本の導体を小撚りしたときの小撚りピッチL(1)及びL(2)を測定する(S208)。小撚りピッチL(1)及びL(2)はそれぞれ、導体束の長手方向に、同一の絶縁導体又は非絶縁導体が出現する間隔を測定することによって、測定する。なお、小撚りピッチL(1)及びL(2)は、導体の位置毎に長さが変化するおそれがあるので、導体束毎に複数の位置で、同一の絶縁導体又は非絶縁導体が出現する間隔を測定し、測定値の平均値を小撚りピッチL(1)及びL(2)とすることが好ましい。
 次いで、オペレータは、それぞれの導体束について、長手方向に垂直な断面に同一面が出現する頻度を決定する(S209)。オペレータは、S208で測定された小撚りピッチL(1)及びL(2)の逆数をそれぞれ、長手方向に垂直な断面に同一面が出現する頻度として決定する。S208で小撚りピッチがL(1)と測定された導体束の長手方向に垂直な断面に同一面が出現する頻度は、小撚りピッチL(1)の逆数である。S208で小撚りピッチがL(2)と測定された導体束の長手方向に垂直な断面に同一面が出現する頻度は、小撚りピッチL(2)の逆数である。
 そして、オペレータは、4本の導体束で形成される導体群の全体で、長手方向に垂直な断面に同一面が出現する頻度を決定する(S210)。オペレータは、S207で測定された中撚ピッチL1、並びにS208で測定された小撚りピッチL(1)及びL(2)の最小公倍数の逆数を、4本の導体の全体で、長手方向に垂直な断面に同一面が出現する頻度として決定する。
 (実施例1)
 次に、比較例、第1実施例、第2実施例、第3実施例、第4実施例、第5実施例及び第6実施例、及び第7実施例の8本のケーブルのクロストークを比較する。これらのコアのそれぞれは、4本の導体束、4本の導体群、及びコアの3階層で形成される。それらのケーブルのそれぞれにおいて、4本の導体束のそれぞれは、比較例および第1実施例では4本の絶縁導体と1本の非絶縁導体を小撚りして形成され、第2実施例では、4本の絶縁導体と2本の非絶縁導体を小撚りして形成され、第3及び第6実施例では、2本の絶縁導体と3本の非絶縁導体を小撚りして形成され、第4、第5及び第7実施例では、4本の絶縁導体と6本の非絶縁導体を小撚りして形成される。
また、4本の導体群のそれぞれは、4本の導体束を中撚りして形成される。そして、3階層に亘って撚られたケーブルのそれぞれのコアは、4本の導体群を大撚りして形成される。比較例、第1実施例、第2実施例及び第3実施例の3本のケーブルの絶縁導体の心材のサイズは42AWG(7本撚り、外径0.075mm)で、かつ0.0225mmの肉厚で絶縁被覆されており、非絶縁導体のサイズは38AWG(外径0.12mm)である。第4及び第6実施例では、絶縁導体の心材のサイズは42AWG(7本撚り、外径0.075mm)で、かつ0.0225mmの肉厚で絶縁被覆されており、非絶縁導体のサイズは42AWG(外径0.075mm)である。第5実施例では、絶縁導体の心材のサイズは44AWG(7本撚り、外径0.06mm)で、かつ0.03mmの肉厚で絶縁被覆されており、非絶縁導体のサイズは44AWG(外径0.06mm)である。第7実施例では、絶縁導体の心材のサイズは42AWG(7本撚り、外径0.075mm)で、かつ0.11mmの肉厚で絶縁被覆されており、非絶縁導体のサイズは42AWG(外径0.075mm)である。
比較例及び第1実施例では、導体束のそれぞれは、4本の絶縁導体と、1本の非絶縁導体とを有し、絶縁導体のそれぞれと非絶縁導体との間の距離の平均値は、非絶縁導体の口径の1.3倍以下である。すなわち、比較例及び第1実施例では、各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心から絶縁導体の最外面までの距離で除した値の平均値は、1~1.3の範囲である。第2実施例では、導体束のそれぞれは、4本の絶縁導体と、2本の非絶縁導体とを有し、絶縁導体のそれぞれと非絶縁導体との間の距離の平均値は、非絶縁導体の口径の1.3倍以下である。第3及び第6実施例では、導体束のそれぞれは、2本の絶縁導体と、3本の非絶縁導体とを有し、絶縁導体のそれぞれと非絶縁導体との間の距離の平均値は、非絶縁導体の口径の1.3倍以下である。第4、第5および第7実施例では、導体束のそれぞれは、4本の絶縁導体と、6本の非絶縁導体とを有し、絶縁導体のそれぞれと非絶縁導体との間の距離の平均値は、非絶縁導体の口径の1.3倍以下である。すなわち、第2、第3、第4、第5、第6、第7実施例においても、各絶縁導体の中心から近接する非絶縁導体の表面までの最短距離を絶縁導体の中心から絶縁導体の最外面までの距離で除した値の平均値は、1~1.3の範囲である。表1~5に、比較例、第1実施例、第2実施例、第3実施例、第4実施例及び第5実施例の撚りピッチを示す。表1~5において、Sは絶縁導体の数を示し、Gは非絶縁導体の数を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 比較例では、4本の導体束はそれぞれ10mmの小撚りピッチで形成され、4本の導体群は25mmの中撚りピッチで形成され、コアは80mmの大撚りピッチで形成される。このことから、比較例ではコアの長手方向において、上記のピッチの最小公倍数である400mm付近で、断面に同一面が出現する。
 第1実施例では、表2に示すように、4本の導体束のそれぞれは小撚りピッチL(1)~L(4)のそれぞれ異なり、これらの最小公倍数に当たる長さが長くなり、長手方向に垂直な断面に同一面が出現する頻度が小さくなるような小撚りピッチで形成される。このような構成では、コアの長手方向において、表2に記載のピッチの最小公倍数となる10の17乗を超えた値(mm)において、断面に同一面が出現する。このように、第1実施例では、小撚りピッチL(1)~L(4)及び中撚りピッチL1の最小公倍数が比較例と比べても大きくなり、4本の導体の全体で、長手方向に垂直な断面に同一面が出現する頻度が小さくなるような中撚りピッチで形成される。また、第1実施例では、コアは、中撚りピッチのそれぞれよりも更に大きな素数の大撚りピッチで形成されている。
 第2実施例では、表3に示すように、4本の導体束のそれぞれが、第1実施例と同一の小撚りピッチで形成されている。また、第2実施例では、第1実施例のそれぞれの中撚りピッチL1よりも大きな素数となる中撚りピッチで撚ることにより、4本の導体の全体で、長手方向に垂直な断面に同一面が出現する頻度が小さくなるよう形成されている。また、第2実施例では、コアは、第1実施例の大撚りピッチよりも更に大きな大撚りピッチで形成されている。
 第3~第7実施例でも、表4及び表5に示すように、4本の導体束のそれぞれが、第1実施例と同一の小撚りピッチで形成されている。また、第3~第7実施例では、第1実施例のそれぞれの中撚りピッチL1よりも大きな素数となる中撚りピッチで撚ることにより、4本の導体の全体で、長手方向に垂直な断面に同一面が出現する頻度が小さくなるよう形成されている。また、第3~第7実施例では、コアは、第1実施例の大撚りピッチよりも更に大きな大撚りピッチで形成されている。
 図11は、比較例、第1実施例~第7の8本のケーブルのクロストークの周波数特性を示す図である。図11において、横軸は信号の周波数〔MHz〕を示し、縦軸はクロストークの大きさ〔dB〕を示す。また、矢印Aが指すグラフは比較例の特性を示し、矢印Bが指すグラフは第1実施例の特性を示し、矢印Cが指すグラフは第2実施例の特性を示し、矢印Dが指すグラフは第3実施例の特性を示し、矢印Eが指すグラフは第4実施例の特性を示し、矢印Fが指すグラフは第5実施例の特性を示し、矢印Gが指すグラフは第6実施例の特性を示し、矢印Hが指すグラフは第7実施例の特性を示す。
 ここで、第1~第7実施例における、それぞれの絶縁導体および比絶縁導体をすべて撚り合わせた状態での導体全体の外径は、第1実施例では1.95mm、第2実施例では、2.1mm、第3実施例では1.6mm、第4実施例では2.1mm、第5実施例では1.8mm、第6実施例では1.5mm、第7実施例では1.6mmである。このように、導体全体の本数が第2実施例よりも多い第4及び第5実施例であっても、絶縁導体の直径の平均値と非絶縁導体の直径の平均値の比を、第4実施例では8:5、第5実施例では2:1、第7実施例では約4:1に設定することで、第1及び第2実施例と比較して、絶縁導体が同じ本数で、かつ非絶縁導体の本数が多い状態であっても、すべての絶縁導体および非絶縁導体の全体の外径の大きさを第1および第2実施例以下にするすることができ、ケーブルの細径化が図られるとともに、クロストークの低減効果が図られることが確認された。
 同図が示すように、クロストークは第3実施例(D)が一番低く、次いで、第6実施例(G)、第4実施例(E)、第7実施例(H)、第5実施例(F)、第2実施例(C)、第1実施例(B)そして比較例(A)の順で大きくなる。第1~第5実施例のケーブルは、20〔MHz〕程度の帯域まではいずれも、クロストークが20〔dB〕を下回っている。このように、小撚りピッチ及び中撚りピッチの間の最小公倍数に当たる長さを長くして、導体及び導体束における、長手方向に垂直な断面に同一面が出現する頻度を小さくすることにより、クロストークを小さくすることができる。
 なお、比較例、第1実施例、第2実施例、第3実施例、第4実施例及び第5実施例の6本のケーブルのそれぞれにおいて、小撚り、中撚り及び大撚りの順で撚りピッチが大きくなるように形成されているが、実施形態に係るケーブルでは、階層を上げるごとに撚りピッチを大きくしなくてもよい。実施形態に係るケーブルでは、例えば、小撚りの撚りピッチの1つを中撚りの撚りピッチよりも大きくしてもよい。
 (実施例2)
 次に、非絶縁導体の本数と、絶縁導体の本数との比率を変化させたときのクロストークを比較する。ここでは、非絶縁導体の本数と、絶縁導体の本数との比率は、0:16、1:16、1:8(2:16)、1:4(4:16)、1:3(6:18)、1:2(8:16)及び1:1(16:16)と変化させる。なお、上記のかっこ内の数字は、絶縁体を16本に統一した場合の非絶縁導体の本数と絶縁導体の本数との比率を表したものである。ここで、絶縁導体の心材のサイズは42AWGであり、非絶縁導体のサイズは38AWGである。
 図12は、信号の周波数が20〔MHz〕のときに、ケーブルの含まれる絶縁導体の本数と非絶縁導体の本数との比率を変化させたときのクロストークの変化を示す図である。図12において、横軸は絶縁導体の本数と非絶縁導体の本数との比率を示し、縦軸はクロストークの大きさ〔dB〕を示す。
 ケーブルの含まれる絶縁導体の本数と非絶縁導体の本数との比率が0:16のとき、クロストークは-10〔dB〕程度になり、ケーブルの含まれる絶縁導体の本数と非絶縁導体の本数との比率が1:4のとき、クロストークは-20〔dB〕程度になる。また、ケーブルの含まれる絶縁導体の本数と非絶縁導体の本数との比率が1:1のとき、クロストークは-35〔dB〕程度になる。
 図13(a)はクロストークが-20〔dB〕よりも小さいときの信号状態を示し、図13(b)はクロストークが-20〔dB〕よりも大きいときの信号状態を示す。
 図13(a)に示すようにクロストークが-20〔dB〕よりも大きいとき、信号の帯域幅が広くなり、良好な信号特性を得ることができない。一方、図13(b)に示すようにクロストークが-20〔dB〕よりも小さいとき、信号の帯域幅が狭くなり、良好な信号特性を得ることができる。したがって、前述した図11における第1および第2実施例が示すように、20〔MHz〕までは、良好な信号特性を得ることが確認された。
 (実施例3)
 次に、絶縁導体の中心から近接する非絶縁導体の表面までの距離を、絶縁導体の中心から絶縁導体の最外面までの距離で除した値を変化させたときの特性インピーダンス及び損失を比較する。表6は、絶縁導体の中心から近接する非絶縁導体の表面までの距離(L)を、絶縁導体の中心から絶縁導体の最外面までの距離(l)で除した値を変化させたときの特性インピーダンス(Zo)及び損失(ロス)の変化を示す。ここで、(L/l)が1のときは、非絶縁導体と絶縁導体とが接していることを示し、(L/l)が2のときは、非絶縁導体と絶縁導体との間の距離が、絶縁導体の中心から絶縁導体の最外面までの距離の2倍であることを示す。
Figure JPOXMLDOC01-appb-T000006
 (L/l)が1のときに0%であった損失は、(L/l)が1.3のときに10%になる。多心ケーブルを超音波プローブケーブル等として使用する場合、損失が10%を超えると、良好な伝送性能が得られないと考えられる。
 以下に示す、表6は、絶縁導体及び非絶縁導体の心材の材料として銀メッキすず入り銅合金を使用したときの絶縁導体及び非絶縁導体のそれぞれの合成抵抗を示す。ここで、絶縁導体及び非絶縁導体の合成抵抗のそれぞれは、ケーブルに含まれる絶縁導体及び非絶縁導体をそれぞれ並列接続したときの単位長さ当たりの抵抗値を示す。例えば、非絶縁導体の本数と絶縁導体の本数との比率が1:16のとき、非絶縁導体の合成抵抗は1本の非絶縁導体の単位長さ当たりの抵抗値を示し、絶縁導体の合成抵抗は16本の絶縁導体を並列接続したときの単位長さ当たりの抵抗値を示す。
Figure JPOXMLDOC01-appb-T000007
 1  多心ケーブル
 10、20、30、40  導体束
 11~13、21~23、31~33、41~43  絶縁導体
 14、24、34、44  非絶縁導体
 50  外部シールド
 60  シース
 
 

 

Claims (8)

  1.  n本の導体束を備え、
     前記n本の導体束は、それぞれ少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体と、を有し、長手方向に垂直な断面に同一面が出現する頻度は、単位長当りAF(N)(N=1~n)であり、
     前記AF(N)(N=1~n)の少なくとも1つが他と異なり、
     前記n本の導体束のそれぞれにおける前記絶縁導体の本数と前記非絶縁導体の本数の比が、2:3~4:1の範囲であり、
    絶縁導体とペアとなる非絶縁導体は固定されていなく、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる、ことを特徴とする多心ケーブル。
  2.  前記n本の導体束のそれぞれにおける前記絶縁導体の本数と前記非絶縁導体の本数の比が、1:1~4:1の範囲である、請求項1に記載の多心ケーブル。
  3.  前記n本の導体束のそれぞれにおける前記絶縁導体の本数と前記非絶縁導体の本数の比が、2:3以上、1:1未満の範囲であり、
     前記n本の導体束の、前記絶縁導体の直径の平均値と前記非絶縁導体の直径の平均値の比が、1.2:1以上、4:1以下の範囲である、請求項1に記載の多心ケーブル。
  4.  長手方向に垂直な断面において、前記n本の導体束の各絶縁導体の中心から近接する前記非絶縁導体の表面までの最短距離を前記絶縁導体の中心から当該絶縁導体の最外面までの距離で除した値の平均値は、1~1.3の範囲である、請求項1~3に記載の多心ケーブル。
  5.  前記n本の導体束の全体で、長手方向に垂直な断面に同一面が出現する頻度は、0.01回/m以下である、請求項1~4に記載の多心ケーブル。
  6.  前記n本の導体束の各絶縁導体を並列接続したときの合成抵抗は、前記n本の導体束の各非絶縁導体を並列接続したときの合成抵抗よりも大きい、請求項1~5の何れか一項に記載の多心ケーブル。
  7.  n本の導体束を備え、
     前記n本の導体束は、それぞれ少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体と、を有し、前記少なくとも1本の絶縁導体および前記少なくとも1本の非絶縁導体は、単位長当たりT(N)(N=1~n)回撚られており、
     前記n本の導体束は、単位長当たりT1回撚られており、
     前記T(N)(N=1~n)のうち、少なくとも1つが他と異なり、
     前記n本の導体束のそれぞれにおける前記絶縁導体の本数と前記非絶縁導体の本数の比が、2:3~4:1の範囲であり、
    絶縁導体とペアとなる非絶縁導体は固定されていなく、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる、ことを特徴とする多心ケーブル。
  8.  それぞれ少なくとも1本の絶縁導体と、少なくとも1本の非絶縁導体とを有するn本の導体束を、前記少なくとも1本の絶縁導体および前記少なくとも1本の非絶縁導体が前記導体束の長手方向における単位長当たりT(N)(N=1~n)回撚り、
     撚られた前記n本の導体束をまとめた導体群として当該導体群の長手方向における、単位長当たりT1回撚り、
     前記T(N)(N=1~n)のうち、少なくとも1つが他と異なり、
     前記n本の導体束のそれぞれにおける前記絶縁導体の本数と前記非絶縁導体の本数の比が、2:3~4:1の範囲であり、
    絶縁導体とペアとなる非絶縁導体は固定されていなく、各絶縁導体は、同じ導体束の非絶縁導体及び/又は異なる導体束の非絶縁導体とペアとなる、ことを特徴とする多心ケーブルの製造方法。
     

     
     
PCT/JP2015/083138 2014-11-28 2015-11-25 多心ケーブル及びその製造方法 WO2016084869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/531,614 US10096402B2 (en) 2014-11-28 2015-11-25 Multi-core cable and production method therefor
CN201580064922.1A CN107004471B (zh) 2014-11-28 2015-11-25 多芯缆线及其制造方法
EP15863557.3A EP3226256A4 (en) 2014-11-28 2015-11-25 Multi-core cable and production method therefor

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2014240869 2014-11-28
JP2014-240869 2014-11-28
JP2015055446 2015-03-18
JP2015-055446 2015-03-18
JP2015-061099 2015-03-24
JP2015061099 2015-03-24
JP2015163274 2015-08-20
JP2015-163274 2015-08-20
JP2015-166295 2015-08-25
JP2015166295 2015-08-25
JP2015167265 2015-08-26
JP2015-167265 2015-08-26
JP2015-172403 2015-09-01
JP2015172403A JP5935054B1 (ja) 2014-11-28 2015-09-01 多心ケーブル及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016084869A1 true WO2016084869A1 (ja) 2016-06-02

Family

ID=56074421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083138 WO2016084869A1 (ja) 2014-11-28 2015-11-25 多心ケーブル及びその製造方法

Country Status (1)

Country Link
WO (1) WO2016084869A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321220A (ja) * 1995-05-24 1996-12-03 Furukawa Electric Co Ltd:The 多対ケーブル信号伝送路
WO2012120993A1 (ja) * 2011-03-04 2012-09-13 株式会社 潤工社 伝送ケーブル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321220A (ja) * 1995-05-24 1996-12-03 Furukawa Electric Co Ltd:The 多対ケーブル信号伝送路
WO2012120993A1 (ja) * 2011-03-04 2012-09-13 株式会社 潤工社 伝送ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226256A4 *

Similar Documents

Publication Publication Date Title
CA2827334C (en) Transmission cable
CA2580186C (en) Web for separating conductors in a communication cable
JP5870980B2 (ja) 多心ケーブル
WO2013069755A1 (ja) 高速信号伝送ケーブル
JP4720546B2 (ja) 同軸ケーブル及び多心ケーブル
KR101906810B1 (ko) 고주파 신호 송신을 위한 신호 케이블
JP2015514286A5 (ja)
JP2014078339A (ja) 多対差動信号伝送用ケーブル
TWM508828U (zh) 電纜結構
JP5935054B1 (ja) 多心ケーブル及びその製造方法
JP2018067435A (ja) 二芯平行ケーブル
KR20120041249A (ko) 데이타 전송 케이블
WO2019194033A1 (ja) 多芯ケーブル
JP2007280762A (ja) ノンハロゲン同軸ケーブル及びこれを用いた多芯ケーブル
WO2016084869A1 (ja) 多心ケーブル及びその製造方法
JP5929484B2 (ja) 多芯ケーブル及びその製造方法
JP2017195095A (ja) 保護管付き多心ケーブル及びその製造方法
US9786417B2 (en) Multi-core cable and method of manufacturing the same
JP2017195094A (ja) 多心ケーブル及びその製造方法
WO2018147293A1 (ja) 同軸ケーブル
JP2020013686A (ja) 撚線導体
US8269106B2 (en) Mirrored arc conducting pair
JP2008300248A (ja) 通信ケーブル
JP5347167B2 (ja) 多対lanケーブル
JP7392528B2 (ja) 通信複合ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015863557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15531614

Country of ref document: US