WO2016084446A1 - Engine control device - Google Patents
Engine control device Download PDFInfo
- Publication number
- WO2016084446A1 WO2016084446A1 PCT/JP2015/074650 JP2015074650W WO2016084446A1 WO 2016084446 A1 WO2016084446 A1 WO 2016084446A1 JP 2015074650 W JP2015074650 W JP 2015074650W WO 2016084446 A1 WO2016084446 A1 WO 2016084446A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- voltage
- time
- engine
- time constant
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
Definitions
- the present invention relates to an engine control device.
- the battery of saddle-ride type vehicles has a smaller capacity than the battery of a four-wheeled vehicle, the amount of stored electricity tends to decrease due to the use of a fire when the engine is stopped.
- the central processing unit (CPU) in the engine control device may be reset due to a decrease in battery voltage.
- whether the engine control state at the time of CPU reset was an automatic stop state or not an automatic stop state in order to perform appropriate engine control Is preferably determined.
- the information before the reset can be read even after the CPU is reset.
- An object of the present invention is to provide an engine control device capable of holding information indicating the control state of the engine immediately before the reset even when the control unit of the engine control device is reset due to a temporary decrease in battery voltage. is there.
- An engine control apparatus provides: An engine control device for controlling a vehicle engine, An instantaneous interruption determination circuit including a first capacitor and a first resistor that charges and discharges the first capacitor with a first time constant; A holding circuit including a second capacitor and a second resistor that charges and discharges the second capacitor with a second time constant equal to or greater than the first time constant; A controller that controls the engine based on voltage states of the first capacitor and the second capacitor; The controller starts charging the first capacitor after starting charging the second capacitor.
- the controller starts charging the first capacitor when a predetermined standby time has elapsed after starting charging the second capacitor.
- the controller After the controller starts charging the second capacitor, the controller starts charging the first capacitor when the voltage of the second capacitor reaches a voltage threshold.
- the engine control apparatus for example, when a condition for transitioning the engine to a predetermined control state is satisfied, discharging of the second capacitor is started and the charged state is maintained for the first capacitor. To do.
- the control unit is reset due to a temporary voltage drop (power supply interruption)
- the control state of the engine immediately before the voltage drops is controlled by detecting the charge / discharge state of the second capacitor. It can be determined whether or not it was in a state. Whether the reset is caused by a momentary power interruption or a normal power activation can be determined by the charge / discharge state of the first capacitor.
- the state of charge of the second capacitor can be substantially maintained until the voltage state of the second capacitor is determined after the power is turned off. For this reason, it is possible to determine the control state of the engine based on the voltage state of the second capacitor at the time of power-off.
- FIG. 1A is a block diagram and an equivalent circuit diagram of an engine control device according to the embodiment
- FIG. 1B is an equivalent circuit diagram of a momentary interruption determination circuit and a holding circuit of the engine control device according to a modification of the embodiment.
- FIG. 2 is a graph showing an example of a time change of the power supply voltage, the voltage of the first capacitor of the instantaneous interruption determination circuit, and the voltage of the second capacitor of the holding circuit.
- FIG. 3A is a chart showing the relationship between the voltages of the first capacitor and the second capacitor after the reset of the control unit and the determination result of the engine control state
- FIG. 3B is a control of the engine control device according to the embodiment. It is a flowchart of the process performed after reset of a part.
- FIG. 4 is a graph showing an example of a time change of the power supply voltage, the voltage of the first capacitor of the instantaneous interruption determination circuit, and the voltage of the second capacitor of the holding circuit in the engine control apparatus according to the comparative example.
- FIG. 1A shows a block diagram of an engine control apparatus 10 according to the embodiment.
- the engine control device 10 includes a control unit 13, an instantaneous interruption determination circuit 11, and a holding circuit 12.
- a control unit 13 for example, a central processing unit (CPU) is used.
- CPU central processing unit
- the instantaneous interruption determination circuit 11 is configured by a series circuit of a first capacitor C1 and a first resistor R1.
- the first resistor R1 is connected to the first output port 13A of the control unit 13, and the first capacitor C1 is grounded.
- the first capacitor C1 is charged / discharged through the first output port 13A.
- An interconnection point between the first resistor R1 and the first capacitor C1 is connected to the first input port 13B of the control unit 13. For this reason, the first voltage V1 between the terminals of the first capacitor C1 is applied to the first input port 13B.
- the first output port 13A is pulled up to the voltage Vdd
- the first capacitor C1 is charged with the first time constant via the first resistor R1.
- the first capacitor C1 is discharged through the first resistor R1 with the first time constant.
- the holding circuit 12 is composed of a series circuit of a second capacitor C2 and a second resistor R2.
- the second resistor R2 is connected to the second output port 13C of the control unit 13, and the second capacitor C2 is grounded.
- the second capacitor C2 is charged and discharged through the second output port 13C.
- An interconnection point between the second resistor R2 and the second capacitor C2 is connected to the second input port 13D of the control unit 13. For this reason, the second voltage V2 between the terminals of the second capacitor C2 is applied to the second input port 13D.
- the second capacitor C2 is charged with the second time constant via the second resistor R2.
- the second capacitor C2 is discharged through the second resistor R2 with the second time constant.
- the second time constant is longer than the first time constant.
- the automatic stop control selection switch is used by the driver to select whether to enable or disable the engine automatic stop function.
- the engine control device 10 controls the starter 20 and the engine 21 based on the current engine control state.
- the input impedances of the first input port 13B and the second input port 13D of the control unit 13 are sufficiently larger than the resistance values of the first resistor R1 and the second resistor R2, and are substantially infinite. Can think.
- the output impedances of the first output port 13A and the second output port 13C of the control unit 13 are considered to be substantially zero compared to the resistance values of the first resistor R1 and the second resistor R2 and substantially zero. be able to.
- the power supply voltage Vs, the first voltage V1 of the first capacitor C1, and the second voltage V2 of the second capacitor C2 are approximately 0V.
- This state corresponds to, for example, a state where the ignition key is turned off.
- the control unit 13 When the ignition key is turned on at time t0, the power supply voltage Vs rises to the voltage Vdd. When the power supply voltage Vs rises, the reset process of the control unit 13 of the engine control device 10 is started. At time t1 after the start of the reset process, the control unit 13 reads the first voltage V1 of the first capacitor C1 and the second voltage V2 of the second capacitor C2.
- the control unit 13 determines whether or not the engine automatic stop condition is satisfied based on the first voltage V1 and the second voltage V2. A specific determination method will be described later with reference to FIG. 3B.
- the control unit 13 (FIG. 1A) starts to charge the second capacitor C2 by pulling up the second output port 13C to the voltage Vdd.
- the second voltage V2 increases toward the voltage Vdd with the second time constant.
- the control unit 13 starts to charge the first capacitor C1 by pulling up the first output port 13A to the voltage Vdd.
- the first voltage V1 increases toward the voltage Vdd with the first time constant. Since the second time constant is longer than the first time constant, the rising slope of the second voltage V2 is more gradual than the rising slope of the first voltage V1.
- the control unit 13 controls the first voltage V1 and the first voltage of the first capacitor C1 at time t5 as in the case of time t1.
- the second voltage V2 of the second capacitor C2 is read. Since the instantaneous power interruption time is short, the first voltage V1 does not decrease to the first voltage threshold Vt1, and the second voltage V2 does not decrease to the second voltage threshold Vt2.
- the first time constant and the second time constant are designed to be longer than the assumed value of the instantaneous power interruption time.
- the second voltage threshold value Vt2 is the same as the first voltage threshold value Vt1, and is 1 ⁇ 2 of the voltage Vdd.
- first output port 13A and the second output port 13C (FIG. 1A) remain pulled down to the ground voltage after the power supply is recovered at time t4, the first capacitor C1 and the second capacitor until the time t5.
- the discharge of the second capacitor C2 is continued.
- the control unit 13 When the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is equal to or higher than the second voltage threshold Vt2, the control unit 13 (FIG. 1A) indicates that the engine is in a non-automatic stop state. It is determined that a power interruption has occurred. When the state of the engine before the instantaneous interruption is a non-automatic stop state, the control unit 13 starts charging the second capacitor C2 and then charges the first capacitor C1 in the same manner as at time t1. Start. During the period up to time t6, the first capacitor C1 and the second capacitor C2 are charged to the voltage Vdd.
- FIG. 2 shows an example in which the engine automatic stop condition is satisfied and the engine automatically stops at time t6.
- the control unit 13 (FIG. 1A) discharges the second capacitor C2 by pulling down the second output port 13C to the ground voltage. The charged state is maintained for the first capacitor C1.
- the second voltage V2 becomes approximately 0V.
- FIG. 2 shows an example in which the power supply is momentarily interrupted during a period from time t7 to time t8 when the second voltage V2 is substantially 0V.
- the second voltage V2 is less than the second voltage threshold Vt2.
- the first capacitor C1 is discharged, and the first voltage V1 decreases with the first time constant.
- the first voltage V1 is equal to or higher than the first voltage threshold Vt1.
- the first voltage V1 is maintained at the value at the time t8.
- the control unit 13 controls the first voltage of the first capacitor C1 at time t9, as at time t1 and time t5.
- V1 and the second voltage V2 of the second capacitor C2 are read. Since the power supply interruption time is short, the first voltage V1 does not decrease to the first voltage threshold value Vt1.
- the second voltage V2 is 0V.
- the control unit 13 (FIG. 1A) It is determined that a power interruption has occurred.
- the state of the engine before the instantaneous interruption is the automatic stop state
- the control unit 13 starts charging the first capacitor C1.
- the discharge state is maintained for the second capacitor C2.
- FIG. 3A shows the first voltage V1 of the first capacitor C1, the second voltage V2 of the second capacitor C2, and the determination result of the engine control state when the control unit 13 (FIG. 1A) is reset. The correspondence is shown.
- the first power supply recovery point (for example, time t0 in FIG. 2)
- the voltage V1 of 1 has decreased to less than the first voltage threshold Vt1. In this case, it is determined that the control unit 13 has been reset by a factor other than a momentary power interruption, specifically, by turning on the ignition key.
- the second voltage V2 is set to the second voltage threshold as in the voltage state at time t3 in FIG. Vt2 or more. Therefore, when the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is equal to or higher than the second voltage threshold Vt2, the power It is determined that a disconnection has occurred.
- FIG. 3B shows a flowchart of processing executed by the control unit 13 when the control unit 13 (FIG. 1A) is reset.
- step S1 the first voltage V1 of the first capacitor C1 is read from the first input port 13B (FIG. 1A), and The second voltage V2 of the second capacitor C2 is read from the second input port 13D.
- Resetting the control unit 13 due to a decrease in power supply voltage is referred to as “low voltage reset”.
- step S2 it is determined whether or not the first voltage V1 of the first capacitor C1 is equal to or higher than the first voltage threshold value Vt1.
- the control unit 13 is activated not by an instantaneous power interruption but by a normal ignition on. This determination result corresponds to the determination result at time t1 in FIG.
- step S2 If it is determined in step S2 that the first voltage V1 is equal to or higher than the first voltage threshold Vt1, the second voltage V2 of the second capacitor C2 is equal to or higher than the second voltage threshold Vt2 in step S3. It is determined whether or not. The fact that the first voltage V1 is equal to or higher than the first voltage threshold Vt1 is considered that an instantaneous power supply interruption occurred as shown in FIG. 3A.
- step S3 If it is determined in step S3 that the second voltage V2 is equal to or greater than the second voltage threshold Vt2, it is determined in step S4 that the engine is not in the automatic stop state when the power is momentarily interrupted. This determination result corresponds to the determination result at time t5 in FIG. If the second voltage V2 is lower than the second voltage threshold Vt2, it is determined in step S5 that the engine is in an automatic stop state at the time of instantaneous power interruption. This determination result corresponds to the determination result at time t9 in FIG.
- step S7 when the cause of the low voltage reset of the control unit 13 is specified, it is determined in step S7 whether or not an automatic engine stop condition is satisfied. This determination is made based on the vehicle speed, the coolant temperature, the engine speed, the state of the automatic stop control selection switch, and the like input to the engine control device 10.
- step S8 discharging of the second capacitor C2 (FIG. 1A) is started in step S8. Specifically, the second output port 13C is pulled down to the ground voltage. When the second output port 13C has already been pulled down to the ground voltage, the second capacitor C2 is continuously discharged by maintaining the pull-down state. The charged state is maintained for the first capacitor C1.
- Step S8 corresponds to the processing executed in the period from time t6 to t7 in FIG.
- step S7 If it is determined in step S7 that the automatic stop condition is not satisfied, charging of the second capacitor C2 is started in step S9, and thereafter charging of the first capacitor C1 is started.
- the charging start of the second capacitor C2 corresponds to the process at time t1 in FIG. 2, and the charging start of the first capacitor C1 corresponds to the process at time t2 in FIG. If the charging of the second capacitor C2 has already started, the charging is continued as it is. This process corresponds to the process from time t1 to time t3 in FIG. If charging of the first capacitor C1 has already started, the charging is continued as it is. This process corresponds to the process from time t2 to time t3 in FIG.
- the control state of the engine at the time of the momentary power interruption is stored by the electric charge accumulated in the second capacitor C2. For this reason, it is not necessary to use a non-volatile memory for storing the engine control state. Thereby, it is possible to avoid a decrease in reliability caused by the number of times of rewriting of the nonvolatile memory approaching the upper limit value of the number of times of rewriting. Further, there is no need to perform maintenance work such as replacement of the nonvolatile memory.
- the second time constant may become less than the second voltage threshold Vt2 at time t4 shown in FIG.
- the second voltage V2 becomes less than the second voltage threshold Vt2 at time t4
- the first voltage threshold value Vt1 and the second voltage threshold value Vt2 are equal, when the second time constant is equal to the first time constant, the first voltage V1 is the first voltage at time t4. If it is equal to or higher than the threshold value Vt1, the second voltage V2 is also equal to or higher than the second voltage threshold value Vt2. Therefore, theoretically, the first time constant and the second time constant may be equal. However, if the circuit constants of the instantaneous interruption determination circuit 11 and the holding circuit 12 (FIG. 1A) are designed so that the first time constant and the second time constant are equal, due to manufacturing variations of capacitors and resistors. The second time constant may be shorter than the first time constant.
- the component constants of the instantaneous interruption determination circuit 11 and the holding circuit 12 vary within an allowable range. Even if there is, an event in which the second time constant is shorter than the first time constant is unlikely to occur. Therefore, an erroneous determination is unlikely to occur in determining whether or not the engine has been automatically stopped.
- the lower limit value within the variation range of the second time constant is within the variation range of the first time constant. It is preferable to determine design values of the first time constant and the second time constant so as to be longer than the upper limit value.
- FIG. 4 shows an example of a change in voltage according to a comparative example in which charging of the first capacitor C1 and the second capacitor C2 is started simultaneously.
- the ignition key is turned on at time t10, and step S9 (FIG. 3B) is executed at time t11.
- step S9 FIG. 3B
- charging of the first capacitor C1 and charging of the second capacitor C2 are started simultaneously. Since the first time constant is shorter than the second time constant, the rising slope of the first voltage V1 is steeper than the rising slope of the second voltage V2.
- a case where a power interruption occurs at time t12 when the second voltage V2 has not risen to the second voltage threshold Vt2 will be described.
- the first voltage V1 exceeds the first voltage threshold Vt1 at time t12.
- the first voltage V1 is maintained at or above the first voltage threshold Vt1 even at time t13 when the power supply recovers.
- the second voltage V2 is less than the second voltage threshold Vt2.
- charging of the first capacitor C1 is started at time t2 when a certain elapsed time has elapsed from time t1 when charging of the second capacitor C2 was started. Therefore, the period in which the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is less than the second voltage threshold Vt2 is shorter than that in the example of FIG. No longer exists. In the example shown in FIG. 2, charging of the first capacitor C1 is started after the second voltage V2 exceeds the second voltage threshold value Vt2. For this reason, a period in which the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is less than the second voltage threshold Vt2 does not occur.
- the first time constant and the second time constant are set as a standby time (time from time t1 to t2) from the start of charging of the second capacitor C2 to the start of charging of the first capacitor C1. Based on this, it is possible to set a fixed value in advance. As an example, it is preferable that the standby time is longer than the time until the second voltage V2 reaches the second voltage threshold Vt2.
- the standby time is too long, the time from the time t0 until the first voltage V1 reaches the first voltage threshold value Vt1 becomes long. If the engine is automatically stopped during the period from time t0 until the first voltage V1 reaches the first voltage threshold value Vt1, and the power supply is interrupted at the time of restart, the engine is automatically stopped. Regardless, it is erroneously determined that the control unit 13 (FIG. 1A) has been reset by turning on the ignition key. Since the period until the engine automatically stops after the ignition key is turned on is indefinite, in order to avoid this erroneous determination, when the second voltage V2 becomes equal to or higher than the second voltage threshold Vt2, It is preferable to start charging the first capacitor C1 at an early stage.
- the engine is automatically stopped for the first time and the discharge of the second capacitor C2 is started until the second voltage V2 becomes equal to or lower than the second voltage threshold Vt2. If the voltage V1 is equal to or higher than the first voltage threshold value Vt1, the automatic stop state can be accurately determined by the reset process after the instantaneous power interruption.
- charging of the first capacitor C1 may be started based on the value of the second voltage V2. For example, charging of the first capacitor C1 may be started when it is detected that the second voltage V2 has reached the second voltage threshold value Vt2.
- FIG. 1B shows a block diagram and an equivalent circuit diagram of an engine control apparatus 10 according to a modification of the embodiment.
- the connection point between the first capacitor C1 and the first resistor R1 is connected to the first input port 13B via the third resistor R3.
- the interconnection point between the second capacitor C2 and the second resistor R2 is connected to the second input port 13D via the fourth resistor R4.
- the first input port 13B and the second input port 13D of the control unit 13 may be pulled down to the ground potential.
- the input impedance of the first input port 13B at this time is equal to or lower than that of the first resistor R1
- the time constant of discharge of the first capacitor C1 is the input impedance of the first input port 13B.
- the third resistor R3 has a function of maintaining a high effective input impedance when the first input port 13B is viewed from the interconnection point between the first capacitor C1 and the first resistor R1.
- the fourth resistor R4 maintains a high effective input impedance when the second input port 13D is viewed from the interconnection point between the second capacitor C2 and the second resistor R2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Abstract
The present invention provides an engine control device that controls an engine of a vehicle, having: an instantaneous-interruption determining circuit; a holding circuit; and a control unit. The instantaneous-interruption determining circuit includes a first capacitor and a first resistor that discharges and charges the first capacitor at a first time constant. The holding circuit includes a second capacitor and a second resistor that discharges and charges the second capacitor at a second time constant equal to or larger than the first time constant. The control unit controls the engine on the basis of the voltage states of the first capacitor and the second capacitor. Furthermore, the control unit starts to charge the first capacitor after starting to charge the second capacitor. Even if the control unit of the engine control device is reset due to a temporary reduction in battery voltage, information indicating the engine control state immediately before the reset can be held.
Description
本発明は、エンジン制御装置に関する。
The present invention relates to an engine control device.
排気ガスの低減及び燃料消費の抑制を図るために、信号待ち等で所定のエンジン停止条件が成立するとき、エンジンを自動停止させる車両が実用化されている。自動停止状態の時にアクセルが操作されると、エンジンが自動再始動される。
In order to reduce exhaust gas and reduce fuel consumption, a vehicle that automatically stops the engine when a predetermined engine stop condition is established by waiting for a signal or the like has been put into practical use. If the accelerator is operated in the automatic stop state, the engine is automatically restarted.
エンジンの自動停止機能を備えた車両で、エンジンの自動停止中に前照灯等の燈火類を使用していると、バッテリの蓄電量が急激に低下することが懸念される。エンジンの自動停止状態が所定時間以上継続すると、自動的に燈火類を減光または消灯させる技術が提案されている(特許文献1参照)。
If the vehicle is equipped with an automatic engine stop function and a firelight such as a headlamp is used while the engine is automatically stopped, there is a concern that the amount of power stored in the battery may drop rapidly. There has been proposed a technique for automatically dimming or extinguishing a fire when the automatic stop state of the engine continues for a predetermined time or longer (see Patent Document 1).
一方、自動二輪車、スクータ、モペット等の鞍乗り型車両においては、周囲の車両からの視認性向上のために、信号待ち等の停車時にも前照灯や尾灯を点灯させておくことが望ましい。
On the other hand, in saddle-type vehicles such as motorcycles, scooters, mopeds, etc., it is desirable to turn on the headlights and taillights even when the vehicle is stopped, such as waiting for a signal, in order to improve visibility from surrounding vehicles.
鞍乗り型車両のバッテリは、四輪車のバッテリに比べて容量が小さいため、エンジン停止中の燈火類の使用により、蓄電量が低下しやすい。蓄電量が低下した状態で、エンジンの自動再始動のためにスタータモータを駆動すると、バッテリ電圧の低下によって、エンジン制御装置内の中央処理装置(CPU)がリセットされる場合がある。バッテリ電圧が回復してCPUが再起動されたときに、適切なエンジン制御を行うために、CPUのリセット発生時におけるエンジン制御状態が、自動停止状態であったのか、自動停止状態ではなかったのかを判定することが好ましい。
Since the battery of saddle-ride type vehicles has a smaller capacity than the battery of a four-wheeled vehicle, the amount of stored electricity tends to decrease due to the use of a fire when the engine is stopped. When the starter motor is driven for the automatic restart of the engine in a state where the amount of stored electricity is reduced, the central processing unit (CPU) in the engine control device may be reset due to a decrease in battery voltage. When the battery voltage is recovered and the CPU is restarted, whether the engine control state at the time of CPU reset was an automatic stop state or not an automatic stop state in order to perform appropriate engine control Is preferably determined.
現在のエンジン制御状態が自動停止状態であることを示すフラグ情報を、フラッシュメモリやEEPROM等の不揮発性メモリに記憶させておくことにより、CPUのリセット後にも、リセット前の情報を読み出すことができる。
By storing flag information indicating that the current engine control state is an automatic stop state in a nonvolatile memory such as a flash memory or an EEPROM, the information before the reset can be read even after the CPU is reset. .
ところが、フラグ情報の書き換え回数が、不揮発性メモリの書き換え可能回数の上限に近づくと、フラグ情報の信頼度が低下する。さらに、フラグ情報の書き換え回数が、不揮発性メモリの書き換え可能回数の上限を超えると、書き換え不能になる場合もある。
However, when the number of times the flag information is rewritten approaches the upper limit of the number of times that the nonvolatile memory can be rewritten, the reliability of the flag information decreases. Furthermore, when the number of rewrites of the flag information exceeds the upper limit of the number of times that the nonvolatile memory can be rewritten, it may become impossible to rewrite.
本発明の目的は、バッテリ電圧の一時的な低下によってエンジン制御装置の制御部がリセットされても、リセット直前におけるエンジンの制御状態を示す情報を保持することができるエンジン制御装置を提供することである。
An object of the present invention is to provide an engine control device capable of holding information indicating the control state of the engine immediately before the reset even when the control unit of the engine control device is reset due to a temporary decrease in battery voltage. is there.
本発明の第1の観点によるエンジン制御装置は、
車両のエンジンを制御するエンジン制御装置であって、
第1のコンデンサ、及び前記第1のコンデンサを第1の時定数で充放電させる第1の抵抗器を含む瞬断判定回路と、
第2のコンデンサ、及び前記第2のコンデンサを、前記第1の時定数以上の第2の時定数で充放電させる第2の抵抗器を含む保持回路と、
前記第1のコンデンサ及び前記第2のコンデンサの電圧状態に基づいて前記エンジンを制御する制御部と
を有し、
前記制御部は、前記第2のコンデンサの充電を開始した後、前記第1のコンデンサの充電を開始する。 An engine control apparatus according to a first aspect of the present invention provides:
An engine control device for controlling a vehicle engine,
An instantaneous interruption determination circuit including a first capacitor and a first resistor that charges and discharges the first capacitor with a first time constant;
A holding circuit including a second capacitor and a second resistor that charges and discharges the second capacitor with a second time constant equal to or greater than the first time constant;
A controller that controls the engine based on voltage states of the first capacitor and the second capacitor;
The controller starts charging the first capacitor after starting charging the second capacitor.
車両のエンジンを制御するエンジン制御装置であって、
第1のコンデンサ、及び前記第1のコンデンサを第1の時定数で充放電させる第1の抵抗器を含む瞬断判定回路と、
第2のコンデンサ、及び前記第2のコンデンサを、前記第1の時定数以上の第2の時定数で充放電させる第2の抵抗器を含む保持回路と、
前記第1のコンデンサ及び前記第2のコンデンサの電圧状態に基づいて前記エンジンを制御する制御部と
を有し、
前記制御部は、前記第2のコンデンサの充電を開始した後、前記第1のコンデンサの充電を開始する。 An engine control apparatus according to a first aspect of the present invention provides:
An engine control device for controlling a vehicle engine,
An instantaneous interruption determination circuit including a first capacitor and a first resistor that charges and discharges the first capacitor with a first time constant;
A holding circuit including a second capacitor and a second resistor that charges and discharges the second capacitor with a second time constant equal to or greater than the first time constant;
A controller that controls the engine based on voltage states of the first capacitor and the second capacitor;
The controller starts charging the first capacitor after starting charging the second capacitor.
本発明の第2の観点によるエンジン制御装置においては、第1の観点によるエンジン制御装置の構成に加えて、
前記制御部が、前記第2のコンデンサの充電を開始した後、予め決められている待機時間が経過した時点で、前記第1のコンデンサの充電を開始する。 In the engine control apparatus according to the second aspect of the present invention, in addition to the configuration of the engine control apparatus according to the first aspect,
The controller starts charging the first capacitor when a predetermined standby time has elapsed after starting charging the second capacitor.
前記制御部が、前記第2のコンデンサの充電を開始した後、予め決められている待機時間が経過した時点で、前記第1のコンデンサの充電を開始する。 In the engine control apparatus according to the second aspect of the present invention, in addition to the configuration of the engine control apparatus according to the first aspect,
The controller starts charging the first capacitor when a predetermined standby time has elapsed after starting charging the second capacitor.
本発明の第3の観点によるエンジン制御装置においては、第1の観点によるエンジン制御装置の構成に加えて、
前記制御部が、前記第2のコンデンサの充電を開始した後、前記第2のコンデンサの電圧が電圧閾値に到達した時点で、前記第1のコンデンサの充電を開始する。 In the engine control device according to the third aspect of the present invention, in addition to the configuration of the engine control device according to the first aspect,
After the controller starts charging the second capacitor, the controller starts charging the first capacitor when the voltage of the second capacitor reaches a voltage threshold.
前記制御部が、前記第2のコンデンサの充電を開始した後、前記第2のコンデンサの電圧が電圧閾値に到達した時点で、前記第1のコンデンサの充電を開始する。 In the engine control device according to the third aspect of the present invention, in addition to the configuration of the engine control device according to the first aspect,
After the controller starts charging the second capacitor, the controller starts charging the first capacitor when the voltage of the second capacitor reaches a voltage threshold.
本発明の第4の観点によるエンジン制御装置においては、第1~第3の観点によるエンジン制御装置の構成に加えて、
電源の瞬断時間の想定値と、電源復帰後に、前記制御部が前記第1のコンデンサ及び前記第2のコンデンサの電圧状態に基づいて前記エンジンの制御状態を判定するまでの経過時間との合計値よりも、前記第2の時定数の方が長い。 In the engine control apparatus according to the fourth aspect of the present invention, in addition to the configuration of the engine control apparatus according to the first to third aspects,
Sum of an assumed value of instantaneous power interruption time and an elapsed time until the control unit determines the control state of the engine based on the voltage state of the first capacitor and the second capacitor after the power is restored The second time constant is longer than the value.
電源の瞬断時間の想定値と、電源復帰後に、前記制御部が前記第1のコンデンサ及び前記第2のコンデンサの電圧状態に基づいて前記エンジンの制御状態を判定するまでの経過時間との合計値よりも、前記第2の時定数の方が長い。 In the engine control apparatus according to the fourth aspect of the present invention, in addition to the configuration of the engine control apparatus according to the first to third aspects,
Sum of an assumed value of instantaneous power interruption time and an elapsed time until the control unit determines the control state of the engine based on the voltage state of the first capacitor and the second capacitor after the power is restored The second time constant is longer than the value.
第1の観点によるエンジン制御装置においては、例えば、エンジンを所定の制御状態に遷移させるべき条件が満たされたとき、第2のコンデンサの放電を開始し、第1のコンデンサについては充電状態を維持する。電圧の一時的な低下(電源の瞬断)によって、制御部がリセットされたとき、第2のコンデンサの充放電状態を検知することにより、電圧が低下する直前のエンジンの制御状態が所定の制御状態であったか否かを判定することができる。電源の瞬断によるリセットか、通常の電源投入によるリセットかは、第1のコンデンサの充放電状態によって判定することができる。
In the engine control apparatus according to the first aspect, for example, when a condition for transitioning the engine to a predetermined control state is satisfied, discharging of the second capacitor is started and the charged state is maintained for the first capacitor. To do. When the control unit is reset due to a temporary voltage drop (power supply interruption), the control state of the engine immediately before the voltage drops is controlled by detecting the charge / discharge state of the second capacitor. It can be determined whether or not it was in a state. Whether the reset is caused by a momentary power interruption or a normal power activation can be determined by the charge / discharge state of the first capacitor.
さらに、例えば、エンジンを所定の制御状態に遷移させるべき条件が満たされておらず、第2のコンデンサが放電中であるとき、第2のコンデンサの充電が開始され、その後、第1のコンデンサの充電が開始される。このため、第2のコンデンサの電圧が相対的に低く、第1のコンデンサの電圧が相対的に高い期間(第2のコンデンサの充電が不十分な期間)が生じにくい。
Further, for example, when the condition for transitioning the engine to a predetermined control state is not satisfied and the second capacitor is being discharged, charging of the second capacitor is started, and then the first capacitor Charging starts. For this reason, a period in which the voltage of the second capacitor is relatively low and the voltage of the first capacitor is relatively high (a period in which the charging of the second capacitor is insufficient) hardly occurs.
第2のコンデンサの充電が不十分な期間に電源の瞬断が発生すると、エンジンを所定の制御状態に遷移させるべき条件が満たされていないにも関わらず、所定の制御状態に遷移させるべき条件が満たされていると誤判定されてしまう。第1の観点によるエンジン制御装置においては、第2のコンデンサの充電が不十分な期間が生じにくいため、誤判定の発生確率を低減することが可能になる。
If a power supply interruption occurs during a period when the second capacitor is not sufficiently charged, the condition for transitioning to the predetermined control state even though the condition for transitioning the engine to the predetermined control state is not satisfied Will be erroneously determined to be satisfied. In the engine control apparatus according to the first aspect, since it is difficult to generate a period in which the second capacitor is not sufficiently charged, it is possible to reduce the probability of occurrence of erroneous determination.
第2の観点によるエンジン制御装置、及び第3の観点によるエンジン制御装置においては、誤判定の発生確率を、さらに低減することが可能である。
In the engine control device according to the second aspect and the engine control device according to the third aspect, it is possible to further reduce the occurrence probability of erroneous determination.
第4の観点によるエンジン制御装置においては、電源が遮断されてから、第2のコンデンサの電圧状態を判定するまで、第2のコンデンサの充電状態をほぼ維持することができる。このため、電源の遮断時点における第2のコンデンサの電圧状態に基づいて、エンジンの制御状態を判定することが可能である。
In the engine control apparatus according to the fourth aspect, the state of charge of the second capacitor can be substantially maintained until the voltage state of the second capacitor is determined after the power is turned off. For this reason, it is possible to determine the control state of the engine based on the voltage state of the second capacitor at the time of power-off.
図1Aに、実施例によるエンジン制御装置10のブロック図を示す。エンジン制御装置10は、制御部13、瞬断判定回路11、保持回路12を含む。制御部13には、例えば中央処理装置(CPU)が用いられる。
FIG. 1A shows a block diagram of an engine control apparatus 10 according to the embodiment. The engine control device 10 includes a control unit 13, an instantaneous interruption determination circuit 11, and a holding circuit 12. For the control unit 13, for example, a central processing unit (CPU) is used.
瞬断判定回路11は、第1のコンデンサC1と第1の抵抗器R1との直列回路で構成される。第1の抵抗器R1が制御部13の第1の出力ポート13Aに接続されており、第1のコンデンサC1が接地されている。第1の出力ポート13Aを通して第1のコンデンサC1の充放電が行われる。第1の抵抗器R1と第1のコンデンサC1との相互接続点が、制御部13の第1の入力ポート13Bに接続されている。このため、第1のコンデンサC1の端子間の第1の電圧V1が、第1の入力ポート13Bに印加される。第1の出力ポート13Aが電圧Vddにプルアップされると、第1のコンデンサC1が第1の抵抗器R1を介して、第1の時定数で充電される。第1の出力ポート13Aが接地電圧にプルダウンされると、第1のコンデンサC1が第1の抵抗器R1を介して、第1の時定数で放電する。
The instantaneous interruption determination circuit 11 is configured by a series circuit of a first capacitor C1 and a first resistor R1. The first resistor R1 is connected to the first output port 13A of the control unit 13, and the first capacitor C1 is grounded. The first capacitor C1 is charged / discharged through the first output port 13A. An interconnection point between the first resistor R1 and the first capacitor C1 is connected to the first input port 13B of the control unit 13. For this reason, the first voltage V1 between the terminals of the first capacitor C1 is applied to the first input port 13B. When the first output port 13A is pulled up to the voltage Vdd, the first capacitor C1 is charged with the first time constant via the first resistor R1. When the first output port 13A is pulled down to the ground voltage, the first capacitor C1 is discharged through the first resistor R1 with the first time constant.
保持回路12は、第2のコンデンサC2と第2の抵抗器R2との直列回路で構成される。第2の抵抗器R2が制御部13の第2の出力ポート13Cに接続され、第2のコンデンサC2が接地されている。第2の出力ポート13Cを通して、第2のコンデンサC2が充放電される。第2の抵抗器R2と第2のコンデンサC2との相互接続点が、制御部13の第2の入力ポート13Dに接続されている。このため、第2のコンデンサC2の端子間の第2の電圧V2が、第2の入力ポート13Dに印加される。第2の出力ポート13Cが電圧Vddにプルアップされると、第2のコンデンサC2が第2の抵抗器R2を介して、第2の時定数で充電される。第2の出力ポート13Cが接地電圧にプルダウンされると、第2のコンデンサC2が第2の抵抗器R2を介して、第2の時定数で放電する。第2の時定数は、第1の時定数より長い。
The holding circuit 12 is composed of a series circuit of a second capacitor C2 and a second resistor R2. The second resistor R2 is connected to the second output port 13C of the control unit 13, and the second capacitor C2 is grounded. The second capacitor C2 is charged and discharged through the second output port 13C. An interconnection point between the second resistor R2 and the second capacitor C2 is connected to the second input port 13D of the control unit 13. For this reason, the second voltage V2 between the terminals of the second capacitor C2 is applied to the second input port 13D. When the second output port 13C is pulled up to the voltage Vdd, the second capacitor C2 is charged with the second time constant via the second resistor R2. When the second output port 13C is pulled down to the ground voltage, the second capacitor C2 is discharged through the second resistor R2 with the second time constant. The second time constant is longer than the first time constant.
エンジン制御装置10が搭載されている車両の車速、冷却水温、エンジン回転数、自動停止制御選択スイッチ、イグニッションキー等の情報がエンジン制御装置10に入力される。自動停止制御選択スイッチは、運転者がエンジンの自動停止機能を有効にするか無効にするかを選択するためのものである。エンジン制御装置10は、現在のエンジン制御状態に基づいて、スタータ20及びエンジン21を制御する。
Information such as the vehicle speed, cooling water temperature, engine speed, automatic stop control selection switch, ignition key, etc. of the vehicle on which the engine control device 10 is mounted is input to the engine control device 10. The automatic stop control selection switch is used by the driver to select whether to enable or disable the engine automatic stop function. The engine control device 10 controls the starter 20 and the engine 21 based on the current engine control state.
制御部13の第1の入力ポート13B及び第2の入力ポート13Dの入力インピーダンスは、第1の抵抗器R1及び第2の抵抗器R2の抵抗値に比べて十分大きく、実質的に無限大と考えることができる。制御部13の第1の出力ポート13A及び第2の出力ポート13Cの出力インピーダンスは、第1の抵抗器R1及び第2の抵抗器R2の抵抗値に比べて十分小さく、実質的にゼロと考えることができる。
The input impedances of the first input port 13B and the second input port 13D of the control unit 13 are sufficiently larger than the resistance values of the first resistor R1 and the second resistor R2, and are substantially infinite. Can think. The output impedances of the first output port 13A and the second output port 13C of the control unit 13 are considered to be substantially zero compared to the resistance values of the first resistor R1 and the second resistor R2 and substantially zero. be able to.
図2、図3A、及び図3Bを参照して、瞬断判定回路11(図1A)及び保持回路12(図1A)の動作について説明する。
The operations of the instantaneous interruption determination circuit 11 (FIG. 1A) and the holding circuit 12 (FIG. 1A) will be described with reference to FIGS. 2, 3A, and 3B.
図2の上段に、エンジン制御装置10に印加される電源電圧Vsの時間変化を示し、中段に、第1のコンデンサC1の第1の電圧V1の時間変化を示し、下段に、第2のコンデンサC2の第2の電圧V2の時間変化を示す。
2 shows the time change of the power supply voltage Vs applied to the engine control device 10, the middle stage shows the time change of the first voltage V1 of the first capacitor C1, and the lower stage shows the second capacitor. The time change of the 2nd voltage V2 of C2 is shown.
図2に示した時刻t0までの期間は、電源電圧Vs、第1のコンデンサC1の第1の電圧V1、及び第2のコンデンサC2の第2の電圧V2は、ほぼ0Vである。この状態は、例えば、イグニッションキーがオフにされている状態に相当する。
In the period up to time t0 shown in FIG. 2, the power supply voltage Vs, the first voltage V1 of the first capacitor C1, and the second voltage V2 of the second capacitor C2 are approximately 0V. This state corresponds to, for example, a state where the ignition key is turned off.
時刻t0においてイグニッションキーがオンにされると、電源電圧Vsが電圧Vddまで立ち上がる。電源電圧Vsが立ち上がることにより、エンジン制御装置10の制御部13のリセット処理が開始される。リセット処理開始後の時刻t1において、制御部13が、第1のコンデンサC1の第1の電圧V1及び第2のコンデンサC2の第2の電圧V2を読み込む。
When the ignition key is turned on at time t0, the power supply voltage Vs rises to the voltage Vdd. When the power supply voltage Vs rises, the reset process of the control unit 13 of the engine control device 10 is started. At time t1 after the start of the reset process, the control unit 13 reads the first voltage V1 of the first capacitor C1 and the second voltage V2 of the second capacitor C2.
制御部13は、第1の電圧V1及び第2の電圧V2に基づいて、エンジンの自動停止条件が成立しているか否かを判定する。具体的な判定方法については、後に図3Bを参照して説明する。
The control unit 13 determines whether or not the engine automatic stop condition is satisfied based on the first voltage V1 and the second voltage V2. A specific determination method will be described later with reference to FIG. 3B.
図2に示した時刻t0では、イグニッションキーがオンにされたのであるから、自動停止条件は成立していない。この場合、まず制御部13(図1A)が第2の出力ポート13Cを電圧Vddにプルアップすることにより、第2のコンデンサC2の充電を開始する。これにより、第2の電圧V2が電圧Vddに向かって第2の時定数で上昇する。第2のコンデンサC2の充電を開始した後、時刻t2において、制御部13が第1の出力ポート13Aを電圧Vddにプルアップすることにより、第1のコンデンサC1の充電を開始する。これにより、第1の電圧V1が電圧Vddに向かって第1の時定数で上昇する。第2の時定数が第1の時定数より長いため、第2の電圧V2の上昇の傾きは、第1の電圧V1の上昇の傾きより緩やかである。
At time t0 shown in FIG. 2, since the ignition key is turned on, the automatic stop condition is not satisfied. In this case, first, the control unit 13 (FIG. 1A) starts to charge the second capacitor C2 by pulling up the second output port 13C to the voltage Vdd. As a result, the second voltage V2 increases toward the voltage Vdd with the second time constant. After starting the charging of the second capacitor C2, at time t2, the control unit 13 starts to charge the first capacitor C1 by pulling up the first output port 13A to the voltage Vdd. As a result, the first voltage V1 increases toward the voltage Vdd with the first time constant. Since the second time constant is longer than the first time constant, the rising slope of the second voltage V2 is more gradual than the rising slope of the first voltage V1.
時刻t3から時刻t4までの期間、電源が瞬断する例について説明する。時刻t3において電源が遮断されると、第1の出力ポート13A及び第2の出力ポート13C(図1A)が、接地電圧にプルダウンされる。このため、第1のコンデンサC1が放電し、第1の電圧V1が第1の時定数で低下する。さらに、第2のコンデンサC2が放電し、第2の電圧V2が第2の時定数で低下する。
An example in which the power supply is momentarily interrupted during the period from time t3 to time t4 will be described. When the power is cut off at time t3, the first output port 13A and the second output port 13C (FIG. 1A) are pulled down to the ground voltage. For this reason, the first capacitor C1 is discharged, and the first voltage V1 decreases with the first time constant. Further, the second capacitor C2 is discharged, and the second voltage V2 decreases with the second time constant.
時刻t4で電源が回復すると、第1の出力ポート13A及び第2の出力ポート13Cがハイインピーダンス状態になる。このため、第1の電圧V1及び第2の電圧V2が、時刻t4の時点の値に維持される。
When the power is restored at time t4, the first output port 13A and the second output port 13C are in a high impedance state. For this reason, the first voltage V1 and the second voltage V2 are maintained at the values at the time t4.
時刻t4において、制御部13(図1A)のリセット処理が起動されると、時刻t5において、時刻t1のときと同様に、制御部13が、第1のコンデンサC1の第1の電圧V1及び第2のコンデンサC2の第2の電圧V2を読み込む。電源瞬断時間が短いため、第1の電圧V1は第1の電圧閾値Vt1まで低下しておらず、第2の電圧V2は第2の電圧閾値Vt2まで低下していない。言い換えると、第1の時定数及び第2の時定数は、電源の瞬断時間の想定値よりも長くなるように設計されている。一例として、第2の電圧閾値Vt2は第1の電圧閾値Vt1と同一であり、電圧Vddの1/2である。
When the reset process of the control unit 13 (FIG. 1A) is activated at time t4, the control unit 13 controls the first voltage V1 and the first voltage of the first capacitor C1 at time t5 as in the case of time t1. The second voltage V2 of the second capacitor C2 is read. Since the instantaneous power interruption time is short, the first voltage V1 does not decrease to the first voltage threshold Vt1, and the second voltage V2 does not decrease to the second voltage threshold Vt2. In other words, the first time constant and the second time constant are designed to be longer than the assumed value of the instantaneous power interruption time. As an example, the second voltage threshold value Vt2 is the same as the first voltage threshold value Vt1, and is ½ of the voltage Vdd.
時刻t4において電源が回復した後、第1の出力ポート13A及び第2の出力ポート13C(図1A)が接地電圧にプルダウンされたままの場合には、時刻t5まで、第1のコンデンサC1及び第2のコンデンサC2の放電が継続される。この場合には、電源の瞬断時間の想定値と、電源復帰時点から、制御部13が第1の電圧V1及び第2の電圧V2に基づいてエンジンの制御状態を判定するまでの経過時間との合計値(時刻t3から時刻t5までの時間)よりも、第1の時定数及び第2の時定数を長くすることが好ましい。
If the first output port 13A and the second output port 13C (FIG. 1A) remain pulled down to the ground voltage after the power supply is recovered at time t4, the first capacitor C1 and the second capacitor until the time t5. The discharge of the second capacitor C2 is continued. In this case, the assumed value of the instantaneous power interruption time and the elapsed time from when the power is restored until the control unit 13 determines the engine control state based on the first voltage V1 and the second voltage V2. It is preferable to make the first time constant and the second time constant longer than the total value (time from time t3 to time t5).
第1の電圧V1が第1の電圧閾値Vt1以上であり、かつ第2の電圧V2が第2の電圧閾値Vt2以上である場合、制御部13(図1A)は、エンジンが非自動停止状態で、電源の瞬断が発生したと判断する。瞬断前のエンジンの状態が非自動停止状態であった場合、制御部13は、時刻t1のときと同様に、第2のコンデンサC2の充電を開始し、その後第1のコンデンサC1の充電を開始する。時刻t6までの期間に、第1のコンデンサC1及び第2のコンデンサC2が、電圧Vddまで充電される。
When the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is equal to or higher than the second voltage threshold Vt2, the control unit 13 (FIG. 1A) indicates that the engine is in a non-automatic stop state. It is determined that a power interruption has occurred. When the state of the engine before the instantaneous interruption is a non-automatic stop state, the control unit 13 starts charging the second capacitor C2 and then charges the first capacitor C1 in the same manner as at time t1. Start. During the period up to time t6, the first capacitor C1 and the second capacitor C2 are charged to the voltage Vdd.
図2は、時刻t6において、エンジン自動停止の条件が満たされ、エンジンが自動停止する例を示す。制御部13(図1A)は、時刻t6において、エンジンの自動停止条件が成立したと判定すると、第2の出力ポート13Cを接地電圧にプルダウンすることにより、第2のコンデンサC2を放電させる。第1のコンデンサC1については、充電状態が維持される。第2のコンデンサC2の放電の時定数(第2の時定数)よりも十分長い時間が経過すると、第2の電圧V2がほぼ0Vになる。
FIG. 2 shows an example in which the engine automatic stop condition is satisfied and the engine automatically stops at time t6. When determining that the engine automatic stop condition is satisfied at time t6, the control unit 13 (FIG. 1A) discharges the second capacitor C2 by pulling down the second output port 13C to the ground voltage. The charged state is maintained for the first capacitor C1. When a time sufficiently longer than the time constant of discharge of the second capacitor C2 (second time constant) has elapsed, the second voltage V2 becomes approximately 0V.
図2は、第2の電圧V2がほぼ0Vなっている時刻t7から時刻t8までの期間、電源が瞬断する例を示す。時刻t7において、第2の電圧V2が第2の電圧閾値Vt2未満になっている。時刻t7において電源が遮断されると第1のコンデンサC1が放電し、第1の電圧V1が第1の時定数で低下する。電源が回復する時刻t8において、第1の電圧V1は第1の電圧閾値Vt1以上である。時刻t8以降は、第1の電圧V1が時刻t8の時点の値に維持される。
FIG. 2 shows an example in which the power supply is momentarily interrupted during a period from time t7 to time t8 when the second voltage V2 is substantially 0V. At time t7, the second voltage V2 is less than the second voltage threshold Vt2. When the power supply is cut off at time t7, the first capacitor C1 is discharged, and the first voltage V1 decreases with the first time constant. At time t8 when the power supply recovers, the first voltage V1 is equal to or higher than the first voltage threshold Vt1. After time t8, the first voltage V1 is maintained at the value at the time t8.
時刻t8において、制御部13(図1A)のリセット処理が起動されると、時刻t9において、時刻t1、時刻t5のときと同様に、制御部13が、第1のコンデンサC1の第1の電圧V1及び第2のコンデンサC2の第2の電圧V2を読み込む。電源瞬断時間が短いため、第1の電圧V1は第1の電圧閾値Vt1まで低下していない。第2の電圧V2は0Vである。
When the reset process of the control unit 13 (FIG. 1A) is activated at time t8, the control unit 13 controls the first voltage of the first capacitor C1 at time t9, as at time t1 and time t5. V1 and the second voltage V2 of the second capacitor C2 are read. Since the power supply interruption time is short, the first voltage V1 does not decrease to the first voltage threshold value Vt1. The second voltage V2 is 0V.
第1の電圧V1が第1の電圧閾値Vt1以上であり、かつ第2の電圧V2が第2の電圧閾値Vt2未満である場合、制御部13(図1A)は、エンジンが自動停止状態のときに、電源の瞬断が発生したと判断する。瞬断前のエンジンの状態が自動停止状態であった場合、制御部13は、第1のコンデンサC1の充電を開始する。第2のコンデンサC2については、放電状態が維持される。
When the first voltage V1 is equal to or higher than the first voltage threshold value Vt1 and the second voltage V2 is lower than the second voltage threshold value Vt2, the control unit 13 (FIG. 1A) It is determined that a power interruption has occurred. When the state of the engine before the instantaneous interruption is the automatic stop state, the control unit 13 starts charging the first capacitor C1. The discharge state is maintained for the second capacitor C2.
図3Aに、制御部13(図1A)がリセットされたときの第1のコンデンサC1の第1の電圧V1、第2のコンデンサC2の第2の電圧V2と、エンジン制御状態の判定結果との対応関係を示す。
FIG. 3A shows the first voltage V1 of the first capacitor C1, the second voltage V2 of the second capacitor C2, and the determination result of the engine control state when the control unit 13 (FIG. 1A) is reset. The correspondence is shown.
制御部13への電源が遮断されてから、電源が回復するまでの時間が、第1の時定数に比べて十分長い場合には、電源の回復時点(例えば、図2の時刻t0)で第1の電圧V1が第1の電圧閾値Vt1未満まで低下している。この場合には、電源の瞬断以外の要因、具体的にはイグニッションキーのオンによって制御部13がリセットされたと判定される。
When the time from when the power supply to the control unit 13 is shut off until the power supply recovers is sufficiently longer than the first time constant, the first power supply recovery point (for example, time t0 in FIG. 2) The voltage V1 of 1 has decreased to less than the first voltage threshold Vt1. In this case, it is determined that the control unit 13 has been reset by a factor other than a momentary power interruption, specifically, by turning on the ignition key.
制御部13のリセット処理において、第1の電圧V1が電圧閾値以上であると判定された場合には、電源の瞬断によって制御部13がリセットされたと判定される。電源の瞬断発生時にエンジンが自動停止状態であった場合には、図2の時刻t7における電圧状態のように、第2の電圧V2が第2の電圧閾値Vt2未満である。従って、第1の電圧V1が第1の電圧閾値Vt1以上であり、かつ第2の電圧V2が第2の電圧閾値Vt2未満である場合には、エンジンが自動停止状態のときに電源の瞬断が発生したと判定される。
In the reset process of the control unit 13, when it is determined that the first voltage V1 is equal to or higher than the voltage threshold, it is determined that the control unit 13 is reset due to a momentary power interruption. If the engine is in the automatic stop state when the instantaneous power interruption occurs, the second voltage V2 is less than the second voltage threshold Vt2 as in the voltage state at time t7 in FIG. Therefore, when the first voltage V1 is equal to or higher than the first voltage threshold value Vt1 and the second voltage V2 is lower than the second voltage threshold value Vt2, a momentary power interruption occurs when the engine is in the automatic stop state. Is determined to have occurred.
電源の瞬断発生時にエンジンが自動停止状態でなかった(非自動停止状態であった)場合には、図2の時刻t3における電圧状態のように、第2の電圧V2が第2の電圧閾値Vt2以上である。従って、第1の電圧V1が第1の電圧閾値Vt1以上であり、かつ第2の電圧V2が第2の電圧閾値Vt2以上である場合には、エンジンが非自動停止状態のときに電源の瞬断が発生したと判定される。
If the engine is not in the automatic stop state at the time of the momentary power interruption (the non-automatic stop state), the second voltage V2 is set to the second voltage threshold as in the voltage state at time t3 in FIG. Vt2 or more. Therefore, when the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is equal to or higher than the second voltage threshold Vt2, the power It is determined that a disconnection has occurred.
図3Bに、制御部13(図1A)がリセットされたときに制御部13が実行する処理のフローチャートを示す。イグニッションスイッチオンや、電源の瞬断等によって制御部13のリセットが発生すると、ステップS1において、第1の入力ポート13B(図1A)から第1のコンデンサC1の第1の電圧V1を読み込むとともに、第2の入力ポート13Dから第2のコンデンサC2の第2の電圧V2を読み込む。電源電圧が低下することによって制御部13がリセットされることを「低電圧リセット」ということとする。
FIG. 3B shows a flowchart of processing executed by the control unit 13 when the control unit 13 (FIG. 1A) is reset. When the control unit 13 is reset due to ignition switch-on, power supply interruption, etc., in step S1, the first voltage V1 of the first capacitor C1 is read from the first input port 13B (FIG. 1A), and The second voltage V2 of the second capacitor C2 is read from the second input port 13D. Resetting the control unit 13 due to a decrease in power supply voltage is referred to as “low voltage reset”.
ステップS2において、第1のコンデンサC1の第1の電圧V1が第1の電圧閾値Vt1以上か否かを判定する。第1の電圧V1が第1の電圧閾値Vt1よりも低い場合、ステップS6において、電源の瞬断ではなく、通常のイグニッションオンにより制御部13が起動されたと判定される。この判定結果は、図2の時刻t1における判定結果に相当する。
In step S2, it is determined whether or not the first voltage V1 of the first capacitor C1 is equal to or higher than the first voltage threshold value Vt1. When the first voltage V1 is lower than the first voltage threshold value Vt1, it is determined in step S6 that the control unit 13 is activated not by an instantaneous power interruption but by a normal ignition on. This determination result corresponds to the determination result at time t1 in FIG.
ステップS2において、第1の電圧V1が第1の電圧閾値Vt1以上であると判定された場合には、ステップS3において、第2のコンデンサC2の第2の電圧V2が第2の電圧閾値Vt2以上か否かを判定する。第1の電圧V1が第1の電圧閾値Vt1以上であるということは、図3Aに示したように、電源の瞬断が発生したと考えられる。
If it is determined in step S2 that the first voltage V1 is equal to or higher than the first voltage threshold Vt1, the second voltage V2 of the second capacitor C2 is equal to or higher than the second voltage threshold Vt2 in step S3. It is determined whether or not. The fact that the first voltage V1 is equal to or higher than the first voltage threshold Vt1 is considered that an instantaneous power supply interruption occurred as shown in FIG. 3A.
ステップS3において、第2の電圧V2が第2の電圧閾値Vt2以上であると判定された場合には、ステップS4において、電源瞬断時にエンジンは自動停止状態以外であったと判定される。この判定結果は、図2の時刻t5における判定結果に相当する。第2の電圧V2が第2の電圧閾値Vt2よりも低い場合には、ステップS5において、電源瞬断時にエンジンは自動停止状態であったと判定される。この判定結果は、図2の時刻t9における判定結果に相当する。
If it is determined in step S3 that the second voltage V2 is equal to or greater than the second voltage threshold Vt2, it is determined in step S4 that the engine is not in the automatic stop state when the power is momentarily interrupted. This determination result corresponds to the determination result at time t5 in FIG. If the second voltage V2 is lower than the second voltage threshold Vt2, it is determined in step S5 that the engine is in an automatic stop state at the time of instantaneous power interruption. This determination result corresponds to the determination result at time t9 in FIG.
ステップS4~S6のいずれかにおいて、制御部13が低電圧リセットされた原因が特定されると、ステップS7において、エンジンの自動停止条件が成立するか否かを判定する。この判定は、エンジン制御装置10に入力されている車速、冷却水温、エンジン回転数、自動停止制御選択スイッチの状態等に基づいて行われる。
In any of steps S4 to S6, when the cause of the low voltage reset of the control unit 13 is specified, it is determined in step S7 whether or not an automatic engine stop condition is satisfied. This determination is made based on the vehicle speed, the coolant temperature, the engine speed, the state of the automatic stop control selection switch, and the like input to the engine control device 10.
ステップS7において自動停止条件が成立すると判定された場合には、ステップS8において第2のコンデンサC2(図1A)の放電を開始する。具体的には、第2の出力ポート13Cを接地電圧にプルダウンする。既に、第2の出力ポート13Cが接地電圧にプルダウンされている場合には、プルダウン状態を維持することにより、第2のコンデンサC2の放電を継続させる。第1のコンデンサC1については、充電状態が維持される。ステップS8は、図2の時刻t6からt7までの期間において実行される処理に相当する。
If it is determined in step S7 that the automatic stop condition is satisfied, discharging of the second capacitor C2 (FIG. 1A) is started in step S8. Specifically, the second output port 13C is pulled down to the ground voltage. When the second output port 13C has already been pulled down to the ground voltage, the second capacitor C2 is continuously discharged by maintaining the pull-down state. The charged state is maintained for the first capacitor C1. Step S8 corresponds to the processing executed in the period from time t6 to t7 in FIG.
ステップS7において自動停止条件が成立しないと判定された場合には、ステップS9において、第2のコンデンサC2の充電を開始し、その後、第1のコンデンサC1の充電を開始する。第2のコンデンサC2の充電開始は、図2の時刻t1の処理に相当し、第1のコンデンサC1の充電開始は、図2の時刻t2の処理に相当する。第2のコンデンサC2の充電が既に開始されている場合には、そのまま充電を継続する。この処理は、図2の時刻t1から時刻t3までの処理に相当する。第1のコンデンサC1の充電が既に開始されている場合には、そのまま充電を継続する。この処理は、図2の時刻t2から時刻t3までの処理に相当する。
If it is determined in step S7 that the automatic stop condition is not satisfied, charging of the second capacitor C2 is started in step S9, and thereafter charging of the first capacitor C1 is started. The charging start of the second capacitor C2 corresponds to the process at time t1 in FIG. 2, and the charging start of the first capacitor C1 corresponds to the process at time t2 in FIG. If the charging of the second capacitor C2 has already started, the charging is continued as it is. This process corresponds to the process from time t1 to time t3 in FIG. If charging of the first capacitor C1 has already started, the charging is continued as it is. This process corresponds to the process from time t2 to time t3 in FIG.
上記実施例では、電源の瞬断発生時におけるエンジンの制御状態が、第2のコンデンサC2に蓄積される電荷によって記憶される。このため、エンジンの制御状態を記憶するための不揮発性メモリを用いる必要がない。これにより、不揮発性メモリの書き換え回数が書き換え可能回数の上限値に近づくことに起因する信頼性の低下を回避することができる。さらに、不揮発性メモリの交換等のメンテナンス作業を行う必要がない。
In the above embodiment, the control state of the engine at the time of the momentary power interruption is stored by the electric charge accumulated in the second capacitor C2. For this reason, it is not necessary to use a non-volatile memory for storing the engine control state. Thereby, it is possible to avoid a decrease in reliability caused by the number of times of rewriting of the nonvolatile memory approaching the upper limit value of the number of times of rewriting. Further, there is no need to perform maintenance work such as replacement of the nonvolatile memory.
次に、第2のコンデンサC2の充放電の第2の時定数を、第1のコンデンサC1の充放電の第1の時定数よりも長くすることの効果について説明する。第2の時定数が第1の時定数より短い場合には、図2に示した時刻t4において、第2の電圧V2が第2の電圧閾値Vt2未満になってしまう場合がある。時刻t4において、第2の電圧V2が第2の電圧閾値Vt2未満になると、電源の瞬断発生時にエンジンが自動停止中ではなかったにもかかわらず、エンジンが自動停止中であったと誤判定されてしまう。第2の時定数を第1の時定数以上にすることにより、この誤判定を回避することができる。
Next, the effect of making the second time constant of charging / discharging of the second capacitor C2 longer than the first time constant of charging / discharging of the first capacitor C1 will be described. When the second time constant is shorter than the first time constant, the second voltage V2 may become less than the second voltage threshold Vt2 at time t4 shown in FIG. When the second voltage V2 becomes less than the second voltage threshold Vt2 at time t4, it is erroneously determined that the engine was automatically stopped even though the engine was not automatically stopped when the instantaneous power interruption occurred. End up. By making the second time constant equal to or greater than the first time constant, this erroneous determination can be avoided.
実施例において、第1の電圧閾値Vt1と第2の電圧閾値Vt2とは等しいため、第2の時定数が第1の時定数と等しい場合、時刻t4において第1の電圧V1が第1の電圧閾値Vt1以上であれば、第2の電圧V2も第2の電圧閾値Vt2以上になる。従って、理論上は、第1の時定数と第2の時定数とを等しくしてもよい。ところが、第1の時定数と第2の時定数とが等しくなるように、瞬断判定回路11及び保持回路12(図1A)の回路定数を設計すると、コンデンサ及び抵抗器の製造上のばらつきにより、第2の時定数が第1の時定数より短くなってしまう場合がある。
In the embodiment, since the first voltage threshold value Vt1 and the second voltage threshold value Vt2 are equal, when the second time constant is equal to the first time constant, the first voltage V1 is the first voltage at time t4. If it is equal to or higher than the threshold value Vt1, the second voltage V2 is also equal to or higher than the second voltage threshold value Vt2. Therefore, theoretically, the first time constant and the second time constant may be equal. However, if the circuit constants of the instantaneous interruption determination circuit 11 and the holding circuit 12 (FIG. 1A) are designed so that the first time constant and the second time constant are equal, due to manufacturing variations of capacitors and resistors. The second time constant may be shorter than the first time constant.
第2の時定数が第1の時定数より長くなるように、瞬断判定回路11及び保持回路12(図1A)の回路定数を設計すると、コンデンサ及び抵抗器の部品定数に許容範囲内のばらつきがあったとしても、第2の時定数が第1の時定数より短くなる事象が生じにくい。従って、エンジンが自動停止中であったか否かの判定において誤判定が生じにくい。誤判定を回避するためには、コンデンサ及び抵抗器の部品定数のばらつきを考慮した場合に、第2の時定数のばらつきの範囲内の下限値が、第1の時定数のばらつきの範囲内の上限値よりも長くなるように、第1の時定数及び第2の時定数の設計値を決定することが好ましい。
When the circuit constants of the instantaneous interruption determination circuit 11 and the holding circuit 12 (FIG. 1A) are designed so that the second time constant is longer than the first time constant, the component constants of the capacitor and the resistor vary within an allowable range. Even if there is, an event in which the second time constant is shorter than the first time constant is unlikely to occur. Therefore, an erroneous determination is unlikely to occur in determining whether or not the engine has been automatically stopped. In order to avoid misjudgment, when considering variations in the component constants of the capacitor and the resistor, the lower limit value within the variation range of the second time constant is within the variation range of the first time constant. It is preferable to determine design values of the first time constant and the second time constant so as to be longer than the upper limit value.
次に、ステップS9(図3B)において、第2のコンデンサC2の充電を開始した後に、第1のコンデンサC1の充電を開始することの効果について説明する。
Next, the effect of starting charging the first capacitor C1 after starting charging the second capacitor C2 in step S9 (FIG. 3B) will be described.
図4に、第1のコンデンサC1と第2のコンデンサC2との充電を同時に開始する比較例による電圧の変化の一例を示す。時刻t10においてイグニッションキーがオンにされ、時刻t11においてステップS9(図3B)が実行される。このとき、比較例では、第1のコンデンサC1の充電及び第2のコンデンサC2の充電が同時に開始される。第1の時定数が第2の時定数より短いため、第1の電圧V1の上昇の傾きが、第2の電圧V2の上昇の傾きより急峻である。第2の電圧V2が第2の電圧閾値Vt2まで上昇していない時刻t12に、電源の瞬断が発生する場合について説明する。
FIG. 4 shows an example of a change in voltage according to a comparative example in which charging of the first capacitor C1 and the second capacitor C2 is started simultaneously. The ignition key is turned on at time t10, and step S9 (FIG. 3B) is executed at time t11. At this time, in the comparative example, charging of the first capacitor C1 and charging of the second capacitor C2 are started simultaneously. Since the first time constant is shorter than the second time constant, the rising slope of the first voltage V1 is steeper than the rising slope of the second voltage V2. A case where a power interruption occurs at time t12 when the second voltage V2 has not risen to the second voltage threshold Vt2 will be described.
第1の時定数が第2の時定数より短いため、第1の電圧V1は、時刻t12の時点で第1の電圧閾値Vt1を超えている。第1の電圧V1は、電源が回復する時刻t13においても第1の電圧閾値Vt1以上に維持されている。これに対し、第2の電圧V2は、第2の電圧閾値Vt2未満である。この場合、図3Aに示した対応表から、電源の瞬断発生時に、エンジンが自動停止状態であったと誤判定されてしまう。
Since the first time constant is shorter than the second time constant, the first voltage V1 exceeds the first voltage threshold Vt1 at time t12. The first voltage V1 is maintained at or above the first voltage threshold Vt1 even at time t13 when the power supply recovers. On the other hand, the second voltage V2 is less than the second voltage threshold Vt2. In this case, from the correspondence table shown in FIG. 3A, it is erroneously determined that the engine was in the automatic stop state when the instantaneous power interruption occurred.
図2に示した実施例においては、第2のコンデンサC2の充電を開始した時刻t1から、ある経過時間が経過した時刻t2に、第1のコンデンサC1の充電を開始する。このため、第1の電圧V1が第1の電圧閾値Vt1以上であり、かつ第2の電圧V2が第2の電圧閾値Vt2未満である期間が、図4の例に比べて短くなるか、または存在しなくなる。図2に示した例では、第2の電圧V2が第2の電圧閾値Vt2を超えた後に、第1のコンデンサC1の充電が開始される。このため、第1の電圧V1が第1の電圧閾値Vt1以上であり、かつ第2の電圧V2が第2の電圧閾値Vt2未満である期間は生じない。
In the embodiment shown in FIG. 2, charging of the first capacitor C1 is started at time t2 when a certain elapsed time has elapsed from time t1 when charging of the second capacitor C2 was started. Therefore, the period in which the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is less than the second voltage threshold Vt2 is shorter than that in the example of FIG. No longer exists. In the example shown in FIG. 2, charging of the first capacitor C1 is started after the second voltage V2 exceeds the second voltage threshold value Vt2. For this reason, a period in which the first voltage V1 is equal to or higher than the first voltage threshold Vt1 and the second voltage V2 is less than the second voltage threshold Vt2 does not occur.
第2のコンデンサC2の充電を開始してから、第1のコンデンサC1の充電を開始するまでの待機時間(時刻t1からt2までの時間)として、第1の時定数及び第2の時定数に基づいて、予め固定値を設定しておくことが可能である。一例として、待機時間を、第2の電圧V2が第2の電圧閾値Vt2に達するまでの時間より長くすることが好ましい。
The first time constant and the second time constant are set as a standby time (time from time t1 to t2) from the start of charging of the second capacitor C2 to the start of charging of the first capacitor C1. Based on this, it is possible to set a fixed value in advance. As an example, it is preferable that the standby time is longer than the time until the second voltage V2 reaches the second voltage threshold Vt2.
待機時間を長くし過ぎると、時刻t0から、第1の電圧V1が第1の電圧閾値Vt1に達するまでの時間が長くなってしまう。時刻t0から、第1の電圧V1が第1の電圧閾値Vt1に達するまでの期間に、エンジンが自動停止状態になり、再始動時に電源の瞬断が発生すると、自動停止状態であったにもかかわらず、イグニッションキーのオンによって制御部13(図1A)がリセットされたと誤判定されてしまう。イグニッションキーがオンにされた後、エンジンが自動停止するまでの期間は不定であるため、この誤判定を回避するためには、第2の電圧V2が第2の電圧閾値Vt2以上になったら、早期に第1のコンデンサC1の充電を開始することが好ましい。一例として、イグニッションキーがオンにされた後、初めてエンジンが自動停止して第2のコンデンサC2の放電が開始され、第2の電圧V2が第2の電圧閾値Vt2以下になるまでに、第1の電圧V1が第1の電圧閾値Vt1以上になっていれば、電源の瞬断後のリセット処理で、自動停止状態を正確に判定することができる。
If the standby time is too long, the time from the time t0 until the first voltage V1 reaches the first voltage threshold value Vt1 becomes long. If the engine is automatically stopped during the period from time t0 until the first voltage V1 reaches the first voltage threshold value Vt1, and the power supply is interrupted at the time of restart, the engine is automatically stopped. Regardless, it is erroneously determined that the control unit 13 (FIG. 1A) has been reset by turning on the ignition key. Since the period until the engine automatically stops after the ignition key is turned on is indefinite, in order to avoid this erroneous determination, when the second voltage V2 becomes equal to or higher than the second voltage threshold Vt2, It is preferable to start charging the first capacitor C1 at an early stage. As an example, after the ignition key is turned on, the engine is automatically stopped for the first time and the discharge of the second capacitor C2 is started until the second voltage V2 becomes equal to or lower than the second voltage threshold Vt2. If the voltage V1 is equal to or higher than the first voltage threshold value Vt1, the automatic stop state can be accurately determined by the reset process after the instantaneous power interruption.
待機時間の長さを予め決定しておく代わりに、第2の電圧V2の値に基づいて第1のコンデンサC1の充電を開始してもよい。例えば、第2の電圧V2が第2の電圧閾値Vt2に到達したことを検出した時点で、第1のコンデンサC1の充電を開始してもよい。
Instead of predetermining the length of the standby time, charging of the first capacitor C1 may be started based on the value of the second voltage V2. For example, charging of the first capacitor C1 may be started when it is detected that the second voltage V2 has reached the second voltage threshold value Vt2.
図1Bに、実施例の変形例によるエンジン制御装置10のブロック図及び等価回路図を示す。この変形例では、第1のコンデンサC1と第1の抵抗器R1との相互接続点が、第3の抵抗器R3を介して第1の入力ポート13Bに接続されている。さらに、第2のコンデンサC2と第2の抵抗器R2との相互接続点が、第4の抵抗器R4を介して第2の入力ポート13Dに接続されている。
FIG. 1B shows a block diagram and an equivalent circuit diagram of an engine control apparatus 10 according to a modification of the embodiment. In this modification, the connection point between the first capacitor C1 and the first resistor R1 is connected to the first input port 13B via the third resistor R3. Furthermore, the interconnection point between the second capacitor C2 and the second resistor R2 is connected to the second input port 13D via the fourth resistor R4.
エンジン制御装置10に供給されている電源が遮断された場合、制御部13の第1の入力ポート13B及び第2の入力ポート13Dが接地電位にプルダウンされる場合がある。このときの第1の入力ポート13Bの入力インピーダンスが、第1の抵抗器R1と同等か、それより低い場合、第1のコンデンサC1の放電の時定数が、第1の入力ポート13Bの入力インピーダンスの影響を受けてしまう。第3の抵抗器R3は、第1のコンデンサC1と第1の抵抗器R1との相互接続点から第1の入力ポート13Bを見たときの実効的な入力インピーダンスを高く維持する機能を有する。同様に、第4の抵抗器R4は、第2のコンデンサC2と第2の抵抗器R2との相互接続点から第2の入力ポート13Dを見たときの実効的な入力インピーダンスを高く維持する機能を有する。
When the power supplied to the engine control device 10 is cut off, the first input port 13B and the second input port 13D of the control unit 13 may be pulled down to the ground potential. When the input impedance of the first input port 13B at this time is equal to or lower than that of the first resistor R1, the time constant of discharge of the first capacitor C1 is the input impedance of the first input port 13B. Will be affected. The third resistor R3 has a function of maintaining a high effective input impedance when the first input port 13B is viewed from the interconnection point between the first capacitor C1 and the first resistor R1. Similarly, the fourth resistor R4 maintains a high effective input impedance when the second input port 13D is viewed from the interconnection point between the second capacitor C2 and the second resistor R2. Have
なお、エンジン制御装置10への電源が遮断された状態でも、第1の入力ポート13B及び第2の入力ポート13Dがハイインピーダンス状態を維持する場合は、図1Aに示したように、第1のコンデンサC1と第1の抵抗器R1との相互接続点を、第1の入力ポート13Bに直結してもよい。同様に、第2のコンデンサC2と第2の抵抗器R2との相互接続点を、第2の入力ポート13Dに直結してもよい。
When the first input port 13B and the second input port 13D maintain the high impedance state even when the power to the engine control device 10 is cut off, as shown in FIG. An interconnection point between the capacitor C1 and the first resistor R1 may be directly connected to the first input port 13B. Similarly, an interconnection point between the second capacitor C2 and the second resistor R2 may be directly connected to the second input port 13D.
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
10 エンジン制御装置
11 瞬断判定回路
12 保持回路
13 制御装置
13A 第1の出力ポート
13B 第1の入力ポート
13C 第2の出力ポート
13D 第2の入力ポート
20 スタータ
21 エンジン
C1 第1のコンデンサ
C2 第2のコンデンサ
R1 第1の抵抗器
R2 第2の抵抗器
R3 第3の抵抗器
R4 第4の抵抗器
V1 第1の電圧
V2 第2の電圧
Vt1 第1の電圧閾値
Vt2 第2の電圧閾値 DESCRIPTION OFSYMBOLS 10 Engine control apparatus 11 Instantaneous interruption determination circuit 12 Holding circuit 13 Control apparatus 13A 1st output port 13B 1st input port 13C 2nd output port 13D 2nd input port 20 Starter 21 Engine C1 1st capacitor C2 1st Second capacitor R1 First resistor R2 Second resistor R3 Third resistor R4 Fourth resistor V1 First voltage V2 Second voltage Vt1 First voltage threshold Vt2 Second voltage threshold
11 瞬断判定回路
12 保持回路
13 制御装置
13A 第1の出力ポート
13B 第1の入力ポート
13C 第2の出力ポート
13D 第2の入力ポート
20 スタータ
21 エンジン
C1 第1のコンデンサ
C2 第2のコンデンサ
R1 第1の抵抗器
R2 第2の抵抗器
R3 第3の抵抗器
R4 第4の抵抗器
V1 第1の電圧
V2 第2の電圧
Vt1 第1の電圧閾値
Vt2 第2の電圧閾値 DESCRIPTION OF
Claims (4)
- 車両のエンジンを制御するエンジン制御装置であって、
第1のコンデンサ、及び前記第1のコンデンサを第1の時定数で充放電させる第1の抵抗器を含む瞬断判定回路と、
第2のコンデンサ、及び前記第2のコンデンサを、前記第1の時定数よりも長い第2の時定数で充放電させる第2の抵抗器を含む保持回路と、
前記第1のコンデンサ及び前記第2のコンデンサの電圧状態に基づいて前記エンジンを制御する制御部と
を有し、
前記制御部は、前記第2のコンデンサの充電を開始した後、前記第1のコンデンサの充電を開始するエンジン制御装置。 An engine control device for controlling a vehicle engine,
An instantaneous interruption determination circuit including a first capacitor and a first resistor that charges and discharges the first capacitor with a first time constant;
A holding circuit including a second capacitor and a second resistor that charges and discharges the second capacitor with a second time constant longer than the first time constant;
A controller that controls the engine based on voltage states of the first capacitor and the second capacitor;
The control unit is an engine control device that starts charging the first capacitor after starting charging the second capacitor. - 前記制御部は、前記第2のコンデンサの充電を開始した後、予め決められている待機時間が経過した時点で、前記第1のコンデンサの充電を開始する請求項1に記載のエンジン制御装置。 The engine control device according to claim 1, wherein the control unit starts charging the first capacitor when a predetermined standby time has elapsed after starting charging the second capacitor.
- 前記制御部は、前記第2のコンデンサの充電を開始した後、前記第2のコンデンサの電圧が電圧閾値に到達した時点で、前記第1のコンデンサの充電を開始する請求項1に記載のエンジン制御装置。 2. The engine according to claim 1, wherein the controller starts charging the first capacitor when the voltage of the second capacitor reaches a voltage threshold after starting charging of the second capacitor. 3. Control device.
- 電源の瞬断時間の想定値と、電源復帰後に、前記制御部が前記第1のコンデンサ及び前記第2のコンデンサの電圧状態に基づいて前記エンジンの制御状態を判定するまでの経過時間との合計値よりも、前記第2の時定数の方が長い請求項1乃至3のいずれか1項に記載のエンジン制御装置。 Sum of an assumed value of instantaneous power interruption time and an elapsed time until the control unit determines the control state of the engine based on the voltage state of the first capacitor and the second capacitor after the power is restored The engine control apparatus according to any one of claims 1 to 3, wherein the second time constant is longer than a value.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-237579 | 2014-11-25 | ||
JP2014237579A JP6530597B2 (en) | 2014-11-25 | 2014-11-25 | Engine control unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016084446A1 true WO2016084446A1 (en) | 2016-06-02 |
Family
ID=56074027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/074650 WO2016084446A1 (en) | 2014-11-25 | 2015-08-31 | Engine control device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6530597B2 (en) |
WO (1) | WO2016084446A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003148310A (en) * | 2001-08-31 | 2003-05-21 | Denso Corp | Engine starting power source device |
JP2015116863A (en) * | 2013-12-17 | 2015-06-25 | 株式会社ケーヒン | Engine control device |
JP2015161270A (en) * | 2014-02-28 | 2015-09-07 | 株式会社ケーヒン | Engine control device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09247076A (en) * | 1996-03-05 | 1997-09-19 | Toshiba Corp | Radio communication machine provided with power hit detection function |
JP5667810B2 (en) * | 2010-08-10 | 2015-02-12 | 新電元工業株式会社 | Control apparatus and control method |
-
2014
- 2014-11-25 JP JP2014237579A patent/JP6530597B2/en active Active
-
2015
- 2015-08-31 WO PCT/JP2015/074650 patent/WO2016084446A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003148310A (en) * | 2001-08-31 | 2003-05-21 | Denso Corp | Engine starting power source device |
JP2015116863A (en) * | 2013-12-17 | 2015-06-25 | 株式会社ケーヒン | Engine control device |
JP2015161270A (en) * | 2014-02-28 | 2015-09-07 | 株式会社ケーヒン | Engine control device |
Also Published As
Publication number | Publication date |
---|---|
JP2016098752A (en) | 2016-05-30 |
JP6530597B2 (en) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9188101B2 (en) | Power circuit | |
US20080284389A1 (en) | Power supply apparatus | |
CN109661330B (en) | Vehicle power storage device | |
JP6282858B2 (en) | Engine control device | |
CN113423977B (en) | Backup power supply system for shift-by-wire system and control program | |
JP2007336657A (en) | Power supply control device | |
WO2016084446A1 (en) | Engine control device | |
JP6183229B2 (en) | Electronic control unit | |
CN216981587U (en) | Circuit structure and intelligent equipment | |
JP6254460B2 (en) | Engine control device | |
JP6597456B2 (en) | Electronic control unit | |
JP5851980B2 (en) | Power supply start / stop control circuit | |
CN107408828B (en) | Device for controlling the power supply of an electric circuit of a vehicle, comprising a battery and related components | |
JP5683667B1 (en) | Electric power steering device | |
JP7232000B2 (en) | discharge system | |
CN207977898U (en) | The voltage compensating circuit of vehicle systems basic chips | |
JP2020156222A (en) | Power supply controller of in-vehicle camera module | |
JP7212641B2 (en) | In-vehicle control device | |
WO2023082054A1 (en) | Circuit structure and control method therefor, and intelligent device | |
JP7447582B2 (en) | On-vehicle discharge control device | |
JP2010016955A (en) | Electronic control device | |
JP2007100565A (en) | Engine starting control device | |
KR100894402B1 (en) | Second battery device for car's cigar jack | |
JP6524925B2 (en) | Vehicle control device | |
KR0124539Y1 (en) | A battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15862515 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15862515 Country of ref document: EP Kind code of ref document: A1 |