WO2016083719A1 - Capteur de temperature - Google Patents

Capteur de temperature Download PDF

Info

Publication number
WO2016083719A1
WO2016083719A1 PCT/FR2015/053179 FR2015053179W WO2016083719A1 WO 2016083719 A1 WO2016083719 A1 WO 2016083719A1 FR 2015053179 W FR2015053179 W FR 2015053179W WO 2016083719 A1 WO2016083719 A1 WO 2016083719A1
Authority
WO
WIPO (PCT)
Prior art keywords
support tube
cap
thermocouple
temperature sensor
tube
Prior art date
Application number
PCT/FR2015/053179
Other languages
English (en)
Inventor
Nicolas Gelez
Piotr ZAKRZEWSKI
Pascal Castro
Original Assignee
Valeo Systemes De Controle Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes De Controle Moteur filed Critical Valeo Systemes De Controle Moteur
Priority to EP15817947.3A priority Critical patent/EP3224588A1/fr
Priority to JP2017527909A priority patent/JP2017535781A/ja
Priority to CN201580071642.3A priority patent/CN107110712A/zh
Priority to US15/529,223 priority patent/US20170350765A1/en
Publication of WO2016083719A1 publication Critical patent/WO2016083719A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/02Pressure butt welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/08Protective devices, e.g. casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/02Thermometers specially adapted for specific purposes for measuring temperature of moving fluids or granular materials capable of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle
    • G01K2205/02Application of thermometers in motors, e.g. of a vehicle for measuring inlet gas temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2217/00Temperature measurement using electric or magnetic components already present in the system to be measured

Definitions

  • the invention relates to a temperature sensor comprising a thermocouple for measuring temperatures ranging from -40 ° C to 1200 ° C, especially in a thermal engine of a motor vehicle.
  • a temperature measuring device conventionally comprises a temperature sensor 2 extended by an extension cable 3 making it possible to connect the temperature sensor to a measuring device 4.
  • the temperature sensor 2 conventionally comprises a metal protective sheath and a stop 6, mounted on the protective sheath 5 and adapted according to the intended application.
  • the measuring apparatus 4 is intended to interpret the electrical signal supplied by the temperature sensor 2 and transmitted via the extension cable 3. This interpretation allows an evaluation of the temperature at which the end of the temperature sensor is subject.
  • the temperature sensor 2 conventionally comprises a thermocouple 7 and an inorganic insulator 8, conventionally made of alumina or magnesia, which enables the thermocouple to withstand the environmental stresses, and especially the temperatures high.
  • thermocouple 7 is an assembly of first and second conductive wires, 10 and 12, respectively, connected to each other and end-to-end at a hot spot 13.
  • the potential difference AU at the terminals of the first and second conductive son depends on the difference between the hot spot temperature ⁇ and the temperature T 0 at said terminals, according to the Seebeck effect, well known.
  • thermocouple temperature sensor is used in particular in a heat engine group, in which it is subjected to temperatures ranging from -40 ° C to 1200 ° C.
  • a mineral insulated cable or MIC ("ore insulated cable") is manufactured.
  • a mineral insulated cable has a metal protective sheath and, inside the protective sheath 5, two thermocouple wires 10 and 12 made of materials adapted to form a thermocouple, the two thermocouple wires being insulated. one of the other and the protective sheath 5 by means of the mineral insulator 8.
  • the mineral insulated cable is usually delivered as a roll. It is then straightened, then cut into sections (fig.3a).
  • thermocouple wires To form the junction between the two thermocouple wires, or "hot spot" 13, a little mineral insulation is extracted from one end of the mineral insulated cable, for example by sandblasting or scraping, typically over a depth of about 2 to 10 mm. At this so-called “distal” end, the two thermocouple wires thus emerge from the insulator, while being encircled by the protective sheath 5 (FIG 3b).
  • thermocouple wires thus released are mechanically brought together until they are brought into contact with each other and then connected, for example by electric welding (FIG. 3c).
  • the recessed end of the protective sheath can then be optionally filled with insulating material, which is identical to or different from the mineral insulator of the mineral insulated cable, and then closed so as to protect the thermocouple, for example by electric welding (FIG. 3d).
  • a shrinkage 15 is conventionally made at the distal end of the protective sheath 5, typically by drawing or hammering.
  • the shrinkage conventionally makes it possible to improve the response time of the temperature sensor.
  • thermocouple temperature sensor There is therefore a need for a solution making it easier to automate the manufacture of a thermocouple temperature sensor.
  • thermocouple temperature sensor comprising the following successive steps:
  • a ceramic material typically based on alumina (Al 2 O 3) or magnesia (MgO) but also other materials of the ceramic family or their mixtures AIN, BN, Si02, or others, of two thermocouple wires
  • thermocouple wires protruding out of said support tube so as to form a thermocouple hot spot
  • step c) independently of the preceding steps, but before step d), introducing, at least partially, the support tube into a reinforcing tube made of a stainless steel, typically from the Inconel family, or a 310 S, to the other stainless steel according to the chosen application constraints.
  • a reinforcing tube made of a stainless steel, typically from the Inconel family, or a 310 S, to the other stainless steel according to the chosen application constraints.
  • a method according to the invention may also comprise one or more of the following preferred optional features:
  • the cap has a necking before being fixed on the support tube
  • the cap is shaped to cover more than 90% of the outer lateral surface of the support tube
  • the cap is in inconel, which confers a great stability of the measurement over time;
  • the cap Before assembly of the cap, the cap is filled with an insulating material, preferably powder, of a material selected from alumina, magnesia, aluminum nitride and / or boron nitride.
  • an insulating material preferably powder, of a material selected from alumina, magnesia, aluminum nitride and / or boron nitride.
  • the invention also relates to a temperature sensor comprising a support tube made of a ceramic material, preferably partitioned, longitudinally traversed by two thermocouple wires, the two thermocouple wires protruding at the proximal and distal ends of the support tube, meeting outside the support tube, beyond the distal end of said support tube,
  • thermocouple wires protruding beyond the distal end of the support tube preferably being protected by a cap, preferably filled with an insulating material, attached to a reinforcing tube in which is housed the tube of support.
  • a temperature sensor according to the invention may in particular be manufactured according to a method according to the invention, possibly adapted so that the temperature sensor has one or more of the optional characteristics described below.
  • a temperature sensor according to the invention may also include one or more of the following optional and preferred features:
  • the pair of materials of the first and second thermocouple wires is of the N or K type, preferably of the N type;
  • thermocouple wires is covered with an electrically insulating sheath in the support tube;
  • thermocouple wires comprise electrical connection means, for example connection terminals allowing their connection to a measuring apparatus and / or to an extension cable;
  • thermocouple wire is not fixed in the longitudinal lumen of the support tube that it passes through, more precisely it is inserted into the tube lumen;
  • the support tube has two longitudinal slots separated by a partition;
  • the support tube is an extruded tube
  • the support tube is made of a ceramic material, typically based on alumina (Al 2 O 3) or magnesia (MgO) but also other materials of the ceramic family or their mixtures AIN, BN, SiO 2, or others
  • the support tube is made of an electrically insulating material
  • the cap has a necking before being fixed on the support tube, to have a short response time, the diameter of the necking at the hot spot is preferably less than 3.5 mm, or even less than 3 mm, or even less than 2 mm, or even less than 1, 5 mm;
  • the cap is hermetically fixed on the reinforcing tube
  • the cap is attached to a distal end of the reinforcing tube and / or to the outer lateral surface and / or the inner lateral surface of the reinforcing tube;
  • the cap is fixed by laser welding on the reinforcing tube
  • the cap covers more than 10%, more than 30%, more than 60%, more than 90%, preferably substantially 100% of the outer lateral surface of the support tube;
  • the cap is shaped to abut with the support tube and / or the reinforcing tube, and / or it comprises guide means of the cap on the support tube and / or the reinforcing tube;
  • the cap is filled with an insulating material, preferably in the form of a powder, preferably of a material chosen from alumina and / or magnesia and / or boron nitride and / or aluminum nitride, whereby the thermocouple is insulated from the outside by said insulating material;
  • - reinforcement tube is preferably made of a stainless steel; typically from the Inconel family, or a 310 S, to the other stainless steel according to the chosen application constraints.
  • the outer diameter of the reinforcing tube is greater than 4 mm, preferably greater than or equal to 4.5 mm;
  • the wall of the reinforcing tube has a thickness greater than 0.2 mm and / or less than 1.3 mm;
  • a mechanical stop is fixed, preferably welded, on the reinforcing tube.
  • the invention also relates to the use of a temperature sensor according to the invention in an environment whose temperature can vary from -40 ° C to 1200 ° C, and in particular can be greater than 800 ' ⁇ , greater than 900 ° C, greater than 1000 ° C, or greater than 1100 ⁇ C, and in particular in a thermal engine group of a motor vehicle.
  • the invention relates to a thermal engine group of a motor vehicle comprising a temperature sensor according to the invention, and a motor vehicle comprising a heat engine unit according to the invention.
  • the temperature sensor may in particular be disposed in the exhaust manifold upstream of the turbine of a turbocharger or in a fuel or oxidizer inlet pipe or in an exhaust pipe.
  • FIG. 1 shows schematically a temperature sensor connected to a measuring apparatus
  • FIG. 2 schematically illustrates the operating principle of a thermocouple
  • Fig. 3 (Fig. 3a-3d) illustrates the method of manufacturing a temperature sensor according to the prior art
  • Figure 4 illustrates the different steps of a manufacturing method according to the invention. Definitions
  • proximal and distal there are two sides of a temperature sensor according to the invention.
  • distal is that of the hot spot.
  • Hot spot conventionally refers to the junction between the two thermocouple wires, regardless of its temperature.
  • FIGS. 1 to 3 having been described in the preamble, reference is now made to FIG.
  • Step a) consists of passing the two thermocouple wires 10 and 12, intended for constituting a thermocouple, through one or more longitudinal slots 28 of a support tube 30 made of a ceramic material ( Fig. 4a).
  • the support tube 30 is shaped to guide the thermocouple wires during their introduction.
  • the support tube 30 is a profile, preferably shaped so that the or lights 28 have a cross section substantially identical to that of the thermocouple son they are intended to receive.
  • the support tube 30 may in particular be manufactured by extrusion.
  • the support tube is partitioned.
  • the partitioning of the support tube 30 advantageously eliminates any risk of electrical contact between the parts of the thermocouple son introduced into said support tube, even when they are not insulated by means of an electrically insulating sheath.
  • the support tube 30 has a single lumen and the thermocouple son are sheathed by means of an electrically insulating sheath, thus avoiding any electrical contact between the thermocouple wires inside the support tube 30 .
  • thermocouple wires may be flexible or rigid. Preferably, they have a substantially circular cross section.
  • thermocouple wires are pushed to protrude from the distal end 32 of the support tube 30.
  • the projecting portions 40 and 42 of the thermocouple wires are wholly or partially stripped, so as to allow, in step b), bringing into contact the two thermocouple son.
  • the protruding portions 50 and 22 of the thermocouple wires 10 and 12 that extend out of the support tube 30 beyond the proximal end 44 may have a length greater than 5 cm, greater than 10 cm, greater than 20 cm, greater than 50 cm.
  • these wires can thus serve as extension cable 3, to electrically connect the temperature sensor 2 of the measuring device 4.
  • the thermocouple wires are used as an extension cable, their proximal parts in protrusion 50 and 52 must be electrically insulated.
  • the thermocouple wires 10 and 12 preferably comprise electrical connection means, for example connection terminals allowing their connection to the measuring device 4.
  • step b as shown in FIG. 4b, the distal ends 40 and 42 of the thermocouple wires 10 and 12 are then connected to each other, that is to say placed in physical contact with each other. electrically, permanently, so as to form a hot spot 13.
  • the connection is preferably made by hot welding.
  • step c) the support tube is introduced into a reinforcing tube 60 of stainless steel.
  • Step c) may be prior to step b), or even earlier than step a).
  • step d the thermocouple resulting from the connection of the two thermocouple wires is protected by means of a cap 20, preferably in inconel.
  • the cap 20 may be rigidly attached to the reinforcing tube by any means, for example by means of a suitable glue, so as to define a sealed chamber 54 housing the projecting distal portions 40 and 42 of the thermocouple wires.
  • the chamber 54 is filled with an insulating material, preferably in powder form, disposed in the cap prior to its attachment to the reinforcing tube.
  • the powder of insulating material may in particular be an alumina powder or a magnesia powder.
  • the cap 20 has a necking 56 extending preferably to the distal end 32 of the support tube 30, as shown.
  • a necking 56 improves the response time of the sensor.
  • the embodiment of the shrinkage by means of a cap also improves the mechanical strength, and in particular the resistance to vibrations, compared to the prior art.
  • the shrinkage 56 can also serve as a mechanical stop facilitating the assembly of the cap 20 on the support tube 30.
  • the cap 20 comprises, in the extension of the shrinkage 56, an enlarged portion 58 of shape substantially complementary to the support 30, so that the support tube 30 can guide the cap 20 during its assembly.
  • the reinforcing tube 60 extends the cap 20 to cover with it at least a portion, preferably the entire outer side surface of the protective sheath.
  • the cap and the reinforcing tube together define an enclosure around the support tube.
  • this enclosure is sealed at least in the portion of the temperature sensor that extends from the proximal end of the mineral insulated cable to the distal end 62 of the temperature sensor.
  • the lumen of the reinforcing tube 60 is substantially complementary in shape to the outer lateral surface of the support tube 30.
  • the cap 20 is attached to the edge 24 of the distal end of the reinforcing tube 60, as shown in Figure 4c.
  • the cap 20 and the reinforcing tube 60 form a monolithic assembly, i.e., the reinforcing tube 60 is integral with the cap 20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Procédé de fabrication d'un capteur de température à thermocouple comportant les étapes successives suivantes: a) introduction, dans un tube de support en un matériau céramique, de deux fils de thermocouple, jusqu'à ce qu'ils dépassent hors dudit tube de support; b) soudure des extrémités desdits fils de thermocouple dépassant hors dudit tube de support de manière à former un point chaud de thermocouple; c) introduction, au moins partielle, du tube de support dans un tube de renfort en un acier inoxydable; d) fixation d'un capuchon sur ledit tube de renfort de manière à protéger ledit point chaud.

Description

Capteur de température
Domaine technique
L'invention concerne un capteur de température comportant un thermocouple destiné à la mesure de températures pouvant varier de -40 ^ à 1200°C, notamment dans un groupe moteur thermique d'un véhicule automobile.
Art antérieur
Comme représenté sur la figure 1 , un dispositif de mesure de la température comporte classiquement un capteur de température 2 prolongé par un câble d'extension 3 permettant de connecter le capteur de température à un appareil de mesure 4. Le capteur de température 2 comporte classiquement une gaine de protection 5 métallique et une butée 6, montée sur la gaine de protection 5 et adaptée en fonction de l'application visée.
L'appareil de mesure 4 est destiné à interpréter le signal électrique fourni par le capteur de température 2 et transmis par l'intermédiaire du câble d'extension 3. Cette interprétation permet une évaluation de la température à laquelle l'extrémité du capteur de température est soumise.
A l'intérieur de la gaine de protection 5, le capteur de température 2 comporte classiquement un thermocouple 7 et un isolant minéral 8, classiquement en alumine ou en magnésie, ce qui permet au thermocouple de résister aux contraintes environnementales, et notamment à des températures élevées.
Comme illustré sur la figure 2, le thermocouple 7 est un assemblage de premier et deuxième fils conducteurs, 10 et 12, respectivement, connectés l'un à l'autre et bout-à- bout en un point chaud 13. La différence de potentiel AU aux bornes des premier et deuxième fils conducteurs dépend de la différence entre la température au point chaud ΤΊ et la température T0 auxdites bornes, suivant l'effet Seebeck, bien connu.
Un capteur de température à thermocouple est notamment utilisé dans un groupe moteur thermique, dans lequel il est soumis à des températures pouvant varier de -40 °C à 1200 °C.
Pour fabriquer un capteur de température destiné à de telles applications, on procède classiquement suivant les étapes suivantes :
On fabrique d'abord un câble à isolant minéral, ou câble MIC (« minerai insulated cable », en anglais). Un câble à isolant minéral comporte une gaine de protection 5 métallique, et, à l'intérieur de la gaine de protection 5, deux fils de thermocouple 10 et 12 en des matériaux adaptés pour former un thermocouple, les deux fils de thermocouple étant isolés l'un de l'autre et de la gaine de protection 5 au moyen de l'isolant minéral 8.
Le câble à isolant minéral est généralement livré sous forme d'un rouleau. Il est alors redressé, puis coupé en tronçons (fig.3a).
Pour constituer la jonction entre les deux fils de thermocouple, ou « point chaud » 13, un peu d'isolant minéral est extrait d'une des extrémités du câble à isolant minéral, par exemple par sablage ou grattage, typiquement sur une profondeur d'environ 2 à 10 mm. A cette extrémité dite « distale », les deux fils de thermocouple émergent ainsi de l'isolant, tout en étant ceinturés par la gaine de protection 5 (fig. 3b).
Les deux extrémités des fils de thermocouple ainsi dégagées sont rapprochées mécaniquement jusqu'à être mises en contact l'une avec l'autre, puis connectées, par exemple par soudure électrique (fig. 3c).
L'extrémité évidée de la gaine de protection peut être ensuite, optionnellement, remplie de matériau isolant, identique ou différent de l'isolant minéral du câble à isolant minéral, puis refermée de manière à protéger le thermocouple, par exemple par soudure électrique (fig. 3d).
Par ailleurs, après fermeture de la gaine de protection 5 ou avant la découpe du câble à isolant minéral, on réalise classiquement un rétreint 15 à l'extrémité distale de la gaine de protection 5, classiquement par tréfilage ou martelage. Le rétreint permet classiquement d'améliorer le temps de réponse du capteur de température.
Un tel procédé de fabrication est difficile à automatiser et implique actuellement des opérations manuelles délicates.
II existe donc un besoin pour une solution permettant de faciliter l'automatisation de la fabrication d'un capteur de température à thermocouple.
Un but de l'invention est de répondre à ce besoin. Résumé de l'invention
L'invention propose un procédé de fabrication d'un capteur de température à thermocouple comportant les étapes successives suivantes :
a) introduction, dans un tube de support en un matériau céramique, typiquement à la base d'alumine (AI203) ou de magnésie (MgO) mais également d'autres matériaux de la famille céramique ou leurs mélanges AIN, BN, Si02, ou autres, ,de deux fils de thermocouple, jusqu'à ce qu'ils dépassent hors dudit tube de support (du côté du tube de support opposé au côté par lequel ils ont été introduits dans le tube de support) ;
b) soudure des extrémités desdits fils de thermocouple dépassant hors dudit tube de support de manière à former un point chaud de thermocouple ;
c) indépendamment des étapes précédentes, mais avant l'étape d), introduction, au moins partielle, du tube de support dans un tube de renfort en un acier inoxydable ;typiquement de la famille d'Inconel, ou un 310 S, au autre acier inoxydable selon les contraintes d'application choisi.
d) fixation d'un capuchon sur ledit tube de renfort de manière à protéger ledit point chaud.
Comme on le verra plus en détail dans la suite de la description, un tel procédé peut être automatisé.
Un procédé selon l'invention peut encore comporter une ou plusieurs des caractéristiques optionnelles préférées suivantes :
- le tube de support est cloisonné ;
- le capuchon présente un rétreint avant d'être fixé sur le tube de support ;
- le capuchon est conformé pour recouvrir plus de 90% de la surface latérale extérieure du tube de support ;
- le capuchon est en inconel, ce qui confère une grande stabilité de la mesure dans le temps ;
- avant assemblage du capuchon, le capuchon est rempli d'un matériau isolant, de préférence en poudre, en un matériau choisi parmi l'alumine, la magnésie, la nitrure de aluminium et/ou la nitrure de bore.
L'invention concerne aussi un capteur de température comportant un tube de support en un matériau céramique, de préférence cloisonné, , traversé longitudinalement par deux fils de thermocouple, les deux fils de thermocouple faisant saillie aux extrémités proximale et distale du tube de support, en se rejoignant à l'extérieur du tube de support, au-delà de l'extrémité distale dudit tube de support,
les parties des fils de thermocouple faisant saillie au-delà de l'extrémité distale du tube de support étant de préférence protégées par un capuchon, de préférence rempli d'un matériau isolant, fixé à un tube de renfort dans lequel est logé le tube de support. Un capteur de température selon l'invention peut être en particulier fabriqué suivant un procédé selon l'invention, éventuellement adapté pour que le capteur de température présente une ou plusieurs des caractéristiques optionnelles décrites ci-après.
Un capteur de température selon l'invention peut encore comporter une ou plusieurs des caractéristiques optionnelles et préférées suivantes :
- le couple de matériaux des premier et deuxième fils de thermocouple est de type N ou K, de préférence de type N ;
- dans un mode de réalisation préféré, aucun des fils du thermocouple, n'est recouvert d'une gaine électriquement isolante dans le tube de support ;
- à leur extrémité proximale, les fils de thermocouple comportent des moyens de connexion électrique, par exemple des bornes de connexion autorisant leur connexion à un appareil de mesure et/ou à un câble d'extension ;
- un fil de thermocouple n'est pas fixé dans la lumière longitudinale du tube de support qu'il traverse, plus précisément il est inséré dans la lumière du tube ; - le tube de support comporte deux lumières longitudinales séparées par une cloison ;
- le tube de support est un tube extrudé ;
- le tube de support est en un matériau céramique, typiquement à la base d'alumine (AI203) ou de magnésie (MgO) mais également d'autres matériaux de la famille céramique ou leurs mélanges AIN, BN, Si02, ou autres
- le tube de support est en un matériau isolant électriquement ;
- le capuchon présente un rétreint avant d'être fixé sur le tube de support, pour disposer d'un temps de réponse court, le diamètre du rétreint au niveau du point chaud est de préférence inférieur à 3,5 mm, voire inférieur à 3 mm, voire inférieur à 2 mm, voire inférieur à 1 ,5 mm ;
- le capuchon est fixé hermétiquement sur le tube de renfort ;
- le capuchon est fixé à une extrémité distale du tube de renfort et/ou sur la surface latérale extérieure et/ou la surface latérale intérieure du tube de renfort ;
- le capuchon est fixé par soudure laser sur le tube de renfort ;
- le capuchon recouvre plus de 10%, plus de 30%, plus de 60%, plus de 90%, de préférence sensiblement 100% de la surface latérale extérieure du tube de support ;
- le capuchon est conformé pour entrer en butée avec le tube de support et/ou le tube de renfort, et/ou il comporte des moyens de guidage du capuchon sur le tube de support et/ou le tube de renfort ; - le capuchon est rempli d'un matériau isolant, de préférence sous forme de poudre, de préférence en un matériau choisi parmi l'alumine et/ou la magnésie et/ou le nitrure de bore et/ou le nitrure d'aluminium, de manière que le thermocouple soit isolé de l'extérieur par ledit matériau isolant ;
- tube de renfort est de préférence en un acier inoxydable ; typiquement de la famille d'Inconel, ou un 310 S, au autre acier inoxydable selon les contraintes d'application choisi.
- de préférence, le diamètre extérieur du tube de renfort est supérieur à 4 mm, de préférence supérieur ou égal à 4,5 mm ;
- la paroi du tube de renfort présente une épaisseur supérieure à 0,2 mm et/ou inférieure à 1 ,3 mm ;
- une butée mécanique est fixée, de préférence soudée, sur le tube de renfort.
L'invention concerne également l'utilisation d'un capteur de température selon l'invention dans un environnement dont la température peut varier de -40°C à 1200 °C, et en particulier peut être supérieure à 800 'Ό, supérieure à 900 °C, supérieure à 1000°C, ou supérieure à 1 100 ^C, et en particulier dans un groupe moteur thermique d'un véhicule automobile.
L'invention concerne enfin un groupe moteur thermique d'un véhicule automobile comportant un capteur de température selon l'invention, et un véhicule automobile comportant un groupe moteur thermique selon l'invention. Le capteur de température peut être en particulier disposé dans le collecteur d'échappement en amont de la turbine d'un turbocompresseur ou dans une tubulure d'admission de carburant ou de comburant ou dans une tubulure d'échappement.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description détaillée qui va suivre, et à l'examen du dessin annexé dans lequel ;
- la figure 1 représente, schématiquement, un capteur de température connecté à un appareil de mesure ;
- la figure 2 illustre schématiquement le principe de fonctionnement d'un thermocouple ; - la figure 3 (fig. 3a à 3d) illustre le procédé de fabrication d'un capteur de température selon la technique antérieure ;
- la figure 4 (fig. 4a à 4d) illustre les différentes étapes d'un procédé de fabrication selon l'invention. Définitions
- Par « proximal » et « distal », on distingue les deux côtés d'un capteur de température selon l'invention. Le côté « distal » est celui du point chaud.
- Par « point chaud », on désigne classiquement la jonction entre les deux fils de thermocouple, indépendamment de sa température.
- Par « comportant un », « présentant un » ou « comprenant un », on entend « comportant au moins un », sauf indication contraire.
- Des références identiques sont utilisées pour désigner des organes analogues dans les différentes figures. Description détaillée
Les figures 1 à 3 ayant été décrites en préambule, on se reporte à présent à la figure 4.
L'étape a) consiste à faire passer les deux fils de thermocouple 10 et 12, destinés à la constitution d'un thermocouple, à travers une ou plusieurs lumières longitudinale(s) 28 d'un tube de support 30 en un matériau céramique (fig. 4a).
Le tube de support 30 est conformé pour guider les fils de thermocouple lors de leur introduction.
De préférence, le tube de support 30 est un profilé, de préférence conformé de manière que la ou les lumières 28 présentent une section transversale sensiblement identique à celle des fils de thermocouple qu'elles sont destinées à recevoir.
Le tube de support 30 peut être en particulier fabriqué par extrusion.
De préférence, le tube de support est cloisonné. Le cloisonnement du tube de support 30 permet avantageusement d'éliminer tout risque de contact électrique entre les parties des fils du thermocouple introduites dans ledit tube de support, même lorsqu'elles ne sont pas isolées au moyen d'une gaine électriquement isolante.
Dans une variante non représentée, le tube de support 30 comporte une unique lumière et les fils de thermocouple sont gainés au moyen d'une gaine électriquement isolante, évitant ainsi tout contact électrique entre les fils de thermocouple à l'intérieur du tube de support 30.
Les fils de thermocouple peuvent être souples ou rigides. De préférence, ils présentent une section transversale sensiblement circulaire.
Les fils de thermocouple sont poussés jusqu'à dépasser de l'extrémité distale 32 du tube de support 30. Les parties en saillie 40 et 42 des fils de thermocouple sont entièrement ou partiellement dénudées, de manière à autoriser, lors de l'étape b), une mise en contact des deux fils de thermocouple.
Les parties en saillie 50 et 22 des fils de thermocouple 10 et 12 qui s'étendent hors du tube de support 30 au-delà de l'extrémité proximale 44 peuvent présenter une longueur supérieure à 5 cm, supérieure à 10 cm, supérieure à 20 cm, supérieure à 50 cm. Avantageusement, ces fils peuvent ainsi servir de câble d'extension 3, pour connecter électriquement le capteur de température 2 de l'appareil de mesure 4. Bien entendu, si les fils de thermocouple sont utilisés comme câble d'extension, leurs parties proximales en saillie 50 et 52 doivent être isolées électriquement. A leur extrémité proximale, les fils de thermocouple 10 et 12 comportent de préférence des moyens de connexion électrique, par exemple des bornes de connexion autorisant leur connexion à l'appareil de mesure 4.
A l'étape b), comme représenté sur la figure 4b, les extrémités distales 40 et 42 des fils de thermocouple 10 et 12 sont ensuite connectées l'une à l'autre, c'est-à-dire mises en contact physique et électrique, de manière définitive, de manière à former un point chaud 13. La connexion est de préférence réalisée par soudure à chaud.
A l'étape c), le tube de support est introduit dans un tube de renfort 60 en acier inoxydable. L'étape c) peut être antérieure à l'étape b), voire antérieure à l'étape a).
A l'étape d), comme représenté sur la figure 4c, le thermocouple résultant de la connexion des deux fils de thermocouple est protégé au moyen d'un capuchon 20, de préférence en inconel.
Le capuchon 20 peut être fixé rigidement au tube de renfort par tout moyen, par exemple au moyen d'une colle appropriée, de manière à définir une chambre hermétique 54 logeant les parties distales en saillie 40 et 42 des fils de thermocouple. De préférence, la chambre 54 est remplie d'un matériau isolant, de préférence en poudre, disposé dans le capuchon avant sa fixation sur le tube de renfort. La poudre de matériau isolant peut être en particulier une poudre d'alumine ou une poudre de magnésie.
De préférence encore, le capuchon 20 présente un rétreint 56 s'étendant de préférence jusqu'à l'extrémité distale 32 du tube de support 30, comme représenté. Avantageusement, un rétreint 56 améliore le temps de réponse du capteur.
Avantageusement, la réalisation du rétreint au moyen d'un capuchon améliore également la résistance mécanique, et notamment la résistance aux vibrations, par rapport à la technique antérieure. Le rétreint 56 peut également servir de butée mécanique facilitant l'assemblage du capuchon 20 sur le tube de support 30. De préférence encore, le capuchon 20 comporte, dans le prolongement du rétreint 56, une partie élargie 58 de forme sensiblement complémentaire au tube de support 30, de sorte que le tube de support 30 puisse guider le capuchon 20 lors de son montage.
De préférence, le tube de renfort 60 vient prolonger le capuchon 20 afin de couvrir avec lui au moins une partie, de préférence toute la surface latérale extérieure de la gaine de protection. De préférence, le capuchon et le tube de renfort définissent ensemble une enceinte autour du tube de support. De préférence cette enceinte est étanche au moins dans la partie du capteur de température qui s'étend depuis l'extrémité proximale du câble à isolant minéral jusqu'à l'extrémité distale 62 du capteur de température.
De préférence encore, la lumière du tube de renfort 60 est de forme sensiblement complémentaire à la surface latérale extérieure du tube de support 30.
Dans un mode de réalisation, le capuchon 20 est fixé sur le chant 24 de l'extrémité distale du tube de renfort 60, comme représenté sur la figure 4c. Dans un mode de réalisation, le capuchon 20 et le tube de renfort 60 forment un ensemble monolithique, c'est-à-dire que le tube de renfort 60 est venu de matière avec le capuchon 20.
Comme cela apparaît clairement à présent, les étapes d'un procédé de fabrication selon l'invention sont simples et peuvent être automatisées. Il en résulte une réduction importante du coût de fabrication.
Bien entendu, l'invention n'est pas limitée au mode de réalisation décrit et représenté, fourni à des fins illustratives seulement.

Claims

REVENDICATIONS
Procédé de fabrication d'un capteur de température à thermocouple comportant les étapes successives suivantes :
a) introduction, dans un tube de support (30) en un matériau céramique, de deux fils de thermocouple (10 ;12) jusqu'à ce qu'ils dépassent hors dudit tube de support ;
b) soudure des extrémités desdits fils de thermocouple dépassant hors dudit tube de support de manière à former un point chaud de thermocouple (13) ;
c) indépendamment des étapes précédentes, mais avant l'étape d), introduction, au moins partielle, du tube de support dans un tube de renfort en un acier inoxydable ;
d) fixation d'un capuchon sur ledit tube de renfort de manière à protéger ledit point chaud. Procédé selon la revendication précédente, dans lequel le tube de support est cloisonné. Procédé selon l'une quelconque des revendications précédentes, dans lequel le capuchon présente un rétreint avant d'être fixé sur le tube de support. Procédé selon l'une quelconque des revendications précédentes, dans lequel le capuchon est conformé pour recouvrir plus de 90% de la surface latérale extérieure du tube de support. Procédé selon l'une quelconque des revendications précédentes, dans lequel, avant assemblage du capuchon, le capuchon est rempli d'un matériau isolant en un matériau choisi parmi l'alumine et/ou la magnésie. Procédé selon l'une quelconque des revendications précédentes, dans lequel le capuchon est en inconel. Capteur de température fabriqué suivant un procédé selon l'une quelconque des revendications précédentes. Utilisation d'un capteur de température selon la revendication précédente dans un environnement à une température supérieure à 1000°C et/ou dans lequel la température peut varier de -40 °C à 1200 °C.
Groupe moteur thermique d'un véhicule automobile comportant un capteur de température selon la revendication 7.
PCT/FR2015/053179 2014-11-24 2015-11-24 Capteur de temperature WO2016083719A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15817947.3A EP3224588A1 (fr) 2014-11-24 2015-11-24 Capteur de temperature
JP2017527909A JP2017535781A (ja) 2014-11-24 2015-11-24 温度センサ
CN201580071642.3A CN107110712A (zh) 2014-11-24 2015-11-24 温度传感器
US15/529,223 US20170350765A1 (en) 2014-11-24 2015-11-24 Temperature sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1461323 2014-11-24
FR1461323A FR3028947B1 (fr) 2014-11-24 2014-11-24 Capteur de temperature

Publications (1)

Publication Number Publication Date
WO2016083719A1 true WO2016083719A1 (fr) 2016-06-02

Family

ID=52273345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053179 WO2016083719A1 (fr) 2014-11-24 2015-11-24 Capteur de temperature

Country Status (6)

Country Link
US (1) US20170350765A1 (fr)
EP (1) EP3224588A1 (fr)
JP (1) JP2017535781A (fr)
CN (1) CN107110712A (fr)
FR (1) FR3028947B1 (fr)
WO (1) WO2016083719A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482854A (zh) * 2016-11-18 2017-03-08 中国计量大学 一种细丝热电偶保护装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822596B1 (fr) 2019-11-13 2023-10-11 HIDRIA d.o.o. Procédé de fabrication d'une pointe de détection pour un dispositif de détection de la température, dispositif de détection de la température, moteur à combustion et véhicule le comprenant
CN113091936B (zh) * 2021-04-06 2022-03-01 华中科技大学 一种适用于42CrMo钢活塞表面瞬态温度测量的同轴薄膜热电偶
CN114905153A (zh) * 2022-04-12 2022-08-16 惠州市鑫永盛电子有限公司 一种热电偶传感器的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018624A (en) * 1973-08-22 1977-04-19 Engelhard Minerals & Chemicals Corporation Thermocouple structure and method of manufacturing same
US4538927A (en) * 1983-01-12 1985-09-03 Robert Bosch Gmbh Electrical temperature sensor, particularly for fever thermometer use
WO2010047265A1 (fr) * 2008-10-22 2010-04-29 日立オートモティブシステムズ株式会社 Capteur de mesure de température et son procédé de fabrication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2441128Y (zh) * 2000-10-10 2001-08-01 吴加伦 吹气铠装热电偶
CN202002748U (zh) * 2011-03-02 2011-10-05 四川蜀谷仪表科技有限公司 一种铂电阻温度传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018624A (en) * 1973-08-22 1977-04-19 Engelhard Minerals & Chemicals Corporation Thermocouple structure and method of manufacturing same
US4538927A (en) * 1983-01-12 1985-09-03 Robert Bosch Gmbh Electrical temperature sensor, particularly for fever thermometer use
WO2010047265A1 (fr) * 2008-10-22 2010-04-29 日立オートモティブシステムズ株式会社 Capteur de mesure de température et son procédé de fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482854A (zh) * 2016-11-18 2017-03-08 中国计量大学 一种细丝热电偶保护装置

Also Published As

Publication number Publication date
JP2017535781A (ja) 2017-11-30
FR3028947A1 (fr) 2016-05-27
CN107110712A (zh) 2017-08-29
US20170350765A1 (en) 2017-12-07
FR3028947B1 (fr) 2016-12-16
EP3224588A1 (fr) 2017-10-04

Similar Documents

Publication Publication Date Title
EP3224588A1 (fr) Capteur de temperature
EP2828630A1 (fr) Capteur de temperature
FR2836549A1 (fr) Procede pour fabriquer un capteur de temperature et capteur de temperature ainsi fabrique
FR3016695B1 (fr) Capteur de temperature pour temperature elevee
EP3221674A1 (fr) Capteur de température
EP3221675B1 (fr) Capteur de température
CA2246651C (fr) Dispositif de protection etanche pour une jonction de cables haute tension
EP3237861A1 (fr) Capteur de température
EP1383211A1 (fr) Procédé de sertissage d'un contact sur des brins d'un câble
WO2017029453A1 (fr) Dispositif de connexion électrique amélioré
EP2957938B1 (fr) Câble longitudinal et procédé d'installation d'un tel câble
EP1383202A1 (fr) Dispositif de liaison entre un cable et un élément de contact
FR3015104A1 (fr) Enveloppe de protection thermique pour proteger un cable et/ou un accessoire pour cable
WO2017103470A1 (fr) Capteur hautes temperatures avec cavite pour materiau d'etancheite
EP2955792A2 (fr) Douille de contact électrique à effort d'insertion réduit
FR2984494A1 (fr) Capteur de temperature
FR3137510A1 (fr) Dispositif de raccordement électrique et son procédé de production
FR2949538A1 (fr) Bougie de prechauffage et procede de fabrication d'une telle bougie
WO2019122036A1 (fr) Capteur hautes températures avec capuchon en céramique fritté
FR2486660A1 (fr) Emetteur d'impulsions capacitif
WO2021111079A1 (fr) Dispositif de connexion électrique avec matériau étanche
FR3133084A1 (fr) Capteur de saisie d’une propriété d’un gaz de mesure et procédé de réalisation
EP2639892A1 (fr) Contact mâle pour dispositif de raccordement électrique de conducteurs et connecteur électrique pourvu de tels contacts
WO2015158642A1 (fr) Sonde de temperature a performances ameliorees, pour thermostat de regulation thermique d'un appareil, de preference un chauffe-eau
FR2720199A1 (fr) Structure de liaison électrique d'un manchon protecteur avec une extrémité d'un écran semi-conducteur d'un câble électrique.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15817947

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015817947

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017527909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15529223

Country of ref document: US