WO2016082752A1 - 手持终端及其屏幕显示控制方法 - Google Patents

手持终端及其屏幕显示控制方法 Download PDF

Info

Publication number
WO2016082752A1
WO2016082752A1 PCT/CN2015/095473 CN2015095473W WO2016082752A1 WO 2016082752 A1 WO2016082752 A1 WO 2016082752A1 CN 2015095473 W CN2015095473 W CN 2015095473W WO 2016082752 A1 WO2016082752 A1 WO 2016082752A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing data
axis
gravity sensing
handheld terminal
held
Prior art date
Application number
PCT/CN2015/095473
Other languages
English (en)
French (fr)
Inventor
陈磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016082752A1 publication Critical patent/WO2016082752A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the embodiment of the invention belongs to the field of electronic technologies, and in particular relates to a handheld terminal and a screen display control method thereof.
  • Existing handheld terminals can generally control the manner in which the screen is displayed according to the mode of use. For example, the terminal can switch between the horizontal display mode and the vertical display mode to satisfy the user's use in different situations. When the switching of the screen display is realized, it is not necessary to operate any interface element or physical button of the screen of the handheld terminal, but the user holds the holding action of the handheld terminal. It can be seen that the recognition of the user's holding action or the holding manner of the handheld terminal is the key to realize the screen display switching.
  • the prior art there are two main methods for identifying the held manner: one is to install a touch sensing device on the side of the handheld terminal to determine whether the user is holding the left or right hand, whether it is vertical or horizontal; The second is to determine whether the user is holding in the vertical or horizontal direction by the gravity sensing device of the handheld terminal itself.
  • the first method requires a dedicated touch sensing device, and more devices are required to ensure the accuracy of the recognition result, which not only increases the production cost of the handheld terminal, but also is difficult to install on a small handheld terminal.
  • the applicability is poor; the second method uses only its own gravity sensing device, and cannot be applied to some usage scenarios. For example, when the user is lying down, the accuracy of the recognition result cannot be ensured, so that the recognition result and the user's expectation are not Match.
  • the technical problem to be solved by the embodiments of the present invention is to provide a handheld terminal and a screen display control method thereof, which can accurately display a screen according to usage conditions.
  • the first aspect provides a screen display control method for a handheld terminal, comprising: acquiring first gravity sensing data of a wearable device that establishes a communication connection with the handheld terminal; and obtaining, according to the first gravity sensing data and the second gravity sensing data of the handheld terminal, The held manner of the handheld terminal; controlling the screen display of the handheld terminal according to the held manner.
  • obtaining the held manner of the handheld terminal includes: if the first gravity sensing data changes If the difference between the change amount of the second gravity sensing data of the handheld terminal is less than or equal to the preset threshold, it is determined that the arm position corresponding to the held manner of the handheld terminal is the same as the arm position worn by the wearable device; The position of the arm worn by the wearing device is obtained by the holding manner of the handheld terminal, and is held by the left hand or by the right hand.
  • the screen display control method further includes: pre-acquiring the arm position worn by the wearing device; and the process of acquiring the arm position worn by the wearing device includes: Obtaining a third gravity sensing data of the wearable device during the walking of the swing arm of the user; if the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset left hand within the preset time period, determining The position of the arm worn by the wearing device is the left hand; if the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset right hand within the preset time period, it is determined that the arm position worn by the wearing device is the right hand.
  • the arm position of the handheld terminal is the same as the arm position of the wearable device, and is held.
  • the holding manner further includes: vertical and forward, vertical and reverse, lateral and forward, lateral and reverse; according to the first gravity sensing data and the second gravity sensing data of the handheld terminal, the held grip of the handheld terminal is obtained.
  • the direction further includes: if the angle between the X axis of the first gravity sensing data and the X axis of the second gravity sensing data is less than or equal to the preset first angle threshold, determining that the handheld terminal is vertical and positive Holding the grip; if the complementary angle between the X-axis of the first gravity sensing data and the X-axis of the second gravity sensing data is less than or equal to the first angle threshold, it is determined that the handheld terminal is held vertically and reversely If the angle between the X-axis of the first gravity sensing data and the Y-axis of the second gravity sensing data is less than or equal to the first angle threshold, it is determined that the handheld terminal is laterally and positively To the grip, wherein the vertical and forward hand-held terminal is rotated 90° clockwise, the direction is horizontal and positive; if the first gravity sensing data is between the X-axis and the Y-axis of the second gravity sensing data If the complementary angle of the angle is less than or equal to the first angle threshold,
  • the wearable device is a smart watch or a smart bracelet.
  • the wearable device is a smart glasses, and according to the first gravity sensing data and the second gravity sensing data of the handheld terminal, the held manner of the handheld terminal is obtained, including: If the angle between the Y axis of the gravity sensing data and the Y axis of the second gravity sensing data is less than or equal to the preset second angle threshold, it is determined that the handheld terminal is vertically and positively held; if the first gravity If the complementary angle between the Y-axis of the sensing data and the Y-axis of the second gravity sensing data is less than or equal to the second angle threshold, it is determined that the handheld terminal is held vertically and in the opposite direction; if the first gravity sensing data The angle between the angle between the Y axis and the X axis of the second gravity sensing data is less than or equal to the second angle threshold, and it is determined that the handheld terminal is held laterally and positively, wherein the vertical and forward handheld terminals The direction after being rotated 90° clock
  • the second aspect provides a handheld terminal, including: a transceiver module, configured to acquire first gravity sensing data of a wearable device that establishes a communication connection with the handheld terminal; and a sensing module configured to acquire second gravity sensing data of the handheld terminal;
  • the module is configured to obtain a held manner of the handheld terminal according to the first gravity sensing data acquired by the transceiver module and the second gravity sensing data acquired by the sensing module, and further control the screen display of the handheld terminal according to the held manner.
  • the processing module compares the difference between the amount of change of the first gravity sensing data and the amount of change of the second gravity sensing data of the handheld terminal is less than or equal to a preset
  • the threshold is determined to determine that the position of the arm of the handheld terminal is the same as the position of the arm worn by the wearable device, and the processing module obtains the held position of the handheld terminal according to the position of the arm worn by the wearing device. The way is to be held by the left hand or by the right hand.
  • the processing module is further configured to obtain an arm position worn by the wearable device in advance, and the transceiver module is further configured to acquire the wearable device while the user is walking.
  • the third gravity sensing data in the process of swinging the arm, if the change amount of the third gravity sensing data is the same as the amount of change corresponding to the preset left hand in the preset time period, determining the arm worn by the wearing device The position is the left hand; if, during the preset time period, if the processing module compares the amount of change of the third gravity sensing data with the amount of change corresponding to the preset right hand, it is determined that the arm position worn by the wearing device is the right hand.
  • the held position of the handheld terminal corresponds to the same arm position as the wearing device, and is The holding manner further includes: vertical and forward, vertical and reverse, lateral and forward, lateral and reverse; if the processing module compares the X-axis of the first gravity sensing data with the X-axis of the second gravity sensing data If the angle between the angles is less than or equal to the preset first angle threshold, it is determined that the handheld terminal is vertically and positively held; if the processing module compares the X axis of the first gravity sensing data with the X axis of the second gravity sensing data If the complementary angle between the angles is less than or equal to the first angle threshold, it is determined that the handheld terminal is vertically and reversely gripped; if the processing module compares the X axis of the first gravity sensing data with the Y of the second gravity sensing data If the angle between the axes is less than or equal to the first angle threshold, it is
  • the processing module compares If the complementary angle between the X-axis of the gravity sensing data and the Y-axis of the second gravity sensing data is less than or equal to the first angle threshold, it is determined that the handheld terminal is held horizontally and in the opposite direction, wherein the vertical direction is positive
  • the direction after the hand-held terminal is rotated 90° counterclockwise is horizontal and reverse; when the wearable device and the hand-held terminal are placed in the forward direction and parallel to each other, the X-axis, the Y-axis, and the Z-axis of the first gravity sensing data are respectively
  • the X-axis, the Y-axis, and the Z-axis of the second gravity sensing data have the same direction, and the Z-axis of the second gravity sensing data and the handheld terminal
  • the plane is vertical.
  • the wearable device is a smart watch or a smart bracelet.
  • the wearable device is smart glasses, and if the processing module compares the angle between the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data is less than or equal to The preset second angle threshold determines that the handheld terminal is vertically and positively held; if the processing module compares the angle between the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data If the angle is less than or equal to the second angle threshold, it is determined that the handheld terminal is vertically and reversely gripped; if the processing module compares the angle between the Y axis of the first gravity sensing data and the X axis of the second gravity sensing data If the complementary angle is less than or equal to the second angle threshold, it is determined that the handheld terminal is held laterally and positively, wherein the vertical and forward hand-held terminal is rotated 90° clockwise after the direction is horizontal and forward; Comparing the angle between the Y-axis
  • a third aspect provides a handheld terminal, including a transceiver, a gravity sensor, a memory, and a processor, wherein: the transceiver is configured to acquire first gravity sensing data of a wearable device that establishes a communication connection with the handheld terminal, and the gravity sensor is configured to acquire the handheld terminal Second gravity sensing data; the memory is stored to be called by the processor to implement control of the screen display of the handheld terminal; the processor is configured to call the memory storage application and according to the first gravity sensing data acquired by the transceiver And the second gravity sensing data acquired by the gravity sensor obtains the held manner of the handheld terminal, and further controls the screen display of the handheld terminal according to the held manner.
  • the processor compares the difference between the amount of change of the first gravity sensing data and the amount of change of the second gravity sensing data of the handheld terminal is less than or equal to a preset
  • the threshold is determined to determine that the position of the arm corresponding to the gripping manner of the handheld terminal is the same as the position of the arm worn by the wearing device, and the processor obtains the held manner of the handheld terminal according to the arm position of the wearing device that is acquired in advance, and is held by the handheld device. To be held by the left hand or by the right hand Hold the grip.
  • the processor is further configured to obtain an arm position worn by the wearable device in advance, and the transceiver is further configured to acquire the wearable device to walk on the user.
  • the third gravity sensing data in the process of swinging the arm, if the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset left hand in the preset time period, determining the arm worn by the wearing device The position is the left hand; if the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset right hand in the preset time period, it is determined that the arm position worn by the wearing device is the right hand.
  • the arm position of the handheld terminal corresponds to the arm position of the wearable device, and is The holding manner further includes: vertical and forward, vertical and reverse, lateral and forward, lateral and reverse; if the processor compares the X-axis of the first gravity sensing data with the X-axis of the second gravity sensing data If the angle between the angles is less than or equal to the preset first angle threshold, it is determined that the handheld terminal is vertically and positively held; if the processor compares the X axis of the first gravity sensing data with the X axis of the second gravity sensing data If the complementary angle between the angles is less than or equal to the first angle threshold, it is determined that the handheld terminal is vertically and reversely gripped; if the processor compares the X axis of the first gravity sensing data with the Y of the second gravity sensing data If the angle between the axes is less than or equal to the first angle threshold, it is determined that the
  • the processor compares the first sense of gravity If the complementary angle between the X axis of the data and the Y axis of the second gravity sensing data is less than or equal to the first angle threshold, it is determined that the handheld terminal is held laterally and in the opposite direction, wherein the vertical direction is positive
  • the direction after the hand-held terminal is rotated 90° counterclockwise is lateral and reverse; when the wearable device and the handheld terminal are placed in the forward direction and parallel to each other, the X-axis, the Y-axis, and the Z-axis of the first gravity sensing data are respectively and the second
  • the directions of the X-axis, the Y-axis, and the Z-axis of the gravity sensing data are the same, and the Z-axis of the second gravity sensing data is perpendicular to the plane in which the handheld terminal is located.
  • the wearable device is a smart watch or a smart bracelet.
  • the wearable device is smart glasses, and if the processor compares between the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data If the angle is less than or equal to the preset second angle threshold, it is determined that the handheld terminal is vertically and positively held; if the processor compares the Y axis of the first gravity sensing data with the Y axis of the second gravity sensing data If the complementary angle of the angle is less than or equal to the second angle threshold, it is determined that the handheld terminal is held vertically and in the opposite direction; if the processor compares the Y axis of the first gravity sensing data with the X axis of the second gravity sensing data If the complementary angle between the angles is less than or equal to the second angle threshold, it is determined that the hand-held terminal is held laterally and positively, wherein the vertical and forward hand-held terminals are rotated 90° clockwise, and the direction is horizontal and positive.
  • the processor compares the angle between the Y axis of the first gravity sensing data and the X axis of the second gravity sensing data to be less than or equal to the second angle threshold, determining that the handheld terminal is held laterally and in the opposite direction, wherein
  • the direction of the vertical and forward hand-held terminal rotated 90° counterclockwise is horizontal and reverse; when the wearable device and the hand-held terminal are placed in the forward direction and parallel to each other, the X-axis and the Y-axis of the first gravity sensing data, Z axis and X of the second gravity sensing data respectively , Y-axis, Z-axis in the same direction, and the Z-axis perpendicular to the plane of the hand-held terminal is located in a second gravity sensor data.
  • the embodiment of the present invention controls the screen display of the handheld terminal by combining the gravity sensing data of the wearable device, and can improve the accuracy of the recognition result of the held manner of the handheld terminal.
  • the manner of displaying the screen is consistent with the user's expectation; in addition, the embodiment of the invention does not need to add other sensing devices on the handheld terminal, that is, the production cost is not required, and the applicability is good.
  • FIG. 1 is a flowchart of a screen display control method according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a screen display control method according to a second embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a wearable device during a user walking process according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another wearable device according to an embodiment of the present invention during a user walking process
  • FIG. 5 is a flowchart of a screen display control method according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a wearable device and a handheld terminal according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a screen display control method according to a fourth embodiment of the present invention.
  • FIG. 8 is another schematic diagram of a wearable device and a handheld terminal according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a handheld terminal according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a handheld terminal according to an embodiment of the present invention.
  • the embodiment of the invention provides a screen display control method as shown in FIG. 1 , which establishes a communication connection between the handheld terminal and the wearable device to implement control of the screen display of the handheld terminal, for example, horizontal screen display and vertical screen display. Switch between, or perform left-hand mode display, or right-hand mode display.
  • the communication mode between the handheld terminal and the wearable device may be short-distance wireless communication, such as infrared, Bluetooth or WiFi, or remote communication, for example, based on 2G (2rd-Generation, second generation mobile communication technology), 3G (3rd-Generation, 3rd generation mobile communication technology) and/or 4G (4rd-Generation, 4th generation mobile communication technology) mobile communication.
  • the screen display control method of this embodiment includes:
  • Step S11 Acquire first gravity sensing data of the wearable device that establishes a communication connection with the handheld terminal.
  • the handheld terminal may be a smart phone, or may be any terminal having a screen display and switching function, such as a portable communication device, a PDA (Personal Digital Assistant, a personal digital assistant, or a tablet); It can be a smart watch, or it can be a smart bracelet, smart glasses, and embedded devices set in jewelry and clothing accessories.
  • a PDA Personal Digital Assistant
  • a personal digital assistant or a tablet
  • It can be a smart watch, or it can be a smart bracelet, smart glasses, and embedded devices set in jewelry and clothing accessories.
  • the first gravity sensing data may be acquired by a gravity sensor or an accelerometer built in the wearable device, where the first gravity sensing data includes a gravity acceleration direction on the X-axis, the Y-axis, and the Z-axis in the spatial three-dimensional Cartesian coordinate system, and the wearing device is in the The gravity component on the three axes.
  • Step S12 According to the first gravity sensing data and the second gravity sensing data of the handheld terminal, the held manner of the handheld terminal is obtained.
  • the second gravity sensing data can be acquired by a gravity sensor or an accelerometer built in the handheld terminal, and the second gravity sensing data includes the direction of gravity acceleration on the X-axis, the Y-axis, and the Z-axis in the spatial three-dimensional Cartesian coordinate system, and the handheld terminal The gravity component on the three axes.
  • the manner in which the handheld terminal is held may include the held position or the held direction.
  • the held position may be held by the user's right hand or left hand, and the held direction may be the direction of the screen when the handheld terminal is held, for example, being vertically and positively held, being vertically and oppositely Hold to the grip, hold horizontally and positively, and hold horizontally and reversely.
  • the held manner may also include a combination of the held position and the held direction, that is, the right hand is held vertically and forwardly, the right hand is vertically and reversely held, and the right hand is held horizontally and positively. It is held horizontally and reversely by the right hand and vertically and forwardly held by the left hand, vertically and reversely held by the left hand, laterally and positively held by the left hand, and laterally and reversely held by the left hand.
  • Step S13 Control the screen display of the handheld terminal according to the held mode.
  • the left hand mode display is performed.
  • the application icon of the handheld terminal is displayed on the left side of the screen, or the application icon is displayed on the left side of the screen after being reduced;
  • the grip mode is When held by the right hand, the right-hand mode display is performed, for example, the application icon of the handheld terminal is displayed on the right side of the screen, or the application icon is displayed on the right side of the screen after being reduced.
  • the screen display direction required by the current terminal can be obtained, specifically:
  • the portrait mode display is performed, for example, the application icon is displayed along the long side of the screen and is directed from the upper short side of the screen toward the lower short side; In order to be held vertically and in the opposite direction, the portrait mode display is also performed, although the application icon is displayed along the long side of the screen, but the lower short side of the screen faces the upper short side.
  • the horizontal screen mode display is performed, for example, the application icon is displayed along the long side of the screen and is moved from the upper long side of the screen toward the lower long side; When held horizontally and in the opposite direction, the horizontal screen mode display is also performed. Although the application icon is displayed along the long side of the screen, the upper long side of the screen faces the lower long side.
  • the holding mode is a combination of the held position and the held direction
  • the display modes corresponding to the two are combined to control the display of the screen.
  • the first gravity sensing data of the wearable device controls the screen display of the handheld terminal, which can improve the accuracy of the recognition result of the held mode of the handheld terminal, and the manner and user of the display mode.
  • This embodiment does not need to add other sensing devices on the handheld terminal, that is, it does not need to increase the production cost, and the applicability is good.
  • the embodiment of the invention provides a screen display control method as shown in FIG. 2 to obtain a held position of the handheld terminal and display the screen according to the held position control screen.
  • the screen display control method of this embodiment includes:
  • Step S21 Acquire an arm position worn by the wearable device in advance.
  • the wearing device of the embodiment may be, for example, a smart watch or a smart wristband, and the wearing device is worn on the arm or wrist of the user.
  • the gravity sensing data of the wearable device during the walking of the swing arm of the user is acquired and used as the third gravity sensing data.
  • the wearable device moves clockwise with the user's arm, and at this time, the third gravity sensing data has a pendulum-like variation corresponding to the left hand and the right hand, respectively.
  • the pendulum variation includes not only changes in the direction of gravitational acceleration of the X-axis, the Y-axis, and the Z-axis, but also changes in the gravity components of the wearable device on the X-axis, the Y-axis, and the Z-axis.
  • the variation of the third gravity sensing data is described below by taking the change of the gravity acceleration direction of the X-axis as an example.
  • FIG. 3 and 4 are schematic views of the wearable device during the walking of the user; wherein, FIG. 3 is a case where the wearable device is worn on the left-hand arm, and FIG. 4 is a case where the wearable device is worn on the right-hand arm.
  • the wearable device performs a pendulum motion between the swing points of the user's arm between a1 and a3, and at the swing point a2, the user's arm is in a drooping state, and the screen of the wearable device is displayed at this time.
  • the direction is defined as a horizontal and positive display, and the direction after the lateral and positive wear device is rotated 90° counterclockwise is defined as vertical and forward.
  • the names of the screen display directions in the embodiments of the present invention are only an example.
  • the above-mentioned lateral and forward directions in another embodiment, may be defined as lateral and reverse, or defined as vertical and forward, or as vertical and reverse. In one embodiment, as long as the definition of the screen display orientation remains the same.
  • the position of the worn arm is the left hand, from the pendulum point a1 to the pendulum point a2, the direction of the X-axis in the third gravity sensing data is the same as the swinging direction of the arm, from the pendulum point a2 to the pendulum point a3, The direction of the X-axis in the three-gravity sensing data is the same as the swinging direction of the arm. From the pendulum point a3 to the pendulum point a2, the direction of the X-axis in the third gravity sensing data is opposite to the swinging direction of the arm, and the pendulum point a2 is pendulum. Point a1, the direction of the X-axis in the third gravity sensing data is opposite to the swinging direction of the arm.
  • the arm position is the right hand, from the pendulum point a1 to the pendulum point a2, the direction of the X-axis in the third gravity sensing data is opposite to the swinging direction of the arm, from the pendulum point a2 to the pendulum point a3, The direction of the X-axis in the three-gravity sensing data is opposite to the swinging direction of the arm. From the pendulum point a3 to the pendulum point a2, the direction of the X-axis in the third gravity sensing data is the same as the swinging direction of the arm, and the pendulum point a2 is pendulum. At point a1, the direction of the X-axis in the third gravity sensing data is the same as the direction in which the arm swings.
  • the left hand is worn or the right hand is worn by the amount of change in the third gravity sensing data (for example, the direction change of the X axis). If the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset left hand within the preset time period, it is determined that the arm position worn by the wearing device is the left hand. If the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset right hand within the preset time period, it is determined that the arm position worn by the wearing device is the right hand.
  • the third gravity sensing data for example, the direction change of the X axis
  • the setting of the preset time period can avoid the misjudgment of the position of the worn arm, further improve the accuracy of the recognition result of the held mode of the handheld terminal, thereby improving the user experience of the display mode switching.
  • the setting can avoid, for example, that when the user raises the arm and performs the waving motion, it is easily misjudged that the wearing device is worn on the other arm, that is, the position of the worn arm is not changed but the handheld terminal may misjudge the wearing. The position of the arm has changed.
  • the process of pre-acquiring the position of the arm worn by the wearable device is not limited to the real-time detection mode of this step.
  • the user rarely changes the position of the worn arm, so the pre-detected worn arm position can also be stored in the handheld terminal, or the user can directly store the worn arm position in the handheld terminal.
  • Step S22 If the difference between the change amount of the first gravity sensing data and the change amount of the second gravity sensing data is less than or equal to a preset threshold, determine the arm position and the wearable device corresponding to the held manner of the handheld terminal. The arm is worn in the same position.
  • the handheld terminal and the wearing device can be regarded as one body, and the amount of change of the first gravity sensing data is second.
  • the amount of change in the gravity sensing data is the same, that is, the changes in the direction of the gravitational acceleration of the wearable device and the hand-held terminal on the X-axis, the Y-axis, and the Z-axis are the same, and the changes in the gravity components on the three axes are also the same.
  • the difference between the amount of change of the first gravity sensing data and the amount of change of the second gravity sensing data should be within a certain range, and this embodiment will A certain range is used as a preset threshold.
  • the amount of change of the first gravity sensing data has no correlation with the amount of change of the second gravity sensing data. According to the position of the worn arm obtained in step S21, the held position can be judged from the reverse side, that is, opposite to the position of the arm worn by the wearable device.
  • the difference between the amount of change of the first gravity sensing data and the amount of change of the second gravity sensing data is greater than a preset threshold, determining that the arm position corresponding to the held manner of the handheld terminal and the arm position worn by the wearing device are not the same.
  • Step S23 According to the position of the arm worn by the wearable device obtained in advance, the held manner of the handheld terminal is obtained, and the held manner is held by the left hand or held by the right hand.
  • Step S24 Control the screen display of the handheld terminal according to the held mode.
  • the embodiment of the present invention further provides a screen display control method as shown in FIG. 5, in order to obtain a held orientation of the handheld terminal, the method is based on the arm position corresponding to the held manner of the handheld terminal and the arm position worn by the wearable device. the same.
  • the wearable device and the handheld terminal are vertically, forwardly, and placed in parallel with each other.
  • the directions of the X-axis, the Y-axis, and the Z-axis of the wearable device are respectively opposite to the directions of the X-axis, the Y-axis, and the Z-axis of the handheld terminal.
  • the X-axis, the Y-axis, and the Z-axis of the first gravity sensing data are respectively the same as the X-axis, the Y-axis, and the Z-axis of the second gravity sensing data, wherein the Z-axis of the second gravity sensing data and the handheld terminal The plane is vertical.
  • the held orientation of the present embodiment may include vertical and forward, vertical, and reverse, lateral and forward, lateral, and reverse directions, wherein the vertical and forward handheld terminals are rotated 90 degrees clockwise
  • the direction after the horizontal and forward, vertical and forward hand-held terminals are rotated 90° counterclockwise is lateral and reverse.
  • the screen display control method of this embodiment includes:
  • Step S51 Acquire first gravity sensing data of the wearable device that establishes a communication connection with the handheld terminal, and second gravity sensing data of the handheld terminal.
  • Step S52 analyzing the relationship between the first gravity sensing data and the second gravity sensing data, and performing step S53.
  • Step S53 if the angle between the X axis of the first gravity sensing data and the X axis of the second gravity sensing data is less than or equal to the preset first angle threshold, it is determined that the handheld terminal is vertically and positively held. ;
  • the complementary angle between the X axis of the first gravity sensing data and the X axis of the second gravity sensing data is less than or equal to the first angle threshold, determining that the handheld terminal is vertically and reversely held;
  • the complementary angle between the X-axis of the first gravity sensing data and the Y-axis of the second gravity sensing data is less than or equal to the first angle threshold, it is determined that the handheld terminal is held laterally and in the opposite direction.
  • Step S54 Control the screen display of the handheld terminal according to the held manner determined in step S53.
  • the value of the first angle threshold may be determined according to actual conditions, for example, An angle threshold can be 45°.
  • the direction of being held in the embodiments of the present invention refers to the direction in which the screen is required to be displayed later, and is not necessarily the absolute direction in which the handheld terminal is currently located.
  • the mobile phone will be displayed in a horizontal screen; however, the user actually needs the mobile phone to display in vertical screen.
  • it can be determined that the mobile phone is vertically and forwardly or vertically and held in the opposite direction. Finally, the mobile phone performs vertical display according to the determined result; thereby satisfying the user in various The requirements under the scene.
  • the embodiment of the present invention further provides a screen display control method as shown in FIG. 7, which is described on the basis of the embodiment shown in FIG. 1.
  • the difference between the two is that the wearable device is a smart glasses, and when the user is in a state other than sitting or standing, for example, when the user is lying down, the switching result of the display mode may appear and the user desires.
  • the display mode is inconsistent.
  • the smart glasses and the handheld terminal are placed in parallel and parallel to each other, and the directions of the X-axis, the Y-axis, and the Z-axis of the smart glasses are the same as the directions of the X-axis, the Y-axis, and the Z-axis of the handheld terminal, that is,
  • the directions of the X-axis, the Y-axis, and the Z-axis of the first gravity sensing data are respectively the same as the directions of the X-axis, the Y-axis, and the Z-axis of the second gravity sensing data, wherein the Z-axis of the second gravity sensing data and the handheld terminal are located
  • the plane is vertical.
  • the holding direction of the present embodiment may include vertical and forward, vertical, and reverse, lateral and forward, lateral, and reverse, wherein the vertical and forward hand-held terminals are rotated 90 degrees clockwise, and the direction is horizontal. And the direction of the forward, vertical and forward hand-held terminals being rotated 90° counterclockwise is lateral and reverse.
  • the screen display control method of this embodiment includes:
  • Step S71 Acquire first gravity sensing data of the wearable device that establishes a communication connection with the handheld terminal, and second gravity sensing data of the handheld terminal.
  • Step S72 analyzing the relationship between the first gravity sensing data and the second gravity sensing data, and executing step S73.
  • Step S73 if the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data If the angle between the two is less than or equal to the preset second angle threshold, it is determined that the handheld terminal is vertically and positively held;
  • the complementary angle between the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data is less than or equal to the second angle threshold, determining that the handheld terminal is vertically and reversely held;
  • the complementary angle between the Y axis of the first gravity sensing data and the X axis of the second gravity sensing data is less than or equal to the second angle threshold, determining that the handheld terminal is held laterally and positively;
  • the handheld terminal is held laterally and in the opposite direction.
  • Step S74 Control the screen display of the handheld terminal according to the held mode determined in step S73.
  • the value of the second angle threshold may be determined according to actual conditions, for example, the first angle threshold may be 45°.
  • the embodiment can determine the screen display and the position of the user's eyes for the user's use situation when lying down, for example, and further control the display mode and use of the screen.
  • the expectations of the people match and improve the user experience.
  • the present invention further provides a handheld terminal 90 as shown in FIG. As shown in FIG. 9, the handheld terminal 90 establishes a communication connection with the wearable device 81 to control the screen display.
  • the handheld terminal 90 includes a transceiver module 91, a sensing module 92, a processing module 93, and a screen 94. among them:
  • the transceiver module 91 is configured to acquire first gravity sensing data of the wearing device 81 that establishes a communication connection with the handheld terminal 90
  • the sensing module 92 is configured to acquire second gravity sensing data of the handheld terminal 90
  • the processing module 93 is configured to use the first gravity according to the first gravity
  • the sensing data and the second gravity sensing data obtain the held manner of the handheld terminal 90, and further controls the display of the screen 94 according to the held manner.
  • the processing module 93 compares the difference between the amount of change of the first gravity sensing data and the amount of change of the second gravity sensing data of the handheld terminal is less than or equal to a preset threshold, determining that the handheld is The arm position of the terminal 90 is the same as the arm position worn by the wearable device.
  • the processing module 93 can obtain the held manner of the handheld terminal 90 according to the arm position worn by the wearing device 81 that is acquired in advance, and is held by the left hand or held by the right hand.
  • the wearable device 81 can be a smart watch or a smart wristband that can be worn on the arm or the wrist of the user.
  • the position of the arm worn by the wearable device 81 can be detected in real time.
  • the transceiver module 91 acquires the wearable device 81.
  • the third gravity sensing data in the process of the user walking the swing arm if the processing module 93 compares the change amount of the third gravity sensing data with the change amount corresponding to the preset left hand in the preset time period, then determining The position of the arm worn by the wearing device 81 is the left hand; if the change amount of the third gravity sensing data is the same as the amount of change corresponding to the preset right hand in the preset time period, the arm worn by the wearing device 81 is determined. The location is right hand.
  • the user rarely changes the position of the worn arm, and the arm position when the wearing device 81 is first worn can be stored in the processing module 93, or the arm position that the user directly wears. It is stored in advance in the processing module 93.
  • the arm position of the handheld terminal 90 is the same as the arm position worn by the wearable device 81.
  • the wearable device 81 and the hand-held terminal 90 are vertically, forwardly, and placed in parallel with each other, the wearable device
  • the directions of the X-axis, the Y-axis, and the Z-axis of 81 are the same as the directions of the X-axis, the Y-axis, and the Z-axis of the hand-held terminal 90, that is, the X-axis, the Y-axis, and the Z-axis of the first gravity sensing data are respectively associated with the second gravity.
  • the X-axis, the Y-axis, and the Z-axis of the sensing data have the same direction, wherein the Z-axis of the second gravity sensing data is perpendicular to the plane in which the handheld terminal is located.
  • the held direction of the present embodiment includes vertical and forward, vertical, and reverse, lateral and forward, lateral, and reverse directions, wherein the direction of the vertical and forward hand-held terminal is rotated 90° clockwise
  • the direction of the lateral and forward, vertical and forward hand-held terminals being rotated 90° counterclockwise is lateral and reverse. specifically:
  • the processing module 93 compares the angle between the X-axis of the first gravity sensing data and the X-axis of the second gravity sensing data to be less than or equal to the preset first angle threshold, it is determined that the handheld terminal 90 is vertical and forward. Hold the grip.
  • the processing module 93 compares the complementary angle between the X-axis of the first gravity sensing data and the X-axis of the second gravity sensing data to be less than or equal to the first angle threshold, it is determined that the handheld terminal 90 is vertically and reversed. Hold the grip.
  • the processing module 93 compares the angle between the X axis of the first gravity sensing data and the Y axis of the second gravity sensing data to be less than or equal to the first angle threshold, it is determined that the handheld terminal 90 is laterally and positively Hold the grip.
  • the processing module 93 compares the complementary angle between the X-axis of the first gravity sensing data and the Y-axis of the second gravity sensing data to be less than or equal to the first angle threshold, it is determined that the handheld terminal 90 is laterally and reversely held. grip.
  • the value of the first angle threshold may be determined according to actual conditions, for example, the first angle threshold may be 45°.
  • the wearing device 81 is a smart glasses
  • the switching result of the display mode may be inconsistent with the display mode desired by the user.
  • the wearing position of the smart glasses of the embodiment is always consistent with the position of the eyes of the user.
  • the handheld terminal is placed in the forward direction and parallel to each other.
  • the directions of the X-axis, the Y-axis, and the Z-axis of the smart glasses are the same as the directions of the X-axis, the Y-axis, and the Z-axis of the handheld terminal, that is, the X-axis of the first gravity sensing data.
  • the directions of the Y-axis and the Z-axis are respectively the same as the directions of the X-axis, the Y-axis, and the Z-axis of the second gravity sensing data, wherein the Z-axis of the second gravity sensing data is perpendicular to the plane in which the handheld terminal 90 is located.
  • the held orientation of the present embodiment may include vertical and forward, vertical, and reverse, lateral and forward, lateral, and reverse directions, wherein the vertical and forward handheld terminals are rotated 90 degrees clockwise
  • the direction after the horizontal and forward, vertical and forward hand-held terminals are rotated 90° counterclockwise is lateral and reverse.
  • the processing module 93 compares the angle between the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data to be less than or equal to the preset second angle threshold, it is determined that the handheld terminal 90 is vertical and forward. Hold the grip.
  • the processing module 93 compares the complementary angle between the Y-axis of the first gravity sensing data and the Y-axis of the second gravity sensing data to be less than or equal to the second angle threshold, it is determined that the handheld terminal 90 is vertically and reversed. Hold the grip.
  • the processing module 93 compares the complementary angle between the Y axis of the first gravity sensing data and the X axis of the second gravity sensing data to be less than or equal to the second angle threshold, it is determined that the handheld terminal 90 is laterally and positively held. grip.
  • the processing module 93 compares the Y axis of the first gravity sensing data with the X of the second gravity sensing data If the angle between the axes is less than or equal to the second angle threshold, it is determined that the hand-held terminal 90 is held laterally and in the opposite direction.
  • the value of the second angle threshold may be determined according to actual conditions.
  • the first angle threshold may be 45°
  • the second angle threshold and the first angle threshold may be the same or different.
  • the respective module structures of the handheld terminal 90 described above are corresponding to the screen display control method described in the above embodiments, and thus have the same technical effects.
  • the implementation of the handheld terminal 90 described above is merely exemplary.
  • the division of the described module is only a logical function division. In actual implementation, there may be another division manner, for example, multiple modules may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or communication connection between the modules may be through some interfaces, or may be electrical or other forms.
  • the connection between the handheld terminal 90 and the wearable device 81 may be connected by setting a communication module.
  • Each of the foregoing functional modules may be a component of the handheld terminal 90, and may or may not be a physical frame, and may be located in one place or distributed to multiple network units, and may be implemented in the form of hardware or software.
  • the form of the box is implemented. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solution of the present invention.
  • the handheld terminal 100 includes a screen (not shown), a processor 101, a memory 102, a transceiver 103, a bus 104, and a gravity sensor 105; wherein, the processor 101, the memory 102, the transceiver 103, and the gravity sensor 105 and the screen are connected by a bus 104, wherein:
  • the transceiver 103 is configured to acquire first gravity sensing data of the wearable device that establishes a communication connection with the handheld terminal 100, and the gravity sensor 105 is configured to acquire second gravity sensing data of the handheld terminal 100.
  • the memory 102 can be implemented as one or more of a computer floppy disk, a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk. .
  • the memory 102 is further stored with a program for implementing, for example, the screen display control shown in FIG.
  • the processor 101 performs the following operations by calling an application stored in the memory 102:
  • the processor 101 obtains the held manner of the handheld terminal 100 according to the first gravity sensing data and the second gravity sensing data, and further controls the screen display of the handheld terminal 100 according to the held manner.
  • the processor 101 determines The arm position of the handheld terminal 100 is the same as the arm position worn by the wearable device.
  • the processor 101 can obtain the held manner of the handheld terminal 100 according to the arm position of the wearing device that is acquired in advance, and is held by the left hand or held by the right hand.
  • the wearable device may be a smart watch or a smart wristband worn on the arm or the wrist of the user.
  • the position of the arm worn by the wearable device may be detected in real time.
  • the transceiver 103 obtains the wearable device in the user's walking pendulum.
  • the third gravity sensing data in the arm process if the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset left hand in the preset time period, determining the arm worn by the wearing device The position is the left hand; if the amount of change of the third gravity sensing data is the same as the amount of change corresponding to the preset right hand in the preset time period, it is determined that the arm position worn by the wearing device is the right hand.
  • the user rarely changes the position of the worn arm, and the arm position when the wearing device is first worn is stored in the processor 101, or the user directly positions the arm to be worn in advance. It is stored in the processor 101.
  • the arm position of the handheld terminal 100 is the same as the arm position worn by the wearable device.
  • the X of the wearable device is used.
  • the directions of the axis, the Y axis, and the Z axis are respectively the same as the directions of the X axis, the Y axis, and the Z axis of the handheld terminal 100, that is, the X axis, the Y axis, and the Z axis of the first gravity sensing data are respectively associated with the second gravity sensing data.
  • the directions of the X axis, the Y axis, and the Z axis are the same, wherein the Z axis of the second gravity sensing data is perpendicular to the plane in which the handheld terminal 100 is located.
  • the held direction of the present embodiment includes vertical and forward, vertical, and reverse, lateral and forward, lateral, and reverse directions, wherein the vertical and forward handheld terminal 100 is rotated 90° clockwise Horizontal and positive, vertical and positive
  • the direction in which the hand-held terminal 100 is rotated 90° counterclockwise is lateral and reverse. specifically:
  • the processor 101 determines that the handheld terminal 100 is vertical and forward. Hold the grip.
  • the processor 101 compares the complementary angle between the X axis of the first gravity sensing data and the X axis of the second gravity sensing data to be less than or equal to the first angle threshold, it is determined that the handheld terminal 100 is vertically and reversed. Hold the grip.
  • the processor 101 compares the angle between the X-axis of the first gravity sensing data and the Y-axis of the second gravity sensing data to be less than or equal to the first angle threshold, it is determined that the handheld terminal 100 is held laterally and positively.
  • the processor 101 compares the complementary angle between the X-axis of the first gravity sensing data and the Y-axis of the second gravity sensing data to be less than or equal to the first angle threshold, it is determined that the handheld terminal 100 is laterally and reversely held. grip.
  • the value of the first angle threshold is determined according to actual conditions, for example, the first angle threshold may be 45°.
  • the wearable device when the wearable device is a smart glasses, considering that the user is in a state other than sitting or standing, for example, when the user is lying down, the switching result of the display mode may be inconsistent with the display mode desired by the user. In this case, the wearing position of the smart glasses is always consistent with the position of the eyes of the user.
  • the direction of the X-axis, the Y-axis, and the Z-axis of the smart glasses is the same as the direction of the X-axis, the Y-axis, and the Z-axis of the handheld terminal 100, that is, the first gravity sensing data.
  • the X axis, the Y axis, and the Z axis are respectively the same as the X axis, the Y axis, and the Z axis of the second gravity sensing data, wherein the Z axis of the second gravity sensing data is perpendicular to the plane in which the handheld terminal 100 is located.
  • the held orientation of the present embodiment may include vertical and forward, vertical, and reverse, lateral and forward, lateral, and reverse directions, wherein the vertical and forward handheld terminals are rotated 90 degrees clockwise
  • the direction after the horizontal and forward, vertical and forward hand-held terminals are rotated 90° counterclockwise is lateral and reverse.
  • the processor 101 compares the Y axis of the first gravity sensing data with the Y of the second gravity sensing data If the angle between the axes is less than or equal to the preset second angle threshold, it is determined that the hand-held terminal 100 is held vertically and in the forward direction.
  • the processor 101 compares the complementary angle between the Y axis of the first gravity sensing data and the Y axis of the second gravity sensing data to be less than or equal to the second angle threshold, it is determined that the handheld terminal 100 is vertically and reversed. Hold the grip.
  • the processor 101 compares the complementary angle between the Y axis of the first gravity sensing data and the X axis of the second gravity sensing data to be less than or equal to the second angle threshold, it is determined that the handheld terminal 100 is laterally and positively held. grip.
  • the processor 101 compares the angle between the Y axis of the first gravity sensing data and the X axis of the second gravity sensing data to be less than or equal to the second angle threshold, it is determined that the handheld terminal 100 is held laterally and in reverse.
  • the value of the second angle threshold is determined according to actual conditions.
  • the first angle threshold may be 45°, and the second angle threshold and the first angle threshold may be the same or different.
  • the embodiment of the present invention controls the screen display of the handheld terminal in combination with the gravity sensing data of the wearable device, and can improve the accuracy of the recognition result of the held manner of the handheld terminal, so that the manner of displaying the screen conforms to the user's expectation.
  • the embodiment of the present invention does not need to add other sensing devices on the handheld terminal, that is, it does not need to increase the production cost, and the applicability is good.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are only for example, the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features. Can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明实施例公开一种手持终端及其屏幕显示控制方法。该手持终端及其屏幕显示控制方法包括:获取与手持终端建立通信连接的穿戴设备的第一重力感应数据;根据第一重力感应数据以及手持终端的第二重力感应数据,得到手持终端的被持握方式;根据被持握方式控制手持终端的屏幕显示。通过上述方案,本发明能够在不额外增设感应装置的情况下,综合运用穿戴设备对手持终端的被持握方式进行识别,准确性高且适用性佳。

Description

手持终端及其屏幕显示控制方法
本申请要求于2014年11月26日提交中国专利局、申请号为201410706321.3、发明名称为“手持终端及其屏幕显示控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例属于电子技术领域,具体涉及一种手持终端及其屏幕显示控制方法。
背景技术
现有的手持终端一般可以根据使用方式控制屏幕显示的方式。例如终端可以在横屏显示模式和竖屏显示模式之间进行切换,从而满足使用者在不同的情况下使用。在实现屏幕显示的切换时,可以无需对手持终端的屏幕的任何界面元素或实体按钮进行操作,而是通过使用者对手持终端的持握动作予以实现。由此可见,对使用者的持握动作或手持终端的被持握方式的识别是实现屏幕显示切换的关键。
现有技术中,识别被持握方式的方法主要有两种:一是通过在手持终端的侧面安装触摸感应装置,用以判断使用者是左手还是右手持握、是竖向还是横向持握;二是通过手持终端自身的重力感应装置判断使用者是纵向还是横向持握。然而,第一种方法需要安装专用的触摸感应装置,并且若要保证识别结果的准确性则需要较多的装置,这不仅会增加手持终端的生产成本,而且也不易安装于小型手持终端上,适用性较差;第二种方法仅使用自身的重力感应装置,无法适用于某些使用情境,例如使用者躺下时,即无法确保识别结果的精确性,使得识别结果与使用者的期望不相符。
发明内容
本发明实施例所要解决的技术问题是提供一种手持终端及其屏幕显示控制方法,能够准确的根据使用情况进行屏幕显示。
本发明实施例所采用的技术方案是:
第一方面提供一种手持终端的屏幕显示控制方法,包括:获取与手持终端建立通信连接的穿戴设备的第一重力感应数据;根据第一重力感应数据以及手持终端的第二重力感应数据,得到手持终端的被持握方式;根据被持握方式控制所述手持终端的屏幕显示。
结合第一方面,在第一种可能的实现方式中,根据第一重力感应数据以及手持终端的第二重力感应数据,得到手持终端的被持握方式包括:若第一重力感应数据的变化量与手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同;根据预先获取的穿戴设备佩戴的手臂位置,得到手持终端的被持握方式,被持握方式为被左手持握或者被右手持握。
结合第一方面或其第一种可能的实现方式,在第二种可能的实现方式中,屏幕显示控制方法还包括:预先获取穿戴设备佩戴的手臂位置;获取穿戴设备佩戴的手臂位置的过程包括:获取穿戴设备在使用者行走摆臂过程中的第三重力感应数据;若在预设时间段内,第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为左手;若在预设时间段内,第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为右手。
结合第一方面第一种可能的或第二种可能的实现方式,在第三种可能的实现方式中,手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同,被持握方式还包括:竖向且正向、竖向且反向、横向且正向、横向且反向;根据第一重力感应数据以及手持终端的第二重力感应数据,得到手持终端的被持握方向,还包括:若第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定手持终端被竖向且正向持握;若第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被竖向且反向持握;若第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角小于或等于第一夹角门限,则判定手持终端被横向且正 向持握,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向;若第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被横向且反向持握,其中竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向;当穿戴设备与手持终端被正向且相互平行放置时,第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,且第二重力感应数据的Z轴与手持终端所在的平面垂直。
结合第一方面,在第四种可能的实现方式中,穿戴设备为智能手表或智能手环。
结合第一方面,在第五种可能的实现方式中,穿戴设备为智能眼镜,根据第一重力感应数据以及手持终端的第二重力感应数据,得到手持终端的被持握方式,包括:若第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角小于或等于预置的第二夹角门限,则判定手持终端被竖向且正向持握;若第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被竖向且反向持握;若第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被横向且正向持握,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向;若第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角小于或等于第二夹角门限,则判定手持终端被横向且反向持握,其中竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向;当穿戴设备与手持终端被正向且相互平行放置时,第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,且第二重力感应数据的Z轴与手持终端所在的平面垂直。
第二方面提供一种手持终端,包括:收发模块,用于获取与手持终端建立通信连接的穿戴设备的第一重力感应数据;传感模块,用于获取手持终端的第二重力感应数据;处理模块,用于根据收发模块获取的第一重力感应数据以及传感模块获取的第二重力感应数据,得到手持终端的被持握方式,并进一步根据被持握方式控制手持终端的屏幕显示。
结合第二方面,在第一种可能的实现方式中,若处理模块比较第一重力感应数据的变化量与手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同,且处理模块根据预先获取的穿戴设备佩戴的手臂位置,得到手持终端的被持握方式,被持握方式为被左手持握或者被右手持握。
结合第二方面或其第一种可能的实现方式,在第二种可能的实现方式中,处理模块还用于预先获取穿戴设备佩戴的手臂位置,收发模块还用于获取穿戴设备在使用者行走摆臂过程中的第三重力感应数据,若在预设时间段内,处理模块比较第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为左手;若在预设时间段内,若处理模块比较第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为右手。
结合第二方面的第一种可能的或第二种可能的实现方式,在第三种可能的实现方式中,手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同,被持握方式还包括:竖向且正向、竖向且反向、横向且正向、横向且反向;若处理模块比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定手持终端被竖向且正向持握;若处理模块比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被竖向且反向持握;若处理模块比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角小于或等于第一夹角门限,则判定手持终端被横向且正向持握,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向;若处理模块比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被横向且反向持握,其中竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向;当穿戴设备与手持终端被正向且相互平行放置时,第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,且第二重力感应数据的Z轴与手持终端 所在的平面垂直。
结合第二方面,在第四种可能的实现方式中,穿戴设备为智能手表或智能手环。
结合第二方面,在第五种可能的实现方式中,穿戴设备为智能眼镜,若处理模块比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角小于或等于预置的第二夹角门限,则判定手持终端被竖向且正向持握;若处理模块比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被竖向且反向持握;若处理模块比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被横向且正向持握,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向;若处理模块比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角小于或等于第二夹角门限,则判定手持终端被横向且反向持握,其中竖向且正向的手持终端被逆时针旋转90°之后的方向为所述横向且反向;当穿戴设备与手持终端被正向且相互平行放置时,第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,且第二重力感应数据的Z轴与手持终端所在的平面垂直。
第三方面提供一种手持终端,包括收发器、重力传感器、存储器以及处理器,其中:收发器用于获取与手持终端建立通信连接的穿戴设备的第一重力感应数据,重力传感器用于获取手持终端的第二重力感应数据;存储器用于存储以被处理器调用应用程序,实现对手持终端的屏幕显示的控制;处理器用于调用存储器存储的应用程序,并根据收发器获取的第一重力感应数据以及重力传感器获取的第二重力感应数据,得到手持终端的被持握方式,进一步根据被持握方式控制手持终端的屏幕显示。
结合第三方面,在第一种可能的实现方式中,若处理器比较第一重力感应数据的变化量与手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同,且处理器根据预先获取的穿戴设备佩戴的手臂位置得到手持终端的被持握方式,被持握方式为被左手持握或者被右手 持握。
结合第三方面或其第一种可能的实现方式,在第二种可能的实现方式中,处理器还用于预先获取穿戴设备佩戴的手臂位置,收发器还用于获取穿戴设备在使用者行走摆臂过程中的第三重力感应数据,若在预设时间段内,处理器比较第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为左手;若在预设时间段内,处理器比较第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为右手。
结合第三方面的第一种可能的或第二种可能的实现方式,在第三种可能的实现方式中,手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同,被持握方式还包括:竖向且正向、竖向且反向、横向且正向、横向且反向;若处理器比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定手持终端被竖向且正向持握;若处理器比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被竖向且反向持握;若处理器比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角小于或等于第一夹角门限,则判定手持终端被横向且正向持握,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向;若处理器比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被横向且反向持握,其中竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向;当穿戴设备与手持终端被正向且相互平行放置时,第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,且第二重力感应数据的Z轴与手持终端所在的平面垂直。
结合第三方面,在第四种可能的实现方式中,穿戴设备为智能手表或智能手环。
结合第三方面,在第五种可能的实现方式中,穿戴设备为智能眼镜,若处理器比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的 夹角小于或等于预置的第二夹角门限,则判定手持终端被竖向且正向持握;若处理器比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被竖向且反向持握;若处理器比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被横向且正向持握,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向;若处理器比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角小于或等于第二夹角门限,则判定手持终端被横向且反向持握,其中竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向;当穿戴设备与手持终端被正向且相互平行放置时,第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,且第二重力感应数据的Z轴与手持终端所在的平面垂直。
通过上述技术方案,本发明实施例所产生的有益效果是:本发明实施例结合穿戴设备的重力感应数据控制手持终端的屏幕显示,能够提高手持终端的被持握方式的识别结果的准确性,使得屏幕显示的方式与使用者的期望相符;另外,本发明实施例无需在手持终端上增设其他感应装置,即无需增加生产成本,适用性好。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明第一实施例的屏幕显示控制方法的流程图;
图2是本发明第二实施例的屏幕显示控制方法的流程图;
图3是本发明实施例提供的一种穿戴设备在使用者行走过程中的示意图;
图4是本发明实施例提供的另一种穿戴设备在使用者行走过程中的示意图;
图5是本发明第三实施例的屏幕显示控制方法的流程图;
图6是本发明实施例中穿戴设备与手持终端的一种示意图;
图7是本发明第四实施例的屏幕显示控制方法的流程图;
图8是本发明实施例中穿戴设备与手持终端的另一种示意图;
图9是本发明实施例的一种手持终端的示意图;
图10是本发明实施例的一种手持终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供一种如图1所示的屏幕显示控制方法,该方法通过手持终端与穿戴设备建立通信连接,实现对手持终端的屏幕显示的控制,例如进行横屏显示和竖屏显示之间的切换,或者进行左手模式显示,或者进行右手模式显示。其中,手持终端与穿戴设备之间的通信方式可以为短距离的无线通信,例如红外、蓝牙或WiFi等,也可以为远程通信,例如基于2G(2rd-Generation,第二代移动通讯技术)、3G(3rd-Generation,第三代移动通讯技术)和/或4G(4rd-Generation,第四代移动通讯技术)的移动通信等。
请参阅图1所示,本实施例的屏幕显示控制方法包括:
步骤S11:获取与手持终端建立通信连接的穿戴设备的第一重力感应数据。
在本发明实施例全文的描述中,手持终端可以为智能手机,也可以是便携式通信装置、PDA(Personal Digital Assistant,个人数字助理或平板电脑)等具有屏幕显示与切换功能的任何终端;穿戴设备可以为智能手表,也可以是智能手环、智能眼镜以及设置于首饰和服装配件中的嵌入设备等。
本实施例可以通过穿戴设备内置的重力传感器或加速计获取第一重力感应数据,第一重力感应数据包括空间三维直角坐标系中X轴、Y轴和Z轴上的重力加速度方向以及穿戴设备在三轴上的重力分量。
步骤S12:根据第一重力感应数据以及手持终端的第二重力感应数据,得到手持终端的被持握方式。
同理,可以通过手持终端内置的重力传感器或加速计获取第二重力感应数据,第二重力感应数据包括空间三维直角坐标系中X轴、Y轴和Z轴上的重力加速度方向以及手持终端在三轴上的重力分量。
手持终端的被持握方式可以包括被持握位置或被持握方向。其中被持握位置可以为被使用者的右手持握或左手持握,被持握方向可以为手持终端被持握时屏幕的方向,例如被竖向且正向持握、被竖向且反向持握、被横向且正向持握以及被横向且反向持握。
当然,被持握方式也可以包括被持握位置和被持握方向的结合,即被右手竖向且正向持握、被右手竖向且反向持握、被右手横向且正向持握、被右手横向且反向持握以及被左手竖向且正向持握、被左手竖向且反向持握、被左手横向且正向持握、被左手横向且反向持握。
步骤S13:根据被持握方式控制手持终端的屏幕显示。
若被持握方式为被左手持握,则进行左手模式显示,例如手持终端的应用程序图标显示于屏幕的左侧,或应用程序图标缩小后显示于屏幕的左侧;若被持握方式为被右手持握,则进行右手模式显示,例如手持终端的应用程序图标显示于屏幕的右侧,或应用程序图标缩小后显示于屏幕的右侧。
根据被握持方向,可以得到当前终端所需的屏幕显示方向,具体地:
若被持握方式为被竖向且正向持握,则进行竖屏模式显示,例如应用程序图标沿屏幕的长边显示且由屏幕的上短边朝向下短边;若被持握方式 为被竖向且反向持握,则也进行竖屏模式显示,虽然应用程序图标沿屏幕的长边走向显示,但由屏幕的下短边朝向上短边。
若被持握方式为被横向且正向持握,则进行横屏模式显示,例如应用程序图标沿屏幕的长边走向显示且由屏幕的上长边朝向下长边;若被持握方式为被横向且反向持握,则进行也横屏模式显示,虽然应用程序图标沿屏幕的长边走向显示,但由屏幕的上长边朝向下长边。
若被持握方式为被持握位置和被持握方向的结合,则将两者对应的显示模式相结合,从而控制屏幕的显示即可。
相比较于现有技术,本实施例结合穿戴设备的第一重力感应数据控制手持终端的屏幕显示,能够提高手持终端的被持握方式的识别结果的准确性,使得显示模式的方式与使用者的期望相符;另外本实施例无需在手持终端上增设其他感应装置,即无需增加生产成本,适用性好。
下面分别基于被持握位置和被持握方向,对本发明实施例进行描述。
本发明实施例提供一种如图2所示的屏幕显示控制方法,以获取手持终端的被持握位置,并根据被握持位置控制屏幕显示。在图1所示实施例的描述基础上,请参阅图2所示,本实施例的屏幕显示控制方法包括:
步骤S21:预先获取穿戴设备佩戴的手臂位置。
本实施例的穿戴设备例如可以智能手表或智能手环,穿戴设备佩戴在使用者的手臂或手腕上。
首先,获取穿戴设备在使用者行走摆臂过程中的重力感应数据,并将其作为第三重力感应数据。
在行走过程中,穿戴设备随着使用者的手臂作钟摆式运动,此时其第三重力感应数据对应于左手和右手分别具有一钟摆式变化量。需要指出的是,该钟摆式变化量不仅包括X轴、Y轴和Z轴的重力加速度方向的变化,而且包括穿戴设备在X轴、Y轴和Z轴上的重力分量的变化。
下面以X轴的重力加速度方向的变化为例对第三重力感应数据的变化量进行描述。
图3和图4为穿戴设备在使用者行走过程中的示意图;其中,图3为穿戴设备佩戴在左手手臂的情况,图4为穿戴设备佩戴在右手手臂的情况。 如图3和图4所示,穿戴设备随着使用者的手臂在a1~a3摆点之间做钟摆式运动,在摆点a2,使用者的手臂处于下垂状态,此时穿戴设备的屏幕显示方向被定义为横向且正向显示,横向且正向的穿戴设备被逆时针旋转90°后的方向被定义为竖向且正向。
需要说明的是,本发明各实施例中的屏幕显示方向的名称仅是一种示例。例如:上述的横向且正向,在另一种实施方式中,可能被定义为横向且反向,或者被定义为竖向且正向,或者被定义为竖向且反向。在一种实施方式中,只要屏幕显示方向的定义保持一致即可。
如图3所示,佩戴的手臂位置为左手,从摆点a1向摆点a2,第三重力感应数据中X轴的方向与手臂的摆动方向相同,从摆点a2向摆点a3,第三重力感应数据中X轴的方向与手臂的摆动方向相同,从摆点a3向摆点a2,第三重力感应数据中X轴的方向与手臂的摆动方向相反,从摆点a2向摆点a1,第三重力感应数据中X轴的方向与手臂的摆动方向相反。
如图4所示,佩戴的手臂位置为右手,从摆点a1向摆点a2,第三重力感应数据中X轴的方向与手臂的摆动方向相反,从摆点a2向摆点a3,第三重力感应数据中X轴的方向与手臂的摆动方向相反,从摆点a3向摆点a2,第三重力感应数据中X轴的方向与手臂的摆动方向相同,从摆点a2向摆点a1,第三重力感应数据中X轴的方向与手臂的摆动方向相同。
有上面的分析可知,可以通过第三重力感应数据的变化量(例如:X轴的方向变化),来判断是左手佩戴还是右手佩戴。若在预设时间段内,得到第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为左手。若在预设时间段内,得到第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为右手。
在本实施例中,预设时间段的设置能避免佩戴的手臂位置的误判断,进一步提高手持终端的被持握方式的识别结果的准确性,从而提高显示模式切换的用户体验。具体而言,其设置能够避免例如使用者举起手臂进行挥手动作时极易被误判为将穿戴设备佩戴于另外一只手臂上,即佩戴的手臂位置未发生改变但手持终端会误判佩戴的手臂位置发生了改变的情况。
需要指出的是,预先获取穿戴设备佩戴的手臂位置的过程并不限于本步骤的实时检测方式。一般情况下,使用者很少改变佩戴的手臂位置,所以还可以将预先检测的佩戴的手臂位置存储至手持终端中,或者使用者可以直接将佩戴的手臂位置预先存储于手持终端中。
步骤S22:若第一重力感应数据的变化量与第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同。
对于被左手持握或者被右手持握,本实施例的判断方式为:
当手持终端被佩戴有穿戴设备的手臂持握,即被持握位置与佩戴的手臂位置相同时,可将手持终端与穿戴设备视为一体,此时第一重力感应数据的变化量与第二重力感应数据的变化量相同,即穿戴设备和手持终端在X轴、Y轴和Z轴上的重力加速度方向的变化相同,且两者在三轴上的重力分量的变化也相同。即使考虑到手持终端与穿戴设备在佩戴以及走动时的误差,第一重力感应数据的变化量与第二重力感应数据的变化量之间的差值也应在一定范围内,本实施例将该一定范围作为预置的门限。
当手持终端被未佩戴有穿戴设备的手臂持握,即被持握位置与佩戴的手臂位置不相同时,第一重力感应数据的变化量与第二重力感应数据的变化量不具有相关性。根据步骤S21获取的佩戴的手臂位置,可从反面判断被持握位置,即与穿戴设备佩戴的手臂位置相反。
对于被左手持握或者被右手持握,本实施例的判断过程为:
若第一重力感应数据的变化量与第二重力感应数据的变化量之间的差值大于预置的门限,则判定手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置不相同。
若第一重力感应数据的变化量与第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同。
步骤S23:根据预先获取的穿戴设备佩戴的手臂位置,得到手持终端的被持握方式,被持握方式为被左手持握或者被右手持握。
步骤S24:根据被持握方式控制手持终端的屏幕显示。
本发明实施例还提供一种如图5所示的屏幕显示控制方法,以获取手持终端的被持握方向,该方法基于手持终端的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同。如图6所示,穿戴设备与手持终端被竖向、正向且相互平行放置,穿戴设备的X轴、Y轴、Z轴的方向分别与手持终端的X轴、Y轴、Z轴的方向相同,即第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,其中,第二重力感应数据的Z轴与手持终端所在的平面垂直。
本实施例的被持握方向可以包括竖向且正向、竖向且反向、横向且正向、横向且反向,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向,竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向。
在图1所示实施例的描述基础上,请参阅图5并结合图6所示,本实施例的屏幕显示控制方法包括:
步骤S51:获取与手持终端建立通信连接的穿戴设备的第一重力感应数据,以及手持终端的第二重力感应数据。
步骤S52:分析第一重力感应数据和第二重力感应数据之间的关系,并执行步骤S53。
步骤S53:若第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定手持终端被竖向且正向持握;
若第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被竖向且反向持握;
若第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角小于或等于第一夹角门限,则判定手持终端被横向且正向持握;
若第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端被横向且反向持握。
步骤S54:根据步骤S53中判定的被持握方式控制手持终端的屏幕显示。
在本实施例中,第一夹角门限的取值可以根据实际情况确定,例如第 一夹角门限可以为45°。
需要说明的是,本发明各实施例中所述的被持握的方向,指的是后续需要屏幕进行显示的方向,并不一定是手持终端当前处于的绝对方向。例如:在用户侧躺着看手机的场景中,当手机平行或近似平行于地平线时,按照已有的重力传感器判断,手机会以横屏显示;但是,此时用户其实需要手机以竖屏显示;根据本发明实施例的方案,此时可以判断出手机被竖向且正向或者竖向且反向握持,最终,手机根据判断出来的结果进行竖向显示;从而满足了用户在各种场景下的需求。
本发明实施例还提供一种如图7所示的屏幕显示控制方法,其在图1所示实施例的基础上进行描述。两者的不同之处在于:本实施例针对穿戴设备为智能眼镜,考虑到使用者处于坐着或站立以外的状态时,例如使用者躺下时,可能出现显示模式的切换结果与使用者期望的显示模式不一致的情况。
当用户佩戴着智能眼镜时,智能眼镜的位置总是与使用者的双眼位置保持一致的。如图8所示,智能眼镜与手持终端被正向且相互平行放置,智能眼镜的X轴、Y轴、Z轴的方向分别与手持终端的X轴、Y轴、Z轴的方向相同,即第一重力感应数据的X轴、Y轴、Z轴的方向分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,其中,第二重力感应数据的Z轴与手持终端所在的平面垂直。
本实施例持握方向可以包括竖向且正向、竖向且反向、横向且正向、横向且反向,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向,竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向。
请参阅图7并结合图8所示,本实施例的屏幕显示控制方法包括:
步骤S71:获取与手持终端建立通信连接的穿戴设备的第一重力感应数据,以及手持终端的第二重力感应数据。
步骤S72:分析第一重力感应数据和第二重力感应数据之间的关系,并执行步骤S73。
步骤S73:若第一重力感应数据的Y轴和第二重力感应数据的Y轴之 间的夹角小于或等于预置的第二夹角门限,则判定手持终端被竖向且正向持握;
若第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被竖向且反向持握;
若第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端被横向且正向持握;
若第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角小于或等于第二夹角门限,则判定手持终端被横向且反向持握。
步骤S74:根据步骤S73中判定的被持握方式控制手持终端的屏幕显示。
在本实施例中,第二夹角门限的取值可以根据实际情况确定,例如第一夹角门限可以为45°。
本实施例在图1所示实施例所产生的有益效果的基础上,能够对使用者处于例如躺下时的使用情境进行屏幕显示与使用者双眼位置的判断,进一步控制屏幕的显示模式与使用者的期望相符,提高用户体验。
本发明另外提供一种如图9所示的手持终端90。如图9所示,手持终端90与穿戴设备81建立通信连接以控制屏幕显示,手持终端90包括收发模块91、传感模块92、处理模块93以及屏幕94。其中:
收发模块91用于获取与手持终端90建立通信连接的穿戴设备81的第一重力感应数据,传感模块92用于获取手持终端90的第二重力感应数据,处理模块93用于根据第一重力感应数据和第二重力感应数据得到手持终端90的被持握方式,并进一步根据被持握方式控制屏幕94的显示。
在得到被持握方式所包括的被持握位置时,
结合图3和图4所示,若处理模块93比较第一重力感应数据的变化量与手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端90的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同。处理模块93根据预先获取的穿戴设备81佩戴的手臂位置,即可得到手持终端90的被持握方式,被持握方式为被左手持握或者被右手持握。
其中,穿戴设备81可以为可佩戴于使用者的手臂或手腕上的智能手表或智能手环,预先获取穿戴设备81佩戴的手臂位置可采用实时检测方式,具体地:收发模块91获取穿戴设备81在使用者行走摆臂过程中的第三重力感应数据,若在预设时间段内,处理模块93比较第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定穿戴设备81佩戴的手臂位置为左手;若在预设时间段内,处理模块93比较第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定穿戴设备81佩戴的手臂位置为右手。
当然也可以采用其他方式,例如一般情况下,使用者很少改变佩戴的手臂位置,还可将穿戴设备81首次佩戴时的手臂位置存储至处理模块93中,或者使用者直接将佩戴的手臂位置预先存储于处理模块93中。
在得到被持握方式所包括的被持握方向时,
结合图6所示,手持终端90的被持握方式对应的手臂位置与穿戴设备81佩戴的手臂位置相同,当穿戴设备81与手持终端90被竖向、正向且相互平行放置时,穿戴设备81的X轴、Y轴、Z轴的方向分别与手持终端90的X轴、Y轴、Z轴的方向相同,即第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,其中,第二重力感应数据的Z轴与手持终端所在的平面垂直。本实施例的被持握方向包括竖向且正向、竖向且反向、横向且正向、横向且反向,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向,竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向。具体地:
若处理模块93比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定手持终端90被竖向且正向持握。
若处理模块93比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端90被竖向且反向持握。
若处理模块93比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角小于或等于第一夹角门限,则判定手持终端90被横向且正向 持握。
若处理模块93比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端90被横向且反向持握。
其中,第一夹角门限的取值可以根据实际情况确定,例如第一夹角门限可以为45°。
结合图8所示,当穿戴设备81为智能眼镜时,考虑到使用者处于坐着或站立以外的状态时,例如使用者躺下时可能出现显示模式的切换结果与使用者期望的显示模式不一致的情况,本实施例的智能眼镜的佩戴位置总是与使用者的双眼位置保持一致。
与手持终端被正向且相互平行放置,智能眼镜的X轴、Y轴、Z轴的方向分别与手持终端的X轴、Y轴、Z轴的方向相同,即第一重力感应数据的X轴、Y轴、Z轴的方向分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,其中第二重力感应数据的Z轴与手持终端90所在的平面垂直。
本实施例的被持握方向可以包括竖向且正向、竖向且反向、横向且正向、横向且反向,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向,竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向。
若处理模块93比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角小于或等于预置的第二夹角门限,则判定手持终端90被竖向且正向持握。
若处理模块93比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端90被竖向且反向持握。
若处理模块93比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端90被横向且正向持握。
若处理模块93比较第一重力感应数据的Y轴和第二重力感应数据的X 轴之间的夹角小于或等于第二夹角门限,则判定手持终端90被横向且反向持握。
其中,第二夹角门限的取值可以根据实际情况确定,例如第一夹角门限可以为45°,第二夹角门限与第一夹角门限的取值可以相同也可以不相同。
在本实施例中,以上所描述的手持终端90的各个模块结构,对应执行上述各实施例所述的屏幕显示控制方法,因此具有与其相同的技术效果。
应该理解到,以上所描述的手持终端90的实施方式仅仅是示意性的,所描述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统中,或一些特征可以忽略,或不执行。另外,模块相互之间的耦合或通信连接可以是通过一些接口,也可以是电性或其它的形式,例如手持终端90与穿戴设备81之间的连接可以通过设置通讯模块进行连接。
上述各个功能模块作为手持终端90的组成部分,可以是或者也可以不是物理框,既可以位于一个地方,也可以分布到多个网络单元上,既可以采用硬件的形式实现,也可以采用软件功能框的形式实现。可以根据实际的需要选择其中的部分或者全部模块来实现本发明方案的目的。
本发明实施例最后提供一种如图10所示的手持终端100。如图10所示,手持终端100包括屏幕(未图示)、处理器101、存储器102、收发器103、总线104以及重力传感器105;其中,处理器101、存储器102、收发器103、重力传感器105和屏幕通过总线104连接,其中:
收发器103用于获取与手持终端100建立通信连接的穿戴设备的第一重力感应数据,重力传感器105用于获取手持终端100的第二重力感应数据。
存储器102可以实现为计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等的一种或多种。
存储器102进一步存储有程序,以用于实现例如图1所示的屏幕显示控制。
处理器101通过调用存储器102中存储的应用程序,执行如下操作:
处理器101根据第一重力感应数据和第二重力感应数据得到手持终端100的被持握方式,并进一步根据被持握方式控制手持终端100的屏幕显示。
在得到被持握方式所包括的被持握位置时,
结合图3和图4所示,若处理器101比较第一重力感应数据的变化量与手持终端100的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定手持终端100的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同。处理器101根据预先获取的穿戴设备佩戴的手臂位置,即可得到手持终端100的被持握方式,被持握方式为被左手持握或者被右手持握。
其中,穿戴设备可以为佩戴于使用者手臂或手腕上的智能手表或智能手环,预先获取穿戴设备佩戴的手臂位置可采用实时检测方式,具体地:收发器103获取穿戴设备在使用者行走摆臂过程中的第三重力感应数据,若在预设时间段内,处理器101比较第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为左手;若在预设时间段内,处理器101比较第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定穿戴设备佩戴的手臂位置为右手。
当然也可以采用其他方式,例如一般情况下,使用者很少改变佩戴的手臂位置,还可将穿戴设备首次佩戴时的手臂位置存储至处理器101中,或者使用者直接将佩戴的手臂位置预先存储于处理器101中。
在得到被持握方式所包括的被持握方向时,
结合图6所示,手持终端100的被持握方式对应的手臂位置与穿戴设备佩戴的手臂位置相同,当穿戴设备与手持终端100被竖向、正向且相互平行放置时,穿戴设备的X轴、Y轴、Z轴的方向分别与手持终端100的X轴、Y轴、Z轴的方向相同,即第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,其中第二重力感应数据的Z轴与手持终端100所在的平面垂直。本实施例的被持握方向包括竖向且正向、竖向且反向、横向且正向、横向且反向,其中竖向且正向的手持终端100被顺时针旋转90°之后的方向为横向且正向,竖向且正向 的手持终端100被逆时针旋转90°之后的方向为横向且反向。具体地:
若处理器101比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定手持终端100被竖向且正向持握。
若处理器101比较第一重力感应数据的X轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端100被竖向且反向持握。
若处理器101比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角小于或等于第一夹角门限,则判定手持终端100被横向且正向持握。
若处理器101比较第一重力感应数据的X轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第一夹角门限,则判定手持终端100被横向且反向持握。
其中,优选第一夹角门限的取值可以根据实际情况确定,例如第一夹角门限可以为45°。
结合图8所示,当穿戴设备为智能眼镜时,考虑到使用者处于坐着或站立以外的状态时,例如使用者躺下时可能出现显示模式的切换结果与使用者期望的显示模式不一致的情况,智能眼镜的佩戴位置总是与使用者的双眼位置保持一致。
与手持终端100被正向且相互平行放置,智能眼镜的X轴、Y轴、Z轴的方向分别与手持终端100的X轴、Y轴、Z轴的方向相同,即第一重力感应数据的X轴、Y轴、Z轴分别与第二重力感应数据的X轴、Y轴、Z轴的方向相同,其中第二重力感应数据的Z轴与手持终端100所在的平面垂直。
本实施例的被持握方向可以包括竖向且正向、竖向且反向、横向且正向、横向且反向,其中竖向且正向的手持终端被顺时针旋转90°之后的方向为横向且正向,竖向且正向的手持终端被逆时针旋转90°之后的方向为横向且反向。
若处理器101比较第一重力感应数据的Y轴和第二重力感应数据的Y 轴之间的夹角小于或等于预置的第二夹角门限,则判定手持终端100被竖向且正向持握。
若处理器101比较第一重力感应数据的Y轴和第二重力感应数据的Y轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端100被竖向且反向持握。
若处理器101比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角的补角小于或等于第二夹角门限,则判定手持终端100被横向且正向持握。
若处理器101比较第一重力感应数据的Y轴和第二重力感应数据的X轴之间的夹角小于或等于第二夹角门限,则判定手持终端100被横向且反向持握。
其中,优选第二夹角门限的取值可以根据实际情况确定,例如第一夹角门限可以为45°,第二夹角门限与第一夹角门限的取值可以相同也可以不相同。
综上所述,本发明实施例结合穿戴设备的重力感应数据控制手持终端的屏幕显示,能够提高手持终端的被持握方式的识别结果的准确性,使得屏幕显示的方式与使用者的期望相符;另外,本发明实施例无需在手持终端上增设其他感应装置,即无需增加生产成本,适用性好。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅 是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
再次说明,以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (18)

  1. 一种手持终端的屏幕显示控制方法,其特征在于,所述方法包括:
    获取与所述手持终端建立通信连接的穿戴设备的第一重力感应数据;
    根据所述第一重力感应数据以及所述手持终端的第二重力感应数据,得到所述手持终端的被持握方式;
    根据所述被持握方式控制所述手持终端的屏幕显示。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一重力感应数据以及所述手持终端的第二重力感应数据,得到所述手持终端的被持握方式,包括:
    若所述第一重力感应数据的变化量与所述手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定所述手持终端的被持握方式对应的手臂位置与所述穿戴设备佩戴的手臂位置相同;
    根据预先获取的所述穿戴设备佩戴的手臂位置,得到所述手持终端的被持握方式,所述被持握方式为被左手持握或者被右手持握。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    预先获取所述穿戴设备佩戴的手臂位置;
    所述获取所述穿戴设备佩戴的手臂位置的过程包括:
    获取所述穿戴设备在使用者行走摆臂过程中的第三重力感应数据;
    若在预设时间段内,所述第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定所述穿戴设备佩戴的手臂位置为左手;若在预设时间段内,所述第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定所述穿戴设备佩戴的手臂位置为右手。
  4. 根据权利要求2或3所述的方法,其特征在于,所述手持终端的被持握方式对应的手臂位置与所述穿戴设备佩戴的手臂位置相同,所述被持握方式还包括:竖向且正向、竖向且反向、横向且正向、横向且反向;
    所述根据所述第一重力感应数据以及所述手持终端的第二重力感应数据,得到所述手持终端的被持握方式,还包括:
    若所述第一重力感应数据的X轴和所述第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定所述手持终端被竖向且正 向持握;
    若所述第一重力感应数据的X轴和所述第二重力感应数据的X轴之间的夹角的补角小于或等于所述第一夹角门限,则判定所述手持终端被竖向且反向持握;
    若所述第一重力感应数据的X轴和所述第二重力感应数据的Y轴之间的夹角小于或等于所述第一夹角门限,则判定所述手持终端被横向且正向持握,其中竖向且正向的所述手持终端被顺时针旋转90°之后的方向为所述横向且正向;
    若所述第一重力感应数据的X轴和所述第二重力感应数据的Y轴之间的夹角的补角小于或等于所述第一夹角门限,则判定所述手持终端被横向且反向持握,其中竖向且正向的所述手持终端被逆时针旋转90°之后的方向为所述横向且反向;
    当所述穿戴设备与所述手持终端被正向且相互平行放置时,所述第一重力感应数据的X轴、Y轴、Z轴分别与所述第二重力感应数据的X轴、Y轴、Z轴的方向相同,且所述第二重力感应数据的Z轴与所述手持终端所在的平面垂直。
  5. 根据权利要求2-4任一所述的方法,其特征在于,所述穿戴设备为智能手表或智能手环。
  6. 根据权利要求1所述的方法,其特征在于,所述穿戴设备为智能眼镜,所述根据所述第一重力感应数据以及所述手持终端的第二重力感应数据,得到所述手持终端的被持握方式,包括:
    若所述第一重力感应数据的Y轴和所述第二重力感应数据的Y轴之间的夹角小于或等于预置的第二夹角门限,则判定所述手持终端被竖向且正向持握;
    若所述第一重力感应数据的Y轴和所述第二重力感应数据的Y轴之间的夹角的补角小于或等于所述第二夹角门限,则判定所述手持终端被竖向且反向持握;
    若所述第一重力感应数据的Y轴和所述第二重力感应数据的X轴之间的夹角的补角小于或等于所述第二夹角门限,则判定所述手持终端被横向 且正向持握,其中竖向且正向的所述手持终端被顺时针旋转90°之后的方向为所述横向且正向;
    若所述第一重力感应数据的Y轴和所述第二重力感应数据的X轴之间的夹角小于或等于所述第二夹角门限,则判定所述手持终端被横向且反向持握,其中竖向且正向的所述手持终端被逆时针旋转90°之后的方向为所述横向且反向;
    当所述穿戴设备与所述手持终端被正向且相互平行放置时,所述第一重力感应数据的X轴、Y轴、Z轴分别与所述第二重力感应数据的X轴、Y轴、Z轴的方向相同,且所述第二重力感应数据的Z轴与所述手持终端所在的平面垂直。
  7. 一种手持终端,其特征在于,所述手持终端包括:
    收发模块,用于获取与所述手持终端建立通信连接的穿戴设备的第一重力感应数据;
    传感模块,用于获取所述手持终端的第二重力感应数据;
    处理模块,用于根据所述收发模块获取的所述第一重力感应数据以及所述传感模块获取的所述第二重力感应数据,得到所述手持终端的被持握方式,并进一步根据所述被持握方式控制所述手持终端的屏幕显示。
  8. 根据权利要求7所述的手持终端,其特征在于,若所述处理模块比较所述第一重力感应数据的变化量与所述手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定所述手持终端的被持握方式对应的手臂位置与所述穿戴设备佩戴的手臂位置相同,且所述处理模块根据预先获取的所述穿戴设备佩戴的手臂位置,得到所述手持终端的被持握方式,所述被持握方式为被左手持握或者被右手持握。
  9. 根据权利要求7或8所述的手持终端,其特征在于,所述处理模块还用于预先获取所述穿戴设备佩戴的手臂位置,所述收发模块还用于获取所述穿戴设备在使用者行走摆臂过程中的第三重力感应数据,
    若在预设时间段内,所述处理模块比较所述第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定所述穿戴设备佩戴的手臂位置为左手;
    若在预设时间段内,所述处理模块比较所述第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定所述穿戴设备佩戴的手臂位置为右手。
  10. 根据权利要求8或9所述的手持终端,其特征在于,所述手持终端的被持握方式对应的手臂位置与所述穿戴设备佩戴的手臂位置相同,所述被持握方式还包括:竖向且正向、竖向且反向、横向且正向、横向且反向;
    若所述处理模块比较所述第一重力感应数据的X轴和所述第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定所述手持终端被竖向且正向持握;
    若所述处理模块比较所述第一重力感应数据的X轴和所述第二重力感应数据的X轴之间的夹角的补角小于或等于所述第一夹角门限,则判定所述手持终端被竖向且反向持握;
    若所述处理模块比较所述第一重力感应数据的X轴和所述第二重力感应数据的Y轴之间的夹角小于或等于所述第一夹角门限,则判定所述手持终端被横向且正向持握,其中竖向且正向的所述手持终端被顺时针旋转90°之后的方向为所述横向且正向;
    若所述处理模块比较所述第一重力感应数据的X轴和所述第二重力感应数据的Y轴之间的夹角的补角小于或等于所述第一夹角门限,则判定所述手持终端被横向且反向持握,其中竖向且正向的所述手持终端被逆时针旋转90°之后的方向为所述横向且反向;
    当所述穿戴设备与所述手持终端被正向且相互平行放置时,所述第一重力感应数据的X轴、Y轴、Z轴分别与所述第二重力感应数据的X轴、Y轴、Z轴的方向相同,且所述第二重力感应数据的Z轴与所述手持终端所在的平面垂直。
  11. 根据权利要求8-10所述的手持终端,其特征在于,所述穿戴设备为智能手表或智能手环。
  12. 根据权利要求7所述的手持终端,其特征在于,所述穿戴设备为智能眼镜,
    若所述处理模块比较所述第一重力感应数据的Y轴和所述第二重力感 应数据的Y轴之间的夹角小于或等于预置的第二夹角门限,则判定所述手持终端被竖向且正向持握;
    若所述处理模块比较所述第一重力感应数据的Y轴和所述第二重力感应数据的Y轴之间的夹角的补角小于或等于所述第二夹角门限,则判定所述手持终端被竖向且反向持握;
    若所述处理模块比较所述第一重力感应数据的Y轴和所述第二重力感应数据的X轴之间的夹角的补角小于或等于所述第二夹角门限,则判定所述手持终端被横向且正向持握,其中竖向且正向的所述手持终端被顺时针旋转90°之后的方向为所述横向且正向;
    若所述处理模块比较所述第一重力感应数据的Y轴和所述第二重力感应数据的X轴之间的夹角小于或等于所述第二夹角门限,则判定所述手持终端被横向且反向持握,其中竖向且正向的所述手持终端被逆时针旋转90°之后的方向为所述横向且反向;
    当所述穿戴设备与所述手持终端被正向且相互平行放置时,所述第一重力感应数据的X轴、Y轴、Z轴分别与所述第二重力感应数据的X轴、Y轴、Z轴的方向相同,且所述第二重力感应数据的Z轴与所述手持终端所在的平面垂直。
  13. 一种手持终端,其特征在于,所述手持终端包括收发器、重力传感器、存储器以及处理器,其中:
    所述收发器用于获取与所述手持终端建立通信连接的穿戴设备的第一重力感应数据,所述重力传感器用于获取所述手持终端的第二重力感应数据;
    所述存储器用于存储以被所述处理器调用应用程序,实现对所述手持终端的屏幕显示的控制;
    所述处理器用于调用所述存储器存储的所述应用程序,并根据所述收发器获取的所述第一重力感应数据以及所述重力传感器获取的所述第二重力感应数据,得到所述手持终端的被持握方式,进一步根据所述被持握方式控制所述手持终端的屏幕显示。
  14. 根据权利要求13所述的手持终端,其特征在于,若所述处理器比 较所述第一重力感应数据的变化量与所述手持终端的第二重力感应数据的变化量之间的差值小于或等于预置的门限,则判定所述手持终端的被持握方式对应的手臂位置与所述穿戴设备佩戴的手臂位置相同,且所述处理器根据预先获取的所述穿戴设备佩戴的手臂位置,得到所述手持终端的被持握方式,所述被持握方式为被左手持握或者被右手持握。
  15. 根据权利要求13或14所述的手持终端,其特征在于,所述处理器还用于预先获取所述穿戴设备佩戴的手臂位置,所述收发器还用于获取所述穿戴设备在使用者行走摆臂过程中的第三重力感应数据,
    若在预设时间段内,所述处理器比较所述第三重力感应数据的变化量与预置的左手对应的变化量相同,则判定所述穿戴设备佩戴的手臂位置为左手;
    若在预设时间段内,所述处理器比较所述第三重力感应数据的变化量与预置的右手对应的变化量相同,则判定所述穿戴设备佩戴的手臂位置为右手。
  16. 根据权利要求14或15所述的手持终端,其特征在于,所述手持终端的被持握方式对应的手臂位置与所述穿戴设备佩戴的手臂位置相同,所述被持握方式还包括:竖向且正向、竖向且反向、横向且正向、横向且反向;
    若所述处理器比较所述第一重力感应数据的X轴和所述第二重力感应数据的X轴之间的夹角小于或等于预置的第一夹角门限,则判定所述手持终端被竖向且正向持握;
    若所述处理器比较所述第一重力感应数据的X轴和所述第二重力感应数据的X轴之间的夹角的补角小于或等于所述第一夹角门限,则判定所述手持终端被竖向且反向持握;
    若所述处理器比较所述第一重力感应数据的X轴和所述第二重力感应数据的Y轴之间的夹角小于或等于所述第一夹角门限,则判定所述手持终端被横向且正向持握,其中竖向且正向的所述手持终端被顺时针旋转90°之后的方向为所述横向且正向;
    若所述处理器比较所述第一重力感应数据的X轴和所述第二重力感应 数据的Y轴之间的夹角的补角小于或等于所述第一夹角门限,则判定所述手持终端被横向且反向持握,其中竖向且正向的所述手持终端被逆时针旋转90°之后的方向为所述横向且反向;
    当所述穿戴设备与所述手持终端被正向且相互平行放置时,所述第一重力感应数据的X轴、Y轴、Z轴分别与所述第二重力感应数据的X轴、Y轴、Z轴的方向相同,且所述第二重力感应数据的Z轴与所述手持终端所在的平面垂直。
  17. 根据权利要求14-16所述的手持终端,其特征在于,所述穿戴设备为智能手表或智能手环。
  18. 根据权利要求13所述的手持终端,其特征在于,所述穿戴设备为智能眼镜,
    若所述处理器比较所述第一重力感应数据的Y轴和所述第二重力感应数据的Y轴之间的夹角小于或等于预置的第二夹角门限,则判定所述手持终端被竖向且正向持握;
    若所述处理器比较所述第一重力感应数据的Y轴和所述第二重力感应数据的Y轴之间的夹角的补角小于或等于所述第二夹角门限,则判定所述手持终端被竖向且反向持握;
    若所述处理器比较所述第一重力感应数据的Y轴和所述第二重力感应数据的X轴之间的夹角的补角小于或等于所述第二夹角门限,则判定所述手持终端被横向且正向持握,其中竖向且正向的所述手持终端被顺时针旋转90°之后的方向为所述横向且正向;
    若所述处理器比较所述第一重力感应数据的Y轴和所述第二重力感应数据的X轴之间的夹角小于或等于所述第二夹角门限,则判定所述手持终端被横向且反向持握,其中竖向且正向的所述手持终端被逆时针旋转90°之后的方向为所述横向且反向;
    当所述穿戴设备与所述手持终端被正向且相互平行放置时,所述第一重力感应数据的X轴、Y轴、Z轴分别与所述第二重力感应数据的X轴、Y轴、Z轴的方向相同,且所述第二重力感应数据的Z轴与所述手持终端所在的平面垂直。
PCT/CN2015/095473 2014-11-26 2015-11-24 手持终端及其屏幕显示控制方法 WO2016082752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410706321.3A CN105630144B (zh) 2014-11-26 2014-11-26 手持终端及其屏幕显示控制方法
CN201410706321.3 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016082752A1 true WO2016082752A1 (zh) 2016-06-02

Family

ID=56045179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095473 WO2016082752A1 (zh) 2014-11-26 2015-11-24 手持终端及其屏幕显示控制方法

Country Status (2)

Country Link
CN (1) CN105630144B (zh)
WO (1) WO2016082752A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544623B (zh) * 2016-06-29 2021-03-09 中兴通讯股份有限公司 一种识别单手使用模式的方法及其移动终端
CN106303045B (zh) * 2016-08-18 2019-09-20 青岛海信移动通信技术股份有限公司 移动终端手持状态的检测方法及移动终端
CN106339088B (zh) * 2016-08-30 2020-03-10 维沃移动通信有限公司 检测设备运动状态的方法、手持式移动终端及穿戴式设备
CN106547350A (zh) * 2016-10-10 2017-03-29 上海斐讯数据通信技术有限公司 一种智能终端横竖屏切换的系统及方法
CN106778153A (zh) * 2016-11-17 2017-05-31 青岛海信移动通信技术股份有限公司 指纹比对方法、指纹解锁设备、穿戴设备及系统
CN106621219A (zh) * 2017-01-20 2017-05-10 奇酷互联网络科技(深圳)有限公司 控制画面对象运动的手环、显示终端和控制方法
CN111813280B (zh) * 2020-05-28 2022-02-22 维沃移动通信有限公司 显示界面的控制方法、装置、电子设备及可读存储介质
CN111708273A (zh) * 2020-06-01 2020-09-25 广东乐芯智能科技有限公司 一种手表的控制方法
CN113507634A (zh) * 2021-06-29 2021-10-15 上海闻泰信息技术有限公司 视频播放方法、装置、电子设备和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103941873A (zh) * 2014-04-30 2014-07-23 北京智谷睿拓技术服务有限公司 识别方法和设备
CN104091133A (zh) * 2014-04-17 2014-10-08 中兴通讯股份有限公司 一种保护终端安全性的方法、终端及系统
WO2014168300A1 (en) * 2013-04-09 2014-10-16 Lg Electronics Inc. Smart watch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800816B (zh) * 2010-04-08 2012-10-17 华为终端有限公司 移动终端的触摸屏的横竖屏切换方法及移动终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168300A1 (en) * 2013-04-09 2014-10-16 Lg Electronics Inc. Smart watch
CN104091133A (zh) * 2014-04-17 2014-10-08 中兴通讯股份有限公司 一种保护终端安全性的方法、终端及系统
CN103941873A (zh) * 2014-04-30 2014-07-23 北京智谷睿拓技术服务有限公司 识别方法和设备

Also Published As

Publication number Publication date
CN105630144A (zh) 2016-06-01
CN105630144B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2016082752A1 (zh) 手持终端及其屏幕显示控制方法
TWI590144B (zh) 縮小尺寸之組態介面
US10191564B2 (en) Screen control method and device
AU2015312634B2 (en) Electronic device with bent display and method for controlling thereof
CN103793075B (zh) 一种应用在智能手表上的识别方法
CN106030446B (zh) 用于调节可穿戴计算设备的电力模式的方法和系统
JP6087349B2 (ja) 移動端末及びそのカーソル移動を実現する方法
US8872729B2 (en) Multi-segment wearable accessory
US9459698B2 (en) Gesture based power management system and method
WO2015101098A1 (zh) 腕戴式终端设备及其显示控制方法
WO2015149498A1 (zh) 用于屏幕模式切换的方法、装置、计算机存储介质和设备
US20160132189A1 (en) Method of controlling the display of images and electronic device adapted to the same
CN104731315A (zh) 根据手势输入来启用设备特征
WO2018223605A1 (zh) 一种输入方法、装置和系统
WO2016127439A1 (zh) 一种控制显示屏的方法、装置及终端
WO2013177901A1 (zh) 触控解锁方法、装置和电子设备
WO2018059328A1 (zh) 一种终端控制方法及终端、存储介质
CN107657590A (zh) 图片处理方法及装置
WO2014121670A1 (en) Method, device and storage medium for controlling electronic map
WO2016123842A1 (zh) 终端应用程序的启动方法及装置
WO2022199102A1 (zh) 图像处理方法及装置
JP2024528399A (ja) ウェアラブルリングデバイス及びユーザインターフェース処理
WO2016197627A1 (zh) 一种控制方法及装置
KR20150069856A (ko) 스마트 워치 제어 방법 및 시스템
WO2016138620A1 (zh) 桌面图标的显示方法及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862924

Country of ref document: EP

Kind code of ref document: A1