WO2016082610A1 - 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用 - Google Patents

一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用 Download PDF

Info

Publication number
WO2016082610A1
WO2016082610A1 PCT/CN2015/090214 CN2015090214W WO2016082610A1 WO 2016082610 A1 WO2016082610 A1 WO 2016082610A1 CN 2015090214 W CN2015090214 W CN 2015090214W WO 2016082610 A1 WO2016082610 A1 WO 2016082610A1
Authority
WO
WIPO (PCT)
Prior art keywords
high temperature
ceramic coating
temperature resistant
mass percentage
coating according
Prior art date
Application number
PCT/CN2015/090214
Other languages
English (en)
French (fr)
Inventor
吴建亚
孙荣祥
赵凯
Original Assignee
清大赛思迪新材料科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清大赛思迪新材料科技(北京)有限公司 filed Critical 清大赛思迪新材料科技(北京)有限公司
Publication of WO2016082610A1 publication Critical patent/WO2016082610A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders

Definitions

  • the invention belongs to the technical field of special coatings, and particularly relates to a high temperature resistant anti-staining and slag ceramic coating and a preparation method and application thereof.
  • high temperature sulfate corrosion includes pyrosulfate corrosion and sulfate. Corrosion, etc. Contamination and slagging on the high-temperature heat exchange surface directly leads to a decrease in the heat exchange capacity of the boiler and the heating furnace, and the furnace efficiency and output are reduced. Further, the heat transfer surface is unevenly heated, resulting in uneven thermal stress of the furnace tube and uneven heating of the heated working medium. The temperature rise causes the furnace tube to over-temperature operation, the formation and emission of nitrogen oxides and the exhaust gas temperature are too high, and the fouling and slagging increase the corrosion of the heat exchange surface.
  • the traditional solution is to strengthen the soot blowing, adjust the fuel, put the coke decoking agent, mechanical coke, etc., which brings sustained economic losses to the enterprise, and the safety hazard still exists.
  • ceramic coatings can resist high temperature corrosion and increase emissivity.
  • the prior art ceramic coating cannot solve the problems of high staining and high temperature corrosion, especially reducing corrosion, and therefore cannot comprehensively realize the above functions, and the cracking, falling off, and chalking of the coating are present to varying degrees during use.
  • these problems are still not effectively solved.
  • the present invention provides a high temperature resistant antifouling and slag ceramic coating.
  • Another object of the present invention is to provide a method for preparing the above high temperature resistant antifouling and slag ceramic coating.
  • a high temperature resistant anti-staining and slagging ceramic coating comprises the following components in terms of mass percentage: 15-30% of filler, 40-65% of binder and the balance of water; wherein the filler comprises zirconia 3 ⁇ 5%, silicon carbide 3 to 5%, silicon nitride 3 to 5%, titanium dioxide 1 to 3%, kaolin 2 to 4%, and rare earth oxide 3 to 8%.
  • the inorganic coating has good thermal conductivity, wear resistance, acid and alkali corrosion resistance at high temperatures.
  • the binder is aluminum dihydrogen phosphate and silica sol, and the two components have a high melting point, high bonding energy at high temperature, and are not easily melted.
  • the heat resistance of the binder is improved.
  • the use of an inorganic binder not only is resistant to high temperatures, but also has a strong adhesion to the substrate after drying at a high temperature, and can also improve strength and smoothness to enhance the antifouling ability.
  • the effect of the two binders is significantly better than that of using a single binder, which has good bonding properties at high temperatures, a small coating expansion ratio, and a strong bonding ability with the substrate.
  • the mass percentage of the aluminum dihydrogen phosphate is 35 to 45%, and the mass percentage of the silica sol is 5 to 20%.
  • the rare earth oxide is Antimony oxide, antimony oxide and antimony oxide.
  • the mechanical strength can be improved by adding rare earth oxides, and in particular, the formation of rare earth aluminate during sintering with kaolin and aluminum dihydrogen phosphate suppresses grain growth, improves compactness, and further increases strength and stain resistance.
  • the three rare earth oxides are shared, they promote each other and further improve product performance.
  • the mass percentage of the cerium oxide is 1 to 3%, the mass percentage of cerium oxide is 1 to 3%, and the mass percentage of cerium oxide.
  • the content is 1-2%.
  • the above-mentioned high-temperature anti-staining and slag-containing ceramic coating further comprises one or more auxiliary agents of a dispersing agent, a wetting agent and an antifoaming agent, and the mass percentage of the auxiliary agent is not more than 3%.
  • Additives are mainly used to improve dispersibility, wettability and avoid local defects caused by bubbles during film coating.
  • Dispersing agents, antifoaming agents and wetting agents can be selected from commercially available products in the art.
  • a dispersing agent can be selected from CF-10, Hensic H-4200, etc.
  • an antifoaming agent can be selected from DF104, Hensic H-210, and Hensic H-. 231 and so on.
  • the high temperature resistant antifouling and slag ceramic coating comprises 0.5 to 1% of a dispersant by mass percentage, 0.5 to 0.8% of a wetting agent, and 0.3 to 0.5% of an antifoaming agent.
  • the filler further comprises copper chrome black having a mass percentage of not more than 5% to improve high temperature and corrosion resistance, and no more than 3% of nitriding. Boron improves hardness and reduces surface free energy to reduce fouling. At the same time, it can be combined with rare earth to reduce sintering temperature, improve material toughness to improve crack resistance and chalking performance, and no more than 3% bentonite to improve adhesion. a mixture of one or more of the above materials.
  • the above high temperature anti-staining and slagging ceramic coating comprises the following components in terms of mass percentage: filler 23.5 to 28.5%, binder 53 to 59% and balance water; wherein the filler comprises Zirconium oxide 3.5 to 4%, silicon carbide 2 to 2.5%, silicon nitride 3 to 4%, titanium dioxide 2 to 2.5%, high 3 to 4% of ridge soil and 4 to 5.5% of rare earth oxide, 3 to 4% of copper chrome black, 1-2% of boron nitride, and 2 to 2.5% of bentonite.
  • filler comprises Zirconium oxide 3.5 to 4%, silicon carbide 2 to 2.5%, silicon nitride 3 to 4%, titanium dioxide 2 to 2.5%, high 3 to 4% of ridge soil and 4 to 5.5% of rare earth oxide, 3 to 4% of copper chrome black, 1-2% of boron nitride, and 2 to 2.5% of bentonite.
  • the method for preparing the above-mentioned high-temperature anti-staining and slag-containing ceramic coating comprises the steps of: adding a binder to water to obtain a binder liquid, and then adding the refining treatment to a binder liquid having a particle size of 50-900 nm. In the middle, add the auxiliary agent to stir evenly and filter the package.
  • the invention also provides the application of the above high temperature resistant anti-staining and slag ceramic coating in preparing a boiler tube and/or a heating furnace tube, and the ceramic coating is applied on the outer surface of the boiler tube and/or the furnace tube to form a ceramic coating.
  • Floor the above high temperature resistant anti-staining and slag ceramic coating
  • the present invention has the following beneficial effects:
  • the high temperature resistant anti-staining and slag ceramic coating of the invention can withstand high temperature of 1300 ° C, and maintain high emissivity of more than 0.94 at high temperature, enhance heat transfer; low surface energy, anti-staining and slagging; chemical inertness of coating set and Passivation protection in one body, self-cleaning effect, effectively preventing contamination and slagging, protecting the substrate, especially the metal substrate, improving the heat exchange efficiency of the boiler, making the heating surface more uniform; high temperature corrosion resistance, long service life, application It is simple and practical, and it is widely used in oil and petrochemical heating furnaces and power station boiler tubes.
  • the binder is added with water to obtain a binder liquid, and then the refining treatment is added to the binder liquid with a particle size of 50-900 nm, and then the additive is uniformly stirred and filtered, as needed, to obtain the present invention.
  • Ceramic coatings, coating materials and their amounts are shown in Table 1 below.
  • the coating materials of Examples 1-7 were applied to the surface of a HP-40 WM furnace tube, and the coating film thickness was 30 to 50 ⁇ m. After the surface of the coating layer was flattened, it was dried and solidified to examine the surface appearance. The dried coating was placed in a high temperature furnace and heated to 1050 ° C for 3 h. The high temperature test showed no peeling, cracking or chalking of the coating layer. In addition, the emissivity and thermal conductivity were measured. The specific results are shown in Table 2.
  • Coating microstructure The coated substrate is HP-40WM furnace tube with a coating thickness of about 100 ⁇ m. After processing the sample with a cutter and an automatic metallographic preparation machine, the surface of the coating is scanned with a scanning electron microscope. The cross section of the coating was observed. The results show that the coatings of Examples 1-5 are flat and no obvious cracks are found. No obvious cracks are found in the coating joints, and the coatings are well bonded to the substrate. The microcracks appearing on the surface of the coatings of Examples 6 and 7 are non-penetrating. Sexual cracks. Microstructure of the coating It has an important influence on the performance of the coating. From the microscopic topography, several coatings of Examples 1-5 have good bonding with the substrate, which is beneficial to the protection of the substrate.
  • coating heat resistance test according to GB4653 infrared radiation coating general technical conditions for testing, the sample into the heating furnace, 650 ° C for 30 min after the removal, forced air cooling to room temperature, recycling to the coating peeling off , cracks and other defects, and the number of records. According to the test results, Examples 1-5 all met the standard requirements, in which Examples 2 and 4 worked best, Example 5 worked well, and Examples 6 and 7 did not meet the standard requirements.
  • the coating of the invention is mainly used on the pipe, in order to verify the influence of the corrosion product on the coating, the following test is designed: the substrate is selected from 20G and high Cr steel, the sample is placed in a heating furnace, and the steel is taken out after 650 ° C for 30 minutes, and the forced wind is taken. After cooling to room temperature, the coating is circulated until the coating has defects such as peeling and cracking, and the number of times is recorded.
  • the test results show that several coatings have good heat exchange resistance, and 2 and 4 show excellent heat exchange resistance.
  • the coated samples of Examples 1-5 were run in a test stand with a comparative tube, and the coated and comparative tubes were compared.
  • the surface treated post is relatively thinner than the untreated pipe surface, indicating that the anti-slag coating has the ability to reduce the slag and slag.
  • the ceramic coating on the heated surface of the coating is still bright, and the surface of the heated surface is not oxidized and corroded.
  • the coking and slagging phenomenon of the heated surface without coating is serious, indicating that the anti-slag coating also has the function of protecting the heated surface and resisting high temperature corrosion.
  • the high temperature sulfur corrosion resistance of the coating coatings of Examples 1-5 was tested by a conventional salt coating corrosion method.
  • the temperature is tested by a saturated solution of sulfate, and the temperature of the high-temperature sulfur corrosion test is selected to be 650 ° C, atmospheric atmosphere; the surface area A of the sample is taken, and a saturated aqueous solution of sodium sulfate and potassium sulfate having a molar ratio of 7:3 is extracted by a brush, uniformly coated.
  • a uniform salt film can be left after drying. The sample was then weighed and placed in an air atmosphere at 650 ° C for corrosion testing.
  • the sample is taken out after being kept warm for a predetermined time, and then re-weighed after cooling, and then salted, dried, weighed, and etched.
  • the data of corrosion weight gain is processed according to formula (1).
  • the corrosion time was set to 80h, and the salt was weighed once every certain time. Finally, the corrosion kinetic curve was drawn according to the data points.
  • W i is the weight of the test piece before the ith pre-corrosion
  • W i+1 is the weighing after the ith salt application
  • W i+2 is the weighing after the ith corrosion
  • A is the total surface area of the test piece
  • 0.6 is the coefficient of the salt water of the salt film.
  • the operation of the boiler under actual working conditions is more complicated than the laboratory test. Therefore, a 220 ton/hour high pressure pulverized coal boiler of a power plant is selected for testing.
  • the boiler is burned with bituminous coal and coal, and the furnace wall is contaminated with slag.
  • the maximum load of the boiler is 180 tons/hour, the superheater is over-temperature, the desuperheating water is doubled, and the exhaust gas temperature is 180 °C, which seriously affects energy efficiency and output.
  • the coating materials of Examples 1-5 of the present invention are sprayed on the segment.
  • the surface of the substrate has a coating thickness of 30 to 50 microns. After the surface is dried, the furnace can be heated and the equipment is put into a hot state.
  • the surface of the furnace tube is thin and can be removed by rubbing to expose the ceramic coating, and no cracking and peeling phenomenon is found on the surface of the coating;
  • the maximum output reaches full load, the amount of desuperheating water returns to the design range, and the exhaust gas temperature drops to 145 °C, which saves fuel and improves the output.
  • the safety and economy of the unit operation and the adaptability of coal type are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用。该陶瓷涂料包括按质量百分含量计的组分:填料15~30%,粘结剂40~65%和余量的水;其中填料包括氧化锆3~5%、碳化硅3~5%、氮化硅3~5%、二氧化钛1~3%、高岭土2~4%和稀土氧化物3~8%。其制备方法是将粘结剂加水混合得粘结剂液体,然后将细化处理至粒度达50~900nm的填料加入到粘结剂液体中,再加入助剂搅拌均匀,过滤封装。该涂料可以涂覆于锅炉炉管及加热炉炉管外表面形成陶瓷涂层,制备高性能的锅炉炉管及加热炉炉管。

Description

一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用 技术领域
本发明属于特殊涂料技术领域,具体涉及一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用。
背景技术
电站锅炉、石油石化加热炉及中小工业锅炉等的生产运行中,煤粉锅炉(包括燃油气加热炉炉管)沾污给锅炉的安全运行造成极大隐患,同时影响锅炉以及加热炉效率,高温烟气作用下,粘结在水冷壁或高温过热器上以及加热炉炉管的灰渣会与管壁发生复杂的化学反应,形成高温腐蚀。沾污、结渣一般被认为是高温腐蚀的前奏,高温腐蚀原因包括硫酸盐腐蚀、硫化物腐蚀、氯化物腐蚀以及还原性气氛腐蚀等,其中高温硫酸盐腐蚀又包括焦硫酸盐腐蚀、硫酸盐腐蚀等。高温换热表面沾污结渣直接导致锅炉以及加热炉换热能力下降,炉效和出力降低,进而换热表面受热不匀导致炉管热应力不均和被加热工质受热不匀,同时炉膛温度升高导致炉管超温运行、氮氧化物生成及排放加剧和排烟温度过高,沾污结渣加剧换热表面腐蚀,这些问题直接影响企业的安全生产、节能减排、产品质量与产能,降低设备使用寿命,给企业带来重大损失。
针对沾污结渣,传统的解决方法是加强吹灰、调整燃料、投运除焦剂、机械打焦等,这给企业带来持续性的经济损失,安全隐患仍然存在。
陶瓷涂料作为一种新型功能材料,可起到耐高温腐蚀和提高发射率的作 用,但现有技术的陶瓷涂料无法解决高沾污和高温腐蚀特别是还原性腐蚀问题,因此不能综合实现上述功能,且使用过程中不同程度存在涂层龟裂、脱落、粉化的情况,严重影响涂层的使用寿命,目前这些问题仍无法有效解决。
发明内容
针对现有技术中存在的上述不足,本发明提供了一种耐高温抗沾污结渣陶瓷涂料。
本发明的另一目的是提供上述耐高温抗沾污结渣陶瓷涂料的制备方法。
本发明的又一目的是提供上述耐高温抗沾污结渣陶瓷涂料的应用。
本发明通过以下技术方案实现上述目的:
一种耐高温抗沾污结渣陶瓷涂料,包括按质量百分含量计的以下组分:填料15~30%,粘结剂40~65%和余量的水;其中填料包括氧化锆3~5%、碳化硅3~5%、氮化硅3~5%、二氧化钛1~3%、高岭土2~4%和稀土氧化物3~8%。
无机涂层在高温下有良好导热性、耐磨损、耐酸碱腐蚀等特性。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,所述粘结剂为磷酸二氢铝和硅溶胶,这两种成分自身熔点较高,高温下键合能较高,不易熔化,提高了粘结剂的耐热性。采用无机粘结剂不仅耐高温,而且在高温下干燥后与基体粘结力强,还可提高强度和光洁度,以增强抗污能力。这两种粘结剂共用产生的效果明显优于采用单一粘结剂,在高温下具有良好的粘结性能,涂层膨胀率小,与基体间结合能力强。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,所述磷酸二氢铝的质量百分含量为35~45%,硅溶胶的质量百分含量为5~20%。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,所述稀土氧化物为 氧化钇、氧化铈和氧化铕。通过添加稀土氧化物可以提高机械强度,特别是与高岭土以及磷酸二氢铝共用烧结时形成稀土铝酸盐抑制晶粒长大,提高致密性,进而增加强度和抗污能力。而三种稀土氧化物共用时,其相互促进作用,进一步改善产品性能。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,所述氧化钇的质量百分含量为1~3%,氧化铈的质量百分含量为1~3%,氧化铕的质量百分含量为1~2%。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,还包括分散剂、润湿剂和消泡剂中的一种以上的助剂,助剂质量百分含量不超过3%。助剂主要用来提高分散性、润湿性和避免涂膜时产生气泡造成的局部缺陷。分散剂、消泡剂和润湿剂均可以选用本领域常规市售商品,例如分散剂可选择CF-10,Hensic H-4200等,消泡剂可以选择DF104,Hensic H-210,Hensic H-231等。
较佳地,上述耐高温抗沾污结渣陶瓷涂料中,包括按质量百分含量计的分散剂0.5~1%,润湿剂0.5~0.8%和消泡剂0.3~0.5%。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,所述填料中还包括质量百分含量不超过5%的铜铬黑以提高耐高温和耐腐蚀能力、不超过3%的氮化硼以提高硬度和降低表面自由能减少粘污,同时可与稀土相结合降低烧结温度,提高材料韧性以提高抗龟裂和粉化性能,和不超过3%的膨润土以提高附着力,可以含有上述材料中的一种或几种的混合物。
作为优选方案,上述耐高温抗沾污结渣陶瓷涂料中,包括按质量百分含量计的以下组分:填料23.5~28.5%,粘结剂53~59%和余量的水;其中填料包括氧化锆3.5~4%、碳化硅2~2.5%、氮化硅3~4%、二氧化钛2~2.5%、高 岭土3~4%和稀土氧化物4~5.5%,铜铬黑3~4%,氮化硼1~2%,膨润土2~2.5%。
本发明提供的上述耐高温抗沾污结渣陶瓷涂料的制备方法,是将粘结剂加水混合得粘结剂液体,然后将细化处理至粒度达50~900nm的填料加入到粘结剂液体中,再加入助剂搅拌均匀,过滤封装。
本发明还提供上述耐高温抗沾污结渣陶瓷涂料在制备锅炉炉管和/或加热炉炉管中的应用,陶瓷涂料涂覆于锅炉炉管和/或加热炉炉管外表面形成陶瓷涂层。
与现有技术相比,本发明具有以下有益效果:
本发明的耐高温抗沾污结渣陶瓷涂料可耐1300℃高温,且高温下仍保持0.94以上的高发射率,强化换热;表面能低,抗沾污结渣;涂层集化学惰性和钝化保护于一身,具有自清洁作用,有效防止沾污结渣,保护基体,特别是金属材质的基体,提高锅炉的换热效率,使受热面更加均匀;耐高温腐蚀,使用寿命长,施用简便,实际应用效果明显,广泛适用于石油石化加热炉及电站锅炉炉管等。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以助于理解本发明的内容。
将粘结剂加水混合得粘结剂液体,然后将细化处理至粒度达50~900nm的填料加入到粘结剂液体中,再根据需要加入助剂搅拌均匀,过滤封装,即得本发明的陶瓷涂料,涂料各原料及其用量如下表1所示。
表1 不同组分制备的陶瓷涂料
Figure PCTCN2015090214-appb-000001
Figure PCTCN2015090214-appb-000002
将实施例1-7中的涂料,涂布于HP-40WM炉管表面,涂膜厚度为30~50微米,待涂层表面平整后烘干固化,进行表面外观检测。烘干后的涂层放置在高温炉中升温至1050℃,保温3h,耐高温测试结果显示涂料层无脱落、开裂、粉化现象。另外进行发射率和导热率的检测,具体结果见表2。
表2 涂料性能检测结果
Figure PCTCN2015090214-appb-000003
实施例1-7的涂料进行以下项目的检测:
1、涂层微观组织结构:涂覆基体为HP-40WM炉管,涂层厚度约为100μm,使用切割机和自动金相制备机对试样进行处理后,用扫描电子显微镜对涂层表面及涂层截面进行观察。结果表明实施例1-5涂层均表面平整,未发现明显裂纹,涂层结合部未发现明显裂纹存在,涂层与基体结合良好,实施例6和7涂层表面出现的微裂纹为非贯穿性裂纹。涂层的微观组织形态 对涂层使用性能具有重要影响,从微观形貌上来说,实施例1-5几种涂层与基体均有良好的结合,这有利于对基体的保护。
2、涂层抗热交变能力检测:按GB4653红外辐射涂料通用技术条件进行试验,将试样放入加热炉中,650℃保温30min后取出,强制风冷至室温,循环至涂层出现剥落、裂纹等缺陷,并记录次数。根据试验结果,实施例1-5均满足标准要求,其中实施例2和4效果最好,实施例5效果良好,实施例6和7不满足标准要求。
由于本发明涂料主要使用在管材上,为了验证腐蚀产物对涂层的影响,设计以下试验:基体选择20G与高Cr钢,将试样放入加热炉中,650℃保温30min后取出,强制风冷至室温,循环至涂层出现剥落、裂纹等缺陷,并记录次数。试验结果表明,几种涂层抗热交变能力良好,其中2、4表现出了极好的抗热交变性能。
表3
试样 实施例1 实施例2 实施例3 实施例4 实施例5
次数 21 43 25 42 38
3、抗结焦结渣试验
将实施例1-5涂层试样与对比管在试验台中运行,对比涂层与对比管。经过表面处理后的管件较未处理过的管件表面积灰相对较薄,说明抗结渣涂料具有降低沾污结渣的能力,有涂料的受热面陶瓷涂层仍然光亮,受热面表面没有氧化腐蚀现象,而无涂料的受热面结焦结渣及氧化腐化现象严重,说明抗结渣涂料还有保护受热面,抗高温腐蚀的作用。
4、抗高温腐蚀试验
由于锅炉高温腐蚀条件复杂,试验室缺乏有效的环境模拟手段,本试验 选择常用的涂盐腐蚀法检测实施例1-5涂料涂层的抗高温硫腐蚀特性。以饱和溶液硫酸盐涂抹升温方法试验,高温硫腐蚀试验温度选定650℃,大气气氛;量取试样表面积A,用毛笔蘸取摩尔比7:3的硫酸钠和硫酸钾饱和水溶液,均匀涂到HP-40WM炉管试样表面,烘干后可留下一层均匀盐膜。随后将试样称重,并置于650℃大气气氛中,进行腐蚀试验。试样在保温到预定时间后取出,待冷却后重新称重,然后再涂盐、烘干、称重、腐蚀……。腐蚀增重的数据按公式(1)进行处理。腐蚀时间设定80h,每隔一定时间进行一次涂盐称重,最后根据数据点绘制出腐蚀动力学曲线。
△Wi=[(Wi+2-Wi)/A]-[(Wi+1-Wi)/A]×0.6    (1)
式中Wi为第i次腐蚀前试件称重;
Wi+1为第i次涂盐后的称重;
Wi+2为第i次腐蚀后的称重;
A为试件的总的表面积;
0.6为扣除盐膜结晶水的系数。
试验结果表明实施例1-5的涂层都具有良好的抗高温腐蚀能力,其中实施例2和4的抗高温腐蚀能力最佳。
耐高温抗沾污结渣陶瓷涂料的实际应用:
实际工况下的锅炉运行情况较实验室测试更为复杂,因此选取某电厂220吨/小时高压煤粉锅炉进行测试。该锅炉燃用烟煤混煤,炉膛水冷壁沾污结渣严重,锅炉最高负荷180吨/小时,过热器超温,减温水超量一倍,排烟温度180℃,严重影响能效和出力。
炉管基材表面经过清洁处理后,将本发明实施例1-5的涂料分段喷涂于 基材表面,涂层厚度为30~50微米,表面干燥后即可随炉升温,设备投入热态运行。
施用本发明的耐高温抗沾污结渣陶瓷涂料一年后停炉检查,炉管表面浮灰渣层薄且可擦拂去除,露出陶瓷涂层,未发现涂层表面有开裂脱落现象;锅炉最高出力达到满负荷,减温水量恢复到设计范围,排烟温度降至145℃,节省燃料和提高出力效果明显,提高了机组运行的安全经济性和煤种适应性。
上述实施例仅是为清楚地说明本发明所作的举例,并非对本发明的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所引伸出的任何显而易见的变化或变动仍处于本发明权利要求的保护范围之中。

Claims (10)

  1. 一种耐高温抗沾污结渣陶瓷涂料,其特征在于,包括按质量百分含量计的以下组分:填料15~30%,粘结剂40~65%和余量的水;其中填料包括氧化锆3~5%、碳化硅3~5%、氮化硅3~5%、二氧化钛1~3%、高岭土2~4%和稀土氧化物3~8%。
  2. 根据权利要求1所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,所述粘结剂为磷酸二氢铝和硅溶胶。
  3. 根据权利要求2所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,所述磷酸二氢铝的质量百分含量为35~45%,硅溶胶的质量百分含量为5~20%。
  4. 根据权利要求1所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,所述稀土氧化物为氧化钇、氧化铈和氧化铕。
  5. 根据权利要求4所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,所述氧化钇的质量百分含量为1~3%,氧化铈的质量百分含量为1~3%,氧化铕的质量百分含量为1~2%。
  6. 根据权利要求1所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,还包括分散剂、润湿剂和消泡剂中的一种以上的助剂,助剂质量百分含量不超过3%。
  7. 根据权利要求1所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,所述填料中还包括质量百分含量不超过5%的铜铬黑、不超过3%的氮化硼和不超过3%的膨润土中的一种或几种。
  8. 根据权利要求1所述的耐高温抗沾污结渣陶瓷涂料,其特征在于,包括按质量百分含量计的以下组分:填料23.5~28.5%,粘结剂53~59%和余量 的水;其中填料包括氧化锆3.5~4%、碳化硅2~2.5%、氮化硅3~4%、二氧化钛2~2.5%、高岭土3~4%和稀土氧化物4~5.5%,铜铬黑3~4%,氮化硼1~2%,膨润土2~2.5%。
  9. 权利要求1~7任一所述的耐高温抗沾污结渣陶瓷涂料的制备方法,其特征在于,将粘结剂加水混合得粘结剂液体,然后将细化处理至粒度达50~900nm的填料加入到粘结剂液体中,再加入助剂搅拌均匀,过滤封装。
  10. 权利要求1~7任一所述的耐高温抗沾污结渣陶瓷涂料在制备锅炉炉管和/或加热炉炉管中的应用,陶瓷涂料涂覆于锅炉炉管和/或加热炉炉管外表面形成陶瓷涂层。
PCT/CN2015/090214 2014-11-26 2015-09-22 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用 WO2016082610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410687121.8A CN104446325B (zh) 2014-11-26 2014-11-26 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用
CN2014106871218 2014-11-26

Publications (1)

Publication Number Publication Date
WO2016082610A1 true WO2016082610A1 (zh) 2016-06-02

Family

ID=52893175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090214 WO2016082610A1 (zh) 2014-11-26 2015-09-22 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN104446325B (zh)
WO (1) WO2016082610A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989267A (zh) * 2019-03-21 2019-07-09 中国电力科学研究院有限公司 一种电缆接头保护盒用防爆防火材料及制作工艺
CN110653134A (zh) * 2019-08-30 2020-01-07 华电青岛发电有限公司 防结焦耐磨耐高温硫腐蚀的纳米陶瓷涂层及喷涂方法
CN111559907A (zh) * 2020-05-29 2020-08-21 河南爱邦科技有限公司 一种锅炉防结焦防腐蚀处理剂及其制备方法和应用
WO2021001466A1 (en) 2019-07-04 2021-01-07 Scg Chemicals Co., Ltd High emissivity cerium oxide coating
CN113004724A (zh) * 2021-03-08 2021-06-22 华东理工大学 一种抑制炉管结焦的涂层及其制备方法
CN113233920A (zh) * 2021-06-30 2021-08-10 新中天环保工程(重庆)有限公司 一种提高耐火材料耐氯腐蚀的改性方法
CN113265165A (zh) * 2021-06-18 2021-08-17 旭贞新能源科技(上海)有限公司 一种用于燃用高碱煤的锅炉的防结焦陶瓷涂料、涂层及其制备方法
CN113501724A (zh) * 2021-08-04 2021-10-15 江苏龙冶节能科技有限公司 一种抗氧化陶瓷涂料及其制备方法和应用
CN115181438A (zh) * 2022-08-04 2022-10-14 广东富多新材料股份有限公司 一种耐高温耐磨亲水无机涂料及其制备方法和应用
CN115259902A (zh) * 2022-09-29 2022-11-01 天津包钢稀土研究院有限责任公司 一种高温稳定的绿色稀土红外辐射涂料及制备方法和应用
CN115637065A (zh) * 2022-09-29 2023-01-24 包头市安德窑炉科技有限公司 一种含氧化铈铁渣在制备辐射材料中的应用
CN117903666A (zh) * 2024-03-15 2024-04-19 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 地热管道防垢涂料及其制备方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104446325B (zh) * 2014-11-26 2015-08-26 清大赛思迪新材料科技(北京)有限公司 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用
CN105198391B (zh) * 2015-08-17 2018-01-26 上海电力学院 一种用于钢铁表面的陶瓷涂料及其制备方法
CN105152630B (zh) * 2015-08-28 2017-03-22 邰召山 陶瓷涂料及其应用
CN105110766B (zh) * 2015-08-28 2017-03-22 邰召山 陶瓷涂料及其应用
CN105152631B (zh) * 2015-08-28 2017-03-22 邰召山 陶瓷涂料及其应用
CN105174927A (zh) * 2015-10-16 2015-12-23 杭州浙大天元科技有限公司 一种抗沾污结渣陶瓷涂料及制备方法
CN105753456B (zh) * 2016-01-29 2021-07-02 鑫工艺(上海)材料科技有限公司 有色合金熔炼用坩埚涂料
EP3275850B1 (en) * 2016-07-28 2018-12-12 Tubacoat, S.L. Ceramic composition and material comprising said ceramic composition as part of a heat recovery unit
CN108299870A (zh) * 2016-08-30 2018-07-20 甘肃华鑫石化科技有限公司 一种耐高温高黑度抗结焦耐腐蚀陶瓷涂料
CN107032809B (zh) * 2017-05-19 2020-02-18 中国计量大学 一种用于锅炉受热面防结渣复合陶瓷浆料的制备方法
CN109265181A (zh) * 2017-07-18 2019-01-25 北京泽马新技术有限公司 锅炉水冷壁高温防腐抗沾污防结渣陶瓷涂料
CN108531078B (zh) * 2018-04-28 2020-06-19 兆山科技(北京)有限公司 陶瓷表面材料与表面涂料
CN109021628B (zh) * 2018-07-12 2020-09-04 商丘师范学院 一种可低温粘结高温使用的水性氮化硼涂料
CN109988440B (zh) * 2019-01-25 2021-06-01 长兴鸿鹄耐磨材料有限公司 一种耐高温防腐耐磨涂层及其制备方法
CN110776761B (zh) * 2019-10-31 2021-11-19 烟台龙源电力技术股份有限公司 一种复合梯度涂层及陶瓷涂料产品
CN111040478B (zh) * 2019-12-13 2022-03-18 首钢集团有限公司 非氧化物防粘渣涂料及其制备方法、应用、耐高温涂层
CN112209727A (zh) * 2020-09-02 2021-01-12 珠海弘德表面技术有限公司 一种用于电厂锅炉受热面的陶瓷涂料及其制备方法
CN113214688B (zh) * 2021-05-28 2021-12-24 德清绿能热电有限公司 一种防结灰锅炉
CN114525048B (zh) * 2022-03-11 2023-01-20 成都布雷德科技有限公司 稀土增强氧化锆高温抗氧化涂料、涂层及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027691C (zh) * 1990-03-24 1995-02-22 广州师范学院 高温节能耐腐蚀陶瓷涂料组合物
CN103043995A (zh) * 2012-12-19 2013-04-17 青岛博益特生物材料有限公司 一种陶瓷涂料
CN103820021A (zh) * 2013-12-23 2014-05-28 杭州吉华高分子材料有限公司 一种不粘陶瓷涂料及其制备方法
CN104446325A (zh) * 2014-11-26 2015-03-25 清大赛思迪新材料科技(北京)有限公司 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1027691C (zh) * 1990-03-24 1995-02-22 广州师范学院 高温节能耐腐蚀陶瓷涂料组合物
CN103043995A (zh) * 2012-12-19 2013-04-17 青岛博益特生物材料有限公司 一种陶瓷涂料
CN103820021A (zh) * 2013-12-23 2014-05-28 杭州吉华高分子材料有限公司 一种不粘陶瓷涂料及其制备方法
CN104446325A (zh) * 2014-11-26 2015-03-25 清大赛思迪新材料科技(北京)有限公司 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989267A (zh) * 2019-03-21 2019-07-09 中国电力科学研究院有限公司 一种电缆接头保护盒用防爆防火材料及制作工艺
CN109989267B (zh) * 2019-03-21 2022-10-04 中国电力科学研究院有限公司 一种电缆接头保护盒用防爆防火材料及制作工艺
WO2021001466A1 (en) 2019-07-04 2021-01-07 Scg Chemicals Co., Ltd High emissivity cerium oxide coating
CN110653134A (zh) * 2019-08-30 2020-01-07 华电青岛发电有限公司 防结焦耐磨耐高温硫腐蚀的纳米陶瓷涂层及喷涂方法
CN111559907B (zh) * 2020-05-29 2022-07-08 河南爱邦科技有限公司 一种锅炉防结焦防腐蚀处理剂及其制备方法和应用
CN111559907A (zh) * 2020-05-29 2020-08-21 河南爱邦科技有限公司 一种锅炉防结焦防腐蚀处理剂及其制备方法和应用
CN113004724A (zh) * 2021-03-08 2021-06-22 华东理工大学 一种抑制炉管结焦的涂层及其制备方法
CN113265165A (zh) * 2021-06-18 2021-08-17 旭贞新能源科技(上海)有限公司 一种用于燃用高碱煤的锅炉的防结焦陶瓷涂料、涂层及其制备方法
CN113233920A (zh) * 2021-06-30 2021-08-10 新中天环保工程(重庆)有限公司 一种提高耐火材料耐氯腐蚀的改性方法
CN113501724A (zh) * 2021-08-04 2021-10-15 江苏龙冶节能科技有限公司 一种抗氧化陶瓷涂料及其制备方法和应用
CN113501724B (zh) * 2021-08-04 2023-07-04 江苏龙冶节能科技有限公司 一种抗氧化陶瓷涂料及其制备方法和应用
CN115181438A (zh) * 2022-08-04 2022-10-14 广东富多新材料股份有限公司 一种耐高温耐磨亲水无机涂料及其制备方法和应用
CN115259902A (zh) * 2022-09-29 2022-11-01 天津包钢稀土研究院有限责任公司 一种高温稳定的绿色稀土红外辐射涂料及制备方法和应用
CN115259902B (zh) * 2022-09-29 2022-12-13 天津包钢稀土研究院有限责任公司 一种高温稳定的绿色稀土红外辐射涂料及制备方法和应用
CN115637065A (zh) * 2022-09-29 2023-01-24 包头市安德窑炉科技有限公司 一种含氧化铈铁渣在制备辐射材料中的应用
CN115637065B (zh) * 2022-09-29 2023-10-13 包头市安德窑炉科技有限公司 一种含氧化铈铁渣在制备辐射材料中的应用
CN117903666A (zh) * 2024-03-15 2024-04-19 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 地热管道防垢涂料及其制备方法
CN117903666B (zh) * 2024-03-15 2024-05-28 山东省地质矿产勘查开发局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 地热管道防垢涂料及其制备方法

Also Published As

Publication number Publication date
CN104446325A (zh) 2015-03-25
CN104446325B (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2016082610A1 (zh) 一种耐高温抗沾污结渣陶瓷涂料及其制备方法和应用
CN104987032A (zh) 抗沾污结渣及耐高温腐蚀陶瓷涂料及其制备和使用方法
CN104403381A (zh) 一种耐腐蚀陶瓷涂料及其制备方法
CN113149439B (zh) 一种耐高温腐蚀的搪瓷涂料及其制备方法
CN109897532A (zh) 一种用于锅炉四管高温腐蚀预防护的石墨烯涂层材料及其制备方法
CN109486414A (zh) 一种用于锅炉四管的抗结焦结渣涂层材料及其制备方法
CN105198391A (zh) 一种用于钢铁表面的陶瓷涂料及其制备方法
CN109467960A (zh) 一种增强换热防腐涂层材料及其制备方法
CN104277653B (zh) 一种超薄型耐高温保温涂料
CN111944334A (zh) 一种纳米金属陶瓷涂料
Wang et al. High-temperature sulfur corrosion behavior of h-BN-based ceramic coating prepared by slurry method
KR100642679B1 (ko) 고온 내마모성을 향상시킨 코팅제
CN107760088A (zh) 一种耐腐蚀的无铬达克罗涂料
CN106752132B (zh) 用于金属换热器的高导热防腐蚀陶瓷涂料及其制备方法和应用
Cao et al. Investigation of corrosion and fouling resistance of Ni–P-nanoparticles composite coating using online monitoring technology
CN103965666A (zh) 一种纳米复合材料及纳米复合炉管
CN104830106A (zh) 耐高温防腐涂料
CN109384462A (zh) 一种适用于高硫煤的涂层
CN109627815A (zh) 一种耐腐蚀纳米涂料及其制备方法
CN109650917B (zh) 一种高发射率耐高温腐蚀抗沾污结渣的纳米陶瓷涂料及其制备方法和应用
CN107011746A (zh) 一种变压器用耐高温涂料及其制备方法
CN107815152A (zh) 一种耐高温隔热耐烧金属涂料及其制备方法
CN114045053A (zh) 防脱碳隔离剂
CN107603351B (zh) 一种纳米远红外涂料及其制备方法
CN105754385A (zh) 防辐射防腐涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862230

Country of ref document: EP

Kind code of ref document: A1