WO2016082602A1 - 一种pzt换能器和变幅杆一体化超声驱动结构 - Google Patents
一种pzt换能器和变幅杆一体化超声驱动结构 Download PDFInfo
- Publication number
- WO2016082602A1 WO2016082602A1 PCT/CN2015/089483 CN2015089483W WO2016082602A1 WO 2016082602 A1 WO2016082602 A1 WO 2016082602A1 CN 2015089483 W CN2015089483 W CN 2015089483W WO 2016082602 A1 WO2016082602 A1 WO 2016082602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pzt
- horn
- flange
- transducer
- integrated
- Prior art date
Links
- 238000003475 lamination Methods 0.000 claims description 29
- 210000001015 abdomen Anatomy 0.000 claims description 7
- 230000026683 transduction Effects 0.000 claims description 2
- 238000010361 transduction Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 239000000463 material Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8665—Nuts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0607—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
- B06B1/0611—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
- H10N30/503—Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view
- H10N30/505—Piezoelectric or electrostrictive devices having a stacked or multilayer structure having a non-rectangular cross-section in a plane orthogonal to the stacking direction, e.g. polygonal or circular in top view the cross-section being annular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00367—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
- A61B2017/00398—Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
- A61B2017/00402—Piezo electric actuators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/22—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B2017/22027—Features of transducers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320088—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with acoustic insulation, e.g. elements for damping vibrations between horn and surrounding sheath
Definitions
- the invention belongs to the field of ultrasonic driven medical surgical devices and applications thereof, and relates to an ultrasonic vibration device designed and assembled by an integrated structure of a PZT (piezoelectric ceramic material) transducer and a horn.
- PZT pieoelectric ceramic material
- the present invention modifies the conventional PZT transducer and
- the horn is designed and assembled separately, and the PZT transducer and horn integrated structure design and assembly are carried out.
- the right PZT lamination is designed and assembled as part of the horn, without changing.
- the conventional horn is relatively reduced in size, thereby achieving the goal of reducing the outer diameter of the ultrasonic drive.
- a PZT transducer and horn integrated structure design and assembly method are verified.
- the outer diameter of the device is significantly reduced.
- Figure 3 and Figure 4 show the ultrasonic drive structure of the flange, the left PZT transducer and the right transducer and horn.
- the contour size of the driving device is limited to a certain space, and its outer diameter is in the range of 12-15mm, which does not meet the ideal micro-invasive requirements of the abdomen.
- the PZT material size and the horn on both sides of the flange 4 the requirements of the ultrasonic vibration node and the belly point are satisfied, and the traditional PZT transducer and the horn are separately designed to perform the PZT transducer and the horn integrated structure. Design and assembly.
- the invention integrates the piezoelectric transducer and the horn, and designs and assembles the right PZT lamination 5 into a part of the horn, and relatively reduces the horn size without changing the overall size of the PZT. Further, the goal of reducing the outer diameter of the ultrasonic driving device is achieved, and the specific structure is as follows:
- a PZT transducer and horn integrated ultrasonic drive structure including Nuts, bolts, left PZT ring laminations, flanges, right PZT round table laminations and horns; horns, right PZT round laminations, flanges, left PZT ring laminations in turn After being arranged, bolted and then fixed with a nut; the right PZT transducer is changed from a PZT circular lamination to a truncated lamination, and the right PZT transducer and the horn are integrated to form an ultrasonic driving structure; According to the PZT size on both sides of the flange and the horn to meet the requirements of the ultrasonic vibration node and the belly point, the circular profile of the circular PZT transducer and the flange is reduced to a truncated PZT transducer and method.
- the thickness of the blue plate laminate According to the PZT size and the horn on both sides of the flange [4], the requirements of the ultrasonic vibration node and the belly point are satisfied.
- the circular profile of the circular PZT transducer and the flange is reduced to a truncated PZT transduction. And the thickness of the flange of the flange.
- a PZT transducer and a horn integrated ultrasonic driving structure according to the foregoing,
- the expandable structure is: the flange is a truncated cone shape, and is integrated with the right PZT transducer and the horn to form an ultrasonic driving structure.
- a PZT transducer and a horn integrated ultrasonic drive structure as described in the preceding two items,
- the structure that can be expanded is that the left PZT transducer has a truncated cone shape, and is integrated with the flange plate, the right PZT transducer and the horn to form an ultrasonic driving structure.
- the invention has the beneficial effects that the PZT transducer and the horn integrated structure can obtain the effect of reducing the contour size of the ultrasonic driving device, and the outer diameter is reduced from the current range of 12-15 mm to the outer diameter of 8-10 mm. Within, further meet the application requirements.
- FIG. 1 is a schematic view showing the structure of a conventional PZT transducer and a horn.
- FIG. 2 is a schematic view showing an integrated structure of a right PZT transducer and a horn.
- Figure 3 is a schematic view of the integrated structure of the flange, the right PZT transducer and the horn.
- Figure 4 is an integrated structural view of the left PZT transducer, flange, right PZT transducer and horn.
- the invention integrates the piezoelectric transducer and the horn in the ultrasonic driven medical surgical device, and designs and assembles the flange and the PZT lamination as part of the horn respectively without changing the overall size of the PZT.
- the PZT laminations have both electrical and mechanical conversion functions, as well as amplitude amplification functions, which relatively reduce the size of the horn, thereby achieving the goal of reducing the outer diameter of the ultrasonic drive.
- a specific embodiment is a PZT transducer and a horn integrated ultrasonic vibration structure, From the nut 1, the bolt 2, the left PZT ring lamination 3, the circular flange 4, the right PZT round table lamination 5, the horn 6; the horn 6, the right PZT round table lamination 5, flange 4, the left PZT ring lamination 3 is arranged in turn, connected by bolts 2 in series, and then fixed with nut 1; as shown in Figure 2, the right PZT structure shape, from the right PZT ring The laminated piece is redesigned as a lamination of the round table structure, and the PZT transducer and the horn are integrated and designed.
- the PZT material size and the horn on both sides of the flange 4 meet the ultrasonic vibration node and the belly point requirement.
- the reduced size of the ring profile is converted to the thickness of the right PZT turntable lamination 5, and the number of left PZT ring laminations is the same as the number of PZT frustum laminations on the right side, and the bonding between the laminations needs to be maintained.
- the PZT transducer and the horn integrated structure diagram of the invention have three structural forms, such as the PZT described above.
- the transducer and horn integrated ultrasonic drive structure can be expanded in structure, the flange is a truncated cone shape, and the right PZT transducer and the horn are integrated to form an ultrasonic drive structure. Further, a PZT as described in the preceding two items
- the transducer and the horn integrated ultrasonic drive structure can also be expanded in the form of a circular PZT transducer, which is integrated with the flange, the right PZT transducer and the horn. Ultrasonic drive structure.
- a PZT transducer and horn integrated structure design and assembly method the effect of reducing the contour size of the ultrasonic driven surgical device is obviously achieved, and the outer diameter is reduced from the current range of 12-15 mm to an outer diameter of less than 10 mm. Further satisfying the application requirements, the present invention A PZT transducer and horn integrated ultrasonic driving method can also be applied to other ultrasonic driving device designs that require downsizing.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Dentistry (AREA)
- Neurology (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Surgical Instruments (AREA)
Abstract
一种PZT换能器和变幅杆一体化超声驱动结构,由螺母(1)、螺栓(2)、左侧PZT圆环叠片(3)、法兰盘(4)、右侧PZT圆台叠片(5)、变幅杆(6)组成;变幅杆(6)、右侧PZT圆台叠片(5)、法兰盘(4)、左侧PZT圆环叠片(3)依次排列后用螺栓(2)联接,然后用螺母(1)固定;右侧PZT换能器由PZT圆环形叠片变为圆台形叠片,右侧PZT换能器和变幅杆一体化构成超声驱动结构;依据法兰盘(4)两侧PZT尺寸和变幅杆满足超声振动节点和腹点要求,圆环形PZT换能器、法兰盘的圆形轮廓减小的尺寸转化为圆台形PZT换能器和法兰盘叠片的厚度。该一体化结构,能够获得了减小超声驱动手术装置轮廓尺寸效果。
Description
技术领域
本发明属于超声驱动医疗手术装置及其应用领域,涉及一种PZT(压电陶瓷材料)换能器和变幅杆一体化结构设计和组装的超声振动装置。
背景技术
常规的PZT换能器和变幅杆超声驱动装置,如图1所示,由螺母1,螺栓2,左侧PZT圆环叠片3,法兰盘4,右侧PZT圆环叠片5,变幅杆6组成。在现有PZT材料、超声产生和驱动结构条件下,驱动装置轮廓尺寸局限在一定空间范围内,其外径尺寸较大,达不到理想的腹部微创要求。对PZT换能器和变幅杆一体化设计和组装,法兰盘4两侧PZT材料尺寸和变幅杆形状应满足超声振动节点和腹点要求,本发明修改了传统的PZT换能器和变幅杆分开设计和组装方法,进行PZT换能器和变幅杆一体化结构设计和组装,如图2所示,把右侧PZT叠片设计和组装成为变幅杆的一部分,在不改变PZT总体尺寸前提下,相对减小常规变幅杆尺寸,进而实现减小超声驱动装置外径尺寸的目标,经验证一种PZT换能器和变幅杆一体化结构设计和组装方法,其驱动装置外径尺寸明显减小。图3和图4为法兰盘、左侧PZT换能器与右侧换能器、变幅杆一体化设计的超声驱动结构。
发明内容
针对常规的PZT换能器和变幅杆超声驱动装置分离设计,
在现有PZT材料、超声产生和驱动结构条件下,驱动装置轮廓尺寸局限在一定空间范围内,其外径在12-15mm范围内,达不到理想的腹部微创要求的问题。依据法兰盘4两侧PZT材料尺寸和变幅杆满足超声振动节点和腹点要求,修改传统的PZT换能器和变幅杆分开设计结构,进行PZT换能器和变幅杆一体化结构设计和组装。
本发明将压电换能器和变幅杆一体化设计,把右侧PZT叠片5设计和组装成为变幅杆的一部分,在不改变PZT总体尺寸前提下,相对减小变幅杆尺寸,进而实现减小超声驱动装置外径尺寸的目标,具体结构如下:
一种 PZT 换能器和变幅杆一体化超声驱动结构,包括
螺母、螺栓、左侧PZT圆环叠片、法兰盘、右侧PZT圆台叠片和变幅杆;变幅杆、右侧PZT圆台叠片、法兰盘、左侧PZT圆环叠片依次排列后用螺栓联接,然后用螺母固定;右侧PZT换能器由PZT圆环形叠片变为圆台形叠片,右侧PZT换能器和变幅杆一体化构成超声驱动结构;设计过程依据法兰盘两侧PZT尺寸和变幅杆满足超声振动节点和腹点要求,圆环形PZT换能器、法兰盘的圆形轮廓减小的尺寸转化为圆台形PZT换能器和法兰盘叠片的厚度。依据法兰盘[4]两侧PZT尺寸和变幅杆满足超声振动节点和腹点要求,圆环形PZT换能器、法兰盘的圆形轮廓减小的尺寸转化为圆台形PZT换能器和法兰盘叠片的厚度。
进一步,前 述的一种 PZT 换能器和变幅杆一体化超声驱动结构,
可以扩展的结构为:法兰盘为圆台形,与右侧PZT换能器和变幅杆一体化构成超声驱动结构。
更进一步, 如前两项所述的一种 PZT 换能器和变幅杆一体化超声驱动结构,
还可以扩展的结构为:左侧PZT换能器为圆台形,其与法兰盘、右侧PZT换能器、变幅杆一体化构成超声驱动结构。
本发明的有益效果是PZT换能器和变幅杆一体化结构,能够获得了减小超声驱动装置轮廓尺寸效果,外径尺寸由目前的12-15mm范围,降低到外径在8-10mm范围内,进一步满足应用要求。
附图说明
图1是常规PZT换能器和变幅杆的结构示意图。
图2是一种右侧PZT换能器和变幅杆一体化结构示意图。
图3是法兰盘、右侧PZT换能器和变幅杆一体化结构示意图。
图4是左侧PZT换能器、法兰盘、右侧PZT换能器和变幅杆一体化结构图。
图中:1螺母;2螺栓;3左侧PZT圆环叠片;4圆环形法兰盘;
5 右侧PZT圆环叠片;6变幅杆。
具体实施方式
本发明把超声驱动医疗手术装置中的压电换能器和变幅杆一体化设计,在不改变PZT总体尺寸前提下,分别把法兰盘和PZT叠片设计和组装成为变幅杆的一部分,PZT叠片既有电和机械变换功能,又有振幅放大功能,相对减小变幅杆尺寸,进而实现减小超声驱动装置外径尺寸的目标。
具体实施方式为, 一种 PZT 换能器和变幅杆一体化超声振动结构,
由螺母1,螺栓2,左侧PZT圆环叠片3,圆环形法兰盘4,右侧PZT圆台叠片5,变幅杆6组成;把变幅杆6,右侧PZT圆台叠片5,法兰盘4,左侧PZT圆环叠片3依次排列后,用螺栓2串连联接,然后用螺母1固定;如图2所示,右侧PZT结构形状,由右侧PZT圆环状叠片,重新设计为圆台结构叠片,对PZT换能器和变幅杆一体化设计和组装,法兰盘4两侧PZT材料尺寸和变幅杆满足超声振动节点和腹点要求,其圆环轮廓减小的尺寸转化为右侧PZT圆台叠片5的厚度,并保持左侧PZT圆环叠片数和右侧PZT圆台叠片数对应一致,同时,叠片之间粘接需保持足够的刚性,以保证PZT变换器电能到机械能的较高转换效率。
本发明一种PZT换能器和变幅杆一体化结构图有3种结构形式,如前面 所述的一种 PZT
换能器和变幅杆一体化超声驱动结构, 可以扩展的结构形式,法兰盘为圆台形,与右侧PZT换能器和变幅杆一体化构成超声驱动结构。进而, 如前两项所述的一种 PZT
换能器和变幅杆一体化超声驱动结构, 还可以扩展的结构形式为,左侧PZT换能器为圆台形,其与法兰盘、右侧PZT换能器、变幅杆一体化构成超声驱动结构。
一种PZT换能器和变幅杆一体化结构设计和组装方法,明显取得了减小超声驱动手术装置轮廓尺寸的效果,外径尺寸由目前的12-15mm范围,降低到外径小于10mm,进一步满足应用要求,本发明
一种 PZT 换能器和变幅杆一体化超声驱动方法 , 还可以应用到其它需要减小尺寸的超声驱动装置设计中。
Claims (1)
1. 一种 PZT 换能器和变幅杆一体化超声驱动结构,
包括螺母[1]、螺栓[2]、左侧PZT圆环叠片[3]、法兰盘[4]、右侧PZT圆台叠片[5]和变幅杆[6];其特征在于:变幅杆[6]、右侧PZT圆台叠片[5]、法兰盘[4]、左侧PZT圆环叠片[3]依次排列后用螺栓[2]联接,然后用螺母[1]固定;右侧PZT换能器由PZT圆环形叠片变为圆台形叠片,右侧PZT换能器和变幅杆一体化构成超声驱动结构;
依据法兰盘[4]两侧PZT尺寸和变幅杆满足超声振动节点和腹点要求,圆环形PZT换能器、法兰盘的圆形轮廓减小的尺寸转化为圆台形PZT换能器和法兰盘叠片的厚度。
2. 根据权利要求 1 所述的一种 PZT 换能器和变幅杆一体化超声驱动结构,
其特征在于:法兰盘为圆台形,与右侧PZT换能器和变幅杆一体化构成超声驱动结构。
3. 根据权利要求 1 或 2 所述的一种 PZT 换能器和变幅杆一体化超声驱动结构,
其特征在于:左侧PZT换能器为圆台形,其与法兰盘、右侧PZT换能器、变幅杆一体化构成超声驱动结构。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/525,916 US9974587B2 (en) | 2014-11-27 | 2015-09-13 | PZT transducer-horn integrated ultrasonic driving structure |
EP15863501.1A EP3225171B1 (en) | 2014-11-27 | 2015-09-13 | Ultrasonic driving structure with integrated pzt transducer and amplitude transformer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410707662.2 | 2014-11-27 | ||
CN201410707662.2A CN104434231B (zh) | 2014-11-27 | 2014-11-27 | 一种pzt换能器和变幅杆一体化超声驱动结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016082602A1 true WO2016082602A1 (zh) | 2016-06-02 |
Family
ID=52881528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/089483 WO2016082602A1 (zh) | 2014-11-27 | 2015-09-13 | 一种pzt换能器和变幅杆一体化超声驱动结构 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9974587B2 (zh) |
EP (1) | EP3225171B1 (zh) |
CN (1) | CN104434231B (zh) |
WO (1) | WO2016082602A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106557622A (zh) * | 2016-11-08 | 2017-04-05 | 哈尔滨理工大学 | 一种大尺寸环形圆锥型超声变幅杆的设计方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104434231B (zh) * | 2014-11-27 | 2016-08-17 | 大连理工大学 | 一种pzt换能器和变幅杆一体化超声驱动结构 |
CN107840096B (zh) * | 2017-08-04 | 2019-12-31 | 杭州电子科技大学 | 微纳米黏性粉体微量稳定输送装置及方法 |
US11259832B2 (en) * | 2018-01-29 | 2022-03-01 | Covidien Lp | Ultrasonic horn for an ultrasonic surgical instrument, ultrasonic surgical instrument including the same, and method of manufacturing an ultrasonic horn |
CN108340023B (zh) * | 2018-02-24 | 2019-04-12 | 大连理工大学 | 一种用于蜂窝芯材料切削的超声振动系统 |
CN109009331B (zh) * | 2018-08-08 | 2024-02-06 | 北京安和加利尔科技有限公司 | 一种超声手术一体刀 |
US11331115B2 (en) | 2018-10-03 | 2022-05-17 | Covidien Lp | Reusable ultrasonic transducer and generator assemblies, surgical instruments including the same, and methods of manufacturing the same |
CN110976258A (zh) * | 2019-12-14 | 2020-04-10 | 大连理工大学 | 一种沿垂直刀杆方向的双激励超声椭圆振动切削装置 |
CN110976259B (zh) * | 2019-12-14 | 2021-07-27 | 大连理工大学 | 一种双激励超声椭圆振动切削装置 |
USD974558S1 (en) | 2020-12-18 | 2023-01-03 | Stryker European Operations Limited | Ultrasonic knife |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101461732A (zh) * | 2008-10-07 | 2009-06-24 | 王华林 | 一种超声碎石器 |
WO2010049684A1 (en) * | 2008-10-27 | 2010-05-06 | Sra Developments Limited | Torsional mode ultrasonic generator |
CN101999911A (zh) * | 2010-12-02 | 2011-04-06 | 桂林市啄木鸟医疗器械有限公司 | 用于骨科手术仪的超声换能器 |
CN102028523A (zh) * | 2010-12-02 | 2011-04-27 | 桂林市啄木鸟医疗器械有限公司 | 一种用于骨科手术仪的超声换能器 |
CN103691656A (zh) * | 2013-12-18 | 2014-04-02 | 北京航空航天大学 | 一种可快速更换刀具的超声变幅杆 |
CN104434231A (zh) * | 2014-11-27 | 2015-03-25 | 大连理工大学 | 一种pzt换能器和变幅杆一体化超声驱动结构 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3396285A (en) * | 1966-08-10 | 1968-08-06 | Trustees Of The Ohio State Uni | Electromechanical transducer |
US4352570A (en) * | 1980-05-27 | 1982-10-05 | Applied Plastics Co., Inc. | Vibratory treatment apparatus and method |
CN2280497Y (zh) * | 1996-03-13 | 1998-05-06 | 南京铁道医学院 | 多功能超声手术刀 |
US5798599A (en) * | 1996-10-24 | 1998-08-25 | Dukane Corporation | Ultrasonic transducer assembly using crush foils |
AU774545B2 (en) * | 1999-04-15 | 2004-07-01 | Ethicon Endo-Surgery, Inc. | Ultrasonic transducer with improved compressive loading |
US6286747B1 (en) * | 2000-03-24 | 2001-09-11 | Hong Kong Polytechnic University | Ultrasonic transducer |
US20030062395A1 (en) * | 2001-10-01 | 2003-04-03 | Li Hing Leung | Ultrasonic transducer |
JP3709368B2 (ja) * | 2001-11-07 | 2005-10-26 | オリンパス株式会社 | ボルト締めランジュバン振動子の製造方法及び装置 |
GB2388741B (en) * | 2002-05-17 | 2004-06-30 | Morgan Crucible Co | Transducer assembly |
WO2007087411A2 (en) * | 2006-01-23 | 2007-08-02 | Piezoinnovations | Methods of manufacture of sonar and ultrasonic transducer devices and composite actuators |
US8430898B2 (en) * | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8344596B2 (en) * | 2009-06-24 | 2013-01-01 | Ethicon Endo-Surgery, Inc. | Transducer arrangements for ultrasonic surgical instruments |
CN201870672U (zh) * | 2010-12-02 | 2011-06-22 | 桂林市啄木鸟医疗器械有限公司 | 用于骨科手术仪的超声换能器 |
CN102783989A (zh) * | 2011-05-20 | 2012-11-21 | 北京宏仁凝瑞科技发展有限公司 | 超声骨刀系统 |
CN202654235U (zh) * | 2012-05-22 | 2013-01-09 | 刘建军 | 超声清石碎石的手柄 |
-
2014
- 2014-11-27 CN CN201410707662.2A patent/CN104434231B/zh not_active Expired - Fee Related
-
2015
- 2015-09-13 WO PCT/CN2015/089483 patent/WO2016082602A1/zh active Application Filing
- 2015-09-13 EP EP15863501.1A patent/EP3225171B1/en not_active Not-in-force
- 2015-09-13 US US15/525,916 patent/US9974587B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101461732A (zh) * | 2008-10-07 | 2009-06-24 | 王华林 | 一种超声碎石器 |
WO2010049684A1 (en) * | 2008-10-27 | 2010-05-06 | Sra Developments Limited | Torsional mode ultrasonic generator |
CN101999911A (zh) * | 2010-12-02 | 2011-04-06 | 桂林市啄木鸟医疗器械有限公司 | 用于骨科手术仪的超声换能器 |
CN102028523A (zh) * | 2010-12-02 | 2011-04-27 | 桂林市啄木鸟医疗器械有限公司 | 一种用于骨科手术仪的超声换能器 |
CN103691656A (zh) * | 2013-12-18 | 2014-04-02 | 北京航空航天大学 | 一种可快速更换刀具的超声变幅杆 |
CN104434231A (zh) * | 2014-11-27 | 2015-03-25 | 大连理工大学 | 一种pzt换能器和变幅杆一体化超声驱动结构 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3225171A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106557622A (zh) * | 2016-11-08 | 2017-04-05 | 哈尔滨理工大学 | 一种大尺寸环形圆锥型超声变幅杆的设计方法 |
CN106557622B (zh) * | 2016-11-08 | 2023-05-23 | 哈尔滨理工大学 | 一种大尺寸环形圆锥型超声变幅杆的设计方法 |
Also Published As
Publication number | Publication date |
---|---|
US9974587B2 (en) | 2018-05-22 |
CN104434231B (zh) | 2016-08-17 |
US20170325864A1 (en) | 2017-11-16 |
EP3225171A4 (en) | 2018-07-04 |
EP3225171B1 (en) | 2019-09-04 |
CN104434231A (zh) | 2015-03-25 |
EP3225171A1 (en) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016082602A1 (zh) | 一种pzt换能器和变幅杆一体化超声驱动结构 | |
WO2007038157A3 (en) | Energy harvesting using frequency rectification | |
JP2008539037A5 (zh) | ||
WO2009045538A3 (en) | Fabrication of nanowire array composites for thermoelectric power generators and microcoolers | |
JP2014510807A5 (zh) | ||
CN207154077U (zh) | 超声换能器 | |
WO2010082033A3 (en) | Modular array type energy converter | |
JP2005198945A5 (zh) | ||
EP2280157A3 (en) | Thermo-electric-acoustic engine and method of using same | |
ATE329373T1 (de) | Ein verbund-piezoelektrischer umformer mit mehreren ausgängen und expansions-vibrations- modus | |
CN108527972A (zh) | 一种铝蜂窝复合板及生产铝蜂窝复合板的方法 | |
CN205911968U (zh) | 一种噪声发电装置 | |
CN101758017B (zh) | 全方位超声波辐射器 | |
CN207475961U (zh) | 一种高压加速器电子辐照装置 | |
CN101953742A (zh) | 一种智能型全胸腔可控振动排痰装置及方法 | |
CN209105432U (zh) | 一种交叉复合膜换能器 | |
JP2016163474A5 (zh) | ||
CN105689249B (zh) | 复合驱动压电超声管形换能器 | |
CN205092055U (zh) | 一种列车风冷变流器噪声有源控制装置 | |
CN207034081U (zh) | 一种空气橡胶夹芯双层薄膜型隔声减振结构 | |
CN206273537U (zh) | 一种四输入齿轮式关节动力模块 | |
CN207458567U (zh) | 一种新型的消音装置 | |
CN205584031U (zh) | 一种智能型双脉冲高频开关电源 | |
CN103647474A (zh) | 一种模块式多层复合声伏特异材料 | |
CN202426770U (zh) | 一种活动式床板的病床 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15863501 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15525916 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015863501 Country of ref document: EP |