WO2016082168A1 - 信息传输方法、无线设备控制器、无线设备以及基站 - Google Patents

信息传输方法、无线设备控制器、无线设备以及基站 Download PDF

Info

Publication number
WO2016082168A1
WO2016082168A1 PCT/CN2014/092419 CN2014092419W WO2016082168A1 WO 2016082168 A1 WO2016082168 A1 WO 2016082168A1 CN 2014092419 W CN2014092419 W CN 2014092419W WO 2016082168 A1 WO2016082168 A1 WO 2016082168A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
addressing
rec
request message
power line
Prior art date
Application number
PCT/CN2014/092419
Other languages
English (en)
French (fr)
Inventor
董平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14906971.8A priority Critical patent/EP3217707B1/en
Priority to CN201480011135.6A priority patent/CN105874840B/zh
Priority to PCT/CN2014/092419 priority patent/WO2016082168A1/zh
Priority to JP2017528410A priority patent/JP6425290B2/ja
Priority to KR1020177017302A priority patent/KR101896562B1/ko
Publication of WO2016082168A1 publication Critical patent/WO2016082168A1/zh
Priority to US15/606,369 priority patent/US10419081B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0062Provisions for network management
    • H04Q3/0075Fault management techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and more particularly to an information transmission method, a wireless device controller, a wireless device, and a base station.
  • the base station is divided into two parts: a radio equipment controller (REC) and a radio equipment (Radio Equipment, RE).
  • REC radio equipment controller
  • RE Radio Equipment
  • Optical fiber communication lines are usually used between them, and the connection method is cascade connection. In this way, once a fault occurs at any point in the communication line, the REC cannot communicate with any RE after the fault point, and the manual station processing is required, which brings a large maintenance cost of the next station, and Increase business interruption time and affect user experience.
  • the embodiments of the present invention provide an information transmission method, a wireless device controller, a wireless device, and a base station, which can save site maintenance costs, reduce service interruption events, and improve user experience.
  • a wireless device controller REC including: a first determining unit, configured to determine a primary line fault in which the REC communicates with a first wireless device RE; and a second determining unit, configured to determine the a backup line in which the REC communicates with the first RE; a communication unit configured to communicate with the first RE through the alternate line.
  • the main line is a Common Public Radio Interface (CPRI) CPRI communication line
  • the standby line is a power line line, or Power line plus CPRI communication line.
  • CPRI Common Public Radio Interface
  • the first determining unit includes a first sending subunit, a first receiving subunit, and a first determining a unit, wherein the first sending subunit is configured to: send, by using a CPRI port or through a power line port and a CPRI port, an addressing request message for all REs controlled; the first receiving subunit is configured to: receive from at least An addressing response message of an RE, wherein the at least one RE includes the first RE; the first determining subunit is configured to: determine, in the first receiving subunit, received from the first RE Determining, by the path of the at least one addressing response message, a failure of the primary line communicating with the first RE when the primary line is not included;
  • the second determining unit is specifically configured to: when the path of the at least one addressing response message from the first RE received by the first receiving subunit does not include a primary line, according to the at least one addressing response The path of the message determining the alternate line in communication with the first RE.
  • the first sending subunit is specifically configured to:
  • an addressing request message for the all REs is sent through the CPRI port or through the CPRI port and the power line port.
  • the second determining unit is specifically configured to:
  • the second determining unit includes:
  • a second sending subunit configured to send, by the at least one of the power line port and the CPRI port, the first one after the first determining unit determines that the REC is in communication with the first line Addressing request message of RE;
  • a second receiving subunit configured to receive at least one addressing response message from the first RE
  • a second determining subunit configured to determine, according to a path of the at least one addressing response message received by the second receiving subunit, a standby line that communicates with the first RE.
  • the second sending sub-unit is specifically configured to:
  • an addressing request message for the first RE is sent through the CPRI port or through the CPRI port and the power line port.
  • the second determining sub-unit is specifically configured to:
  • the path is determined to be an alternate line that communicates with the first RE.
  • the communication unit is specifically used to:
  • an RE including:
  • a receiving unit configured to receive, by using the first port, an addressing request message sent by the wireless device controller REC, where the first port is an uplink CPRI port or a power line port;
  • a determining unit configured to determine, according to the addressing request message received by the receiving unit, that the addressing request message includes the RE for an object
  • a sending unit configured to send, by using the first port, a first addressing response message to the REC.
  • the determining unit is further configured to: determine, according to the addressing request message, that the addressing request message further includes other REs for an object;
  • the sending unit is further configured to: when the first port is an uplink public wireless interface CPRI port, forward the addressing request message by using a downlink CPRI port and a power line port.
  • the sending unit before the sending unit forwards the addressing request message by using a downlink CPRI port and a power line port, the sending The unit is further configured to: carry the forwarding path information at the RE in the addressing request message;
  • the receiving unit is further configured to: receive a second addressing response message by using a downlink CPRI port or by using a power line port, where the second The addressing response message carries a forwarding path message at the RE; the sending unit is further configured to forward the second addressing response message according to the forwarding path information at the RE.
  • the receiving unit is further configured to: receive a second addressing response message by using a downlink CPRI port or a power line port;
  • the sending unit is further configured to: forward the second addressing response message by using an uplink CPRI port.
  • the fourth aspect of the second aspect is In an implementation manner, the addressing request message carries forwarding path information from the REC to the RE;
  • the sending unit Before the sending unit sends the first addressing response message to the REC by using the first port, the sending unit is further configured to: carry the information from the REC to the RE in the first addressing response message The path information is forwarded such that the first addressing response message returns to the REC in accordance with a reverse path of the addressing request message.
  • a wireless device RE includes:
  • a receiving unit configured to receive, by using the first port, an addressing request message sent by the wireless device controller REC;
  • a determining unit configured to determine, according to the addressing request message, that the addressing request message does not include the RE for an object
  • a sending unit configured to forward the addressing request message through the power line port and the downlink CPRI port when the first port is an uplink common public interface CPRI port.
  • the sending unit is further configured to:
  • the addressing request message is discarded when the first port is a power line port.
  • the sending unit forwards the addressing request message by using a power line port and a downlink CPRI port
  • the sending unit is further configured to: carry the forwarding path information at the RE in the addressing request message;
  • the receiving unit is further configured to: receive an addressing response message by using a downlink CPRI port or a power line port, where the addressing response message carries Describe the forwarding path information at the RE;
  • the sending unit is further configured to: forward the addressing response message according to the forwarding path information at the RE.
  • the sending unit forwards the addressing request message by using a power line port and a downlink CPRI port Thereafter, the receiving unit is further configured to: receive an addressing response message by using a downlink CPRI port or a power line port;
  • the sending unit is further configured to: forward the addressing response message by using an uplink CPRI port.
  • an REC including a memory, a processor, and a transceiver, wherein The program code is stored in the memory, and the processor calls the program code in the memory to perform the following processing:
  • the primary line is a general public wireless interface CPRI communication line;
  • the standby line is a power line line, or a power line plus a CPRI communication line.
  • the processor by using the program code in the memory, specifically performs the following processing:
  • the controller receives an addressing response message from at least one RE, wherein the at least one RE includes the first RE;
  • the primary line communicating with the first RE fails when the path of the at least one addressing response message from the first RE does not include the primary line;
  • the alternate line in communication with the first RE is determined based on the path of the at least one addressing response message.
  • the processor by using the program code in the memory, specifically performs the following processing:
  • the transceiver When there is no RE in the all REs that belongs to the same power line network as the REC, the transceiver is controlled to send an addressing request message for the all REs through the CPRI port or through the CPRI port and the power line port.
  • the processor invokes the program code in the memory to perform specific execution The following processing:
  • the path of the first response received from the first RE is determined as the alternate line in communication with the first RE.
  • the processor by using the program code in the memory, specifically performs the following processing:
  • the transceiver Determining that the transceiver transmits an addressing request message for the first RE through at least one of a power line port and a CPRI port after a primary line failure in communication with the first RE;
  • An alternate line in communication with the first RE is determined based on the path of the at least one addressing response message.
  • the processor by using the program code in the memory, specifically performs the following processing:
  • controlling the transceiver to send an addressing request message for the first RE through a power line port or through a CPRI port and a power line port;
  • the transceiver is controlled to send an addressing request message for the first RE through a CPRI port or through a CPRI port and a power line port.
  • the processor by using the program code in the memory, specifically performs the following processing:
  • the path of the first response received from the first RE is determined as the alternate line in communication with the first RE.
  • the processor invokes the program code in the memory to perform the following processing:
  • an RE including a memory, a processor, and a transceiver, wherein The program code is stored in the memory, and the processor calls the program code in the memory to perform the following processing:
  • the transceiver Controlling, by the first port, the transceiver to receive an addressing request message sent by the wireless device controller REC, where the first port is an uplink CPRI port or a power line port;
  • the transceiver is controlled to send a first addressing response message to the REC through the first port.
  • the processor invoking the program code in the memory further performs the following processing:
  • the transceiver When the first port is an uplink common public interface CPRI port, the transceiver is controlled to forward the addressing request message through a downlink CPRI port and a power line port.
  • the processor before controlling the transceiver to forward the addressing request message by using a downlink CPRI port and a power line port, the processor calls the program code in the memory to perform the following processing:
  • the processor invoking the program code in the memory further performs the following processing:
  • the processor by using the program code in the memory, further performs the following processing:
  • the transceiver is controlled to forward the second addressing response message through an uplink CPRI port.
  • the addressing request message carries forwarding path information from the REC to the RE;
  • the processor calls the program code in the memory to perform the following processing:
  • Forwarding path information from the REC to the RE is carried in the first addressing response message, so that the first addressing response message is returned to the REC according to a reverse path of the addressing request message.
  • an RE comprising a memory, a processor, and a transceiver, wherein the memory stores program code, and the processor calls the program code in the memory to perform the following processing:
  • the transceiver When the first port is an uplink common public interface CPRI port, the transceiver is controlled to forward the addressing request message through a power line port and a downlink CPRI port.
  • the processor invoking the program code in the memory further performs the following processing:
  • the addressing request message is discarded when the first port is a power line port.
  • the transceiver is controlled to forward the addressing request by using a power line port and a downlink CPRI port Before the message, the processor calls the program code in the memory to perform the following processing:
  • the processor invoking the program code in the memory further performs the following processing:
  • the transceiver is controlled to forward the addressing request by using a power line port and a downlink CPRI port
  • the processor calls the program code in the memory to perform the following processing:
  • the transceiver is controlled to forward the addressing response message through an uplink CPRI port.
  • a base station including a wireless device controller REC and at least one wireless device RE; wherein the REC communicates with each of the at least one RE through a primary line;
  • the REC determines a backup line that communicates with any of the REs of the primary line failure
  • the REC communicates with the any of the REs of the primary line failure via the alternate line.
  • the primary line is a general public wireless interface CPRI communication line;
  • the standby line is a power line line, or a power line plus a CPRI communication line.
  • the REC sends the addressing of all the REs for control through the CPRI port or through the power line port and the CPRI port. Request message
  • each RE After receiving the addressing request message through the first port, each RE sends an addressing response message through the first port, where the first port is an uplink CPRI port or a power line port;
  • the REC determines a backup line in communication with the RE of the primary line failure according to a path of at least one of the addressing response messages sent by the RE of the primary line failure.
  • the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • each RE of the REC receives the homing sent by another RE through the downlink CPRI port or through the power line port
  • the address response message is sent
  • the addressing response message sent by the other REs is forwarded through the uplink CPRI port.
  • a sixth possible implementation manner of the seventh aspect when the each RE is forwarding the addressing request message by using a downlink CPRI port and a power line port, Carrying forwarding path information in the addressing request message for the seeking The address response message corresponding to the address request message is returned to the REC according to the reverse path of the address request message.
  • the REC is sent by using a CPRI port or by using a power line port and a CPRI port. Addressing request messages for all REs controlled, including:
  • the REC When there are REs belonging to the same power line network as the REC in all the REs, the REC sends an addressing request message for the all REs through the CPRI port and the power line port;
  • the REC When there are no REs belonging to the same power line network as the REC in all the REs, the REC transmits an addressing request message for the all REs through the CPRI port or through the CPRI port and the power line port.
  • the Addressing the path of the response message, determining an alternate line in communication with the RE of the primary line failure including:
  • the REC determines the path of the address response message from the RE of the primary line failure that is received for the first time as a backup line that communicates with the RE of the primary line failure.
  • the REC passes the power line port when determining a main line fault in communication with the first RE And transmitting, by the at least one of the CPRI ports, an addressing request message for the first RE;
  • the REC determines a backup line that communicates with the first RE according to a path of at least one of the addressing response messages sent by the first RE.
  • the addressing request message before the first RE receives the addressing request message by using the first port, the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the uplink RE of the first RE forwards the addressing request message by using a downlink CPRI port and a power line port Previously, the forwarding path message at the upstream RE is carried on the addressing In the request message;
  • the first RE carries the forwarding path message in the addressing response message before sending the addressing response message through the first port;
  • the upstream RE of the first RE After receiving the addressing response message, the upstream RE of the first RE forwards the addressing response message according to the forwarding path message in the addressing response message, so that the addressing response message is corresponding The reverse path of the addressing request message is returned to the REC.
  • the upstream RE of the first RE receives the foregoing by using a downlink CPRI port or a power line port
  • the response message is addressed and the addressed response message is forwarded through the uplink CPRI port.
  • the upstream RE of the first RE is received through the power line port
  • the addressing request message is discarded when the addressing request message is received.
  • the REC is at least one of a power line port and a CPRI port Transmitting an addressing request message for the first RE, including:
  • the REC When the REC and the first RE belong to the same power line network, the REC sends an addressing request message for the first RE through a power line port or through a CPRI port and a power line port;
  • the REC When the REC and the first RE do not belong to the same power line network, the REC sends an address request message for the first RE through a CPRI port or through a CPRI port and a power line port.
  • the REC communicates with the any one of the main line faults by using the standby line .
  • the REC sends indication information to the any one of the primary line failures through the standby line to facilitate resetting or upgrading any of the REs of the primary line failure to resume the any one of the primary line failures The main line of the RE.
  • an information transmission method including:
  • the wireless device controller REC determines a primary line failure to communicate with the first wireless device RE;
  • the REC determines a backup line that communicates with the first RE
  • the REC communicates with the first RE through the alternate line.
  • the primary line is a general public wireless interface CPRI communication line;
  • the standby line is a power line line, or a power line plus a CPRI communication line.
  • the REC determines a primary line fault that is in communication with the first RE, including: the REC passes the CPRI port Or transmitting, by the power line port and the CPRI port, an addressing request message for all REs controlled; the REC receiving an addressing response message from the at least one RE, wherein the at least one RE includes the first RE; When the path of the at least one addressing response message of the first RE does not include the primary line, the REC determines that the primary line fails to communicate with the first RE;
  • Determining, by the REC, an alternate line in communication with the first RE comprising: when the path of the at least one addressing response message from the first RE does not include a primary line, the REC is addressed according to the at least one In response to the path of the message, an alternate line in communication with the first RE is determined.
  • the REC sends the addressing of all the REs for control through the CPRI port or through the power line port and the CPRI port.
  • Request message including:
  • the REC When there are REs belonging to the same power line network as the REC in all the REs, the REC sends an addressing request message for the all REs through the CPRI port and the power line port;
  • the REC When there are no REs belonging to the same power line network as the REC in all the REs, the REC transmits an addressing request message for the all REs through the CPRI port or through the CPRI port and the power line port.
  • the REC determines an alternate line that communicates with the first RE, including:
  • the REC determines a path of the first response response message from the first RE to be received as a backup line in communication with the first RE.
  • the determining, by the REC, the standby line that communicates with the first RE includes:
  • the REC After the REC determines that the primary line fails to communicate with the first RE, the REC transmits an addressing request message for the first RE through at least one of a power line port and a CPRI port;
  • the REC receives at least one addressing response message from the first RE;
  • the REC determines a backup line in communication with the first RE based on a path of the at least one addressing response message.
  • the REC sends, by using at least one of a power line port and a CPRI port, a search for the first RE Address request message, including:
  • the REC When the REC and the first RE belong to the same power line network, the REC sends an addressing request message for the first RE through a power line port or through a CPRI port and a power line port;
  • the REC When the REC and the first RE do not belong to the same power line network, the REC sends an address request message for the first RE through a CPRI port or through a CPRI port and a power line port.
  • the REC determining the standby line that communicates with the first RE includes:
  • the REC determines a path of the first response response message from the first RE to be received as a backup line in communication with the first RE.
  • the REC by using the standby line, to communicate with the first RE, includes:
  • the REC sends indication information to the first RE through the standby line to facilitate resetting or upgrading the first RE to restore the primary line in which the REC communicates with the first RE.
  • an information transmission method including:
  • the first wireless device RE receives an addressing request message sent by the wireless device controller REC through the first port, where the first port is an uplink CPRI port or a power line port;
  • the first RE determines that the addressing request message includes the first RE for an object
  • the first RE sends a first addressing response message to the REC through the first port.
  • the method further includes:
  • the first RE determines that the addressing request message further includes other REs for the object
  • the first RE forwards the addressing request message through a downlink CPRI port and a power line port.
  • the method before the forwarding the addressing request message by using the downlink CPRI port and the power line port, the method further The method includes: carrying, in the addressing request message, forwarding path information at the first RE;
  • the method further includes: the first RE receiving a second addressing response message through a downlink CPRI port or through a power line port, wherein the The second addressing response message carries the forwarding path message at the first RE; and forwards the second addressing response message according to the forwarding path information at the first RE.
  • the method further includes:
  • the first RE forwards the second addressing response message through an uplink CPRI port.
  • the addressing request message carries a forwarding path from the REC to the first RE information
  • the method further includes:
  • the first RE carries forwarding path information from the REC to the first RE in the first addressing response message, so that the first addressing response message is in accordance with the reverse of the addressing request message.
  • the path is returned to the REC.
  • an information transmission method comprising:
  • the second wireless device RE receives the addressing request message sent by the wireless device controller REC through the first port;
  • the second RE When the first port is a uplink common public wireless interface CPRI port, the second RE The addressing request message is forwarded through the power line port and the downlink CPRI port.
  • the method further includes:
  • the second RE discards the addressing request message when the first port is a power line port.
  • the second RE is forwarded by the power line port and the downlink CPRI port before the addressing request message
  • the method further includes:
  • the method further includes:
  • the second RE forwards the addressing response message according to the forwarding path information at the second RE.
  • the addressing request is forwarded by the second RE through the power line port and the downlink CPRI port
  • the method further includes:
  • the second RE receives an addressing response message through a downlink CPRI port or a power line port;
  • the second RE forwards the addressing response message through an uplink CPRI port.
  • the REC determines the main line failure of communication with any of the REs, it is possible to determine the alternate line that communicates with the RE of the main line failure, and to pass the standby line with the RE of the main line failure. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • FIG. 1 is a schematic block diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a connection mode of REC and RE according to the prior art.
  • FIG. 3 is a schematic diagram of an application scenario according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an application scenario according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario according to another embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an REC according to another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of an REC according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an REC according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an RE in accordance with another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of an RE according to another embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an REC in accordance with another embodiment of the present invention.
  • Figure 12 is a schematic block diagram of an RE in accordance with another embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of an REC according to another embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 15 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • FIG. 16 is a schematic flowchart of an information transmission method according to another embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems, for example, GSM, Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), general packet Wireless Service (GPRS, General Packet Radio Service), Long Term Evolution (LTE), etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • the REC and the RE are connected by means of a cascade of CPRI communication lines, that is, the connection mode shown in FIG. 1.
  • the embodiment of the present invention provides a base station, an REC, an RE, and an information transmission method. For ease of understanding, the following detailed description will be made in conjunction with FIG. 2 to FIG. 16.
  • the base station 100 includes an REC 110 and at least one RE 120 (for example, four REs in FIG. 2 are not limited thereto);
  • the REC 110 communicates with each of the at least one RE 120 via the primary line;
  • the REC 110 determines a backup line that communicates with any of the REs 120 that are in the primary line failure;
  • the REC 110 communicates with any RE 120 of the primary line failure via the alternate line.
  • the REC determines the main line failure of communication with any of the REs, it is possible to determine the alternate line that communicates with the RE of the main line failure, and to pass the standby line with the RE of the main line failure. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • REC 110 is directly connected to each RE 120 in FIG. 1, this merely illustrates that REC 110 and RE 120 can communicate; it does not mean that REC 110 and RE 120 must be directly connected. For example, REC 110 can be connected to another RE 120 through one RE 120.
  • the REC may also be referred to as a Base Band Unit (BBU), and the RE may also be referred to as a Radio Remote Unit (RRU).
  • BBU Base Band Unit
  • RRU Radio Remote Unit
  • the primary line may be a CPRI communication line; the backup line may be a power line line or a power line plus a CPRI communication line.
  • the main line may be a power line line or a power line plus a CPRI communication line, and the backup line is a CPRI communication line, or other manners, which may be determined according to an application scenario, which is not limited by the embodiment of the present invention.
  • the main line is a CPRI communication line
  • the standby line is a power line line
  • the power line plus a CPRI communication line is mainly described.
  • the REC and the RE are naturally powered by the power line network, in the embodiment of the present invention, when the CPRI communication line of the REC and the RE fails, the communication between the REC and the RE is realized by the power line network of the REC and the RE.
  • the CPRI communication line refers to a line supporting the CPRI protocol; the CPRI communication line may include at least one of an optical fiber, a coaxial cable, and an Ethernet line.
  • the REC is performed by using the standby line with any RE of the main line failure.
  • Communication can include:
  • the REC resets or upgrades the RE of the main line failure through the alternate line to restore the main line of the RE of the main line failure.
  • the optical port parameter of the RE may be modified by sending an indication message through the standby line, thereby recovering the primary line.
  • the RE cannot be started normally, and it needs to be powered on and off to recover. Because the RE has already had a problem, it cannot communicate with the CPRI communication line. Then, the REC may determine an alternate line, and the standby line may include a power line, and the REC may send an indication message to the RE through the standby line, indicating that the RE is powered on and off.
  • the REC may scan all the REs controlled in real time (for example, periodicity or initialization phase, etc.), and determine the REs of the main line faults in all REs, and determine the backup lines of the REs of the main line faults;
  • a backup line that communicates with the RE may be determined after determining a primary line failure to communicate with the RE by reciprocating a heartbeat message with a certain RE.
  • the REC can scan all REs that are controlled in real time, and determine the REs of the main line failures in all REs, and determine the alternate lines of the REs of the main line failures.
  • the REC sends an addressing request message for all REs controlled by the CPRI port or through the power line port and the CPRI port; each RE sends the addressing request through the first port after receiving the addressing request message through the first port.
  • Address response message the first port is an uplink CPRI port or a power line port; the REC determines whether the path of the address response message sent by each RE includes the main line, determines the RE of the main line failure; and the REC sends according to the RE of the main line failure. At least one path addressing the response message identifying the alternate line in communication with the RE of the primary line failure.
  • the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the CPRI port of the RE includes an uplink CPRI port and a downlink CPRI port, wherein the uplink CPRI port refers to a CPRI port that is close to the REC, and the downlink CPRI port refers to a CPRI port that is far away from the REC.
  • the identification in Figure 3 applies to all embodiments of the invention.
  • each RE in the REC forwards the addressing response message sent by the other RE through the uplink CPRI port when receiving the addressing response message sent by other REs through the downlink CPRI port or through the power line port.
  • the forwarding path information is carried in the addressing request message, so that the addressing response message corresponding to the addressing request message is in accordance with the addressing request.
  • the reverse path of the message is returned to the REC.
  • the REC when there are REs belonging to the same power line network as the REC in all REs, the REC sends an addressing request message for all REs through the CPRI port and the power line port; there is no RE belonging to the same power line network as the REC in all RECs The REC sends an Address Request message for all REs through the CPRI port or through the CPRI port and the power line port.
  • the REC determines the path of the addressing response message of the RE received from the primary line failure for the first time as the alternate line in communication with the RE of the primary line failure.
  • Embodiment A For ease of understanding, how to determine the RE of the main line failure in Embodiment A and determine the alternate line that communicates with the RE of the main line failure will be described in detail below with reference to FIGS. 3 to 5.
  • REC, RE1, RE2, RE3, RE4, and RE5 belong to the same power line network; and it is assumed that the CPRI communication line of RE4 to RE5 is faulty, for example, the hardware failure of RE5 or the optical port parameter of RE5 is not suitable due to RE4 to The CP5 communication line of RE5 is faulty.
  • the REC sends an Address Request message through the power line port and the CPRI port, which is for all REs.
  • the addressing request message sent by the REC can reach RE1 through the CPRI communication line and reach RE1, RE2, RE3, RE4, and RE5 through the power line, respectively.
  • the processing of the addressing request message may satisfy the following principle: if the addressing request message is received on the uplink CPRI port, it is forwarded through the power line port and the downlink CPRI port, and the address response message is sent back to the CPRI port; When the address request message is received at the power line port, the response response message is returned to the power line port and is no longer forwarded.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port;
  • the addressing response message can be sent through the power line port, but not forwarded.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the downlink message is passed through The CPRI port and the power line port forward the addressing request message; when the addressing request message is received through the power line port, the response message can be addressed back to the REC through the power line port without forwarding.
  • the addressing response message can be returned through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port;
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • RE5 receives only the addressing request message directly from the REC and forwarded through the power line via RE1, RE2, RE3 and RE4 through the power line port, and respectively Addressing response messages for respective addressing request messages are sent separately through the power line port.
  • each RE may carry the forwarding request information (for example, the information of the receiving port and the sending port) in the addressing request message when forwarding the addressing request message, by This addressing request message may carry forwarding path information at each forwarding node.
  • the forwarding path information in the addressing request message may be carried in the addressing response message, so that the addressing response message is in the reverse direction of the corresponding addressing request message. The path is returned to the REC.
  • an addressing response message is received at the power line port or the downlink CPRI port, and the addressing response message is forwarded to the uplink CPRI port.
  • the RE4 may encapsulate the address response message as a message of the CPRI protocol, and forward the address response message through the uplink CPRI port, where the address response message passes.
  • the transparent transmission of RE3, RE2 and RE1 reaches the REC; after the power line port receives the RE5 addressing response message, the RE3 may encapsulate the addressing response message into a CPRI protocol message and forward the addressing through the uplink CPRI port.
  • the addressing response message arrives at the REC through the transparent transmission of RE2 and RE1; the processing by RE1 and RE2 to receive the RE5 addressing response message through the power line port is similar to that of RE3 and RE4; the REC can also receive no RE Forwarded address response message from RE5.
  • REC receives the addressing of each RE forwarding
  • determining that the path of the addressing response message does not include the primary line, and determining that the primary line is in communication with the RE5 the alternate line that communicates with the RE5 may be selected from the paths in the addressing response messages forwarded by the respective REs; For example, the path of the response message from RE5 received for the first time is determined as an alternate line.
  • the first received address response message is a message for performing CPRI protocol encapsulation processing at RE4, and the REC receives the first received message.
  • the information of the RE4 encapsulated in the response message is addressed, and the path of the alternate line that communicates with the RE5 is determined to reach the RE4 through the CPRI line, and then sent to the RE5 through the power line by the RE4.
  • RE3 receives the RE4 addressing response message after the power line port and the downlink CPRI port, and forwards the addressing response message through the uplink CPRI port respectively, and reaches the REC through the transparent transmission of RE2 and RE1; the REC determines the RE4 search.
  • the address response message includes a response message to the REC through the primary line, and then determines that the primary line communicating with RE4 is not faulty, and the RE4 communicates normally through the primary line.
  • the judgment of whether the main lines of RE2, RE3, and RE1 are faulty is similar to that of RE4, and details are not described herein again.
  • RE1, RE2, RE3, RE4, and RE5 belong to the same power line network, and REC belongs to another power line network; and it is assumed that the CPRI communication line of RE4 to RE5 is faulty, such as hardware failure of RE5 or optical port parameter of RE5. Inappropriate CPRI communication line failure of RE4 to RE5.
  • the REC sends an Address Request message through the CPRI port or through the power line port and the CPRI port, which is for all REs.
  • the REC since there is no RE belonging to the same power line network as the REC, the REC can transmit the addressing request message only through the CPRI port.
  • the REC may not determine whether there is an RE that belongs to the same power line network as itself, and directly send an addressing request message according to the CPRI port and the power line port to which it belongs.
  • the addressing request message sent by the REC can reach RE1 through the CPRI port.
  • the processing of the addressing request message may satisfy the following principle: if an addressing request message is received on the uplink CPRI port, it is forwarded to the power line port and the downlink CPRI port, and the channel response message is sent back to the CPRI port; When the address request message is received at the power line port, the response response message is returned to the power line port and is no longer forwarded.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • the addressing response message can be returned through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port;
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • RE5 receives an addressing request message that is forwarded through the power line via RE1, RE2, RE3, and RE4 through the power line port, and separately transmits an addressing response for the addressing request message forwarded by each RE through the power line port.
  • RE5 cannot receive the address request message that RE4 forwarded through the downlink.
  • each RE may carry the forwarding request information (for example, the information of the receiving port and the sending port) in the addressing request message when forwarding the addressing request message, by This addressing request message may carry forwarding path information at each forwarding node.
  • the forwarding path information in the addressing request message may be carried in the addressing response message, so that the addressing response message is in the reverse direction of the corresponding addressing request message. The path is returned to the REC.
  • the uplink response message is forwarded to the CPRI port.
  • the RE4 may encapsulate the address request message into a message of the CPRI protocol, and forward the address response message through the uplink CPRI port, where the address response message passes.
  • the transparent transmission of RE3, RE2 and RE1 reaches the REC; after the power line port receives the RE5 addressing response message, the RE3 may encapsulate the addressing request message into a CPRI protocol message and forward the addressing through the uplink CPRI port.
  • the addressing response message is transparently transmitted through RE2 and RE1 to the REC; RE1 and RE2 are received through the power line port.
  • the processing performed by the RE5 Addressing Response message is similar to RE3 and RE4.
  • the REC After receiving the RE5 addressing response message forwarded by each RE, the REC determines that the path of the addressing response message does not include the primary line, and determines that the primary line communication with the RE5 is faulty, and may be from the addressing response message forwarded by each RE.
  • select the alternate line that communicates with RE5 for example, determine the path of the response message from RE5 received for the first time as an alternate line, for example, the first received address response message is CPRI protocol at RE4 Encapsulating the processed message
  • the REC determines, by the information of the RE1 encapsulated in the first received address response message, that the path of the alternate line communicating with the RE5 is that the pending message arrives at the RE4 through the CPRI line, and then is sent by the RE4 through the power line. Go to RE5.
  • RE3 receives the RE4 addressing response message after the power line port and the downlink CPRI port, and forwards the addressing response message from the power line port and the downlink CPRI port through the uplink CPRI port, respectively, and reaches through the transparent transmission of RE2 and RE1.
  • REC; RE2 and RE1 receive RE4's addressing response message processing similarly; REC determines that the RE4's addressing response message includes a response message to the REC through the primary line, and then determines that the primary line communicating with RE4 is not faulty and passes the primary The line communicates normally with the RE.
  • the judgment of whether the main lines of RE2, RE3, and RE1 are faulty is similar to that of RE4, and details are not described herein again.
  • REC and RE1 and RE2 belong to the same power line network
  • RE3, RE4 and RE5 belong to another power line network; and it is assumed that the CPRI communication line of RE4 to RE5 is faulty, for example, the hardware failure of RE5 or the optical port parameter of RE5 is inappropriate. The resulting CPRI communication line of RE4 to RE5 is faulty.
  • the REC sends an Address Request message through the power line port and the CPRI port, which is for all REs.
  • the REC since the REC exists REs belonging to the same power line network as the REC, that is, RE1 and RE2, the REC needs to transmit an address request message through the power line port and the CPRI port.
  • the REC may not determine whether there is an RE that belongs to the same power line network as itself, and directly send an addressing request message according to the CPRI port and the power line port to which it belongs.
  • the addressing request message sent by the REC can reach RE1 and RE2 directly through the power line and reach RE1 through the CPRI communication line.
  • the processing of the addressing request message may satisfy the following principle: if an addressing request message is received on the uplink CPRI port, it is forwarded to the power line port and the downlink CPRI port, and the channel response message is sent back to the CPRI port; When the address request message is received at the power line port, the response response message is returned to the power line port and is no longer forwarded.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port;
  • the port receives the address request message, it can address the response message to the REC through the power line port without forwarding.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • the addressing response message can be returned through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the response message can be addressed back to the REC through the power line port without forwarding.
  • RE5 receives an addressing request message forwarded by RE3 and RE4 through the power line through the power line port, and transmits an addressing response message for each addressing request message through the power line port; respectively, because between RE4 and RE5 If the CPRI line fails, the RE5 cannot receive the addressing request message forwarded by the RE4 through the downlink CPRI port.
  • each RE may carry the addressing request message in its own forwarding path information (for example, the information of the receiving port and the sending port) in the addressing request message when forwarding the addressing request message, thereby
  • the addressing request message may carry forwarding path information at each forwarding node.
  • the forwarding path information in the addressing request message may be carried in the addressing response message, so that the addressing response message is in the reverse direction of the corresponding addressing request message. The path is returned to the REC.
  • an addressing response message is received at the power line port or the downlink CPRI port, and the addressing response message is forwarded to the uplink CPRI port.
  • the RE4 may encapsulate the address request message into a message of the CPRI protocol, and forward the address response message through the uplink CPRI port, where the address response message passes.
  • RE3 is After receiving the addressing response message of RE5, the power line port may encapsulate the addressing response message into a message of the CPRI protocol, and forward the addressing response message through the uplink CPRI port, and the addressing response message passes through RE2 and RE1. Pass through to the REC.
  • the REC After receiving the plurality of addressing response messages, the REC determines that the path of the plurality of addressing response messages does not include the primary line, and determines that the primary line failure communicating with the RE5 may be from the path in the multiple addressing response messages. Selecting an alternate line for communicating with RE5; for example, determining the path of the response message from RE5 received for the first time as an alternate line, for example, the first received address response message is CPRI protocol encapsulation processing at RE3 The message, the REC determines the path of the RE3 encapsulated in the first received address response message, and determines that the path of the alternate line communicating with the RE5 is that the pending message reaches the RE3 through the transparent transmission of the RE1 and RE2 through the CPRI line. It is sent to RE5 via RE3 via the power line.
  • RE3 receives the RE4 addressing response message after the power line port and the downlink CPRI port, and forwards the addressing response message through the uplink CPRI port respectively, and reaches the REC through the transparent transmission of RE2 and RE1; the REC determines the RE4 search.
  • the address response message includes a response message to the REC through the primary line, and then determines that the primary line communicating with the RE4 is not faulty and normally communicates with the RE through the primary line.
  • the judgment of whether the main lines of RE2, RE3, and RE1 are faulty is similar to that of RE4, and details are not described herein again.
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • the standby line communicates with the RE of the main line failure by using the backup line, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the REC can determine whether the primary line in which the REC communicates with the RE is faulty by the heartbeat between the RE and the RE. Specifically, the heartbeat message is sent between the REC and the RE through the primary line. If the heartbeat message sent by the RE is not received by the REC for a predetermined number of times, the primary line that the REC communicates with the RE is determined to be faulty.
  • the REC sends an address request message for the first RE through at least one of the power line port and the CPRI port when determining that the primary line is in communication with the first RE;
  • the first RE receives the addressing request message by using the first port, and sends the addressing response message by using the first port, where the first port is an uplink CPRI port or a power line port;
  • the REC determines the alternate line in communication with the first RE based on the path of the at least one addressing response message sent by the first RE.
  • the addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the forwarding path message at the upstream RE is carried in the addressing request message; the first RE is sent through the first port Before forwarding the response message, the forwarding path message is carried in the addressing response message; after receiving the addressing response message, the upstream RE of the first RE forwards the addressing response message according to the forwarding path message in the addressing response message, so that The addressing response message is returned to the REC in the reverse path of the corresponding addressing request message.
  • the upstream RE of the first RE receives the addressing response message through the downlink CPRI port or the power line port, and forwards the addressing response message through the uplink CPRI port.
  • the upstream RE of the first RE discards the addressing request message when receiving the addressing request message through the power line port.
  • the REC when the REC and the first RE belong to the same power line network, the REC sends an addressing request message for the first RE through the power line port or through the CPRI port and the power line port;
  • the REC When the REC and the first RE do not belong to the same power line network, the REC transmits an addressing request message for the first RE through the CPRI port or through the CPRI port and the power line port.
  • REC, RE1, RE2, RE3, RE4, and RE5 belong to the same power line network; and it is assumed that the CPRI communication line of RE4 to RE5 is faulty, for example, the hardware failure of RE5 or the optical port parameter of RE5 is not suitable due to RE4 to The CP5 communication line of RE5 is faulty.
  • the REC After determining the primary line failure to communicate with RE5, the REC sends an Address Request message for RE5 through the power line port and the CPRI port.
  • the addressing request message for RE5 sent by the REC may carry the identification information of the RE5.
  • the identification information may be address information of the RE5 in the power line network, for example, a MAC address or an IP address of the RE5 in the power line network.
  • the addressing request message sent by the REC can reach RE1, RE2, RE3, RE4, and RE5 directly through the power line and reach RE1 through the CPRI communication line.
  • the processing of the addressing request message may satisfy the following principle: if an addressing request message is received on the uplink CPRI port, it is forwarded to the power line port and the downlink CPRI port; if an addressing request message is received at the power line port , the addressing request message is discarded.
  • the processing of the addressing request message may satisfy the following principles: an addressing request message is received at the power line port, and an address response message is returned at the power line port.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, the addressing can be discarded. Request message.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, The addressing request message is discarded.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, The addressing request message is discarded.
  • the RE3 forwarded addressing request message is received through the uplink CPRI port, the addressing request message is forwarded through the downlink CPRI port and the power line port, and the addressing request message is received through the power line port, and the seek can be discarded. Address request message.
  • RE5 receives an addressing request message directly from the REC and forwarded through the power line via RE1, RE2, RE3, and RE4 through the power line port, and transmits the addressing request message corresponding to each path through the power line port respectively. Address response message. Because the CPRI line of RE4 to RE5 fails, the address request message sent by RE4 through the downlink CPRI port cannot reach RE5.
  • each RE may carry the forwarding request information (for example, the information of the receiving port and the sending port) in the addressing request message when forwarding the addressing request message, by This addressing request message may carry forwarding path information at each forwarding node.
  • the forwarding path information in the addressing request message may be carried in the addressing response message, so that the addressing response message is in accordance with the inverse of the corresponding addressing request message. Return to the path to the REC.
  • an addressing response message is received at the power line port or the downlink CPRI port, and the addressing response message is forwarded to the uplink CPRI port.
  • the RE4 may encapsulate the address request message into a message of the CPRI protocol, and forward the address response message through the uplink CPRI port, where the address response message passes.
  • the transparent transmission of RE3, RE2 and RE1 reaches the REC; after the power line port receives the RE5 addressing response message, the RE3 may encapsulate the addressing request message into a CPRI protocol message and forward the addressing through the uplink CPRI port.
  • the addressed response message is transparently transmitted by RE2 and RE1 to the REC.
  • the processing of RE2 and RE1 receiving the RE5 addressing response message through the power line is similar to RE1 and RE2.
  • the REC may select an alternate line that communicates with the RE5 from the path of the plurality of addressing response messages; for example, determining the path of the response message from the RE5 received for the first time as an alternate line, for example, the first received addressing
  • the response message is a message that performs CPRI protocol encapsulation processing at RE3, and the REC determines the path of the alternate line that communicates with RE5 through the information of RE3 encapsulated in the first received address response message, and sends the message to be sent through the CPRI.
  • the line is transparently transmitted to RE3 via RE1 and RE2, and then transmitted to RE5 through RE3 via the power line.
  • RE1, RE2, RE3, RE4, and RE5 belong to the same power line network, and REC belongs to another power line network; and it is assumed that the CPRI communication line of RE4 to RE5 is faulty, such as hardware failure of RE5 or optical port parameter of RE5. Inappropriate CPRI communication line failure of RE4 to RE5.
  • the REC After determining the primary line failure to communicate with RE5, the REC sends a RE5 addressing request message through the power line port and the CPRI port.
  • the REC since REC and RE5 do not belong to the same power line network, the REC may transmit an address request message through the power line port and the CPRI port, or through the CPRI port.
  • the REC may not determine whether the power line network belongs to the same power source as the RE5, and directly sends an address request message according to the CPRI port and the power line port to which it belongs.
  • the addressing request message sent by the REC can reach RE1 and RE2 directly through the power line and reach RE1 through the CPRI communication line.
  • the processing of the addressing request message may satisfy the following principle: if an addressing request message is received on the uplink CPRI port, it is forwarded to the power line port and the downlink CPRI port; if an addressing request message is received at the power line port , the addressing request message is discarded.
  • the processing of the addressing request message may satisfy the following principles: an addressing request message is received at the power line port, and an address response message is returned at the power line port.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, the addressing can be discarded. Request message.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, The addressing request message is discarded.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, The addressing request message is discarded.
  • the RE3 forwarded addressing request message is received through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, the seek may be discarded. Address request message.
  • RE5 receives the addressing request message forwarded by each RE through the power line through the power line port, and transmits the addressing response message corresponding to the addressing request message forwarded by each RE through the power line port. Because the CPRI line of RE4 to RE5 fails, RE5 cannot receive the addressing request message that RE4 forwards through the downlink CPRI port.
  • each RE may carry the forwarding request information (for example, the information of the receiving port and the sending port) in the addressing request message when forwarding the addressing request message, by This addressing request message may carry forwarding path information at each forwarding node.
  • the forwarding path information in the addressing request message may be carried in the addressing response message, so that the addressing response message is in accordance with the inverse of the corresponding addressing request message. Return to the path to the REC.
  • an addressing response message is received at the power line port or the downlink CPRI port, and the addressing response message is forwarded to the uplink CPRI port.
  • the RE4 may encapsulate the address request message into a message of the CPRI protocol, and forward the address response message through the uplink CPRI port, where the address response message passes.
  • the transparent transmission of RE3, RE2 and RE1 reaches the REC; after the power line port receives the RE5 addressing response message, the RE3 may encapsulate the addressing response message into a CPRI protocol message and forward the addressing through the uplink CPRI port.
  • the addressed response message is transparently transmitted by RE2 and RE1 to the REC.
  • RE2 and RE1 receive RE5 via power line
  • the processing of the addressing response message is similar to that of RE3 and RE4.
  • the REC may select an alternate line that communicates with the RE5 from the path of the plurality of addressing response messages; for example, determining the path of the response message from the RE5 received for the first time as an alternate line, for example, the first received addressing
  • the response message is a message that performs CPRI protocol encapsulation processing at RE3, and the REC determines the path of the alternate line that communicates with RE5 through the information of RE3 encapsulated in the first received address response message, and sends the message to be sent through the CPRI.
  • the line is transparently transmitted to RE3 via RE1 and RE2, and then transmitted to RE5 through RE3 via the power line.
  • REC and RE1 and RE2 belong to the same power line network, RE3, RE4 and RE5 belong to another power line network; and it is assumed that the CPRI communication line of RE4 to RE5 is faulty, for example, the hardware failure of RE5 or the optical port parameter of RE5 is inappropriate. The resulting CPRI communication line of RE4 to RE5 is faulty.
  • the REC After determining the primary line failure to communicate with RE5, the REC sends a RE5 addressing request message through the power line port and the CPRI port.
  • the REC may transmit an address request message through the power line port and the CPRI port, or through the CPRI port.
  • the REC may not determine whether the power line network belongs to the same power source as the RE5, and directly sends an address request message according to the CPRI port and the power line port to which it belongs.
  • the addressing request message sent by the REC can reach RE1 and RE2 directly through the power line and reach RE1 through the CPRI communication line.
  • the processing of the addressing request message may satisfy the following principle: if an addressing request message is received on the uplink CPRI port, it is forwarded to the power line port and the downlink CPRI port; if an addressing request message is received at the power line port The addressing request message is discarded; for the target RE, the processing of the addressing request message may satisfy the following principle: an addressing request message is received at the power line port, and the response message is returned at the power line port.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, the addressing can be discarded. Request message.
  • the addressing request message can be forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, The addressing request message is discarded.
  • the RE2 forwarded addressing request message is received through the uplink CPRI port, and the addressing request message can be forwarded through the downlink CPRI port and the power line port.
  • the RE3 forwarded addressing request message is received through the uplink CPRI port, and the addressing request message is forwarded through the downlink CPRI port and the power line port; if the addressing request message is received through the power line port, the seek may be discarded. Address request message.
  • RE5 receives an addressing request message forwarded by RE3 and RE4 over the power line through the power line port, and transmits an addressing response message for the addressing request message forwarded by RE3 and RE4 through the power line port, respectively. Because the CPRI line of RE4 to RE5 fails, RE5 cannot receive the addressing request message that RE4 forwards through the downlink CPRI port.
  • each RE may carry the forwarding request information (for example, the information of the receiving port and the sending port) in the addressing request message when forwarding the addressing request message, by This addressing request message may carry forwarding path information at each forwarding node.
  • the forwarding path information in the addressing request message may be carried in the addressing response message, so that the addressing response message is in accordance with the inverse of the corresponding addressing request message. Return to the path to the REC.
  • an addressing response message is received at the power line port or the downlink CPRI port, and the addressing response message is forwarded to the uplink CPRI port.
  • the RE4 may encapsulate the address request message into a message of the CPRI protocol, and forward the address response message through the uplink CPRI port, where the address response message passes.
  • the transparent transmission of RE3, RE2 and RE1 reaches the REC; after the power line port receives the RE5 addressing response message, the RE3 may encapsulate the addressing response message into a CPRI protocol message and forward the addressing through the uplink CPRI port.
  • the addressing response message is transparently transmitted by RE2 and RE1 to the REC. REC.
  • the alternate line that communicates with RE5 can be selected from the paths in the plurality of addressing response messages; for example, the first received RE5
  • the path of the response message is determined as an alternate line.
  • the first received address response message is a message that performs CPRI protocol encapsulation processing at RE3, and the REC passes the RE3 encapsulated in the first received address response message.
  • the information determines that the path of the alternate line communicating with RE5 is that the pending message arrives at RE3 via the CPRI line via RE1 and RE2, and then is sent by RE3 to RE5 through the power line.
  • the REC may send an addressing request message for the RE, and determine the path according to the path of the addressing response message replied by the RE.
  • the main line fails the RE to communicate with the alternate line, thus in the main When the line fails, no manual lower station processing is required, which reduces maintenance costs and reduces service interruption time, thereby improving the user experience.
  • the two belong to the same power line network, meaning that communication between the two can be performed only through the power line.
  • the two do not belong to the same power line network, which means that the two cannot communicate with each other only through the power line.
  • the REC determines the main line failure of communication with any of the REs, it is possible to determine the alternate line that communicates with the RE of the main line failure, and to pass the standby line with the RE of the main line failure. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • FIG. 6 is a schematic block diagram of an REC 200 in accordance with an embodiment of the present invention. As shown in FIG. 6, the REC 200 includes:
  • a first determining unit 210 configured to determine a primary line fault in which the REC 200 communicates with the first RE;
  • a second determining unit 220 configured to determine a backup line in which the REC 200 communicates with the first RE
  • the communication unit 230 is configured to communicate with the first RE through the standby line.
  • the second determining unit 220 may determine the alternate line in which the REC 200 communicates with the RE of the main line failure, and communicates
  • the unit 230 communicates with the RE of the main line failure through the standby line, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the REC 200 may also be referred to as a BBU, and the RE may also be referred to as an RRU.
  • the primary line may be a CPRI communication line; the backup line may be a power line line or a power line plus a CPRI communication line.
  • the main line may be a power line line or a power line plus a CPRI communication line, and the backup line is a CPRI communication line, or other manners, which may be determined according to an application scenario, which is not limited by the embodiment of the present invention.
  • the main line is a CPRI communication line
  • the standby line is a power line line
  • the power line plus a CPRI communication line is mainly described.
  • the REC and the RE are naturally powered by the power line network, in the embodiment of the present invention, when the CPRI communication line of the REC and the RE fails, the communication between the REC and the RE is realized by the power line network of the REC and the RE.
  • the CPRI communication line refers to a line supporting the CPRI protocol; the CPRI communication line may include at least one of an optical fiber, a coaxial cable, and an Ethernet line.
  • the communication unit 230 is specifically configured to:
  • the first RE is reset or upgraded over the alternate line to recover the primary line in which the REC communicates with the first RE.
  • the optical port parameter of the RE can be modified by the standby line, thereby recovering the main line.
  • the second determining unit 220 may determine a backup line, where the standby line may include a power line, and the communication unit 230 may send an indication information to the RE through the standby line, indicating that the RE is powered on and off.
  • the REC 200 may scan the RE of the main line fault in all REs controlled in real time (for example, in the periodicity or initialization phase), and determine the backup line of the RE of the main line fault; the REC 200 may also interact with a certain RE.
  • a heartbeat message determines the primary line failure to communicate with the RE and determines the alternate line to communicate with the RE.
  • the REC 200 can scan the RE (first RE) of the primary line failure of all REs under control in real time (eg, periodic or initialization phase) and determine the alternate line of the RE of the primary line failure.
  • the first determining unit 210 includes a first sending subunit 211, a first receiving subunit 212, and a first determining subunit 213; wherein the first sending subunit 211 is configured to: pass the CPRI The port transmits the addressing request message for all the controlled REs through the power line port and the CPRI port; the first receiving subunit 212 is configured to: receive the addressing response message from the at least one RE, wherein the at least one RE includes the first RE
  • the first determining subunit 213 is configured to: when determining that the path of the at least one addressing response message from the first RE received by the first receiving subunit 212 does not include the primary line, determine the primary line that communicates with the first RE
  • the second determining unit 220 is specifically configured to: when the path of the at least one addressing response message from the first RE received by the first receiving subunit 212 does not include the primary line, according to the path of the at least one addressing response message Path, determining the alternate line to communicate with the first RE.
  • the first sending subunit 211 is specifically configured to:
  • an addressing request message for all REs is transmitted through the CPRI port or through the CPRI port and the power line port.
  • the second determining unit 220 is specifically configured to:
  • the path of the addressing response message from the first RE received by the receiving subunit 212 for the first time is determined as the alternate line in communication with the first RE.
  • the REC 200 in the embodiment C may correspond to the REC in the embodiment A, and the REC 200 may have the corresponding function of the REC in the embodiment A, and details are not described herein for brevity.
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • the backup line thus eliminating the need for manual lower station processing when the main line fails, reduces maintenance costs, and reduces service interruption time, thereby improving the user experience.
  • the REC 200 can determine whether the primary line in which the REC 200 communicates with the RE is faulty by the heartbeat between the REC 200 and the RE. Specifically, the heartbeat message is sent between the REC 200 and the RE through the primary line. If the REC 200 does not receive the heartbeat information sent by the RE for a predetermined number of consecutive times, it determines that the primary line that the REC communicates with the RE is faulty.
  • the second determining unit 220 includes: a second sending subunit 221, configured to pass the power line port and after the first determining unit 210 determines that the REC 200 is in communication with the first RE. At least one of the CPRI ports transmits an addressing request message for the first RE; a second receiving sub-unit 222 for receiving at least one addressing response message from the first RE; and a second determining sub-unit 223 for The path of the at least one addressing response message received by the second receiving subunit 222 determines an alternate line in communication with the first RE.
  • the second sending subunit 221 is specifically configured to: when the REC 200 and the first RE belong to the same power line network, send an addressing request message for the first RE through the power line port or through the CPRI port and the power line port; in the REC200 When the first RE does not belong to the same power line network, the search for the first RE is sent through the CPRI port or through the CPRI port and the power line port. Address request message.
  • the second determining subunit 223 is specifically configured to:
  • the path of the addressing response message from the first RE received by the second receiving subunit 222 for the first time is determined as the alternate line in communication with the first RE.
  • the communication unit 230 is specifically configured to:
  • the first RE is reset or upgraded over the alternate line to recover the primary line in which the REC communicates with the first RE.
  • the REC 200 in the embodiment D may correspond to the REC in the embodiment B, and the REC 200 may have the corresponding function of the REC in the embodiment B, and details are not described herein for brevity.
  • the REC may send an addressing request message for the RE, and determine the path according to the path of the addressing response message replied by the RE.
  • the backup line of the main line faulty RE communicates, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the two belong to the same power line network, meaning that communication between the two can be performed only through the power line.
  • the two do not belong to the same power line network, which means that the two cannot communicate with each other only through the power line.
  • the REC determines the main line failure of communication with any of the REs, it is possible to determine the alternate line that communicates with the RE of the main line failure, and to pass the standby line with the RE of the main line failure. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • FIG. 9 is a schematic block diagram of an RE 300 according to an embodiment of the present invention.
  • the RE300 includes: a receiving unit 310, configured to receive, by using a first port, an addressing request message sent by the REC, where the first port is an uplink CPRI port or a power line port;
  • the determining unit 320 is configured to determine, according to the addressing request message received by the receiving unit 310, that the addressing request message includes the RE300 for the object;
  • the sending unit 330 is configured to send, by using the first port, a first addressing response message to the REC.
  • the addressing request message carries forwarding path information from the REC to the RE300.
  • the sending unit 330 is further configured to: in the first addressing The response message carries the forwarding path information from the REC to the RE300.
  • the first addressing response message is returned to the REC in the reverse path of the addressing request message.
  • the RE300 may be the only object in the addressing request message, and at this time, the RE300 may correspond to the RE5 in Embodiment B, and the corresponding function in the RE5 may be implemented.
  • the REC may send an addressing request message for the RE, and the RE replies to the addressing response message according to the addressing request message sent by the REC. Therefore, the REC can determine the backup line that communicates with the RE of the main line failure according to the path of the address response message replied by the RE, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing The business interruption time, thereby improving the user experience.
  • the object for addressing the request message may further include other REs than RE300.
  • REs may further include other REs than RE300.
  • this case will be described in detail below in conjunction with Embodiment E.
  • the determining unit 320 is further configured to: determine, according to the addressing request message, that the addressing request message further includes other REs for the object; the sending unit 330 is further configured to: when the first port is the uplink CPRI port, The addressing request message is forwarded through the downlink CPRI port and the power line port.
  • the sending unit 330 before the sending unit 330 forwards the addressing request message by using the downlink CPRI port and the power line port, the sending unit 330 is further configured to: carry the forwarding path information at the RE300 in the addressing request message; After the CPRI port and the power line port forward the addressing request message, the receiving unit 310 is further configured to: receive the second addressing response message by using the downlink CPRI port or by using the power line port, where the second addressing response message carries the forwarding path message at the RE300; The sending unit is further configured to forward the second addressing response message according to the forwarding path information at the RE300.
  • the receiving unit 310 is further configured to: receive the second addressing response message by using the downlink CPRI port or the power line port; the sending unit 330 is further configured to: forward the second addressing response message by using the uplink CPRI port.
  • the receiving unit 310 is further configured to: receive the second addressing response message by using the downlink CPRI port or the power line port; the sending unit 330 is further configured to: forward the second addressing response message by using the uplink CPRI port.
  • the addressing request message carries forwarding path information from the REC to the RE300; Before the sending unit 330 sends the first addressing response message to the REC through the first port, the sending unit 330 is further configured to: carry the forwarding path information from the REC to the RE300 in the first addressing response message, so that the first addressing response message Return to the REC in the reverse path of the addressed request message.
  • the RE 300 may correspond to any one of RE1, RE2, RE3, RE4, and RE5 in Embodiment A, and may implement corresponding functions of any of the REs. For brevity, details are not described herein again. .
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • the backup line thus eliminating the need for manual lower station processing when the main line fails, reduces maintenance costs, and reduces service interruption time, thereby improving the user experience.
  • FIG. 10 is a schematic block diagram of an RE 400 in accordance with an embodiment of the present invention.
  • the RE400 includes: a receiving unit 410, configured to receive an addressing request message sent by the REC through the first port, and a determining unit 420, configured to determine, according to the addressing request message, that the addressing request message does not include the RE400 for the object.
  • the sending unit 430 is configured to forward the addressing request message through the power line port and the downlink CPRI port when the first port is the uplink common public interface CPRI port.
  • the sending unit 430 is further configured to: when the first port is a power line port, discard the addressing request message.
  • the sending unit 430 before the sending unit 430 forwards the addressing request message by using the power line port and the downlink CPRI port, the sending unit 430 is further configured to: carry the forwarding path information at the RE400 in the addressing request message; pass the power line port and the sending unit 430
  • the receiving unit After the downlinking CPRI port forwards the addressing request message, the receiving unit is further configured to: receive the addressing response message by using the downlink CPRI port or the power line port, where the addressing response message carries the forwarding path information at the RE400; the sending unit 430 is further configured to: according to the RE400 The forwarding path information at the location, forwarding the addressing response message.
  • the receiving unit 410 is further configured to: receive the addressing response message by using the downlink CPRI port or the power line port; the sending unit 430 is further configured to: pass The uplink CPRI port forwards the addressing response message.
  • the RE 400 may correspond to any one of RE1, RE2, RE3, and RE4 in Embodiment B, and may implement the function of any of the REs.
  • RE1, RE2, RE3, and RE4 in Embodiment B, and may implement the function of any of the REs.
  • no further details are provided herein.
  • the REC determines the main line that communicates with a certain RE. After the barrier, the REC may send an addressing request message to the certain RE, and the non-target RE forwards the addressing request message when receiving the addressing request message, and the target RE receives the addressing request message according to the REC.
  • the transmitted addressing request message replies to the addressing response message, so that the REC can determine the alternate line that communicates with the target RE of the primary line failure based on the path of the addressing response message replied by the target RE, thereby causing the primary line to fail. No need to manually process the station, reducing maintenance costs and reducing business interruption time, thus improving the user experience.
  • the REC 500 includes a memory 511, a processor 512, and a transceiver 513.
  • the processor 512, the transceiver 513, and the memory 511 are connected by a bus 514.
  • the program code is stored in the memory 511, and the processor 512 calls the memory 511.
  • the program code in the program performs the following processing:
  • the first RE is communicated through the alternate line by the control transceiver 513.
  • the REC 500 when determining the main line failure of the communication between the REC 500 and any of the REs, the REC 500 can determine the standby line that communicates with the RE of the main line failure, and the RE that passes through the backup line and the main line fails. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the processor 512 may be a central processing unit ("CPU"), and the processor 512 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 511 can include read only memory and random access memory and provides instructions and data to the processor 512. A portion of the memory 511 may also include a non-volatile random access memory. For example, the memory 511 can also store information of the device type.
  • the bus system 514 can include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 514 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 512 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution, or use hardware and software module groups in the processor.
  • the execution is completed.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 511, and the processor 512 reads the information in the memory 511 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the REC 500 may also be referred to as a BBU, and the RE may also be referred to as an RRU.
  • the primary line may be a CPRI communication line; the backup line may be a power line line or a power line plus a CPRI communication line.
  • the main line may be a power line line or a power line plus a CPRI communication line, and the backup line is a CPRI communication line, or other manners, which may be determined according to an application scenario, which is not limited by the embodiment of the present invention.
  • the main line is a CPRI communication line
  • the standby line is a power line line
  • the power line plus a CPRI communication line is mainly described.
  • the REC and the RE are naturally powered by the power line network, in the embodiment of the present invention, when the CPRI communication line of the REC and the RE fails, the communication between the REC and the RE is realized by the power line network of the REC and the RE.
  • the CPRI communication line refers to a line supporting the CPRI protocol; the CPRI communication line may include at least one of an optical fiber, a coaxial cable, and an Ethernet line.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing:
  • the first RE is reset or upgraded over the alternate line to recover the primary line in which the REC communicates with the first RE.
  • the optical port parameter of the RE can be modified by the standby line, thereby recovering the main line.
  • the RE cannot be started normally, and it needs to be powered on and off to recover. Because the RE has already had a problem, it cannot communicate with the CPRI communication line. Then, an alternate line can be determined, and the standby line can include a power line, and then an indication information can be sent to the RE through the standby line to instruct the RE to power on and off.
  • the REC scans all REs controlled, and determines the RE of the main line failure in all REs, and determines the standby line of the RE of the main line failure; the REC may also establish communication with the RE through the main line. After the connection, the primary line failure in communication with the RE is determined and the alternate line in communication with the RE is determined.
  • embodiment F the following will be combined with embodiment F.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing:
  • the control transceiver 513 transmits an addressing request message for all REs controlled by the CPRI port or through the power line port and the CPRI port; the controller transceiver 513 receives an addressing response message from the at least one RE, wherein the at least one RE includes An RE; a primary line failure communicating with the first RE when the path of the at least one addressing response message from the first RE does not include the primary line; the path of the at least one addressing response message from the first RE is not When the primary line is included, an alternate line in communication with the first RE is determined based on the path of the at least one addressing response message.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing: when there are REs belonging to the same power line network as the REC 500 in all REs, the control transceiver 513 transmits the responses for all REs through the CPRI port and the power line port. Addressing request message; when there are no REs belonging to the same power line network as the REC 500 in all REs, the control transceiver 513 transmits an addressing request message for all REs through the CPRI port or through the CPRI port and the power line port.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing:
  • the path of the first response received from the first RE is determined as the alternate line in communication with the first RE.
  • the REC 200 in the embodiment F may correspond to the REC in the embodiment A, and the REC 500 may have the corresponding function of the REC in the embodiment A, and details are not described herein for brevity.
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • the backup line thus eliminating the need for manual lower station processing when the main line fails, reduces maintenance costs, and reduces service interruption time, thereby improving the user experience.
  • the REC 500 and the first RE determine the AND RE by the mutual heartbeat message. After the primary line failure of the communication, the alternate line in communication with the RE is determined to communicate with the first RE over the alternate line.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing:
  • the control transceiver 513 After determining that the primary line fails to communicate with the first RE, the control transceiver 513 transmits an addressing request message for the first RE through at least one of the power line port and the CPRI port; the control transceiver 513 receives the first RE At least one addressing response message; determining an alternate line in communication with the first RE based on the path of the at least one addressing response message.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing:
  • control transceiver 513 transmits an addressing request message for the first RE through the power line port or through the CPRI port and the power line port;
  • control transceiver 513 transmits an addressing request message for the first RE through the CPRI port or through the CPRI port and the power line port.
  • the processor 512 calls the program code in the memory 511 to specifically perform the following processing:
  • the path of the first response received from the first RE is determined as the alternate line in communication with the first RE.
  • the REC 500 in the embodiment G may correspond to the REC in the embodiment B, and the REC 500 may have the corresponding function of the REC in the embodiment B.
  • the REC 500 in the embodiment G may correspond to the REC in the embodiment B, and the REC 500 may have the corresponding function of the REC in the embodiment B.
  • no further details are provided herein.
  • the REC may send an addressing request message for the RE, and determine the path according to the path of the addressing response message replied by the RE.
  • the backup line of the main line faulty RE communicates, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the two belong to the same power line network, meaning that communication between the two can be performed only through the power line.
  • the two do not belong to the same power line network, which means that the two cannot communicate with each other only through the power line.
  • the REC determines the main line failure of communication with any of the REs, it is possible to determine the alternate line that communicates with the RE of the main line failure, and to pass the standby line with the RE of the main line failure. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • FIG. 12 is a schematic block diagram of an RE 600 in accordance with an embodiment of the present invention.
  • the RE600 A memory 611, a processor 612, a transceiver 613, and a bus 614 are included.
  • the memory 611, the processor 612 and the transceiver 613 are connected by a bus 614; the program code is stored in the memory 611, and the processor 612 calls the program code in the memory 611 to perform the following processing:
  • the control transceiver 613 receives the addressing request message sent by the REC through the first port, the first port is an uplink CPRI port or a power line port; according to the addressing request message, determining that the addressing request message includes an RE for the object; the control transceiver 613 passes The first port sends a first addressing response message to the REC.
  • the addressing request message carries forwarding path information from the REC to the RE600; before the control transceiver 613 sends the first addressing response message to the REC through the first port, the program code in the processor calling memory further performs the following Processing: Carrying forwarding path information from the REC to the RE 600 in the first addressing response message, so that the first addressing response message returns to the REC according to the reverse path of the addressing request message.
  • the RE600 may be the only object in the addressing request message, and in this case, the RE600 may correspond to the RE5 in the embodiment B, and the corresponding function in the RE5 may be implemented, for the sake of brevity. I will not repeat them here.
  • the REC may send an addressing request message for the RE, and determine the path according to the path of the addressing response message replied by the RE.
  • the backup line of the main line faulty RE communicates, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the object for addressing the request message may further include other REs than RE600.
  • RE600 REs than RE600.
  • the processor 612 calls the program code in the memory 611 to perform the following process: determining, according to the addressing request message, that the addressing request message further includes other REs for the object; the first port is the uplink common public wireless When the CPRI port is interfaced, the control transceiver 613 forwards the addressing request message through the downlink CPRI port and the power line port.
  • the processor 612 calls the program code in the memory 611 to perform the following processing:
  • the forwarding path information at the RE600 is carried in the addressing request message; after the control transceiver 613 forwards the addressing request message through the downlink CPRI port and the power line port, the processor 612 calls the program code in the memory 611 to perform the following processing: The transceiver 613 receives the second addressing response message through the downlink CPRI port or through the power line port, wherein the second addressing response message carries the forwarding path message at the RE 600; and forwards the second addressing response message according to the forwarding path information at the RE 600.
  • the processor 612 calls the program code in the memory 611 to perform the following processing:
  • the control transceiver 613 receives the second addressing response message through the downlink CPRI port or power line port; the control transceiver 613 forwards the second addressing response message through the uplink CPRI port.
  • the processor 612 may be a central processing unit (“CPU"), and the processor 612 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 611 can include read only memory and random access memory and provides instructions and data to the processor 512. A portion of the memory 611 may also include a non-volatile random access memory. For example, the memory 611 can also store information of the device type.
  • the bus system 614 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 514 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 612 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 611, and the processor 612 reads the information in the memory 611 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 612 may include two sub-processors, wherein one sub-processor is used to communicate with the BBU or other RE through a power line, and another sub-processor is used to communicate with the BBU or the CPB through the CPRI line.
  • Other REs communicate, and the two sub-processors are independent of each other, so that the two sub-processors are less likely to fail at the same time, so the system can be greatly improved. System performance.
  • the RE 600 may correspond to any one of RE1, RE2, RE3, RE4, and RE5 in Embodiment A, and may implement corresponding functions of any of the REs. For brevity, details are not described herein again. .
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • the backup line thus eliminating the need for manual lower station processing when the main line fails, reduces maintenance costs, and reduces service interruption time, thereby improving the user experience.
  • FIG. 13 is a schematic block diagram of an RE 700 according to an embodiment of the present invention.
  • the RE 700 includes a memory 711, a processor 712, a transceiver 713, and a bus 714.
  • the memory 711, the processor 712, and the transceiver 713 are connected by a bus 714, and the program code is stored in the memory 711.
  • the control transceiver 713 calls the program code in the memory 711 to perform the following process: the control transceiver 713 receives the addressing request message sent by the wireless device controller REC through the first port; and determines, according to the addressing request message, that the addressing request message does not include the RE 700 for the object; When the first port is the uplink common public interface CPRI port, the control transceiver 713 forwards the addressing request message through the power line port and the downlink CPRI port.
  • the processor 712 invoking the program code in the memory 711 also performs the process of discarding the addressing request message when the first port is a power line port.
  • the processor 712 calls the program code in the memory 711 to perform the following processing:
  • the forwarding path information at the RE700 is carried in the addressing request message; after the control transceiver 713 forwards the addressing request message through the power line port and the downlink CPRI port, the processor 712 calls the program code in the memory 711 to perform the following processing: control transceiver
  • the device 713 receives the addressing response message through the downlink CPRI port or the power line port, and the addressing response message carries the forwarding path information at the RE 700; and forwards the addressing response message according to the forwarding path information at the RE 700.
  • the processor 712 calls the program code in the memory 711 to perform the following processing:
  • the control transceiver 713 receives the addressing response message through the downlink CPRI port or power line port; the control transceiver 713 forwards the addressing response message through the uplink CPRI port.
  • the processor 712 may be a central processing unit (“CPU"), and the processor 712 may also be other general-purpose processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 711 can include read only memory and random access memory and provides instructions and data to the processor 712. A portion of the memory 711 may also include a non-volatile random access memory. For example, the memory 711 can also store information of the device type.
  • the bus system 714 can include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 714 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 712 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 711, and the processor 712 reads the information in the memory 711 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 712 may include two sub-processors, wherein one sub-processor is used to communicate with the BBU or other RE through a power line, and another sub-processor is used to communicate with the BBU or the CPB through the CPRI line.
  • Other REs communicate, and the two sub-processors are independent of each other, so that the two sub-processors are less likely to fail at the same time, so the performance of the system can be greatly improved.
  • the RE 700 may correspond to any one of RE1, RE2, RE3, and RE4 in Embodiment B, and may implement the function of any of the REs.
  • RE1, RE2, RE3, and RE4 in Embodiment B, and may implement the function of any of the REs.
  • details are not described herein again.
  • the REC may send an addressing request message for the certain RE, and when the non-target RE receives the addressing request message, Forwarding the addressing request message, when receiving the addressing request message, the target RE replies to the addressing response message according to the addressing request message sent by the REC, so that the REC can determine according to the path of the addressing response message replied by the target RE.
  • the standby line that communicates with the target RE of the main line failure thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • FIG. 14 is a schematic flowchart of an information transmission method 800 according to an embodiment of the present invention. As shown in FIG. 13, the method 800 includes:
  • the REC determines a primary line fault that communicates with the first RE
  • the REC determines a backup line that communicates with the first RE.
  • the REC communicates with the first RE by using the standby line.
  • the REC when the main line of the communication with any RE fails, the REC can determine the standby line that communicates with the RE of the main line failure, and communicates with the RE of the main line failure through the standby line. Therefore, no manual lower station processing is required when the main line fails, the maintenance cost is reduced, and the service interruption time is reduced, thereby improving the user experience.
  • the REC may also be referred to as a BBU, and the RE may also be referred to as an RRU.
  • the primary line may be a CPRI communication line; the backup line may be a power line line or a power line plus a CPRI communication line.
  • the main line may be a power line line or a power line plus a CPRI communication line, and the backup line is a CPRI communication line, or other manners, which may be determined according to an application scenario, which is not limited by the embodiment of the present invention.
  • the main line is a CPRI communication line
  • the standby line is a power line line
  • the power line plus a CPRI communication line is mainly described.
  • the REC and the RE are naturally powered by the power line network, in the embodiment of the present invention, when the CPRI communication line of the REC and the RE fails, the communication between the REC and the RE is realized by the power line network of the REC and the RE.
  • the CPRI communication line refers to a line supporting the CPRI protocol; the CPRI communication line may include at least one of an optical fiber, a coaxial cable, and an Ethernet line.
  • the REC communicates with the first RE of the main line fault through the standby line, and may include:
  • the REC sends an indication message over the alternate line to reset or upgrade the first RE to recover the primary line in which the REC communicates with the first RE.
  • the optical port parameter of the RE can be modified by the standby line, thereby recovering the main line.
  • the backup line may be determined, and the backup line may include a power line, and the communication unit 230 may send an indication message to the RE through the standby line to instruct the RE to power on and off.
  • the REC may scan all REs controlled in real time (for example, periodicity or initialization phase), determine REs of all the REs in the main line, and determine the alternate line of the REs of the main line failure; the REC may also pass Interacting a heartbeat message with a certain RE, determining a primary line failure to communicate with the RE, and determining an alternate line to communicate with the RE.
  • REs controlled in real time for example, periodicity or initialization phase
  • the REC may also pass Interacting a heartbeat message with a certain RE, determining a primary line failure to communicate with the RE, and determining an alternate line to communicate with the RE.
  • the REC can scan all REs controlled in real time (eg, periodic or initialization phase) and determine the RE (first RE) of the primary line failure in all REs and determine the alternate line of the RE of the primary line failure.
  • the REC determines a primary line fault that is in communication with the first RE, including: the REC sends an addressing request message for all REs controlled by the CPRI port or through the power line port and the CPRI port; The REC receives an addressing response message from at least one RE, wherein the at least one RE includes the first RE; when a path of at least one addressing response message from the first RE does not include a primary line, The REC determines a primary line failure by communicating with the first RE; in S820, the REC determines an alternate line in communication with the first RE, including: at least one homing from the first RE When the path of the address response message does not include the primary line, the REC determines the alternate line in communication with the first RE according to the path of the at least one addressing response message.
  • the REC sends an addressing request message for all REs controlled by the CPRI port or through the power line port and the CPRI port, including: when there are REs belonging to the same power line network as the REC in all the REs Transmitting, by the CPRI port and the power line port, an addressing request message for the all REs; when there is no RE in the same RE that belongs to the same power line network as the REC, the REC passes through the CPRI port or An addressing request message for all of the REs is sent through the CPRI port and the power line port.
  • the REC determines an alternate line that communicates with the first RE, including:
  • the REC determines a path of the first response response message from the first RE to be received as a backup line in communication with the first RE.
  • Embodiment 1 can be implemented by the REC in Embodiment A, and the action implemented by the REC in Embodiment A can belong to an optional embodiment of Embodiment 1, for the sake of brevity. I will not repeat them here.
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • the backup line thus eliminating the need for manual lower station processing when the main line fails, reduces maintenance costs, and reduces service interruption time, thereby improving the user experience.
  • the REC determines, by determining, by determining, by determining, by the first RE, a heartbeat message with the first RE, a primary line that communicates with the RE, determining a backup line that communicates with the RE, and performing the first line with the first RE through the standby line.
  • the REC determines a backup line that communicates with the first RE, including: after the REC determines that a primary line fault is communicated with the first RE, the REC passes the power line At least one of a port and a CPRI port transmitting an addressing request message for the first RE; the REC receiving at least one addressing response message from the first RE; the REC is addressed according to the at least one In response to the path of the message, an alternate line in communication with the first RE is determined.
  • the REC sends an addressing request message for the first RE by using at least one of a power line port and a CPRI port, including: when the REC and the first RE belong to the same power line network, The REC transmits an addressing request message for the first RE through a power line port or through a CPRI port and a power line port; when the REC and the first RE do not belong to the same power line network, the REC passes through a CPRI port or An addressing request message for the first RE is sent through the CPRI port and the power line port.
  • the REC determines an alternate line that communicates with the first RE, including: determining, by the REC, a path of an addressing response message from the first RE that is received for the first time as An alternate line in which the first RE communicates.
  • the method in the embodiment K can be implemented by the REC in the embodiment B, and the action implemented by the REC in the embodiment B can be an optional embodiment of the embodiment K.
  • the action implemented by the REC in the embodiment B can be an optional embodiment of the embodiment K.
  • the REC may send an addressing request message for the RE, and determine the path according to the path of the addressing response message replied by the RE.
  • the main line fails the RE to communicate with the alternate line, thus in the main When the line fails, no manual lower station processing is required, which reduces maintenance costs and reduces service interruption time, thereby improving the user experience.
  • the two belong to the same power line network, meaning that communication between the two can be performed only through the power line.
  • the two do not belong to the same power line network, which means that the two cannot communicate with each other only through the power line.
  • the REC determines the main line failure of communication with any of the REs, it is possible to determine the alternate line that communicates with the RE of the main line failure, and to pass the standby line with the RE of the main line failure. Communication is performed, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • FIG. 15 is a schematic flowchart of an information transmission method 900 according to an embodiment of the present invention. As shown in FIG. 15, the method 900 includes:
  • the first RE receives an addressing request message sent by the REC by using the first port, where the first port is an uplink CPRI port or a power line port.
  • the first RE determines that the addressing request message includes the first RE for an object
  • the first RE sends a first addressing response message to the REC by using the first port.
  • the addressing request message carries forwarding path information from the REC to the first RE; before the sending, by the first port, the first addressing response message to the REC, the method
  • the 900 further includes: the first RE carrying forwarding path information from the REC to the first RE in the first addressing response message, so that the first addressing response message follows the addressing request The reverse path of the message is returned to the REC.
  • the first RE may be the only object in the addressing request message
  • the method 900 may be implemented by the RE5 in the embodiment B, that is, the first RE in the method 900 corresponds to
  • the actions implemented by the RE5 in the embodiment B and the RE5 in the embodiment B may belong to the optional embodiment of the method 900.
  • no further details are provided herein.
  • the REC may send an addressing request message for the RE, and determine the path according to the path of the addressing response message replied by the RE.
  • the backup line of the main line faulty RE communicates, thereby eliminating the need for manual lower station processing when the main line fails, reducing maintenance costs and reducing service interruption time, thereby improving the user experience.
  • the object for addressing the request message may further include other REs than the first RE.
  • this case will be described in detail below in conjunction with embodiment L.
  • the method 900 further includes: according to the addressing request message, the first RE determines that the addressing request message further includes other REs for an object; and the first port is connected to the uplink When the public radio interface CPRI port is used, the first RE forwards the addressing request message through the downlink CPRI port and the power line port.
  • the method 900 before the forwarding the addressing request message by the downlink CPRI port and the power line port, the method 900 further includes: carrying the forwarding path information at the first RE in the addressing request message After the addressing request message is forwarded through the downlink CPRI port and the power line port, the method 900 further includes: the first RE receiving a second addressing response message through a downlink CPRI port or through a power line port, where The second addressing response message carries the forwarding path message at the first RE; and forwards the second addressing response message according to the forwarding path information at the first RE.
  • the method 900 further includes: the first RE receiving a second addressing response message by using a downlink CPRI port or a power line port; the first RE forwarding the second addressing response message by using an uplink CPRI port .
  • the addressing request message carries forwarding path information from the REC to the first RE; before the sending, by the first port, the first addressing response message to the REC, the method
  • the 900 further includes: the first RE carrying forwarding path information from the REC to the first RE in the first addressing response message, so that the first addressing response message follows the addressing request The reverse path of the message is returned to the REC.
  • the first RE may correspond to any RE in the embodiment A
  • the method 900 may be implemented by any RE in the embodiment A
  • An action implemented by an RE may belong to an optional embodiment of the method 900.
  • the REC may send an addressing request message for all REs, determine the RE of the main line failure according to the path of the addressing response message repliated by each RE, and determine to communicate with the RE of the main line failure.
  • Spare line thus eliminating the need for manual when the main line fails
  • Lower station processing reduces maintenance costs and reduces business interruption time, thereby improving the user experience.
  • FIG. 16 is a schematic flowchart of an information transmission method 1000 according to an embodiment of the present invention. As shown in FIG. 16, the method 1000 includes:
  • the second RE receives, by using the first port, an addressing request message sent by the wireless device controller REC.
  • the second RE forwards the addressing request message by using a power line port and a downlink CPRI port.
  • the method 1000 further includes: when the first port is a power line port, the second RE discards the addressing request message.
  • the method 1000 further includes: carrying, in the addressing request message, a forwarding path at the second RE information;
  • the method 1000 further includes: the second RE receiving an addressing response message through a downlink CPRI port or a power line port, the seeking The address response message carries forwarding path information at the second RE; the second RE forwards the addressing response message according to forwarding path information at the second RE.
  • the method 1000 further includes: the second RE receiving an addressing response message by using a downlink CPRI port or a power line port.
  • the second RE forwards the addressing response message through the uplink CPRI port.
  • the second RE may correspond to any one of RE1, RE2, RE3, and RE4 in Embodiment B
  • the method 1000 may be implemented by any one of the REs, and any one of the REs in Embodiment B
  • the implemented actions may belong to the optional embodiment of the method 1000.
  • no further details are provided herein.
  • the REC may send an addressing request message for the certain RE, and when the non-target RE receives the addressing request message, Forwarding the addressing request message, when the target RE receives the addressing request message, Responding to the addressing response message according to the addressing request message sent by the REC, so that the REC can determine the alternate line that communicates with the target RE of the primary line failure according to the path of the addressing response message replied by the target RE, thereby being on the primary line
  • no manual lower station processing is required, which reduces maintenance costs and reduces service interruption time, thereby improving the user experience.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including Several instructions are used to make a computer device (which can be a personal computer, a server, Or a network device or the like) performing all or part of the steps of the method of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种信息传输方法、无线设备控制器、无线设备和基站。该方法包括:REC确定与第一无线设备RE进行通信的主线路故障;所述REC确定与所述第一RE进行通信的备用线路;通过所述备用线路与所述第一RE进行通信。本发明实施例能够节约站点维护成本、减少业务中断事件并提升用户体验。

Description

信息传输方法、无线设备控制器、无线设备以及基站 技术领域
本发明涉及通信领域,并且更具体地,涉及一种信息传输方法、无线设备控制器、无线设备以及基站。
背景技术
基站分为无线设备控制器(Radio Equipment Controller,REC)和无线设备(Radio Equipment,RE)两部分。它们之间通常采用光纤通信线路,连接方式为级联连接。在这种方式下,一旦通信线路中任一点出现故障,会造成REC与该故障点之后的任一RE的无法通信,需要人工下站处理,这会带来较大的下站维护成本,并增加业务中断时间,影响用户的体验。
发明内容
本发明实施例提供一种信息传输方法、无线设备控制器、无线设备和基站,能够节约站点维护成本、减少业务中断事件并提升用户体验。
第一方面,提供了一种无线设备控制器REC,包括:第一确定单元,用于确定所述REC与第一无线设备RE进行通信的主线路故障;第二确定单元,用于确定所述REC与所述第一RE进行通信的备用线路;通信单元,用于通过所述备用线路与所述第一RE进行通信。
结合第一方面,在第一方面的第一种可能的实现方式中,所述主线路为通用公共无线接口(Common Public Radio Interface,CPRI)CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述第一确定单元包括第一发送子单元、第一接收子单元和第一确定子单元;其中,所述第一发送子单元用于:通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;所述第一接收子单元用于:接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;所述第一确定子单元用于:在确定所述第一接收子单元接收的来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,确定通过与所述第一RE进行通信的主线路故障;
所述第二确定单元具体用于:在所述第一接收子单元接收的在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述第一发送子单元具体用于:
在所述所有RE中存在与所述REC属于相同电力线网络的RE时,通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
在所述所有RE不存在与所述REC属于相同电力线网络的RE时,通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
结合第一方面的第二种或第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述第二确定单元具体用于:
将所述接收子单元首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
结合第一方面第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述第二确定单元包括:
第二发送子单元,用于在所述第一确定单元确定所述REC与所述第一RE进行通信的主线路故障之后,通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;
第二接收子单元,用于接收来自所述第一RE的至少一个寻址响应消息;
第二确定子单元,用于根据所述第二接收子单元接收的所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第二发送子单元具体用于:
在所述REC与所述第一RE属于同一电力线网络时,通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
在所述REC与所述第一RE不属于同一电力线网络时,通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
结合第一方面的第五种或第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述第二确定子单元具体用于:
将所述第二接收子单元首次收到的来自所述第一RE的寻址响应消息的 路径确定为与所述第一RE进行通信的备用线路。
结合第一方面或其第一种可能的实现方式至第七种可能的实现方式中任一种可能的实现方式,在第一方面的第八种可能的实现方式中,所述通信单元具体用于:
通过所述备用线路向所述第一RE发送指示信息,以便于对所述第一RE进行复位或升级以恢复所述REC与所述第一RE进行通信的主线路。
第二方面,提供了一种RE,包括:
接收单元,用于通过第一端口接收无线设备控制器REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
确定单元,用于根据所述接收单元接收的所述寻址请求消息,确定所述寻址请求消息针对对象包括所述RE;
发送单元,用于通过所述第一端口向所述REC发送第一寻址响应消息。
结合第二方面,在第二方面的第一种可能的实现方式中,所述确定单元还用于:根据所述寻址请求消息,确定所述寻址请求消息针对对象还包括其他RE;
所述发送单元还用于:在所述第一端口为上联通用公共无线接口CPRI端口时,通过下联CPRI端口和电力线端口转发所述寻址请求消息。
结合第二方面的第一种可能的实现方式,第二方面的第二种可能的实现方式中,在所述发送单元通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述发送单元还用于:将所述RE处的转发路径信息携带在所述寻址请求消息中;
在所述发送单元通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述接收单元还用于:通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述RE处的转发路径消息;所述发送单元还用于根据所述RE处的转发路径信息,转发所述第二寻址响应消息。
结合第二方面的第一种可能的实现方式,第二方面的第三种可能的实现方式中,所述接收单元还用于:通过下联CPRI端口或电力线端口接收第二寻址响应消息;
所述发送单元还用于:通过上联CPRI端口转发所述第二寻址响应消息。
结合第二方面或其上述任一种可能的实现方式,在第二方面的第四种可 能的实现方式中,所述寻址请求消息中携带从所述REC到所述RE的转发路径信息;
在所述发送单元通过第一端口向所述REC发送第一寻址响应消息之前,所述发送单元还用于:在所述第一寻址响应消息中携带从所述REC到所述RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
第三方面,提供了一种无线设备RE,所述RE包括:
接收单元,用于通过第一端口接收无线设备控制器REC发送的寻址请求消息;
确定单元,用于根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述RE;
发送单元,用于在所述第一端口为上联通用公共无线接口CPRI端口时,通过电力线端口和下联CPRI端口转发所述寻址请求消息。
结合第三方面,在第三方面的第一种可能的实现方式中,所述发送单元还用于:
在所述第一端口为电力线端口时,丢弃所述寻址请求消息。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式种,所述发送单元通过电力线端口和下联CPRI端口转发所述寻址请求消息之前,所述发送单元还用于:在所述寻址请求消息中携带所述RE处的转发路径信息;
在所述发送单元通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述接收单元还用于:通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述RE处的转发路径信息;
所述发送单元还用于:根据所述RE处的转发路径信息,转发所述寻址响应消息。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式种,在所述发送单元通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述接收单元还用于:通过下联CPRI端口或电力线端口接收寻址响应消息;
所述发送单元还用于:通过上联CPRI端口转发所述寻址响应消息。
第四方面,提供了一种REC,包括存储器、处理器和收发器,其中,所 述存储器中存储程序代码,所述处理器调用所述存储器中的所述程序代码执行以下处理:
确定所述REC与第一无线设备RE进行通信的主线路故障;
确定所述REC与所述第一RE进行通信的备用线路;
通过控制所述收发器通过所述备用线路与所述第一RE进行通信。
结合第四方面,在第四方面的第一种可能的实现方式中,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
控制所述收发器通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;
控制器所述收发器接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;
在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,通过与所述第一RE进行通信的主线路故障;
在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
在所述所有RE中存在与所述REC属于相同电力线网络的RE时,控制所述收发器通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,控制所述收发器通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
结合第四方面的第二种或第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行 以下处理:
将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
结合第四方面的第一种可能的实现方式,在第四方面的第五种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
确定通过与所述第一RE进行通信的主线路故障之后,控制所述收发器通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;
控制所述收发器接收来自所述第一RE的至少一个寻址响应消息;
根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
在所述REC与所述第一RE属于同一电力线网络时,控制所述收发器通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
在所述REC与所述第一RE不属于同一电力线网络时,控制所述收发器通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
结合第四方面的第五种或第六种可能的实现方式,在第四方面的第七种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
结合第四方面或其上述任一种可能的实现方式,在其第八种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
通过所述备用线路向所述第一RE发送指示信息,以便于对所述第一RE进行复位或升级以恢复所述REC与所述第一RE进行通信的主线路。
第五方面,提供了一种RE,包括存储器、处理器和收发器,其中,所 述存储器中存储程序代码,所述处理器调用所述存储器中的所述程序代码执行以下处理:
控制所述收发器通过第一端口接收无线设备控制器REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
根据所述寻址请求消息,确定所述寻址请求消息针对对象包括所述RE;
控制所述收发器通过所述第一端口向所述REC发送第一寻址响应消息。
结合第五方面,在五方面的第一种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
根据所述寻址请求消息,确定所述寻址请求消息针对对象还包括其他RE;
在所述第一端口为上联通用公共无线接口CPRI端口时,控制所述收发器通过下联CPRI端口和电力线端口转发所述寻址请求消息。
结合第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,在控制所述收发器通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
将所述RE处的转发路径信息携带在所述寻址请求消息中;
在控制所述收发器通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
控制所述收发器通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述RE处的转发路径消息;根据所述RE处的转发路径信息,转发所述第二寻址响应消息。
结合第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
控制所述收发器通过下联CPRI端口或电力线端口接收第二寻址响应消息;
控制所述收发器通过上联CPRI端口转发所述第二寻址响应消息。
结合第五方面或其上述任一种可能的实现方式,在第五方面的第四种可能的实现方式中,所述寻址请求消息中携带从所述REC到所述RE的转发路径信息;
在控制所述收发器通过第一端口向所述REC发送第一寻址响应消息之 前,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
在所述第一寻址响应消息中携带从所述REC到所述RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
第六方面,提供了一种RE,包括存储器、处理器和收发器,其中,所述存储器中存储程序代码,所述处理器调用所述存储器中的所述程序代码执行以下处理:
控制所述收发器通过第一端口接收无线设备控制器REC发送的寻址请求消息;
根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述RE;
在所述第一端口为上联通用公共无线接口CPRI端口时,控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息。
结合第六方面,在第六方面的第一种可能的实现方式中,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
在所述第一端口为电力线端口时,丢弃所述寻址请求消息。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,在控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息之前,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
在所述寻址请求消息中携带所述RE处的转发路径信息;
在控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
控制所述收发器通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述RE处的转发路径信息;
根据所述RE处的转发路径信息,转发所述寻址响应消息。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第三种可能的实现方式中,在控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
控制所述收发器通过下联CPRI端口或电力线端口接收寻址响应消息;
控制所述收发器通过上联CPRI端口转发所述寻址响应消息。
第七方面,提供了一种基站,包括无线设备控制器REC以及至少一个无线设备RE;其中,所述REC与所述至少一个RE中的每一个RE通过主线路进行通信;
在所述REC与所述至少一个RE中的任一RE进行通信的主线路故障时,所述REC确定与主线路故障的所述任一RE进行通信的备用线路;
所述REC通过所述备用线路与所述主线路故障的所述任一RE进行通信。
结合第七方面,在第七方面的第一种可能的实现方式中,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
结合第七方面的第一种可能的实现方式,在第七方面的第二种可能的实现方式中,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;
每一个RE在通过第一端口接收到所述寻址请求消息后,通过所述第一端口发送寻址响应消息,所述第一端口为上联CPRI端口或电力线端口;
所述REC根据每一个RE发送的所述寻址响应消息的路径是否包括主线路,确定主线路故障的RE;
所述REC根据主线路故障的RE发送的至少一条所述寻址响应消息的路径,确定与所述主线路故障的RE进行通信的备用线路。
结合第七方面的第二种可能的实现方式,在第七方面的第三种可能的实现方式中,在所述每一个RE在接收到所述寻址请求消息后,在所述第一端口为上联CPRI端口时,通过下联CPRI端口和电力线端口转发所述寻址请求消息。
结合第七方面的第三种可能的实现方式,在第七方面的第四种可能的实现方式中,所述REC中的每一个RE通过下联CPRI端口或通过电力线端口接收到其他RE发送的寻址响应消息时,通过上联CPRI端口转发所述其他RE发送的寻址响应消息。
结合第七方面的第三种可能的实现方式,在第七方面的第六种可能的实现方式中,在所述每一个RE在通过下联CPRI端口和电力线端口转发所述寻址请求消息时,将转发路径信息携带在所述寻址请求消息中,以便所述寻 址请求消息对应的寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
结合第七方面的第二种至第五种中任一种可能的实现方式,在第七方面的第六种可能的实现方式中,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息,包括:
在所述所有RE中存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
结合第七方面的第二种至第六种中任一种可能的实现方式,在第七方面的第七种可能的实现方式中,所述REC根据主线路故障的RE发送的至少一条所述寻址响应消息的路径,确定与所述主线路故障的RE进行通信的备用线路,包括:
所述REC将首次收到的来自所述主线路故障的RE的寻址响应消息的路径确定为与所述主线路故障的RE进行通信的备用线路。
结合第七方面的第一种可能的实现方式,在第七方面的第八种可能的实现方式中,所述REC在确定与第一RE进行通信的主线路故障时,所述REC通过电力线端口和CPRI端口中的至少一个发送针对所述第一RE的寻址请求消息;
所述第一RE通过第一端口接收所述寻址请求消息,通过所述第一端口发送寻址响应消息,所述第一端口为上联CPRI端口或电力线端口;
所述REC根据所述第一RE发送的至少一个所述寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第七方面的第八种可能的实现方式,在第七方面的第九种可能的实现方式中,在所述第一RE通过所述第一端口接收所述寻址请求消息之前,所述第一RE的上游RE通过上联CPRI端口接收到所述寻址请求消息时,通过下联CPRI端口和电力线端口转发所述寻址请求消息。
结合第七方面的第九种可能的实现方式,在第七方面的第十种可能的实现方式中,在所述第一RE的上游RE通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,将所述上游RE处的转发路径消息承载在所述寻址 请求消息中;
所述第一RE在通过所述第一端口发送所述寻址响应消息之前,将所述转发路径消息承载在所述寻址响应消息中;
所述第一RE的上游RE在接收到所述寻址响应消息之后,按照所述寻址响应消息中的所述转发路径消息转发所述寻址响应消息,以便所述寻址响应消息按照对应的寻址请求消息的反向路径返回至所述REC。
结合第七方面的第八种或第九种可能的实现方式,在第七方面的第十一种可能的实现方式中,所述第一RE的上游RE通过下联CPRI端口或电力线端口接收所述寻址响应消息,并通过上联CPRI端口转发所述寻址响应消息。
结合第七方面的第八种至第十一种中任一种可能的实现方式,在第七方面的第十二种可能的实现方式中,所述第一RE的上游RE在通过电力线端口接收到所述寻址请求消息时,丢弃所述寻址请求消息。
结合第七方面的第八种至第十二种中任一种可能的实现方式,在第七方面的第十三种可能的实现方式中,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息,包括:
在所述REC与所述第一RE属于同一电力线网络时,所述REC通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
在所述REC与所述第一RE不属于同一电力线网络时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
结合第七方面或其上述任一种可能的实现方式,在第七方面的第十四种可能的实现方式中,所述REC通过所述备用线路与主线路故障的所述任一个RE进行通信。
所述REC通过所述备用线路向所述主线路故障的所述任一个RE发送指示信息,以便于对主线路故障的所述任一个RE进行复位或升级以恢复主线路故障的所述任一个RE的主线路。
第八方面,提供了一种信息传输方法,包括:
无线设备控制器REC确定与第一无线设备RE进行通信的主线路故障;
所述REC确定与所述第一RE进行通信的备用线路;
所述REC通过所述备用线路与所述第一RE进行通信。
结合第八方面,在第八方面的第一种可能的实现方式中,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
结合第八方面的第一种可能的实现方式,在第八方面的第二种可能的实现方式中,所述REC确定与第一RE进行通信的主线路故障,包括:所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;所述REC接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,所述REC确定通过与所述第一RE进行通信的主线路故障;
所述REC确定与所述第一RE进行通信的备用线路,包括:在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,所述REC根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第八方面的第二种可能的实现方式,在第八方面的第三种可能的实现方式中,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息,包括:
在所述所有RE中存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
结合第八方面的第二种或第三种可能的实现方式,在第八方面的第四种可能的实现方式中,所述REC确定与所述第一RE进行通信的备用线路,包括:
所述REC将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
结合第八方面的第一种可能的实现方式,在第八方面的第五种可能的实现方式中,所述REC确定与所述第一RE进行通信的备用线路,包括:
在所述REC确定通过与所述第一RE进行通信的主线路故障之后,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;
所述REC接收来自所述第一RE的至少一个寻址响应消息;
所述REC根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
结合第八方面的第五种可能的实现方式,在第八方面的第六种可能的实现方式中,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息,包括:
在所述REC与所述第一RE属于同一电力线网络时,所述REC通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
在所述REC与所述第一RE不属于同一电力线网络时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
结合第八方面的第五种或第六种可能的实现方式,在第八方面的第七中可能的实现方式中,所述REC确定与所述第一RE进行通信的备用线路,包括:
所述REC将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
结合第八方面或其上述任一种可能的实现方式,在第八方面的第八种可能的实现方式中,所述REC通过所述备用线路与所述第一RE进行通信,包括:
所述REC通过所述备用线路向所述第一RE发送指示信息,以便于对所述第一RE进行复位或升级以恢复所述REC与所述第一RE进行通信的主线路。
第九方面,提供了一种信息传输方法,包括:
第一无线设备RE通过第一端口接收无线设备控制器REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
根据所述寻址请求消息,所述第一RE确定所述寻址请求消息针对对象包括所述第一RE;
所述第一RE通过所述第一端口向所述REC发送第一寻址响应消息。
结合第九方面,在第九方面的第一种可能的实现方式中,所述方法还包括:
根据所述寻址请求消息,所述第一RE确定所述寻址请求消息针对对象还包括其他RE;
在所述第一端口为上联通用公共无线接口CPRI端口时,所述第一RE通过下联CPRI端口和电力线端口转发所述寻址请求消息。
结合第九方面的第一种可能的实现方式,在第九方面的第二种可能的实现方式中,在所述通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述方法还包括:将所述第一RE处的转发路径信息携带在所述寻址请求消息中;
在所述通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述方法还包括:所述第一RE通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述第一RE处的转发路径消息;根据所述第一RE处的转发路径信息,转发所述第二寻址响应消息。
结合第九方面的第一种可能的实现方式,在第九方面的第三种可能的实现方式中,所述方法还包括:
所述第一RE通过下联CPRI端口或电力线端口接收第二寻址响应消息;
所述第一RE通过上联CPRI端口转发所述第二寻址响应消息。
结合第九方面或其上述任一种可能的实现方式,在第九方面的第四种可能的实现方式中,所述寻址请求消息中携带从所述REC到所述第一RE的转发路径信息;
在所述通过第一端口向所述REC发送第一寻址响应消息之前,所述方法还包括:
所述第一RE在所述第一寻址响应消息中携带从所述REC到所述第一RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
第十方面,提供了一种信息传输方法,所述方法包括:
第二无线设备RE通过第一端口接收无线设备控制器REC发送的寻址请求消息;
根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述第二RE;
在所述第一端口为上联通用公共无线接口CPRI端口时,所述第二RE 通过电力线端口和下联CPRI端口转发所述寻址请求消息。
结合第十方面,在第十方面的第一种可能的实现方式中,所述方法还包括:
在所述第一端口为电力线端口时,所述第二RE丢弃所述寻址请求消息。
结合第十方面或第十方面的第一种可能的实现,在第十方面的第二种可能的实现方式中,所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之前,所述方法还包括:
在所述寻址请求消息中携带所述第二RE处的转发路径信息;
在所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述方法还包括:
所述第二RE通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述第二RE处的转发路径信息;
所述第二RE根据所述第二RE处的转发路径信息,转发所述寻址响应消息。
结合第十方面或第十方面的第一种可能的实现方式,在第十方面的第三种可能的实现方式中,在所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述方法还包括:
所述第二RE通过下联CPRI端口或电力线端口接收寻址响应消息;
所述第二RE通过上联CPRI端口转发所述寻址响应消息。
因此,在本发明实施例中,在REC确定与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,并通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一种实施例的基站的示意性框图。
图2是根据现有技术中的REC与RE连接方式示意图。
图3是根据本发明另一种实施例的应用场景示意图。
图4是根据本发明另一种实施例的应用场景示意图。
图5是根据本发明另一种实施例的应用场景示意图。
图6是根据本发明另一种实施例的REC的示意性框图。
图7是根据本发明另一种实施例的REC的示意性框图。
图8是根据本发明另一种实施例的REC的示意性框图。
图9是根据本发明另一种实施例的RE的示意性框图。
图10是根据本发明另一种实施例的RE的示意性框图。
图11是根据本发明另一种实施例的REC的示意性框图。
图12是根据本发明另一种实施例的RE的示意性框图。
图13是根据本发明另一种实施例的REC的示意性框图。
图14是根据本发明另一种实施例的信息传输方法的示意性流程图。
图15是根据本发明另一种实施例的信息传输方法的示意性流程图。
图16是根据本发明另一种实施例的信息传输方法的示意性流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信系统,例如:GSM,码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless),通用分组无线业务(GPRS,General Packet Radio Service),长期演进(LTE,Long Term Evolution)等。
基站,可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本发明并不限定,但为描述方便,下述实施例以Node B为例进行说明。
在现有技术中,REC与RE通过CPRI通信线路级联的方式进行连接,即如图1所示的连接方式,在这种方式下,一旦任一节点通信故障,则可以 导致REC与此故障点之后的任一RE无法通信。由此,本发明实施例提供了一种基站、REC、RE以及信息传输方法,为了便于理解,以下将结合图2至图16进行详细说明。
图2是根据本发明实施例中的基站100的示意性框图。如图2所示,该基站100包括REC110与至少一个RE120(图2中以RE为4个为例,当并不限于此);其中,
REC110与至少一个RE120中的每一个RE120通过主线路进行通信;
在REC110与至少一个RE120中的任一RE120进行通信的主线路故障时,REC110确定与主线路故障的该任一RE120进行通信的备用线路;
REC110通过备用线路与该主线路故障的任一RE120进行通信。
因此,在本发明实施例中,在REC确定与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,并通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
应理解,虽然图1中,REC110与各个RE120直接相连,这只是示意性说明REC110与RE120可以通信;并不意味着REC110与RE120必须直接相连,例如,REC110可以通过一个RE120与另一个RE120相连。
在本发明实施例中,REC还可以称作为基带处理单元(Base Band Unit,BBU),RE还可以称作为射频拉远单元(Radio Remote Unit,RRU)。
在本发明实施例中,主线路可以是CPRI通信线路;备用线路可以是电力线线路,或者为电力线加CPRI通信线路。当然,主线路可以是电力线线路或为电力线加CPRI通信线路,备用线路为CPRI通信线路,或者为其他方式,具体可以根据应用场景而定,本发明实施例并不对此进行限定。但是本发明实施例以主线路为CPRI通信线路,备用线路为电力线线路或者为电力线加CPRI通信线路为主进行说明。
由于REC和RE天然具有电力线网络供电,本发明实施例在REC与RE的CPRI通信线路出现故障时,借用REC和RE的电力线网络实现REC与RE的通信。
在本发明实施例中,CPRI通信线路是指支持CPRI协议的线路;CPRI通信线路可以包括光纤、同轴电缆和以太网线中的至少一种。
在本发明实施例中,REC通过备用线路与该主线路故障的任一RE进行 通信,可以包括:
REC通过备用线路对主线路故障的RE进行复位或升级以恢复该主线路故障的RE的主线路。
例如,在某一RE的主线路故障的原因是该RE的光口参数不合适,则可以通过备用线路发送指示信息修改该RE的光口参数,由此可以恢复主线路。
再例如,RE的硬件发生问题,导致RE无法正常启动,需要进行一下上下电才能恢复,因为此时RE已经出现问题,所以无法通过CPRI通信线路再与其成功通信。则REC可以确定备用线路,该备用线路可以包括电力线,REC可以通过备用线路向RE发指示信息,指示RE进行上下电。
在本发明实施例中,REC可以实时(例如,周期性或者初始化阶段等)扫描控制的所有RE,并确定所有RE中主线路故障的RE,并确定主线路故障的RE的备用线路;REC也可以通过与某一RE互发心跳消息确定与该RE进行通信的主线路故障之后,确定与该RE进行通信的备用线路。为了便于理解,以下将分别结合实施例A和实施例B对这两种情况进行详细说明。
实施例A
在该种实施例下,REC可以实时扫描控制的所有RE,并确定所有RE中主线路故障的RE,并确定主线路故障的RE的备用线路。
可选地,REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;每一个RE在通过第一端口接收到寻址请求消息后,通过第一端口发送寻址响应消息,第一端口为上联CPRI端口或电力线端口;REC根据每一个RE发送的寻址响应消息的路径是否包括主线路,确定主线路故障的RE;REC根据主线路故障的RE发送的至少一条寻址响应消息的路径,确定与主线路故障的RE进行通信的备用线路。
可选地,在每一个RE在接收到寻址请求消息后,在第一端口为上联CPRI端口时,通过下联CPRI端口和电力线端口转发寻址请求消息。
在本发明实施例中,RE的CPRI端口包括上联CPRI端口和下联CPRI端口,其中,上联CPRI端口是指靠近REC的CPRI端口,下联CPRI端口是指远离REC的CPRI端口,具体可参考见图3中的标识,该解释适用于本发明的所有实施例。
可选地,REC中的每一个RE通过下联CPRI端口或通过电力线端口接收到其他RE发送的寻址响应消息时,通过上联CPRI端口转发其他RE发送的寻址响应消息。
可选地,在每一个RE在通过下联CPRI端口和电力线端口转发寻址请求消息时,将转发路径信息携带在寻址请求消息中,以便寻址请求消息对应的寻址响应消息按照寻址请求消息的反向路径返回至REC。
可选地,所有RE中存在与REC属于相同电力线网络的RE时,REC通过CPRI端口和电力线端口,发送针对所有RE的寻址请求消息;在所有REC中不存在与REC属于相同电力线网络的RE时,REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所有RE的寻址请求消息。
可选地,REC将首次收到的来自主线路故障的RE的寻址响应消息的路径确定为与主线路故障的RE进行通信的备用线路。
为了便于理解,以下结合图3至图5对于实施例A中如何确定主线路故障的RE,并确定与主线路故障的RE进行通信的备用线路进行详细说明。
在图3中,REC、RE1、RE2、RE3、RE4和RE5属于同一个电力线网络;并假设RE4至RE5的CPRI通信线路故障,例如RE5的硬件故障或RE5的光口参数不合适导致的RE4至RE5的CPRI通信线路故障。
REC通过电力线端口和CPRI端口发送寻址请求消息,该寻址请求消息针对所有的RE。REC发送的寻址请求消息可以通过CPRI通信线路到达RE1,并通过电力线分别到达RE1、RE2、RE3、RE4和RE5。
对于各个RE,寻址请求消息的处理可以满足以下原则:若在上联CPRI端口收到寻址请求消息,则通过电力线端口和下联CPRI端口转发,并向上联CPRI端口回寻址响应消息;若在电力线端口收到寻址请求消息,则在电力线端口回寻址响应响应消息,不再转发。
例如,对于RE1而言,通过上联CPRI端口接收到寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口发送寻址响应消息,但不进行转发。
例如,对于RE2而言,通过上联CPRI端口接收到经RE1转发的寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联 CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE3而言,通过上联CPRI端口收到经RE2转发的寻址请求消息,则可以通过上联CPRI端口回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE4而言,通过上联CPRI端口接收经RE3转发的寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE5而言,因为RE4和RE5之间的CPRI线路故障,则RE5只通过电力线端口收到直接来自REC的以及经RE1、RE2、RE3和RE4通过电力线转发的寻址请求消息,并分别通过电力线端口分别发送针对各个寻址请求消息的寻址响应消息。
而对于寻址响应消息的返回路径,可以按照以下两种方式实现:
在第一种方式中,各个RE在转发寻址请求消息时,可以将寻址请求消息在自身的转发路径信息(例如,接收端口和发送端口的信息)携带在该寻址请求消息中,由此寻址请求消息可以携带各个转发节点处的转发路径信息。在RE在针对寻址请求消息发送寻址响应消息时,可以将寻址请求消息中的转发路径信息携带在寻址响应消息中,以便该寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
第二种方式中,对于各个RE,在电力线端口或下联CPRI端口收到寻址响应消息,向上联CPRI端口转发寻址响应消息。
例如,RE4在电力线端口收到RE5的寻址响应消息后,则可以将该寻址响应消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE3、RE2和RE1的透传到达REC;RE3在电力线端口收到RE5的寻址响应消息后,则可以将该寻址响应消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE2和RE1的透传到达REC;RE1和RE2通过电力线端口收到RE5寻址响应消息所做的处理与RE3和RE4类似;REC也可以收到未经任何RE转发的来自RE5的寻址响应消息。REC在收到各个RE转发的寻址响 应消息,确定寻址响应消息的路径不包括主线路,则判断与RE5通信的主线路故障,则可以从各个RE转发的寻址响应消息中的路径中,选择与RE5进行通信的备用线路;例如,将首次收到的来自RE5的响应消息的路径确定为备用线路,例如,该首次收到的寻址响应消息为在RE4处进行CPRI协议封装处理的消息,则REC通过该首次收到的寻址响应消息中封装的RE4的信息,确定与RE5进行通信的备用线路的路径为通过CPRI线路到达RE4,再由RE4通过电力线发送到RE5。
例如,RE3在电力线端口和下联CPRI端口收到RE4的寻址响应消息之后,并通过上联CPRI端口分别转发该寻址响应消息,并通过RE2和RE1的透传到达REC;REC确定RE4的寻址响应消息的中包括通过主线路到达REC的响应消息,则确定与RE4通信的主线路未故障,并通过主线路该RE4正常通信。其中,对于RE2、RE3和RE1主线路是否故障的判断与RE4类似,在此不再赘述。
在图4中,RE1、RE2、RE3、RE4和RE5属于同一个电力线网络,而REC属于另一个电力线网络;并假设RE4至RE5的CPRI通信线路故障,例如RE5的硬件故障或RE5的光口参数不合适导致的RE4至RE5的CPRI通信线路故障。
REC通过CPRI端口或通过电力线端口和CPRI端口发送寻址请求消息,该寻址请求消息针对所有的RE。在图4中,由于不存在与REC属于相同电力线网络的RE,则REC可以只通过CPRI端口发送寻址请求消息。可选地,REC可以不对是否存在与自身属于相同电力线网络的RE进行判断,直接根据其所属的CPRI端口和电力线端口发送寻址请求消息。REC发送的寻址请求消息可以通过CPRI端口到达RE1。
对于各个RE,寻址请求消息的处理可以满足以下原则:若在上联CPRI端口收到寻址请求消息,则向电力线端口和下联CPRI端口转发,并向上联CPRI端口回寻址响应消息;若在电力线端口收到寻址请求消息,则在电力线端口回寻址响应响应消息,不再转发。
例如,对于RE1而言,通过上联CPRI端口接收到寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息。
例如,对于RE2而言,通过上联CPRI端口接收到经RE1转发的寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE3而言,通过上联CPRI端口收到经RE2转发的寻址请求消息,则可以通过上联CPRI端口回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE4而言,通过上联CPRI端口接收经RE3转发的寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE5而言,RE5通过电力线端口收到经RE1、RE2、RE3和RE4通过电力线转发的寻址请求消息,并分别通过电力线端口分别发送针对各个RE转发的寻址请求消息的寻址响应消息;因为RE4和RE5之间的CPRI线路故障,则RE5无法收到RE4通过下联转发的寻址请求消息。
而对于寻址响应消息的返回路径,可以按照以下两种方式实现:
在第一种方式中,各个RE在转发寻址请求消息时,可以将寻址请求消息在自身的转发路径信息(例如,接收端口和发送端口的信息)携带在该寻址请求消息中,由此寻址请求消息可以携带各个转发节点处的转发路径信息。在RE在针对寻址请求消息发送寻址响应消息时,可以将寻址请求消息中的转发路径信息携带在寻址响应消息中,以便该寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
第二种方式中,对于各个RE,在电力线端口或下联CPRI端口收到寻址响应消息后,向上联CPRI端口转发寻址响应消息。
例如,RE4在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE3、RE2和RE1的透传到达REC;RE3在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE2和RE1的透传到达REC;RE1和RE2通过电力线端口收到 RE5寻址响应消息所做的处理与RE3和RE4类似。REC在收到各个RE转发的来自RE5寻址响应消息后,确定寻址响应消息的路径不包括主线路,则判断与RE5通信的主线路故障,并可以从各个RE转发的寻址响应消息中的路径中,选择与RE5进行通信的备用线路;例如,将首次收到的来自RE5的响应消息的路径确定为备用线路,例如,该首次收到的寻址响应消息为在RE4处进行CPRI协议封装处理的消息,则REC通过该首次收到的寻址响应消息中封装的RE1的信息,确定与RE5进行通信的备用线路的路径为待发消息通过CPRI线路到达RE4,再由RE4通过电力线发送到RE5。
例如,RE3在电力线端口和下联CPRI端口收到RE4的寻址响应消息之后,并通过上联CPRI端口分别转发来自电力线端口和下联CPRI端口的寻址响应消息,并通过RE2和RE1的透传到达REC;RE2和RE1收到RE4的寻址响应消息处理类似;REC确定RE4的寻址响应消息的中包括通过主线路到达REC的响应消息,则确定与RE4通信的主线路未故障,并通过主线路与该RE正常通信。其中,对于RE2、RE3和RE1主线路是否故障的判断与RE4类似,在此不再赘述。
在图5中,REC与RE1和RE2属于同一电力线网络,RE3、RE4和RE5属于另外一个电力线网络;并假设RE4至RE5的CPRI通信线路故障,例如RE5的硬件故障或RE5的光口参数不合适导致的RE4至RE5的CPRI通信线路故障。
REC通过电力线端口和CPRI端口发送寻址请求消息,该寻址请求消息针对所有的RE。在图5中,由于REC存在与REC属于相同电力线网络的RE,即RE1和RE2,则REC需通过电力线端口和CPRI端口发送寻址请求消息。可选地,REC可以不对是否存在与自身属于相同电力线网络的RE进行判断,直接根据其所属的CPRI端口和电力线端口发送寻址请求消息。REC发送的寻址请求消息可以通过电力线直接到达RE1和RE2,并通过CPRI通信线路到达RE1。
对于各个RE,寻址请求消息的处理可以满足以下原则:若在上联CPRI端口收到寻址请求消息,则向电力线端口和下联CPRI端口转发,并向上联CPRI端口回寻址响应消息;若在电力线端口收到寻址请求消息,则在电力线端口回寻址响应响应消息,不再转发。
例如,对于RE1而言,通过上联CPRI端口接收到寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE2而言,通过上联CPRI端口接收到经RE1转发的寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE3而言,通过上联CPRI端口收到经RE2转发的寻址请求消息,则可以通过上联CPRI端口回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息。
例如,对于RE4而言,通过上联CPRI端口接收经RE3转发的寻址请求消息,则可以通过上联CPRI端口向REC回寻址响应消息,并通过下联CPRI端口和电力线端口转发寻址请求消息,通过电力线端口收到寻址请求消息,则可以通过电力线端口向REC回寻址响应消息,而不进行转发。
例如,对于RE5而言,RE5通过电力线端口收到经RE3和RE4通过电力线转发的寻址请求消息,分别通过电力线端口发送针对各个寻址请求消息的寻址响应消息;因为RE4和RE5之间的CPRI线路故障,则RE5无法收到RE4通过下联CPRI端口转发的寻址请求消息。
而对于寻址响应消息的返回路径,可以按照以下两种方式实现:
在第一种方式中,各个RE在转发寻址请求消息时,可以将寻址请求消息在自身的转发路径信息(例如,接收端口和发送端口的信息)携带在该寻址请求消息,由此寻址请求消息可以携带各个转发节点处的转发路径信息。在RE在针对寻址请求消息发送寻址响应消息时,可以将寻址请求消息中的转发路径信息携带在寻址响应消息中,以便该寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
第二种方式中,对于各个RE,在电力线端口或下联CPRI端口收到寻址响应消息,向上联CPRI端口转发寻址响应消息。
例如,RE4在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE3、RE2和RE1的透传到达REC;RE3在 电力线端口收到RE5的寻址响应消息后,则可以将该寻址响应消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE2和RE1的透传到达REC。REC在收到多条寻址响应消息后,确定多条寻址响应消息的路径不包括主线路,则判断与RE5通信的主线路故障,则可以从该多条寻址响应消息中的路径中,选择与RE5进行通信的备用线路;例如,将首次收到的来自RE5的响应消息的路径确定为备用线路,例如,该首次收到的寻址响应消息为在RE3处进行CPRI协议封装处理的消息,则REC通过该首次收到的寻址响应消息中封装的RE3的信息,则确定与RE5进行通信的备用线路的路径为待发消息通过CPRI线路经由RE1和RE2的透传到达RE3,再由RE3通过电力线发送到RE5。
例如,RE3在电力线端口和下联CPRI端口收到RE4的寻址响应消息之后,并通过上联CPRI端口分别转发该寻址响应消息,并通过RE2和RE1的透传到达REC;REC确定RE4的寻址响应消息的中包括通过主线路到达REC的响应消息,则确定与RE4通信的主线路未故障,并通过主线路与该RE正常通信。其中,对于RE2、RE3和RE1主线路是否故障的判断与RE4类似,在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,并利用备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
实施例B
在该种实施例下,REC可以通过和RE之间的心跳判断REC与RE进行通信的主线路是否故障。具体地,REC和RE之间通过主线路相互发心跳消息,如果REC连续预定次数没有收到RE发送的心跳消息,则确定REC与RE进行通信的主线路故障。
可选地,REC在确定与第一RE进行通信的主线路故障时,REC通过电力线端口和CPRI端口中的至少一个发送针对第一RE的寻址请求消息;
可选地,第一RE通过第一端口接收寻址请求消息,通过第一端口发送寻址响应消息,第一端口为上联CPRI端口或电力线端口;
REC根据第一RE发送的至少一个寻址响应消息的路径,确定与第一RE进行通信的备用线路。
可选地,在第一RE通过第一端口接收寻址请求消息之前,第一RE的上游RE通过上联CPRI端口接收到寻址请求消息时,通过下联CPRI端口和电力线端口转发寻址请求消息。
可选地,在第一RE的上游RE通过下联CPRI端口和电力线端口转发寻址请求消息之前,将上游RE处的转发路径消息承载在寻址请求消息中;第一RE在通过第一端口发送寻址响应消息之前,将转发路径消息承载在寻址响应消息中;第一RE的上游RE在接收到寻址响应消息之后,按照寻址响应消息中的转发路径消息转发寻址响应消息,以便寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
可选地,第一RE的上游RE通过下联CPRI端口或电力线端口接收寻址响应消息,并通过上联CPRI端口转发寻址响应消息。
可选地,第一RE的上游RE在通过电力线端口接收到寻址请求消息时,丢弃寻址请求消息。
可选地,在REC与第一RE属于同一电力线网络时,REC通过电力线端口或通过CPRI端口和电力线端口,发送针对第一RE的寻址请求消息;
在REC与第一RE不属于同一电力线网络时,REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对第一RE的寻址请求消息。
为了便于理解,以下结合图3至图5对于实施例B中如何确定与主线路故障的RE进行通信的备用线路进行详细说明。
在图3中,REC、RE1、RE2、RE3、RE4和RE5属于同一个电力线网络;并假设RE4至RE5的CPRI通信线路故障,例如RE5的硬件故障或RE5的光口参数不合适导致的RE4至RE5的CPRI通信线路故障。在判断与RE5进行通信的主线路故障之后,REC通过电力线端口和CPRI端口发送针对RE5的寻址请求消息。
REC发送的针对RE5的寻址请求消息,可以携带RE5的标识信息。该标识信息可以为该RE5在电力线网络中的地址信息,例如,该RE5在电力线网络中的MAC地址或IP地址。
REC发送的寻址请求消息可以通过电力线直接到达RE1、RE2、RE3、RE4和RE5,并通过CPRI通信线路到达RE1。
对于各个非目标RE,寻址请求消息的处理可以满足以下原则:若在上联CPRI端口收到寻址请求消息,则向电力线端口和下联CPRI端口转发;若在电力线端口收到寻址请求消息,则丢弃该寻址请求消息。
对于目标RE,寻址请求消息的处理可以满足以下原则:在电力线端口收到寻址请求消息,在电力线端口回寻址响应消息。
例如,对于RE1而言,通过上联CPRI端口接收到寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE2而言,通过上联CPRI端口接收到经RE1转发的寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE3而言,通过上联CPRI端口收到经RE2转发的寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE4而言,通过上联CPRI端口接收经RE3转发的寻址请求消息,通过下联CPRI端口和电力线端口转发寻址请求消息,通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE5而言,RE5通过电力线端口收到直接来自REC以及经RE1、RE2、RE3和RE4通过电力线转发的寻址请求消息,并分别通过电力线端口发送各个路径的寻址请求消息对应的寻址响应消息。因为RE4至RE5的CPRI线路故障,则RE4通过下联CPRI端口发送的寻址请求消息无法到达RE5。
对于寻址响应消息的返回路径,可以按照以下两种方式实现:
在第一种方式中,各个RE在转发寻址请求消息时,可以将寻址请求消息在自身的转发路径信息(例如,接收端口和发送端口的信息)携带在该寻址请求消息中,由此寻址请求消息可以携带各个转发节点处的转发路径信息。在目标RE在针对寻址请求消息发送寻址响应消息时,可以将寻址请求消息中的转发路径信息携带在寻址响应消息中,以便该寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
第二种方式中,对于各个RE,在电力线端口或下联CPRI端口收到寻址响应消息,向上联CPRI端口转发寻址响应消息。
例如,RE4在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE3、RE2和RE1的透传到达REC;RE3在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE2和RE1的透传到达REC。RE2和RE1通过电力线收到RE5的寻址响应消息的处理与RE1和RE2类似。REC可以从多条寻址响应消息的路径中,选择与RE5进行通信的备用线路;例如,将首次收到的来自RE5的响应消息的路径确定为备用线路,例如,该首次收到的寻址响应消息为在RE3处进行CPRI协议封装处理的消息,则REC通过该首次收到的寻址响应消息中封装的RE3的信息,则确定与RE5进行通信的备用线路的路径为待发消息通过CPRI线路经由RE1和RE2的透传到达RE3,再由RE3通过电力线发送到RE5。
在图4中,RE1、RE2、RE3、RE4和RE5属于同一个电力线网络,而REC属于另一个电力线网络;并假设RE4至RE5的CPRI通信线路故障,例如RE5的硬件故障或RE5的光口参数不合适导致的RE4至RE5的CPRI通信线路故障。在判断与RE5进行通信的主线路故障之后,REC通过电力线端口和CPRI端口发送针对RE5寻址请求消息。在图4中,由于REC与RE5不属于相同的电力线网络,则REC可通过电力线端口和CPRI端口,或通过CPRI端口发送寻址请求消息。可选地,REC可以不对是否与RE5属于相同的电力线网络进行判断,直接根据其所属的CPRI端口和电力线端口发送寻址请求消息。REC发送的寻址请求消息可以通过电力线直接到达RE1和RE2,并通过CPRI通信线路到达RE1。
对于各个非目标RE,寻址请求消息的处理可以满足以下原则:若在上联CPRI端口收到寻址请求消息,则向电力线端口和下联CPRI端口转发;若在电力线端口收到寻址请求消息,则丢弃该寻址请求消息。
对于目标RE,寻址请求消息的处理可以满足以下原则:在电力线端口收到寻址请求消息,在电力线端口回寻址响应消息。
例如,对于RE1而言,通过上联CPRI端口接收到寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE2而言,通过上联CPRI端口接收到经RE1转发的寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE3而言,通过上联CPRI端口收到经RE2转发的寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE4而言,通过上联CPRI端口接收经RE3转发的寻址请求消息,通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE5而言,RE5通过电力线端口收到各个RE通过电力线转发的寻址请求消息,并分别通过电力线端口发送各个RE转发的寻址请求消息对应的寻址响应消息。因为RE4至RE5的CPRI线路故障,则RE5无法收到RE4通过下联CPRI端口转发的寻址请求消息。
而对于寻址响应消息的返回路径,可以按照以下两种方式实现:
在第一种方式中,各个RE在转发寻址请求消息时,可以将寻址请求消息在自身的转发路径信息(例如,接收端口和发送端口的信息)携带在该寻址请求消息中,由此寻址请求消息可以携带各个转发节点处的转发路径信息。在目标RE在针对寻址请求消息发送寻址响应消息时,可以将寻址请求消息中的转发路径信息携带在寻址响应消息中,以便该寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
第二种方式中,对于各个RE,在电力线端口或下联CPRI端口收到寻址响应消息,向上联CPRI端口转发寻址响应消息。
例如,RE4在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE3、RE2和RE1的透传到达REC;RE3在电力线端口收到RE5的寻址响应消息后,则可以将该寻址响应消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE2和RE1的透传到达REC。RE2和RE1通过电力线收到RE5 的寻址响应消息的处理与RE3和RE4类似。REC可以从多条寻址响应消息的路径中,选择与RE5进行通信的备用线路;例如,将首次收到的来自RE5的响应消息的路径确定为备用线路,例如,该首次收到的寻址响应消息为在RE3处进行CPRI协议封装处理的消息,则REC通过该首次收到的寻址响应消息中封装的RE3的信息,则确定与RE5进行通信的备用线路的路径为待发消息通过CPRI线路经由RE1和RE2的透传到达RE3,再由RE3通过电力线发送到RE5。
在图5中,REC与RE1和RE2属于同一电力线网络,RE3、RE4和RE5属于另外一个电力线网络;并假设RE4至RE5的CPRI通信线路故障,例如RE5的硬件故障或RE5的光口参数不合适导致的RE4至RE5的CPRI通信线路故障。在判断与RE5进行通信的主线路故障之后,REC通过电力线端口和CPRI端口发送针对RE5寻址请求消息。在图5中,由于REC与RE5不属于相同的电力线网络,则REC可通过电力线端口和CPRI端口,或通过CPRI端口发送寻址请求消息。可选地,REC可以不对是否与RE5属于相同的电力线网络进行判断,直接根据其所属的CPRI端口和电力线端口发送寻址请求消息。REC发送的寻址请求消息可以通过电力线直接到达RE1和RE2,并通过CPRI通信线路到达RE1。
对于各个非目标RE,寻址请求消息的处理可以满足以下原则:若在上联CPRI端口收到寻址请求消息,则向电力线端口和下联CPRI端口转发;若在电力线端口收到寻址请求消息,则丢弃该寻址请求消息;对于目标RE,寻址请求消息的处理可以满足以下原则:在电力线端口收到寻址请求消息,在电力线端口回寻址响应消息。
例如,对于RE1而言,通过上联CPRI端口接收到寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE2而言,通过上联CPRI端口接收到经RE1转发的寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE3而言,通过上联CPRI端口收到经RE2转发的寻址请求消息,则可以通过下联CPRI端口和电力线端口转发寻址请求消息。
例如,对于RE4而言,通过上联CPRI端口接收经RE3转发的寻址请求消息,通过下联CPRI端口和电力线端口转发寻址请求消息;通过电力线端口收到寻址请求消息,则可以丢弃该寻址请求消息。
例如,对于RE5而言,RE5通过电力线端口收到经RE3和RE4通过电力线转发的寻址请求消息,并分别通过电力线端口发送针对RE3和RE4转发的寻址请求消息的寻址响应消息。因为RE4至RE5的CPRI线路故障,则RE5无法收到RE4通过下联CPRI端口转发的寻址请求消息。
而对于寻址响应消息的返回路径,可以按照以下两种方式实现:
在第一种方式中,各个RE在转发寻址请求消息时,可以将寻址请求消息在自身的转发路径信息(例如,接收端口和发送端口的信息)携带在该寻址请求消息中,由此寻址请求消息可以携带各个转发节点处的转发路径信息。在目标RE在针对寻址请求消息发送寻址响应消息时,可以将寻址请求消息中的转发路径信息携带在寻址响应消息中,以便该寻址响应消息按照对应的寻址请求消息的反向路径返回至REC。
第二种方式中,对于各个RE,在电力线端口或下联CPRI端口收到寻址响应消息,向上联CPRI端口转发寻址响应消息。
例如,RE4在电力线端口收到RE5的寻址响应消息后,则可以将该寻址请求消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE3、RE2和RE1的透传到达REC;RE3在电力线端口收到RE5的寻址响应消息后,则可以将该寻址响应消息封装为CPRI协议的消息,并通过上联CPRI端口转发该寻址响应消息,该寻址响应消息经过RE2和RE1的透传到达REC.REC可以从多条寻址响应消息中的路径中,选择与RE5进行通信的备用线路;例如,将首次收到的来自RE5的响应消息的路径确定为备用线路,例如,该首次收到的寻址响应消息为在RE3处进行CPRI协议封装处理的消息,则REC通过该首次收到的寻址响应消息中封装的RE3的信息,则确定与RE5进行通信的备用线路的路径为待发消息通过CPRI线路经由RE1和RE2的透传到达RE3,再由RE3通过电力线发送到RE5。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主 线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
应理解,在本发明实施例中,两者之间属于同一电力线网络,意味着两者之间可以只通过电力线进行通信。两者之间不属于相同的电力线网络,意味着两者之前无法只通过电力线进行通信。
因此,在本发明实施例中,在REC确定与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,并通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图6是根据本发明实施例的REC200的示意性框图。如图6所示,该REC200包括:
第一确定单元210,用于确定REC200与第一RE进行通信的主线路故障;
第二确定单元220,用于确定REC200与第一RE进行通信的备用线路;
通信单元230,用于通过备用线路与第一RE进行通信。
因此,在本发明实施例中,在第一确定单元确定REC200与任一RE的通信的主线路故障时,第二确定单元220可以确定REC200与该主线路故障的RE进行通信的备用线路,通信单元230通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
在本发明实施例中,REC200还可以称作为BBU,RE还可以称作为RRU。
在本发明实施例中,主线路可以是CPRI通信线路;备用线路可以是电力线线路,或者为电力线加CPRI通信线路。当然,主线路可以是电力线线路或为电力线加CPRI通信线路,备用线路为CPRI通信线路,或者为其他方式,具体可以根据应用场景而定,本发明实施例并不对此进行限定。但是本发明实施例以主线路为CPRI通信线路,备用线路为电力线线路或者为电力线加CPRI通信线路为主进行说明。
由于REC和RE天然具有电力线网络供电,本发明实施例在REC与RE的CPRI通信线路出现故障时,借用REC和RE的电力线网络实现REC与RE的通信。
在本发明实施例中,CPRI通信线路是指支持CPRI协议的线路;CPRI通信线路可以包括光纤、同轴电缆和以太网线中的至少一种。
在本发明实施例中,通信单元230具体用于:
通过备用线路对第一RE进行复位或升级以恢复REC与该第一RE进行通信的主线路。
例如,在第一RE的主线路故障的原因是该RE的光口参数不合适,则可以通过备用线路修改该RE的光口参数,由此可以恢复主线路。
再例如,RE的硬件发生问题,导致RE无法正常启动,需要进行一下上下电才能恢复,因为此时RE已经出现问题,所以无法通过CPRI通信线路再与其成功通信。则第二确定单元220可以确定备用线路,该备用线路可以包括电力线,通信单元230可以通过备用线路向RE发指示信息,指示RE进行上下电。
在本发明实施例中,REC200可以实时(例如周期性或初始化阶段)扫描控制的所有RE中主线路故障的RE,并确定主线路故障的RE的备用线路;REC200也可以通过与某一RE互发心跳消息,确定与该RE进行通信的主线路故障,并确定与该RE进行通信的备用线路。为了便于理解,以下将结合实施例C和实施例D对这两种情况进行详细说明。
实施例C
在该种实施例下,REC200可以实时(例如周期性或初始化阶段)扫描控制的所有RE中主线路故障的RE(第一RE),并确定主线路故障的RE的备用线路。
可选地,如图7所示,第一确定单元210包括第一发送子单元211、第一接收子单元212和第一确定子单元213;其中,第一发送子单元211用于:通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;第一接收子单元212用于:接收来自至少一个RE的寻址响应消息,其中,至少一个RE包括第一RE;第一确定子单元213用于:在确定第一接收子单元212接收的来自第一RE的至少一个寻址响应消息的路径不包括主线路时,确定通过与第一RE进行通信的主线路故障;第二确定单元220具体用于:在第一接收子单元212接收的在来自第一RE的至少一个寻址响应消息的路径不包括主线路时,根据至少一个寻址响应消息的路 径,确定与第一RE进行通信的备用线路。
可选地,第一发送子单元211具体用于:
在所有RE中存在与REC200属于相同电力线网络的RE时,通过CPRI端口和电力线端口,发送针对所有RE的寻址请求消息;
在所有RE不存在与REC200属于相同电力线网络的RE时,通过CPRI端口或通过CPRI端口和电力线端口,发送针对所有RE的寻址请求消息。
可选地,第二确定单元220具体用于:
将接收子单元212首次收到的来自第一RE的寻址响应消息的路径确定为与第一RE进行通信的备用线路。
应理解,实施例C中的REC200可以对应于实施例A中的REC,并且REC200可以具有实施例A中REC的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
实施例D
在该种实施例中,REC200可以通过REC200和RE之间的心跳判断REC200与RE进行通信的主线路是否故障。具体地,REC200和RE之间通过主线路相互发心跳消息,如果REC200连续预定次数没有收到RE发送的心跳信息,则确定REC与RE进行通信的主线路故障。
可选地,如图8所示,第二确定单元220包括:第二发送子单元221,用于在第一确定单元210确定REC200与第一RE进行通信的主线路故障之后,通过电力线端口和CPRI端口中的至少一种发送针对第一RE的寻址请求消息;第二接收子单元222,用于接收来自第一RE的至少一个寻址响应消息;第二确定子单元223,用于根据第二接收子单元222接收的至少一个寻址响应消息的路径,确定与第一RE进行通信的备用线路。
可选地,第二发送子单元221具体用于:在REC200与第一RE属于同一电力线网络时,通过电力线端口或通过CPRI端口和电力线端口,发送针对第一RE的寻址请求消息;在REC200与第一RE不属于同一电力线网络时,通过CPRI端口或通过CPRI端口和电力线端口,发送针对第一RE的寻 址请求消息。
可选地,第二确定子单元223具体用于:
将第二接收子单元222首次收到的来自第一RE的寻址响应消息的路径确定为与第一RE进行通信的备用线路。
可选地,通信单元230具体用于:
通过备用线路对第一RE进行复位或升级以恢复REC与第一RE进行通信的主线路。
应理解,实施例D中的REC200可以对应于实施例B中的REC,并且REC200可以具有实施例B中REC的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
应理解,在本发明实施例中,两者之间属于同一电力线网络,意味着两者之间可以只通过电力线进行通信。两者之间不属于相同的电力线网络,意味着两者之前无法只通过电力线进行通信。
因此,在本发明实施例中,在REC确定与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,并通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图9是根据本发明实施例的RE300的示意性框图。如图9所示,该RE300包括:接收单元310,用于通过第一端口接收REC发送的寻址请求消息,第一端口为上联CPRI端口或电力线端口;
确定单元320,用于根据接收单元310接收的寻址请求消息,确定寻址请求消息针对对象包括RE300;
发送单元330,用于通过第一端口向REC发送第一寻址响应消息。
可选地,寻址请求消息中携带从REC到RE300的转发路径信息;在发送单元330通过第一端口向REC发送第一寻址响应消息之前,发送单元330还用于:在第一寻址响应消息中携带从REC到RE300的转发路径信息,以 便第一寻址响应消息按照寻址请求消息的反向路径返回至REC。
应理解,在本发明实施例中,RE300可以为寻址请求消息中唯一的针对对象,则此时,RE300可以对应于实施例B中的RE5,并且可以实现RE5中的相应功能。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,RE根据REC发送的寻址请求消息回复寻址响应消息,从而REC可以根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
还应理解,在本发明实施例中,寻址请求消息的针对对象还可以包括除RE300之外的其他RE。为了便于理解,以下结合实施例E对这种情况进行详细说明。
实施例E
在该种实施例下,确定单元320还用于:根据寻址请求消息,确定寻址请求消息针对对象还包括其他RE;发送单元330还用于:在第一端口为上联CPRI端口时,通过下联CPRI端口和电力线端口转发寻址请求消息。
可选地,在发送单元330通过下联CPRI端口和电力线端口转发寻址请求消息之前,发送单元330还用于:将RE300处的转发路径信息携带在寻址请求消息中;在发送单元330通过下联CPRI端口和电力线端口转发寻址请求消息之后,接收单元310还用于:通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中第二寻址响应消息携带RE300处的转发路径消息;发送单元还用于根据RE300处的转发路径信息,转发第二寻址响应消息。
可选地,接收单元310还用于:通过下联CPRI端口或电力线端口接收第二寻址响应消息;发送单元330还用于:通过上联CPRI端口转发第二寻址响应消息。
可选地,接收单元310还用于:通过下联CPRI端口或电力线端口接收第二寻址响应消息;发送单元330还用于:通过上联CPRI端口转发第二寻址响应消息。
可选地,寻址请求消息中携带从REC到RE300的转发路径信息;在发 送单元330通过第一端口向REC发送第一寻址响应消息之前,发送单元330还用于:在第一寻址响应消息中携带从REC到RE300的转发路径信息,以便第一寻址响应消息按照寻址请求消息的反向路径返回至REC。
在该实施例E中,RE300可以对应于实施例A中的RE1、RE2、RE3、RE4和RE5中的任一RE,并且可以实现该任一RE的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图10是根据本发明实施例中的RE400的示意性框图。如图10所示,RE400包括:接收单元410,用于通过第一端口接收REC发送的寻址请求消息;确定单元420,用于根据寻址请求消息,确定寻址请求消息针对对象不包括RE400;发送单元430,用于在第一端口为上联通用公共无线接口CPRI端口时,通过电力线端口和下联CPRI端口转发寻址请求消息。
可选地,发送单元430还用于:在第一端口为电力线端口时,丢弃寻址请求消息。
可选地,发送单元430通过电力线端口和下联CPRI端口转发寻址请求消息之前,发送单元430还用于:在寻址请求消息中携带RE400处的转发路径信息;在发送单元430通过电力线端口和下联CPRI端口转发寻址请求消息之后,接收单元还用于:通过下联CPRI端口或电力线端口接收寻址响应消息,寻址响应消息携带RE400处的转发路径信息;发送单元430还用于:根据RE400处的转发路径信息,转发寻址响应消息。
可选地,在发送单元430通过电力线端口和下联CPRI端口转发寻址请求消息之后,接收单元410还用于:通过下联CPRI端口或电力线端口接收寻址响应消息;发送单元430还用于:通过上联CPRI端口转发寻址响应消息。
可选地,RE400可以对应于实施例B中的RE1、RE2、RE3和RE4中的任一RE,并且可以实现该任一RE的功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故 障后,REC可以针对该某一RE发送寻址请求消息,非目标RE在收到该寻址请求消息时,转发该寻址请求消息,目标RE在收到该寻址请求消息时,根据REC发送的寻址请求消息回复寻址响应消息,从而REC可以根据该目标RE回复的寻址响应消息的路径判断确定与该主线路故障的目标RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图11是根据本发明实施例的REC500的示意性框图。如图11所示,该REC500包括:存储器511、处理器512和收发器513;其中处理器512、收发器513和存储器511通过总线514相连,存储器511中存储程序代码,处理器512调用存储器511中的程序代码执行以下处理:
确定REC500与第一无线设备RE进行通信的主线路故障;
确定REC500与第一RE进行通信的备用线路;
通过控制收发器513通过备用线路与第一RE进行通信。
因此,在本发明实施例中,在确定REC500与任一RE的通信的主线路故障时,REC500可以确定与该主线路故障的RE进行通信的备用线路,通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
应理解,在本发明实施例中,该处理器512可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器512还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器511可以包括只读存储器和随机存取存储器,并向处理器512提供指令和数据。存储器511的一部分还可以包括非易失性随机存取存储器。例如,存储器511还可以存储设备类型的信息。
该总线系统514除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统514。
在实现过程中,上述方法的各步骤可以通过处理器512中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组 合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器511,处理器512读取存储器511中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
在本发明实施例中,REC500还可以称作为BBU,RE还可以称作为RRU。
在本发明实施例中,主线路可以是CPRI通信线路;备用线路可以是电力线线路,或者为电力线加CPRI通信线路。当然,主线路可以是电力线线路或为电力线加CPRI通信线路,备用线路为CPRI通信线路,或者为其他方式,具体可以根据应用场景而定,本发明实施例并不对此进行限定。但是本发明实施例以主线路为CPRI通信线路,备用线路为电力线线路或者为电力线加CPRI通信线路为主进行说明。
由于REC和RE天然具有电力线网络供电,本发明实施例在REC与RE的CPRI通信线路出现故障时,借用REC和RE的电力线网络实现REC与RE的通信。
在本发明实施例中,CPRI通信线路是指支持CPRI协议的线路;CPRI通信线路可以包括光纤、同轴电缆和以太网线中的至少一种。
在本发明实施例中,处理器512调用存储器511中的程序代码具体执行以下处理:
通过备用线路对第一RE进行复位或升级以恢复REC与该第一RE进行通信的主线路。
例如,在第一RE的主线路故障的原因是该RE的光口参数不合适,则可以通过备用线路修改该RE的光口参数,由此可以恢复主线路。
再例如,RE的硬件发生问题,导致RE无法正常启动,需要进行一下上下电才能恢复,因为此时RE已经出现问题,所以无法通过CPRI通信线路再与其成功通信。则可以确定备用线路,该备用线路可以包括电力线,然后可以通过备用线路向RE发指示信息,指示RE进行上下电。
在本发明实施例中,REC扫描控制的所有RE,并确定所有RE中主线路故障的RE,并确定主线路故障的RE的备用线路;REC也可以在与某一RE通过主线路已经建立通信连接之后,确定与该RE进行通信的主线路故障,并确定与该RE进行通信的备用线路。为了便于理解,以下将结合实施例F 和实施例G对这两种情况进行详细说明。
实施例F
扫描控制的所有RE,并确定所有RE中主线路故障的RE(第一RE),并确定主线路故障的RE的备用线路。
可选地,处理器512调用存储器511中的程序代码具体执行以下处理:
控制收发器513通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;控制器收发器513接收来自至少一个RE的寻址响应消息,其中,至少一个RE包括第一RE;在来自第一RE的至少一个寻址响应消息的路径不包括主线路时,通过与第一RE进行通信的主线路故障;在来自第一RE的至少一个寻址响应消息的路径不包括主线路时,根据至少一个寻址响应消息的路径,确定与第一RE进行通信的备用线路。
可选地,处理器512调用存储器511中的程序代码具体执行以下处理:在所有RE中存在与REC500属于相同电力线网络的RE时,控制收发器513通过CPRI端口和电力线端口,发送针对所有RE的寻址请求消息;在所有RE中不存在与REC500属于相同电力线网络的RE时,控制收发器513通过CPRI端口或通过CPRI端口和电力线端口,发送针对所有RE的寻址请求消息。
可选地,处理器512调用存储器511中的程序代码具体执行以下处理:
将首次收到的来自第一RE的寻址响应消息的路径确定为与第一RE进行通信的备用线路。
应理解,实施例F中的REC200可以对应于实施例A中的REC,并且REC500可以具有实施例A中REC的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
实施例G
在该种实施例中,在REC500与第一RE通过互发心跳消息确定与该RE 进行通信的主线路故障之后,确定与该RE进行通信的备用线路,通过备用线路与该第一RE进行通信。
可选地,处理器512调用存储器511中的程序代码具体执行以下处理:
确定通过与第一RE进行通信的主线路故障之后,控制收发器513通过电力线端口和CPRI端口中的至少一种发送针对第一RE的寻址请求消息;控制收发器513接收来自第一RE的至少一个寻址响应消息;根据至少一个寻址响应消息的路径,确定与第一RE进行通信的备用线路。
可选地,处理器512调用存储器511中的程序代码具体执行以下处理:
在REC与第一RE属于同一电力线网络时,控制收发器513通过电力线端口或通过CPRI端口和电力线端口,发送针对第一RE的寻址请求消息;
在REC500与第一RE不属于同一电力线网络时,控制收发器513通过CPRI端口或通过CPRI端口和电力线端口,发送针对第一RE的寻址请求消息。
可选地,处理器512调用存储器511中的程序代码具体执行以下处理:
将首次收到的来自第一RE的寻址响应消息的路径确定为与第一RE进行通信的备用线路。
应理解,实施例G中的REC500可以对应于实施例B中的REC,并且REC500可以具有实施例B中REC的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
应理解,在本发明实施例中,两者之间属于同一电力线网络,意味着两者之间可以只通过电力线进行通信。两者之间不属于相同的电力线网络,意味着两者之前无法只通过电力线进行通信。
因此,在本发明实施例中,在REC确定与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,并通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图12是根据本发明实施例RE600的示意性框图。如图12所示,该RE600 包括存储器611、处理器612、收发器613和总线614。其中,存储器611、处理器612和收发器613通过总线614相连;存储器611中存储程序代码,处理器612调用存储器611中的程序代码执行以下处理:
控制收发器613通过第一端口接收REC发送的寻址请求消息,第一端口为上联CPRI端口或电力线端口;根据寻址请求消息,确定寻址请求消息针对对象包括RE;控制收发器613通过第一端口向REC发送第一寻址响应消息。
可选地,寻址请求消息中携带从REC到RE600的转发路径信息;在控制收发器613通过第一端口向REC发送第一寻址响应消息之前,处理器调用存储器中的程序代码还执行以下处理:在第一寻址响应消息中携带从REC到RE600的转发路径信息,以便第一寻址响应消息按照寻址请求消息的反向路径返回至REC。
应理解,在本发明实施例中,RE600可以为寻址请求消息中唯一的针对对象,则此时,RE600可以对应于实施例B中的RE5,并且可以实现RE5中的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
还应理解,在本发明实施例中,寻址请求消息的针对对象还可以包括除RE600之外的其他RE。为了便于理解,以下结合实施例H对这种情况进行详细说明。
实施例H
在该种实施例下,处理器612调用存储器611中的程序代码还执行以下处理:根据寻址请求消息,确定寻址请求消息针对对象还包括其他RE;在第一端口为上联通用公共无线接口CPRI端口时,控制收发器613通过下联CPRI端口和电力线端口转发寻址请求消息。
可选地,在控制收发器613通过下联CPRI端口和电力线端口转发寻址请求消息之前,处理器612调用存储器611中的程序代码还执行以下处理:
将RE600处的转发路径信息携带在寻址请求消息中;在控制收发器613通过下联CPRI端口和电力线端口转发寻址请求消息之后,处理器612调用存储器611中的程序代码还执行以下处理:控制收发器613通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中第二寻址响应消息携带RE600处的转发路径消息;根据RE600处的转发路径信息,转发第二寻址响应消息。
可选地,处理器612调用存储器611中的程序代码还执行以下处理:
控制收发器613通过下联CPRI端口或电力线端口接收第二寻址响应消息;控制收发器613通过上联CPRI端口转发第二寻址响应消息。
应理解,在本发明实施例中,该处理器612可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器612还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器611可以包括只读存储器和随机存取存储器,并向处理器512提供指令和数据。存储器611的一部分还可以包括非易失性随机存取存储器。例如,存储器611还可以存储设备类型的信息。
该总线系统614除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统514。
在实现过程中,上述方法的各步骤可以通过处理器612中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器611,处理器612读取存储器611中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,在本发明实施例中,处理器612可以包括两个子处理器,其中,一个子处理器用于通过电力线与BBU或其他RE进行通信,另一个子处理器用于通过CPRI线路与BBU或其他RE进行通信,这两个子处理器分别相互独立,则两个子处理器同时发生故障的可能性较小,所以能大幅度提高系 统的性能。
在该实施例H中,RE600可以对应于实施例A中的RE1、RE2、RE3、RE4和RE5中的任一RE,并且可以实现该任一RE的相应功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图13是根据本发明实施例的RE700的示意性框图。如图13所示,该RE700包括:存储器711、处理器712、收发器713和总线714;其中,存储器711、处理器712和收发器713通过总线714相连,存储器711中存储程序代码,处理器712调用存储器711中的程序代码执行以下处理:控制收发器713通过第一端口接收无线设备控制器REC发送的寻址请求消息;根据寻址请求消息,确定寻址请求消息针对对象不包括RE700;在第一端口为上联通用公共无线接口CPRI端口时,控制收发器713通过电力线端口和下联CPRI端口转发寻址请求消息。
可选地,处理器712调用存储器711中的程序代码还执行以下处理:在第一端口为电力线端口时,丢弃寻址请求消息。
可选地,在控制收发器713通过电力线端口和下联CPRI端口转发寻址请求消息之前,处理器712调用存储器711中的程序代码还执行以下处理:
在寻址请求消息中携带RE700处的转发路径信息;在控制收发器713通过电力线端口和下联CPRI端口转发寻址请求消息之后,处理器712调用存储器711中的程序代码还执行以下处理:控制收发器713通过下联CPRI端口或电力线端口接收寻址响应消息,寻址响应消息携带RE700处的转发路径信息;根据RE700处的转发路径信息,转发寻址响应消息。
可选地,在控制收发器713通过电力线端口和下联CPRI端口转发寻址请求消息之后,处理器712调用存储器711中的程序代码还执行以下处理:
控制收发器713通过下联CPRI端口或电力线端口接收寻址响应消息;控制收发器713通过上联CPRI端口转发寻址响应消息。
应理解,在本发明实施例中,该处理器712可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器712还可以是其他通用处理器、 数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器711可以包括只读存储器和随机存取存储器,并向处理器712提供指令和数据。存储器711的一部分还可以包括非易失性随机存取存储器。例如,存储器711还可以存储设备类型的信息。
该总线系统714除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统714。
在实现过程中,上述方法的各步骤可以通过处理器712中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器711,处理器712读取存储器711中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,在本发明实施例中,处理器712可以包括两个子处理器,其中,一个子处理器用于通过电力线与BBU或其他RE进行通信,另一个子处理器用于通过CPRI线路与BBU或其他RE进行通信,这两个子处理器分别相互独立,则两个子处理器同时发生故障的可能性较小,所以能大幅度提高系统的性能。
可选地,RE700可以对应于实施例B中的RE1、RE2、RE3和RE4中的任一RE,并且可以实现该任一RE的功能,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该某一RE发送寻址请求消息,非目标RE在收到该寻址请求消息时,转发该寻址请求消息,目标RE在收到该寻址请求消息时,根据REC发送的寻址请求消息回复寻址响应消息,从而REC可以根据该目标RE回复的寻址响应消息的路径判断确定与该主线路故障的目标RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图14是根据本发明实施例的信息传输方法800的示意性流程图。如图13所示,该方法800包括:
S810,REC确定与第一RE进行通信的主线路故障;
S820,所述REC确定与所述第一RE进行通信的备用线路;
S830,所述REC通过所述备用线路与所述第一RE进行通信。
因此,在本发明实施例中,REC在与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
在本发明实施例中,REC还可以称作为BBU,RE还可以称作为RRU。
在本发明实施例中,主线路可以是CPRI通信线路;备用线路可以是电力线线路,或者为电力线加CPRI通信线路。当然,主线路可以是电力线线路或为电力线加CPRI通信线路,备用线路为CPRI通信线路,或者为其他方式,具体可以根据应用场景而定,本发明实施例并不对此进行限定。但是本发明实施例以主线路为CPRI通信线路,备用线路为电力线线路或者为电力线加CPRI通信线路为主进行说明。
由于REC和RE天然具有电力线网络供电,本发明实施例在REC与RE的CPRI通信线路出现故障时,借用REC和RE的电力线网络实现REC与RE的通信。
在本发明实施例中,CPRI通信线路是指支持CPRI协议的线路;CPRI通信线路可以包括光纤、同轴电缆和以太网线中的至少一种。
在本发明实施例中,S830中,REC通过备用线路与该主线路故障的第一RE进行通信,可以包括:
REC通过备用线路发送指示信息,以对第一RE进行复位或升级以恢复REC与该第一RE进行通信的主线路。
例如,在第一RE的主线路故障的原因是该RE的光口参数不合适,则可以通过备用线路修改该RE的光口参数,由此可以恢复主线路。
再例如,RE的硬件发生问题,导致RE无法正常启动,需要进行一下上下电才能恢复,因为此时RE已经出现问题,所以无法通过CPRI通信线路再与其成功通信。可以确定备用线路,该备用线路可以包括电力线,通信单元230可以通过备用线路向RE发指示信息,指示RE进行上下电。
在本发明实施例中,REC可以实时(例如周期性或初始化阶段)扫描控制的所有RE,并确定所有RE中主线路故障的RE,并确定主线路故障的RE的备用线路;REC也可以通过与某一RE互发心跳消息,确定与该RE进行通信的主线路故障,并确定与该RE进行通信的备用线路。为了便于理解,以下将结合实施例I和实施例K对这两种情况进行详细说明。
实施例I
REC可以实时(例如周期性或初始化阶段)扫描控制的所有RE,并确定所有RE中主线路故障的RE(第一RE),并确定主线路故障的RE的备用线路。
可选地,S810中,所述REC确定与第一RE进行通信的主线路故障,包括:所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;所述REC接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,所述REC确定通过与所述第一RE进行通信的主线路故障;S820中,所述REC确定与所述第一RE进行通信的备用线路,包括:在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,所述REC根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
可选地,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息,包括:在所述所有RE中存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
可选地,S820中,所述REC确定与所述第一RE进行通信的备用线路,包括:
所述REC将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
应理解,实施例I中的方法可以由实施例A中的REC实现,并且实施例A中的REC所实现的动作可以属于实施例I的可选实施例,为了简洁, 在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
实施例K
在该种实施例中,在REC通过与第一RE互发心跳消息确定确定与该RE进行通信的主线路故障之后,确定与该RE进行通信的备用线路,通过备用线路与该第一RE进行通信。
可选地,S820中,所述REC确定与所述第一RE进行通信的备用线路,包括:在所述REC确定通过与所述第一RE进行通信的主线路故障之后,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;所述REC接收来自所述第一RE的至少一个寻址响应消息;所述REC根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
可选地,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息,包括:在所述REC与所述第一RE属于同一电力线网络时,所述REC通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;在所述REC与所述第一RE不属于同一电力线网络时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
可选地,S830中,所述REC确定与所述第一RE进行通信的备用线路,包括:所述REC将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
应理解,实施例K中的方法可以由实施例B中的REC实现,并且实施例B中的REC所实现的动作可以属于实施例K的可选实施例,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主 线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
应理解,在本发明实施例中,两者之间属于同一电力线网络,意味着两者之间可以只通过电力线进行通信。两者之间不属于相同的电力线网络,意味着两者之前无法只通过电力线进行通信。
因此,在本发明实施例中,在REC确定与任一RE的通信的主线路故障时,可以确定与该主线路故障的RE进行通信的备用线路,并通过备用线路与该主线路故障的RE进行通信,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图15是根据本发明实施例的信息传输方法900的示意性流程图。如图15所示,该方法900包括:
S910,第一RE通过第一端口接收REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
S920,根据所述寻址请求消息,所述第一RE确定所述寻址请求消息针对对象包括所述第一RE;
S930,所述第一RE通过所述第一端口向所述REC发送第一寻址响应消息。
可选地,所述寻址请求消息中携带从所述REC到所述第一RE的转发路径信息;在所述通过第一端口向所述REC发送第一寻址响应消息之前,所述方法900还包括:所述第一RE在所述第一寻址响应消息中携带从所述REC到所述第一RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
应理解,在本发明实施例中,第一RE可以为寻址请求消息中唯一的针对对象,则此时方法900可以由实施例B中的RE5实现,即方法900中的第一RE对应于实施例B中的RE5,并且实施例B中的RE5所实现的动作可以属于该方法900的可选实施例,为了简洁,在此不再赘述。
因此,在本发明实施例中,在基站确定与某一RE进行通信的主线路故障后,REC可以针对该RE发送寻址请求消息,根据该RE回复的寻址响应消息的路径判断确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
还应理解,在本发明实施例中,寻址请求消息的针对对象还可以包括除第一RE之外的其他RE。为了便于理解,以下结合实施例L对这种情况进行详细说明
实施例L
在该种实施例下,所述方法900还包括:根据所述寻址请求消息,所述第一RE确定所述寻址请求消息针对对象还包括其他RE;在所述第一端口为上联通用公共无线接口CPRI端口时,所述第一RE通过下联CPRI端口和电力线端口转发所述寻址请求消息。
可选地,在所述通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述方法900还包括:将所述第一RE处的转发路径信息携带在所述寻址请求消息中;在所述通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述方法900还包括:所述第一RE通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述第一RE处的转发路径消息;根据所述第一RE处的转发路径信息,转发所述第二寻址响应消息。
可选地,所述方法900还包括:所述第一RE通过下联CPRI端口或电力线端口接收第二寻址响应消息;所述第一RE通过上联CPRI端口转发所述第二寻址响应消息。
可选地,所述寻址请求消息中携带从所述REC到所述第一RE的转发路径信息;在所述通过第一端口向所述REC发送第一寻址响应消息之前,所述方法900还包括:所述第一RE在所述第一寻址响应消息中携带从所述REC到所述第一RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
可选地,在该实施例L中,第一RE可以对应于实施例A中的任一RE,则此时方法900可以由实施例A中的任一RE实现,并且实施例A中的任一RE所实现的动作可以属于该方法900的可选实施例,为了简洁,在此不再赘述。
因此,在本发明实施例中,REC可以针对所有RE发送寻址请求消息,根据各个RE回复的寻址响应消息的路径判断主线路故障的RE,并确定与该主线路故障的RE进行通信的备用线路,由此在主线路故障时不需要人工 下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
图16是根据本发明实施例的信息传输方法1000的示意性流程图。如图16所示,该方法1000包括:
S1100,第二RE通过第一端口接收无线设备控制器REC发送的寻址请求消息;
S1200,根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述第二RE;
S1300,在所述第一端口为上联CPRI端口时,所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息。
可选地,所述方法1000还包括:在所述第一端口为电力线端口时,所述第二RE丢弃所述寻址请求消息。
可选地,所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之前,所述方法1000还包括:在所述寻址请求消息中携带所述第二RE处的转发路径信息;
在所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述方法1000还包括:所述第二RE通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述第二RE处的转发路径信息;所述第二RE根据所述第二RE处的转发路径信息,转发所述寻址响应消息。
可选地,在所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述方法1000还包括:所述第二RE通过下联CPRI端口或电力线端口接收寻址响应消息;所述第二RE通过上联CPRI端口转发所述寻址响应消息。
可选地,第二RE可以对应于实施例B中的RE1、RE2、RE3和RE4中的任一RE,该方法1000可以由该任一RE实现,并且实施例B中的该任一RE所实现的动作可以属于该方法1000的可选实施例,为了简洁,在此不再赘述。
因此,在本发明实施例中,在REC确定与某一RE进行通信的主线路故障后,REC可以针对该某一RE发送寻址请求消息,非目标RE在收到该寻址请求消息时,转发该寻址请求消息,目标RE在收到该寻址请求消息时, 根据REC发送的寻址请求消息回复寻址响应消息,从而REC可以根据该目标RE回复的寻址响应消息的路径判断确定与该主线路故障的目标RE进行通信的备用线路,由此在主线路故障时不需要人工下站处理,减少了维护成本,并降低了业务中断时间,从而提升用户体验。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (69)

  1. 一种无线设备控制器REC,其特征在于,包括:
    第一确定单元,用于确定所述REC与第一无线设备RE进行通信的主线路故障;
    第二确定单元,用于确定所述REC与所述第一RE进行通信的备用线路;
    通信单元,用于通过所述备用线路与所述第一RE进行通信。
  2. 如权利要求1所述的REC,其特征在于,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
  3. 如权利要求2所述的REC,其特征在于,
    所述第一确定单元包括第一发送子单元、第一接收子单元和第一确定子单元;其中,所述第一发送子单元用于:通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;所述第一接收子单元用于:接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;所述第一确定子单元用于:在确定所述第一接收子单元接收的来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,确定通过与所述第一RE进行通信的主线路故障;
    所述第二确定单元具体用于:在所述第一接收子单元接收的在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
  4. 如权利要求3所述的REC,其特征在于,所述第一发送子单元具体用于:
    在所述所有RE中存在与所述REC属于相同电力线网络的RE时,通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
    在所述所有RE不存在与所述REC属于相同电力线网络的RE时,通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
  5. 如权利要求3或4所述的REC,其特征在于,所述第二确定单元具体用于:
    将所述接收子单元首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
  6. 如权利要求2所述的REC,其特征在于,所述第二确定单元包括:
    第二发送子单元,用于在所述第一确定单元确定所述REC与所述第一RE进行通信的主线路故障之后,通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;
    第二接收子单元,用于接收来自所述第一RE的至少一个寻址响应消息;
    第二确定子单元,用于根据所述第二接收子单元接收的所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
  7. 如权利要求6所述的REC,其特征在于,所述第二发送子单元具体用于:
    在所述REC与所述第一RE属于同一电力线网络时,通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
    在所述REC与所述第一RE不属于同一电力线网络时,通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
  8. 如权利要求6或7所述的REC,其特征在于,所述第二确定子单元具体用于:
    将所述第二接收子单元首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
  9. 如权利要求1至8中任一项所述的REC,其特征在于,所述通信单元具体用于:
    通过所述备用线路发送指示信息,以便于对所述第一RE进行复位或升级以恢复所述REC与所述第一RE进行通信的主线路。
  10. 一种无线设备RE,其特征在于,包括:
    接收单元,用于通过第一端口接收无线设备控制器REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
    确定单元,用于根据所述接收单元接收的所述寻址请求消息,确定所述寻址请求消息针对对象包括所述RE;
    发送单元,用于通过所述第一端口向所述REC发送第一寻址响应消息。
  11. 如权利要求10所述的RE,其特征在于,
    所述确定单元还用于:根据所述寻址请求消息,确定所述寻址请求消息针对对象还包括其他RE;
    所述发送单元还用于:在所述第一端口为上联通用公共无线接口CPRI 端口时,通过下联CPRI端口和电力线端口转发所述寻址请求消息。
  12. 如权利要求11所述的RE,其特征在于,
    在所述发送单元通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述发送单元还用于:将所述RE处的转发路径信息携带在所述寻址请求消息中;
    在所述发送单元通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述接收单元还用于:通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述RE处的转发路径消息;所述发送单元还用于根据所述RE处的转发路径信息,转发所述第二寻址响应消息。
  13. 如权利要求11所述的RE,其特征在于,
    所述接收单元还用于:通过下联CPRI端口或电力线端口接收第二寻址响应消息;
    所述发送单元还用于:通过上联CPRI端口转发所述第二寻址响应消息。
  14. 如权利要求10至13中任一项所述的RE,其特征在于,所述寻址请求消息中携带从所述REC到所述RE的转发路径信息;
    在所述发送单元通过第一端口向所述REC发送第一寻址响应消息之前,所述发送单元还用于:在所述第一寻址响应消息中携带从所述REC到所述RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
  15. 一种无线设备RE,其特征在于,所述RE包括:
    接收单元,用于通过第一端口接收无线设备控制器REC发送的寻址请求消息;
    确定单元,用于根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述RE;
    发送单元,用于在所述第一端口为上联通用公共无线接口CPRI端口时,通过电力线端口和下联CPRI端口转发所述寻址请求消息。
  16. 如权利要求15所述的RE,其特征在于,所述发送单元还用于:
    在所述第一端口为电力线端口时,丢弃所述寻址请求消息。
  17. 如权利要求15或16所述的RE,其特征在于,
    所述发送单元通过电力线端口和下联CPRI端口转发所述寻址请求消息 之前,所述发送单元还用于:在所述寻址请求消息中携带所述RE处的转发路径信息;
    在所述发送单元通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述接收单元还用于:通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述RE处的转发路径信息;
    所述发送单元还用于:根据所述RE处的转发路径信息,转发所述寻址响应消息。
  18. 如权利要求15或16所述的RE,其特征在于,
    在所述发送单元通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述接收单元还用于:通过下联CPRI端口或电力线端口接收寻址响应消息;
    所述发送单元还用于:通过上联CPRI端口转发所述寻址响应消息。
  19. 一种无线设备控制器REC,其特征在于,包括存储器、处理器和收发器,其中,所述存储器中存储程序代码,所述处理器调用所述存储器中的所述程序代码执行以下处理:
    确定所述REC与第一无线设备RE进行通信的主线路故障;
    确定所述REC与所述第一RE进行通信的备用线路;
    通过控制所述收发器通过所述备用线路与所述第一RE进行通信。
  20. 如权利要求19所述的REC,其特征在于,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
  21. 如权利要求20所述的REC,其特征在于,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    控制所述收发器通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;
    控制器所述收发器接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;
    在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,通过与所述第一RE进行通信的主线路故障;
    在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备 用线路。
  22. 如权利要求21所述的REC,其特征在于,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    在所述所有RE中存在与所述REC属于相同电力线网络的RE时,控制所述收发器通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
    在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,控制所述收发器通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
  23. 如权利要求21或22所述的REC,其特征在于,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
  24. 如权利要求20所述的REC,其特征在于,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    确定通过与所述第一RE进行通信的主线路故障之后,控制所述收发器通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;
    控制所述收发器接收来自所述第一RE的至少一个寻址响应消息;
    根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
  25. 如权利要求24所述的REC,其特征在于,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    在所述REC与所述第一RE属于同一电力线网络时,控制所述收发器通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
    在所述REC与所述第一RE不属于同一电力线网络时,控制所述收发器通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
  26. 如权利要求24或25所述的REC,其特征在于,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
  27. 如权利要求19至26中任一项所述的REC,其特征在于,,所述处理器调用所述存储器中的所述程序代码具体执行以下处理:
    通过所述备用线路对所述第一RE进行复位或升级以恢复所述REC与所述第一RE进行通信的主线路。
  28. 一种无线设备RE,其特征在于,包括存储器、处理器和收发器,其中,所述存储器中存储程序代码,所述处理器调用所述存储器中的所述程序代码执行以下处理:
    控制所述收发器通过第一端口接收无线设备控制器REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
    根据所述寻址请求消息,确定所述寻址请求消息针对对象包括所述RE;
    控制所述收发器通过所述第一端口向所述REC发送第一寻址响应消息。
  29. 如权利要求28所述的RE,其特征在于,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    根据所述寻址请求消息,确定所述寻址请求消息针对对象还包括其他RE;
    在所述第一端口为上联通用公共无线接口CPRI端口时,控制所述收发器通过下联CPRI端口和电力线端口转发所述寻址请求消息。
  30. 如权利要求29所述的RE,其特征在于,
    在控制所述收发器通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    将所述RE处的转发路径信息携带在所述寻址请求消息中;
    在控制所述收发器通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    控制所述收发器通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述RE处的转发路径消息;根据所述RE处的转发路径信息,转发所述第二寻址响应消息。
  31. 如权利要求29所述的RE,其特征在于,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    控制所述收发器通过下联CPRI端口或电力线端口接收第二寻址响应消 息;
    控制所述收发器通过上联CPRI端口转发所述第二寻址响应消息。
  32. 如权利要求28至31中任一项所述的RE,其特征在于,所述寻址请求消息中携带从所述REC到所述RE的转发路径信息;
    在控制所述收发器通过第一端口向所述REC发送第一寻址响应消息之前,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    在所述第一寻址响应消息中携带从所述REC到所述RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
  33. 一种无线设备RE,其特征在于,包括存储器、处理器和收发器,其中,所述存储器中存储程序代码,所述处理器调用所述存储器中的所述程序代码执行以下处理:
    控制所述收发器通过第一端口接收无线设备控制器REC发送的寻址请求消息;
    根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述RE;
    在所述第一端口为上联通用公共无线接口CPRI端口时,控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息。
  34. 如权利要求33所述的RE,其特征在于,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    在所述第一端口为电力线端口时,丢弃所述寻址请求消息。
  35. 如权利要求33或34所述的RE,其特征在于,在控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息之前,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    在所述寻址请求消息中携带所述RE处的转发路径信息;
    在控制所述收发器通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    控制所述收发器通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述RE处的转发路径信息;
    根据所述RE处的转发路径信息,转发所述寻址响应消息。
  36. 如权利要求33或34所述的RE,其特征在于,在控制所述收发器 通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述处理器调用所述存储器中的所述程序代码还执行以下处理:
    控制所述收发器通过下联CPRI端口或电力线端口接收寻址响应消息;
    控制所述收发器通过上联CPRI端口转发所述寻址响应消息。
  37. 一种基站,其特征在于,包括无线设备控制器REC以及至少一个无线设备RE;其中,所述REC与所述至少一个RE中的每一个RE通过主线路进行通信;
    在所述REC与所述至少一个RE中的任一RE进行通信的主线路故障时,所述REC确定与主线路故障的所述任一RE进行通信的备用线路;
    所述REC通过所述备用线路与所述主线路故障的所述任一RE进行通信。
  38. 如权利要求37所述的基站,其特征在于,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
  39. 如权利要求38所述的基站,其特征在于,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;
    每一个RE在通过第一端口接收到所述寻址请求消息后,通过所述第一端口发送寻址响应消息,所述第一端口为上联CPRI端口或电力线端口;
    所述REC根据每一个RE发送的所述寻址响应消息的路径是否包括主线路,确定主线路故障的RE;
    所述REC根据主线路故障的RE发送的至少一条所述寻址响应消息的路径,确定与所述主线路故障的RE进行通信的备用线路。
  40. 如权利要求39所述的基站,其特征在于,在所述每一个RE在接收到所述寻址请求消息后,在所述第一端口为上联CPRI端口时,通过下联CPRI端口和电力线端口转发所述寻址请求消息。
  41. 如权利要求40所述的基站,其特征在于,所述REC中的每一个RE通过下联CPRI端口或通过电力线端口接收到其他RE发送的寻址响应消息时,通过上联CPRI端口转发所述其他RE发送的寻址响应消息。
  42. 如权利要求40所述的基站,在所述每一个RE在通过下联CPRI端口和电力线端口转发所述寻址请求消息时,将转发路径信息携带在所述寻址 请求消息中,以便所述寻址请求消息对应的寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
  43. 如权利要求39至42中任一项所述的基站,其特征在于,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息,包括:
    在所述所有RE中存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
    在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
  44. 如权利要求39至43中任一项所述的基站,其特征在于,所述REC根据主线路故障的RE发送的至少一条所述寻址响应消息的路径,确定与所述主线路故障的RE进行通信的备用线路,包括:
    所述REC将首次收到的来自所述主线路故障的RE的寻址响应消息的路径确定为与所述主线路故障的RE进行通信的备用线路。
  45. 如权利要求38所述的基站,其特征在于,所述REC在确定与第一RE进行通信的主线路故障时,所述REC通过电力线端口和CPRI端口中的至少一个发送针对所述第一RE的寻址请求消息;
    所述第一RE通过第一端口接收所述寻址请求消息,通过所述第一端口发送寻址响应消息,所述第一端口为上联CPRI端口或电力线端口;
    所述REC根据所述第一RE发送的至少一个所述寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
  46. 如权利要求45所述的基站,其特征在于,在所述第一RE通过所述第一端口接收所述寻址请求消息之前,所述第一RE的上游RE通过上联CPRI端口接收到所述寻址请求消息时,通过下联CPRI端口和电力线端口转发所述寻址请求消息。
  47. 如权利要求46所述的基站,其特征在于,在所述第一RE的上游RE通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,将所述上游RE处的转发路径消息承载在所述寻址请求消息中;
    所述第一RE在通过所述第一端口发送所述寻址响应消息之前,将所述转发路径消息承载在所述寻址响应消息中;
    所述第一RE的上游RE在接收到所述寻址响应消息之后,按照所述寻址响应消息中的所述转发路径消息转发所述寻址响应消息,以便所述寻址响应消息按照对应的寻址请求消息的反向路径返回至所述REC。
  48. 如权利要求45或46所述的基站,其特征在于,所述第一RE的上游RE通过下联CPRI端口或电力线端口接收所述寻址响应消息,并通过上联CPRI端口转发所述寻址响应消息。
  49. 如权利要求45至48中任一项所述的基站,其特征在于,所述第一RE的上游RE在通过电力线端口接收到所述寻址请求消息时,丢弃所述寻址请求消息。
  50. 如权利要求45至49中任一项所述的基站,其特征在于,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息,包括:
    在所述REC与所述第一RE属于同一电力线网络时,所述REC通过电力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
    在所述REC与所述第一RE不属于同一电力线网络时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
  51. 如权利要求37至50中任一项所述基站,其特征在于,所述REC通过所述备用线路与主线路故障的所述任一个RE进行通信,包括:
    所述REC通过所述备用线路对主线路故障的所述任一个RE进行复位或升级以恢复主线路故障的所述任一个RE的主线路。
  52. 一种信息传输方法,其特征在于,包括:
    无线设备控制器REC确定与第一无线设备RE进行通信的主线路故障;
    所述REC确定与所述第一RE进行通信的备用线路;
    所述REC通过所述备用线路与所述第一RE进行通信。
  53. 如权利要求52所述的方法,其特征在于,所述主线路为通用公共无线接口CPRI通信线路;所述备用线路为电力线线路,或为电力线加CPRI通信线路。
  54. 如权利要求53所述的方法,其特征在于,
    所述REC确定与第一RE进行通信的主线路故障,包括:所述REC通 过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息;所述REC接收来自至少一个RE的寻址响应消息,其中,所述至少一个RE包括所述第一RE;在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,所述REC确定通过与所述第一RE进行通信的主线路故障;
    所述REC确定与所述第一RE进行通信的备用线路,包括:在来自所述第一RE的至少一个寻址响应消息的路径不包括主线路时,所述REC根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
  55. 如权利要求54所述的方法,其特征在于,所述REC通过CPRI端口或通过电力线端口和CPRI端口,发送针对控制的所有RE的寻址请求消息,包括:
    在所述所有RE中存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息;
    在所述所有RE中不存在与所述REC属于相同电力线网络的RE时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述所有RE的寻址请求消息。
  56. 如权利要求54或55所述的方法,其特征在于,所述REC确定与所述第一RE进行通信的备用线路,包括:
    所述REC将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
  57. 如权利要求53所述的方法,其特征在于,所述REC确定与所述第一RE进行通信的备用线路,包括:
    在所述REC确定通过与所述第一RE进行通信的主线路故障之后,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息;
    所述REC接收来自所述第一RE的至少一个寻址响应消息;
    所述REC根据所述至少一个寻址响应消息的路径,确定与所述第一RE进行通信的备用线路。
  58. 如权利要求57所述的方法,其特征在于,所述REC通过电力线端口和CPRI端口中的至少一种发送针对所述第一RE的寻址请求消息,包括:
    在所述REC与所述第一RE属于同一电力线网络时,所述REC通过电 力线端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息;
    在所述REC与所述第一RE不属于同一电力线网络时,所述REC通过CPRI端口或通过CPRI端口和电力线端口,发送针对所述第一RE的寻址请求消息。
  59. 如权利要求57或58所述的方法,其特征在于,所述REC确定与所述第一RE进行通信的备用线路,包括:
    所述REC将首次收到的来自所述第一RE的寻址响应消息的路径确定为与所述第一RE进行通信的备用线路。
  60. 如权利要求52至59中任一项所述的方法,其特征在于,所述REC通过所述备用线路与所述第一RE进行通信,包括:
    所述REC通过所述备用线路对所述第一RE进行复位或升级以恢复所述REC与所述第一RE进行通信的主线路。
  61. 一种信息传输方法,其特征在于,包括:
    第一无线设备RE通过第一端口接收无线设备控制器REC发送的寻址请求消息,所述第一端口为上联CPRI端口或电力线端口;
    根据所述寻址请求消息,所述第一RE确定所述寻址请求消息针对对象包括所述第一RE;
    所述第一RE通过所述第一端口向所述REC发送第一寻址响应消息。
  62. 如权利要求61所述的方法,其特征在于,所述方法还包括:
    根据所述寻址请求消息,所述第一RE确定所述寻址请求消息针对对象还包括其他RE;
    在所述第一端口为上联通用公共无线接口CPRI端口时,所述第一RE通过下联CPRI端口和电力线端口转发所述寻址请求消息。
  63. 如权利要求62所述的方法,其特征在于,
    在所述通过下联CPRI端口和电力线端口转发所述寻址请求消息之前,所述方法还包括:将所述第一RE处的转发路径信息携带在所述寻址请求消息中;
    在所述通过下联CPRI端口和电力线端口转发所述寻址请求消息之后,所述方法还包括:所述第一RE通过下联CPRI端口或通过电力线端口接收第二寻址响应消息,其中所述第二寻址响应消息携带所述第一RE处的转发 路径消息;根据所述第一RE处的转发路径信息,转发所述第二寻址响应消息。
  64. 如权利要求62所述的方法,其特征在于,所述方法还包括:
    所述第一RE通过下联CPRI端口或电力线端口接收第二寻址响应消息;
    所述第一RE通过上联CPRI端口转发所述第二寻址响应消息。
  65. 如权利要求61至64中任一项所述的方法,其特征在于,所述寻址请求消息中携带从所述REC到所述第一RE的转发路径信息;
    在所述通过第一端口向所述REC发送第一寻址响应消息之前,所述方法还包括:
    所述第一RE在所述第一寻址响应消息中携带从所述REC到所述第一RE的转发路径信息,以便所述第一寻址响应消息按照所述寻址请求消息的反向路径返回至所述REC。
  66. 一种信息传输方法,其特征在于,所述方法包括:
    第二无线设备RE通过第一端口接收无线设备控制器REC发送的寻址请求消息;
    根据所述寻址请求消息,确定所述寻址请求消息针对对象不包括所述第二RE;
    在所述第一端口为上联通用公共无线接口CPRI端口时,所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息。
  67. 如权利要求66所述的方法,其特征在于,所述方法还包括:
    在所述第一端口为电力线端口时,所述第二RE丢弃所述寻址请求消息。
  68. 如权利要求66或67所述的方法,其特征在于,所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之前,所述方法还包括:
    在所述寻址请求消息中携带所述第二RE处的转发路径信息;
    在所述第二RE通过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述方法还包括:
    所述第二RE通过下联CPRI端口或电力线端口接收寻址响应消息,所述寻址响应消息携带所述第二RE处的转发路径信息;
    所述第二RE根据所述第二RE处的转发路径信息,转发所述寻址响应消息。
  69. 如权利要求66或67所述的方法,其特征在于,在所述第二RE通 过电力线端口和下联CPRI端口转发所述寻址请求消息之后,所述方法还包括:
    所述第二RE通过下联CPRI端口或电力线端口接收寻址响应消息;
    所述第二RE通过上联CPRI端口转发所述寻址响应消息。
PCT/CN2014/092419 2014-11-28 2014-11-28 信息传输方法、无线设备控制器、无线设备以及基站 WO2016082168A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14906971.8A EP3217707B1 (en) 2014-11-28 2014-11-28 Information transmitting method, radio equipment controller, radio equipment and base station
CN201480011135.6A CN105874840B (zh) 2014-11-28 2014-11-28 信息传输方法、无线设备控制器、无线设备以及基站
PCT/CN2014/092419 WO2016082168A1 (zh) 2014-11-28 2014-11-28 信息传输方法、无线设备控制器、无线设备以及基站
JP2017528410A JP6425290B2 (ja) 2014-11-28 2014-11-28 情報送信方法、無線機器コントローラ、無線機器、及び基地局
KR1020177017302A KR101896562B1 (ko) 2014-11-28 2014-11-28 정보 전송 방법, 무선 장비 컨트롤러, 무선 장비, 그리고 기지국
US15/606,369 US10419081B2 (en) 2014-11-28 2017-05-26 Information transmission method, radio equipment controller, radio equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092419 WO2016082168A1 (zh) 2014-11-28 2014-11-28 信息传输方法、无线设备控制器、无线设备以及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/606,369 Continuation US10419081B2 (en) 2014-11-28 2017-05-26 Information transmission method, radio equipment controller, radio equipment, and base station

Publications (1)

Publication Number Publication Date
WO2016082168A1 true WO2016082168A1 (zh) 2016-06-02

Family

ID=56073369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092419 WO2016082168A1 (zh) 2014-11-28 2014-11-28 信息传输方法、无线设备控制器、无线设备以及基站

Country Status (6)

Country Link
US (1) US10419081B2 (zh)
EP (1) EP3217707B1 (zh)
JP (1) JP6425290B2 (zh)
KR (1) KR101896562B1 (zh)
CN (1) CN105874840B (zh)
WO (1) WO2016082168A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325861A (zh) * 2020-09-25 2023-06-23 华为技术有限公司 一种通信方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365188A (zh) * 2007-08-07 2009-02-11 中兴通讯股份有限公司 基带数字处理单元和射频单元之间信息传递的方法
CN101753244A (zh) * 2008-12-05 2010-06-23 大唐移动通信设备有限公司 一种rru环形组网中的业务传输方法及系统
CN101860802A (zh) * 2010-05-21 2010-10-13 中兴通讯股份有限公司 故障处理方法及系统
CN102611602A (zh) * 2011-01-21 2012-07-25 中兴通讯股份有限公司 环网系统及环网组网方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033940B2 (ja) * 2004-10-12 2012-09-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線装置制御ノードと少なくとも1つのリモートの無線装置ノードとの間の通信のためのインターフェース及び装置、方法
CN101064531B (zh) 2006-04-26 2011-06-01 电子科技大学 一种基于电力线的分布式多入多出公用移动通信系统
JP4791320B2 (ja) * 2006-10-13 2011-10-12 富士通株式会社 コモン・パブリック・ラジオ・インタフェース(cpri)のベンダー特有領域を使った回線迂回方式
JP4811253B2 (ja) * 2006-12-01 2011-11-09 船井電機株式会社 電力線搬送通信システム
JP5040998B2 (ja) * 2007-05-31 2012-10-03 富士通株式会社 無線基地局装置および無線基地局装置内のリンク断救済方法
CN101547526B (zh) * 2008-03-27 2011-02-02 华为技术有限公司 一种故障处理方法、无线设备和通信系统
JP5347401B2 (ja) * 2008-09-19 2013-11-20 富士通株式会社 無線装置、及び、無線装置の制御及び監視方法
CN101841364A (zh) * 2009-03-20 2010-09-22 华为技术有限公司 数据的传送方法及相关设备
WO2010137117A1 (ja) * 2009-05-26 2010-12-02 富士通株式会社 無線基地局装置およびリンク切替方法
KR20120065054A (ko) * 2010-12-10 2012-06-20 엘지에릭슨 주식회사 Cpri 링크 이중화 절체 장치 및 방법
CN102970701B (zh) 2012-11-21 2015-10-28 大唐移动通信设备有限公司 基站、基站控制系统及方法
US20150146613A1 (en) * 2013-11-27 2015-05-28 Freescale Semiconductor, Inc. Method and apparatus for resetting at least one node within a cpri radio base station system
WO2015087307A1 (en) * 2013-12-13 2015-06-18 Telefonaktiebolaget L M Ericsson (Publ) Multiplexing and demultiplexing common public radio interface data streams
CN104955087B (zh) * 2014-03-25 2019-03-01 华为技术有限公司 一种无线基站的控制系统及方法、相关设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101365188A (zh) * 2007-08-07 2009-02-11 中兴通讯股份有限公司 基带数字处理单元和射频单元之间信息传递的方法
CN101753244A (zh) * 2008-12-05 2010-06-23 大唐移动通信设备有限公司 一种rru环形组网中的业务传输方法及系统
CN101860802A (zh) * 2010-05-21 2010-10-13 中兴通讯股份有限公司 故障处理方法及系统
CN102611602A (zh) * 2011-01-21 2012-07-25 中兴通讯股份有限公司 环网系统及环网组网方法

Also Published As

Publication number Publication date
CN105874840A (zh) 2016-08-17
KR20170091654A (ko) 2017-08-09
EP3217707B1 (en) 2018-09-19
EP3217707A4 (en) 2017-09-20
KR101896562B1 (ko) 2018-09-07
CN105874840B (zh) 2019-08-16
US20170264344A1 (en) 2017-09-14
US10419081B2 (en) 2019-09-17
JP2017536770A (ja) 2017-12-07
EP3217707A1 (en) 2017-09-13
JP6425290B2 (ja) 2018-11-21

Similar Documents

Publication Publication Date Title
US11368904B2 (en) Network slice selection method and apparatus
US9628295B2 (en) Method, device, and routing system for data transmission of network virtualization
US20190097758A1 (en) Data transmission method, device, and system
US11528225B2 (en) Communication method, session management device, and system for packet routing by access network devices belonging to a same network instance having different network addresses
EP3047621B1 (en) Handling of signaling messages on the data plane in a software-defined architecture
TW201421232A (zh) 在一冗餘群組中實施故障備援的方法、裝置與電腦程式產品
US10314090B2 (en) Access point management
CN105531967B (zh) 一种报文传输方法、设备及通信系统
US20190273697A1 (en) Data Migration Method and Apparatus
CN109547350B (zh) 一种路由学习方法及网关设备
CN105450779A (zh) 一家电设备连接多服务器的方法
EP3507704A1 (en) Virtual-machine dataplane with dhcp-server functionality
CN106507414B (zh) 报文转发方法及装置
CN109309617A (zh) 容灾切换方法、相关设备及计算机存储介质
EP4075730A1 (en) Method and device for multi-cloud interconnection
US11677492B2 (en) Service packet transmission method and apparatus
US20220116828A1 (en) Service packet transmission method and apparatus
WO2021244356A1 (zh) 数据传输方法及装置
US10110426B2 (en) Method, apparatus, and system for implementing tunneling processing
US8849949B1 (en) Providing proxy service during access switch control plane software upgrade
WO2016082168A1 (zh) 信息传输方法、无线设备控制器、无线设备以及基站
WO2015168920A1 (zh) 管理基站的方法和基站
TWI701925B (zh) 邊緣運算網路服務提供方法
EP2858415B1 (en) Multi-link-based data transmission method and device
US11477643B2 (en) Systems and methods for access point device recovery using mobile devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014906971

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177017302

Country of ref document: KR

Kind code of ref document: A