WO2016079820A1 - Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure - Google Patents

Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure Download PDF

Info

Publication number
WO2016079820A1
WO2016079820A1 PCT/JP2014/080574 JP2014080574W WO2016079820A1 WO 2016079820 A1 WO2016079820 A1 WO 2016079820A1 JP 2014080574 W JP2014080574 W JP 2014080574W WO 2016079820 A1 WO2016079820 A1 WO 2016079820A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological reaction
porous structure
micro
microorganism
culture solution
Prior art date
Application number
PCT/JP2014/080574
Other languages
French (fr)
Japanese (ja)
Inventor
信秀 国友
宏記 藤井
伸宏 田中
正守 樋口
Original Assignee
三菱化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学エンジニアリング株式会社 filed Critical 三菱化学エンジニアリング株式会社
Priority to PCT/JP2014/080574 priority Critical patent/WO2016079820A1/en
Priority to JP2016560283A priority patent/JPWO2016080487A1/en
Priority to PCT/JP2015/082548 priority patent/WO2016080487A1/en
Publication of WO2016079820A1 publication Critical patent/WO2016079820A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/084Polymers containing vinyl alcohol units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof

Definitions

  • the present invention relates to a bioreactor and a bioreaction method using the bioreactor, in which a porous structure in which an aerobic microorganism is supported to the back of a pore is present in a microorganism culture solution, and the microorganism culture solution It is characterized by containing micro-nano bubbles.
  • a porous structure not supporting aerobic microorganisms is simply referred to as “porous structure”, and a porous structure supporting aerobic microorganisms is referred to as “supporting structure”.
  • the present invention also relates to a support structure and a method for producing the support structure used in the bioreaction apparatus or the bioreaction apparatus, and includes a porous structure and a culture solution containing aerobic microorganisms and micro-nano bubbles. By contacting, an aerobic microorganism is carried to the back of the pores of the porous structure.
  • Biological reactions differ from chemical reactions in that the reaction itself is slow, but because it does not use much energy and many chemical substances, it is a mild and meaningful reaction for the environment.
  • the biological reaction generally has a problem that the reaction is mild and slow. That is, for chemical reactions, a reaction within one hour is often sufficient, whereas in the case of biological reactions, a reaction time of several days or longer, several days or particularly several weeks or longer is required. There is also. For this reason, it is required to perform biological reactions efficiently and economically.
  • Patent Documents 1 to 3 disclose that in the cultivation of microorganisms, the presence of micro-nano bubbles or nano-bubbles in the culture medium promotes the activation of microorganisms and the like. It is disclosed that the efficiency and the reaction time are reduced.
  • Patent Document 1 in a batch method, a culture solution is extracted from a culture tank, filtered with a bacterial cell filter to obtain a filtrate, and micronano bubbles are mixed with the filtrate and returned to the culture tank. It is described to do.
  • Patent Document 2 describes that micro-nano bubbles and nano bubbles are mixed with the culture liquid before supplying the culture liquid to the culture tank.
  • Patent Document 3 supplies the culture liquid to the culture tank. It is described that the micro / nano bubbles are mixed in the previous stage.
  • Patent Documents 4 to 5 that a microorganism is supported by a porous carrier in a biological reaction.
  • Patent Document 4 describes that a microorganism used for wastewater treatment is attached to and supported on a polyvinyl alcohol-containing hydrogel
  • Patent Document 5 describes a citrate-fermenting bacterium.
  • treated water containing saccharides and saccharides is brought into contact with a polyvinyl alcohol-based porous gel so that citric acid-fermenting bacteria are supported on the polyvinyl alcohol-based porous gel.
  • the aerobic microorganism can be transformed into a polyvinyl alcohol-based hydrogel or polyvinyl by simply bringing the bacteria into contact with and supporting the polyvinyl alcohol-based hydrogel or polyvinyl alcohol-based porous gel. It cannot be supported to the back of the pores of the alcoholic porous gel.
  • the subject of the biological reaction apparatus of this invention and the biological reaction method using this biological reaction apparatus is the biological reaction which can perform the biological reaction using an aerobic microorganism efficiently and economically further using a micro nano bubble. It is to provide an apparatus and a biological reaction method.
  • Another object of the porous structure carrying the aerobic microorganism of the present invention and the method for producing the porous structure is used in a biological reaction apparatus or a biological reaction method, and performs a biological reaction efficiently and economically.
  • An object of the present invention is to provide a porous structure and a method for producing the porous structure.
  • the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus have a supporting structure in which aerobic microorganisms are supported at a high density in a microorganism culture solution, This microorganism culture solution contains micro-nano bubbles.
  • the porous structure carrying the aerobic microorganism of the present invention is characterized in that the aerobic microorganism is carried at a high density, and the method for producing the porous structure comprises a porous structure. And an aerobic microorganism and a culture solution containing micro-nano bubbles are brought into contact with each other.
  • micro nano bubble of the present invention means “micro bubble” and / or “nano bubble”. While “normal bubbles” rapidly rise in water and burst and disappear on the surface, microbubbles with a diameter of 50 ⁇ m or less called “microbubbles” shrink in water and disappear. Together with free radicals, “nanobubbles”, which are ultrafine bubbles having a diameter of 100 nm or less, are generated, and these “nanobubbles” remain in water for a certain amount of time.
  • Nano bubbles which are very small bubbles, are also called “ultra fine bubbles”.
  • ISO International Organization for Standardization
  • the creation of an international standard for fine bubble technology is being considered, and once the international standard is created, the name of “nanobubble”, which is currently commonly used, There is a possibility that it will be unified into “Ultra Fine Bubble”.
  • micro / nano bubbles of the present invention can be formed from air or oxygen, but it is preferable to use oxygen from the viewpoint of efficiently supplying oxygen necessary for respiration to aerobic microorganisms.
  • Patent Documents 1 to 3 utilize these micro-nano bubbles and the action of nano bubbles activating microorganisms.
  • micro-nano bubbles are deep inside the pores of the porous structure. The bioreaction using aerobic microorganisms is performed efficiently and economically by utilizing the action of being able to invade even the most.
  • a porous structure having a high supporting density in which aerobic microorganisms are supported to the back of the pores using micro-nano bubbles is used.
  • the filtration step of separating the aerobic microorganisms from the microorganism culture solution and collecting the filtrate can be easily performed with a large stress on the aerobic microorganisms. It can be done efficiently and economically without causing damage.
  • the microorganism culture solution containing micro-nano bubbles since the microorganism culture solution containing micro-nano bubbles is used, the micro-nano bubbles penetrate deep into the pores of the porous structure, and the aerobic microorganisms supported in the deep pores of the porous structure. In addition, since oxygen necessary for respiration can be sufficiently supplied, the efficiency of biological reaction can be increased.
  • the main features of the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus are as described above. 1) The presence of a supporting structure having a high supporting density in which aerobic microorganisms are supported at a high density in the microorganism culture solution; 2) Inclusion of micro / nano bubbles in the microorganism culture solution; However, these items will be described in turn below.
  • Support structure has a high support density in which aerobic microorganisms are supported to the depths of the pores.
  • the support structure includes a porous structure, aerobic microorganisms, and micro-nano bubbles. It can manufacture by making it contact with the culture solution containing.
  • porous structure it is preferable to use those having pores, particularly those having a three-dimensional solid network structure having continuous pores. If only a porous structure having such a structure is used, oxygen is not sufficiently supplied to the inside of the pores, so that aerobic microorganisms can only be supported on the surface of the porous structure.
  • the present invention by using a culture solution containing aerobic microorganisms and micro-nano bubbles as a culture solution to be contacted with the porous structure, oxygen can be supplied to the depths of the pores of the porous structure. It is possible to carry aerobic microorganisms to the back of the substrate, and to increase the carrying density of aerobic microorganisms.
  • target product such as a metabolite of an aerobic microorganism obtained by a biological reaction from a microorganism culture tank
  • target product a reaction product such as a metabolite of an aerobic microorganism obtained by a biological reaction
  • the aerobic microorganism is separated from the microorganism culture solution.
  • the aerobic microorganisms are supported by the porous structure, the aerobic microorganisms can be separated easily and economically.
  • aerobic microorganisms are added to a culture solution, and after aerobic microorganisms are cultured and grown, they are brought into contact with and supported by the porous structure, or culture.
  • Examples include a method in which an aerobic microorganism and a porous structure are added to the liquid, and the aerobic microorganism is supported while being cultured and grown.
  • the former method is performed by the following procedure. a) First, sterilize the porous structure, the culture solution, and the like so that microorganisms, bacteria, and the like other than the required aerobic microorganisms do not exist. b) Next, aerobic microorganisms are added to the culture solution, and the aerobic microorganisms are cultured and grown while the culture solution contains micro-nano bubbles. c) At the stage where aerobic microorganisms have grown to a certain concentration or higher, the medium is brought into contact with the porous structure while containing micro-nano bubbles in the culture solution.
  • the latter method is performed in the following procedure. a) First, sterilize the porous structure, the culture solution, and the like so that microorganisms, bacteria, and the like other than the required aerobic microorganisms do not exist. d) Next, the porous structure is added to the culture solution, and the culture solution contains micro-nano bubbles. e) Add aerobic microorganisms to the culture solution, and culture and proliferate the aerobic microorganisms while containing micro-nano bubbles in the culture solution.
  • the culture solution used in the above method mainly contains saccharides and a nitrogen source.
  • saccharides saccharides such as maltose, sucrose, glucose, fructose, and mixtures thereof are usually used.
  • concentration of saccharides in the culture solution is not particularly limited, but is set to 0.1 to 10 w / v%. preferable.
  • nitrogen source ammonium chloride, ammonium sulfate, corn steep liquor, yeast extract, meat extract, peptone or the like is used, and it is preferably set to 0.1 to 10 w / v%.
  • vitamins, inorganic salts, and the like to the culture solution as needed in addition to the saccharides and the nitrogen source.
  • the concentration of the aerobic microorganism added to the culture solution in step b) and step e) is not particularly limited, but is preferably 0.5 to 10 g / L, and preferably 3.0 to 6.0 g / L. Is more preferable.
  • micronano bubbles are contained in the treated water in order to promote the growth of aerobic microorganisms.
  • the culture and proliferation of aerobic microorganisms can be carried out sufficiently rapidly without the inclusion of micronano bubbles. If possible, the inclusion of micro-nano bubbles can be omitted.
  • the contact between the culture solution containing the micro-nano bubbles and the porous structure can be performed, for example, by placing the porous structure in the treated water and stirring with shaking.
  • aerobic microorganism in the present invention, aspergillus oryzae (5 to 10 ⁇ m), Bacillus natto (2 to 3 ⁇ m), acetic acid bacteria (5 to 10 ⁇ m), which are conventionally used in technical fields such as brewing and fermentation,
  • aerobic microorganisms such as yeast (5 ⁇ m) and lactic acid bacteria (2 to 4 ⁇ m)
  • various aerobic microorganisms created by genetic engineering techniques can be used.
  • the pore diameter of the continuous pores of the porous structure having a three-dimensional three-dimensional network structure having continuous pores is preferably 1 to 30 ⁇ m, although it depends on the size of the aerobic microorganism to be supported, usually around 5 to 10 ⁇ m. It is more preferable that
  • Examples of the material of the porous structure suitably used in the present invention include vinyl alcohol resins such as polyvinyl alcohol, ether resins such as polyethylene glycol, acrylic resins such as polymethacrylic acid, acrylamide resins such as polyacrylamide, polyethylene, and polypropylene.
  • vinyl alcohol resins such as polyvinyl alcohol
  • ether resins such as polyethylene glycol
  • acrylic resins such as polymethacrylic acid
  • acrylamide resins such as polyacrylamide, polyethylene, and polypropylene.
  • Olefin resins such as polystyrene, ester resins such as polyethylene terephthalate and polybutylene terephthalate, acrylonitrile resins such as polyacrylonitrile, urethane resins such as polyurethane sponge, calcium alginate, ⁇ (kappa) carrageenan, agar, and cellulose derivatives Sugar, polyester acrylate, epoxy acrylate, urethane acrylate It said photocurable resin, and the like can be exemplified porous inorganic compounds such as activated carbon.
  • a polyvinyl alcohol-based porous gel is preferable in that it has a porous and mesh-like structure up to the inside and a large amount of water can be taken into the gel.
  • the mechanical strength of the porous gel can be improved sufficiently, and it has the strength that it can withstand even with strong agitation during a biological reaction.
  • Formalized polyvinyl alcohol porous gel and acetalization A polyvinyl alcohol-based porous gel is more preferable.
  • Specific examples of the polyvinyl alcohol-based porous gel include, for example, Kuraray Co., Ltd. trade name.
  • the carrying structure of the present invention is one in which the carrying density of aerobic microorganisms is increased by adding micro-nano bubbles to the culture solution.
  • An element for efficiently carrying out a biological reaction is to increase the cell density of aerobic microorganisms in the microorganism culture solution, but if the cell density is too high, nutrients and oxygen are added to the aerobic microorganisms. Since it is not provided sufficiently, the efficiency of the biological reaction is reduced.
  • the cell density at which aerobic microorganisms can be cultured properly is about 3 to 6 g / L.
  • the carrying structure of the present invention by containing micro-nano bubbles in the culture solution, aerobic microorganisms can be carried deep into the pores of the porous structure.
  • the cell density can be about 5 to 6 times the cell density of the culture medium.
  • the shape of the supporting structure is not particularly limited, but for example, a granular shape such as a spherical shape, a rectangular parallelepiped shape or a cubic shape is preferable. If the powder is used, the surface area for aerobic microorganism immobilization can be greatly increased, and the target product can be produced with higher efficiency.
  • the particle size (diameter) of the porous gel powder when dried is preferably 0.5 to 10 mm.
  • the usage structure of the supporting structure may be fixed in the microorganism culture solution with a column, a net or the like, or may be present in a dispersed state in the microorganism culture solution.
  • the support structure obtained in 1) above is housed in a microorganism culture tank together with the culture solution, and the microorganism culture solution contains micro-nano bubbles. Biological reactions take place.
  • a porous structure having a high aerobic microorganism loading density in which aerobic microorganisms are carried to the back of the pores is used for the biological reaction.
  • oxygen necessary for respiration can be sufficiently supplied to the aerobic microorganisms supported in the back of the pores of the porous structure, so that the efficiency of the biological reaction can be improved.
  • the means with the least stress and damage to the aerobic microorganism are the means b) and d) above.
  • aerobic microorganisms are stressed and damaged by the shearing force generated by the release of nanobubbles in the means a) and by the shearing force generated during filtration in the c) means. Then, since the aerobic microorganisms are supported by the porous structure, this stress and damage can be greatly reduced.
  • micro / nano bubble generating device a known or commercially available device can be used.
  • microbubble generator for example, a sufficient amount of gas is dissolved in water at a certain high pressure, and then the pressure is released to create a supersaturated condition of the dissolved gas.
  • a gas-liquid two-phase flow swirl type micro-bubble generator that utilizes the phenomenon of generating a vortex by generating a water flow, entraining a large bubble in the vortex, and then breaking the vortex into bubbles. Or the like.
  • nanobubble generators include, for example, JP 2007-312690, JP 2006-289183, JP 2005-245817, JP 2007-136255, and JP 2009-39600. Those described can be used.
  • the recovery of the target product may be performed batchwise or continuously.
  • the culture tank pump is driven to transfer the filtered filtrate to the filtrate storage tank.
  • the batch type or the continuous type can be selected as appropriate in consideration of the efficiency of biological reaction, the required purity of the target product, economy, and the like.
  • filtration can be performed efficiently and economically, and further, stress and damage given to aerobic microorganisms can be reduced.
  • a porous membrane made of an organic polymer compound such as polyvinylidene fluoride, or a filtration membrane such as a metal wire mesh can be suitably used.
  • the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus can efficiently and economically perform biological reactions using aerobic microorganisms using micro-nano bubbles. It can be applied not only to the production of foods, chemicals, chemicals and the like using biological reactions such as brewing and fermentation, but also to a biorefinery for producing bioethanol and the like using biomass.
  • porous structure carrying the aerobic microorganism of the present invention is useful for performing a biological reaction efficiently and economically.
  • FIG. 1 schematically shows a first embodiment of the biological reaction apparatus of the present invention.
  • -The carrying structure 7 is fixed in the microorganism culture tank 1 by the fixing member 8;
  • O The micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
  • a micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1, It is characterized by.
  • the target product is generated and collected by the following steps. a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles. b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles. c) In the microorganism culture tank 1, a target product is generated by a biological reaction of aerobic microorganisms supported on the support structure 7. d) The culture tank pump 10 is driven, the supporting structure 7 detached from the fixing member 8 is separated by the filtering means 9, and the filtrate containing the target substance is collected in the filtrate storage tank 13.
  • the supporting structure 7 having aerobic microorganisms supported to the back of the pores and having a high aerobic microorganism supporting density, and the microorganism culture solution 5 containing micro-nano bubbles.
  • the biological reaction can be advanced efficiently, and the target product can be obtained efficiently.
  • FIG. 2 schematically shows a second embodiment of the biological reaction apparatus of the present invention.
  • the means for causing the culture solution 6 and the microorganism culture solution 5 to contain micro-nano bubbles in the first embodiment, and the micro-nano bubbles are contained in the filtrate filtered by the filtration means 9 using the micro-nano bubble generator 4.
  • the means for refluxing the filtrate containing the micro / nano bubbles to the microorganism culture tank 1 is used.
  • the target product is generated and collected by the following steps. a) The culture solution 6 is supplied to the microorganism culture tank 1. b) The culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the carrier structure 7 detached from the fixing member 8 is separated by the filtering means 9, and the filtrate is supplied to the micro / nano bubble generator 4. Then, after containing micro-nano bubbles, it is returned to the microorganism culture tank 1. c) In the microorganism culture tank 1, a target product is generated by a biological reaction of aerobic microorganisms supported on the support structure 7.
  • the culture tank pump 10 is driven in a state in which the valve 11 is closed and the valve 12 is opened, and the supporting structure 7 detached from the fixing member 8 is separated by the filtering means 9 and filtered containing the target product. Water is collected in the filtrate storage tank 13.
  • the means for incorporating the micro-nano bubbles into the filtrate of the second embodiment is applied to the filtrate at a location different from the microorganism culture tank 1, so that the aerobic microorganisms are subjected to stress or damage due to shearing force or the like. There is an advantage that it is difficult.
  • FIG. 3 schematically shows a third embodiment of the biological reaction apparatus of the present invention.
  • Means for containing micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5 Means for containing micro-nano bubbles in the culture medium 6 supplied to the microorganism culture tank 1 and the microorganism culture liquid 5 in the microorganism culture tank 1 used in the first embodiment, and the filtration used in the second embodiment
  • the filtrate filtered by the means 9 is made to contain micro-nano bubbles, and the means for refluxing the filtrate containing the micro-nano bubbles to the microorganism culture tank 1 is used in combination.
  • FIG. 4 schematically shows a fourth embodiment of the biological reaction apparatus of the present invention.
  • the support structure 7 is present in a dispersed state in the microorganism culture solution 5, and the microorganism culture vessel 1 further includes a culture vessel agitator 14 for stirring the microorganism culture solution 5. is set up.
  • the carrier structure 7 is present in a dispersed state in the microorganism culture tank 1 and is stirred by the culture tank agitator 14;
  • the micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
  • a micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1, It is characterized by.
  • the object is generated and collected by the following steps. a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles. b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles. c) In the microorganism culture tank 1, a target product is generated by the biological reaction of the aerobic microorganisms supported on the support structure 7 to be stirred. d) The culture tank pump 10 is driven, the supporting structure 7 is separated by the filtering means 9, and the filtrate containing the target substance is collected in the filtrate storage tank 13.
  • the supporting structure 7 having a high aerobic microorganism supporting density and supporting the aerobic microorganism to the back of the pores and the microorganism culture solution 5 containing the micro / nano bubbles.
  • the biological reaction can be advanced efficiently, and the target product can be obtained efficiently.
  • the support structure 7 is dispersed and stirred in the microorganism culture solution 5, nutrients and oxygen are sufficiently provided also to the aerobic microorganisms supported in the back of the pores of the porous structure.
  • a biological reaction can be promoted, there is a demerit such that the aerobic microorganisms are easily subjected to stress and damage due to the shearing force by stirring, and the aerobic microorganisms are easily detached from the porous structure.
  • FIG. 5 schematically shows a fifth embodiment of the biological reaction apparatus of the present invention.
  • the means for causing the culture solution 6 and the microorganism culture solution 5 to contain micro-nano bubbles in the fourth embodiment, and the micro-nano bubbles are contained in the filtrate filtered by the filtration means 9 using the micro-nano bubble generator 4.
  • the means for refluxing the filtrate containing the micro / nano bubbles to the microorganism culture tank 1 is used.
  • the target object is generated and collected by the following steps.
  • a) The culture solution 6 is supplied to the microorganism culture tank 1.
  • the culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the supporting structure 7 is separated by the filtering means 9, the filtrate is guided to the micro / nano bubble generator 4, and contains micro / nano bubbles Then, return to the microorganism culture tank 1.
  • a target product is generated by the biological reaction of the aerobic microorganisms supported on the support structure 7 to be stirred.
  • the culture tank pump 10 is driven, the supporting structure 7 is separated by the filtering means 9, and the filtrate containing the target substance is collected in the filtrate storage tank 13.
  • the biological reaction can be promoted.
  • the aerobic microorganisms are easily subjected to stress and damage due to the shearing force by stirring, and the aerobic microorganisms have a porous structure. There are disadvantages such as being easy to leave the body.
  • the means for adding micro-nano bubbles to the filtrate is applied to the filtrate at a location different from the microorganism culture tank 1, so that the aerobic microorganisms are subjected to stress caused by shearing force or the like. There is an advantage that it is not easily damaged.
  • FIG. 6 schematically shows a sixth embodiment of the biological reaction apparatus of the present invention.
  • Means for containing micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5 Means for containing micro-nano bubbles in the culture medium 6 supplied to the microorganism culture tank 1 and the microorganism culture liquid 5 in the microorganism culture tank 1 used in the fourth embodiment, and the filtration used in the fifth embodiment
  • the filtrate filtered by the means 9 is made to contain micro-nano bubbles, and the means for refluxing the filtrate containing the micro-nano bubbles to the microorganism culture tank 1 is used in combination.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

The biological reaction device according to the present invention and the biological reaction method using the biological reaction device address the problem of more efficiently utilizing micronanobubbles and thus efficiently and economically performing a biological reaction using an aerobic microorganism. The aerobic microorganism-carrying porous structure according to the present invention and the method for producing the porous structure address the problem of providing a porous structure to be used in a biological reaction device or biological reaction method, said porous structure enabling efficient and economic performance of a biological reaction, and a method for producing the porous structure. To solve these problems, the biological reaction device according to the present invention and the biological reaction method using the biological reaction device are characterized in that a porous structure, which carries an aerobic microorganism deeply in pores thereof at a high carrying density, is disposed in a liquid culture medium for microorganism and, at the same time, the liquid culture medium for microorganism contains micronanobubbles. The aerobic microorganism-carrying porous structure according to the present invention is characterized by carrying an aerobic microorganism at a high carrying density. The method for producing the porous structure is characterized by comprising contacting a porous structure with a liquid culture medium that contains an aerobic microorganism and micronanobubbles.

Description

生物反応装置、生物反応方法、並びに、生物反応装置において使用される好気性微生物を担持させた多孔質構造体及びこの多孔質構造体の製造方法Biological reaction apparatus, biological reaction method, porous structure supporting aerobic microorganisms used in biological reaction apparatus, and method for producing the porous structure
 本発明は、生物反応装置及びこの生物反応装置を用いた生物反応方法に関し、微生物培養液中に好気性微生物を細孔の奥まで担持させた多孔質構造体を存在させると共に、この微生物培養液にマイクロナノバブルを含有させることを特徴とするものである。(以下、好気性微生物を担持させていない多孔質構造体を単に「多孔質構造体」といい、好気性微生物を担持させた多孔質構造体を「担持構造体」という。) The present invention relates to a bioreactor and a bioreaction method using the bioreactor, in which a porous structure in which an aerobic microorganism is supported to the back of a pore is present in a microorganism culture solution, and the microorganism culture solution It is characterized by containing micro-nano bubbles. (Hereinafter, a porous structure not supporting aerobic microorganisms is simply referred to as “porous structure”, and a porous structure supporting aerobic microorganisms is referred to as “supporting structure”.)
 また、本発明は、この生物反応装置または生物反応装置において用いられる、担持構造体及びこの担持構造体の製造方法に関し、多孔質構造体と、好気性微生物及びマイクロナノバブルを含有する培養液とを接触させることにより、多孔質構造体の細孔の奥まで好気性微生物を担持させることを特徴とするものである。 The present invention also relates to a support structure and a method for producing the support structure used in the bioreaction apparatus or the bioreaction apparatus, and includes a porous structure and a culture solution containing aerobic microorganisms and micro-nano bubbles. By contacting, an aerobic microorganism is carried to the back of the pores of the porous structure.
 生物反応は、化学反応と異なり、反応自体は遅いが、多大なエネルギーや多くの化学物質を使用しないので、環境にとって温和で有意義な反応である。 Biological reactions differ from chemical reactions in that the reaction itself is slow, but because it does not use much energy and many chemical substances, it is a mild and meaningful reaction for the environment.
 しかし、生物反応は、一般的に反応が温和で遅いという問題があった。すなわち、化学反応には、1時間以内の反応で十分な場合が多いのに対して、生物反応の場合は、数時間から長い場合は数日または特に長い場合数週間以上の反応時間を要する場合もある。このため、生物反応を効率的、経済的に行うことが求められている。 However, the biological reaction generally has a problem that the reaction is mild and slow. That is, for chemical reactions, a reaction within one hour is often sufficient, whereas in the case of biological reactions, a reaction time of several days or longer, several days or particularly several weeks or longer is required. There is also. For this reason, it is required to perform biological reactions efficiently and economically.
 生物反応を効率化する技術として、特許文献1~3には、微生物等の培養において、培養液中にマイクロナノバブルあるいはナノバブルを存在させることにより、微生物等の活性化を促進し、生物反応の反応効率、反応時間の短縮等を図ることが開示されている。 As techniques for improving the efficiency of biological reactions, Patent Documents 1 to 3 disclose that in the cultivation of microorganisms, the presence of micro-nano bubbles or nano-bubbles in the culture medium promotes the activation of microorganisms and the like. It is disclosed that the efficiency and the reaction time are reduced.
 具体的には、特許文献1には、バッチ方式において、培養槽から培養液を抜き出し、菌体ろ過器でろ過してろ過液を得、このろ過液にマイクロナノバブルを混合して培養槽に返送することが記載されている。特許文献2には、培養液を培養槽に供給する前段階で、培養液にマイクロナノバブル及びナノバブルを混合することが記載されており、また、特許文献3には、培養液を培養槽に供給する前段階で、マイクロナノバブルを混合することが記載されている。 Specifically, in Patent Document 1, in a batch method, a culture solution is extracted from a culture tank, filtered with a bacterial cell filter to obtain a filtrate, and micronano bubbles are mixed with the filtrate and returned to the culture tank. It is described to do. Patent Document 2 describes that micro-nano bubbles and nano bubbles are mixed with the culture liquid before supplying the culture liquid to the culture tank. Patent Document 3 supplies the culture liquid to the culture tank. It is described that the micro / nano bubbles are mixed in the previous stage.
 しかしながら、上記特許文献1~3に開示されるような、マイクロナノバブルあるいはナノバブルにより、微生物を活性化するだけでは、まだ、生物反応をまだ十分に効率的、経済的に行うことはできない。 However, biological reactions cannot be performed sufficiently efficiently and economically yet by activating microorganisms with micro-nano bubbles or nano bubbles as disclosed in Patent Documents 1 to 3 above.
 また、生物反応において、微生物を多孔質担体で担持することは、特許文献4~5に開示されている。 Also, it is disclosed in Patent Documents 4 to 5 that a microorganism is supported by a porous carrier in a biological reaction.
 具体的には、特許文献4には、排水処理などに用いられる微生物を、ポリビニルアルコール系含水ゲルに付着させて担持することが記載されており、また、特許文献5には、クエン酸発酵菌及び糖類を含有した処理水を、ポリビニルアルコール系多孔質ゲルと接触させて、ポリビニルアルコール系多孔質ゲルにクエン酸発酵菌を担持させることが記載されている。 Specifically, Patent Document 4 describes that a microorganism used for wastewater treatment is attached to and supported on a polyvinyl alcohol-containing hydrogel, and Patent Document 5 describes a citrate-fermenting bacterium. In addition, it is described that treated water containing saccharides and saccharides is brought into contact with a polyvinyl alcohol-based porous gel so that citric acid-fermenting bacteria are supported on the polyvinyl alcohol-based porous gel.
 しかしながら、上記特許文献4~5に開示されるような、菌をポリビニルアルコール系含水ゲルまたはポリビニルアルコール系多孔質ゲルと単に接触させ担持させるだけでは、好気性微生物を、ポリビニルアルコール系含水ゲルまたはポリビニルアルコール系多孔質ゲルの細孔の奥まで担持させることはできない。 However, as disclosed in Patent Documents 4 to 5, the aerobic microorganism can be transformed into a polyvinyl alcohol-based hydrogel or polyvinyl by simply bringing the bacteria into contact with and supporting the polyvinyl alcohol-based hydrogel or polyvinyl alcohol-based porous gel. It cannot be supported to the back of the pores of the alcoholic porous gel.
特許第4146476号公報Japanese Patent No. 4146476 特許第4805120号公報Japanese Patent No. 4805120 特許第4956052号公報Japanese Patent No. 4956552 特開2004-075763号公報JP 2004-075763 A 特開2007-282543号公報JP 2007-282543 A
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法の課題は、マイクロナノバブルをさらに活用して、好気性微生物を用いた生物反応を効率的かつ経済的に行うことのできる生物反応装置及び生物反応方法を提供することにある。 The subject of the biological reaction apparatus of this invention and the biological reaction method using this biological reaction apparatus is the biological reaction which can perform the biological reaction using an aerobic microorganism efficiently and economically further using a micro nano bubble. It is to provide an apparatus and a biological reaction method.
 また、本発明の好気性微生物を担持させた多孔質構造体及びこの多孔質構造体の製造方法の課題は、生物反応装置または生物反応方法において使用され、生物反応を効率的かつ経済的に行うことのできる、多孔質構造体及びこの多孔質構造体の製造方法を提供することにある。 Another object of the porous structure carrying the aerobic microorganism of the present invention and the method for producing the porous structure is used in a biological reaction apparatus or a biological reaction method, and performs a biological reaction efficiently and economically. An object of the present invention is to provide a porous structure and a method for producing the porous structure.
 上記課題を解決するため、本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法は、微生物培養液中に、好気性微生物を高い密度で担持させた担持構造体を存在させると共に、この微生物培養液にマイクロナノバブルを含有させることを特徴とするものである。 In order to solve the above problems, the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus have a supporting structure in which aerobic microorganisms are supported at a high density in a microorganism culture solution, This microorganism culture solution contains micro-nano bubbles.
 また、本発明の好気性微生物を担持させた多孔質構造体は、好気性微生物を高い密度で担持することを特徴とするものであり、この多孔質構造体の製造方法は、多孔質構造体と、好気性微生物及びマイクロナノバブルを含有する培養液とを接触させることを特徴とするものである。 Further, the porous structure carrying the aerobic microorganism of the present invention is characterized in that the aerobic microorganism is carried at a high density, and the method for producing the porous structure comprises a porous structure. And an aerobic microorganism and a culture solution containing micro-nano bubbles are brought into contact with each other.
 本発明の「マイクロナノバブル」とは、「マイクロバブル」および/または「ナノバブル」を意味する。「通常の気泡」は水中を急速に上昇して表面で破裂して消えるのに対し、「マイクロバブル」といわれる直径50μm以下の微小気泡は、水中で縮小していって消滅し、この際に、フリーラジカルと共に、直径100nm以下の極微小気泡である「ナノバブル」を発生し、この「ナノバブル」はある程度の長時間水中に残存する。 The “micro nano bubble” of the present invention means “micro bubble” and / or “nano bubble”. While “normal bubbles” rapidly rise in water and burst and disappear on the surface, microbubbles with a diameter of 50 μm or less called “microbubbles” shrink in water and disappear. Together with free radicals, “nanobubbles”, which are ultrafine bubbles having a diameter of 100 nm or less, are generated, and these “nanobubbles” remain in water for a certain amount of time.
 極微小気泡である「ナノバブル」は、「ウルトラファインバブル」とも呼ばれる。なお、現在、ISO(国際標準化機構)において、ファインバブル技術に関する国際標準の作成が検討されており、国際標準が作成されれば、現在一般的に用いられている「ナノバブル」との呼称が、「ウルトラファインバブル」に統一される可能性もある。 “Nano bubbles”, which are very small bubbles, are also called “ultra fine bubbles”. Currently, in the ISO (International Organization for Standardization), the creation of an international standard for fine bubble technology is being considered, and once the international standard is created, the name of “nanobubble”, which is currently commonly used, There is a possibility that it will be unified into “Ultra Fine Bubble”.
 本発明のマイクロナノバブルは空気または酸素から形成することができるが、好気性微生物に呼吸に必要な酸素を効率的に供給する観点からは、酸素を用いるのが好ましい。 The micro / nano bubbles of the present invention can be formed from air or oxygen, but it is preferable to use oxygen from the viewpoint of efficiently supplying oxygen necessary for respiration to aerobic microorganisms.
 上記特許文献1~3は、これらマイクロナノバブル、ナノバブルが微生物を活性化する作用を利用したものであるが、本発明では、この活性化作用と共に、マイクロナノバブルが多孔質構造体の細孔の奥まで侵入できるという作用も利用して、好気性微生物を用いた生物反応を効率的かつ経済的に行うものである。 Patent Documents 1 to 3 utilize these micro-nano bubbles and the action of nano bubbles activating microorganisms. In the present invention, along with this activation action, micro-nano bubbles are deep inside the pores of the porous structure. The bioreaction using aerobic microorganisms is performed efficiently and economically by utilizing the action of being able to invade even the most.
 すなわち、まず、本発明では、マイクロナノバブルを利用して好気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体を用いる。これにより、多孔質構造体中、ひいては微生物培養槽中の好気性微生物の密度を高くできるので、生物反応の効率を高めることができる。 That is, first, in the present invention, a porous structure having a high supporting density in which aerobic microorganisms are supported to the back of the pores using micro-nano bubbles is used. Thereby, since the density of aerobic microorganisms in a porous structure and by extension, a microorganism culture tank can be made high, the efficiency of a biological reaction can be improved.
 さらに、本発明では、好気性微生物は多孔質構造体に担持されているため、微生物培養液から好気性微生物を分離し、ろ過液を回収するろ過工程を、簡単に、好気性微生物に大きなストレスやダメージを与えることなく、効率的、経済的に行うことができる。 Furthermore, in the present invention, since the aerobic microorganisms are supported on the porous structure, the filtration step of separating the aerobic microorganisms from the microorganism culture solution and collecting the filtrate can be easily performed with a large stress on the aerobic microorganisms. It can be done efficiently and economically without causing damage.
 さらに、本発明では、マイクロナノバブルを含有させた微生物培養液を用いるため、マイクロナノバブルが多孔質構造体の細孔の奥まで入り込み、多孔質構造体の細孔の奥に担持された好気性微生物にも呼吸に必要な酸素を十分に供給することができるので、生物反応の効率を高めることができる。 Furthermore, in the present invention, since the microorganism culture solution containing micro-nano bubbles is used, the micro-nano bubbles penetrate deep into the pores of the porous structure, and the aerobic microorganisms supported in the deep pores of the porous structure In addition, since oxygen necessary for respiration can be sufficiently supplied, the efficiency of biological reaction can be increased.
本発明の生物反応装置の第1の実施形態を示す模式図である。It is a schematic diagram which shows 1st Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第2の実施形態を示す模式図である。It is a schematic diagram which shows 2nd Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第3の実施形態を示す模式図である。It is a schematic diagram which shows 3rd Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第4の実施形態を示す模式図である。It is a schematic diagram which shows 4th Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第5の実施形態を示す模式図である。It is a schematic diagram which shows 5th Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第6の実施形態を示す模式図である。It is a schematic diagram which shows 6th Embodiment of the biological reaction apparatus of this invention.
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法の主要な特徴は、前述のように、
1)微生物培養液中に、好気性微生物を高い密度で担持させた、担持密度の高い担持構造体を存在させること、
2)微生物培養液にマイクロナノバブルを含有させること、
にあるが、これらの事項について、以下に順次説明する。
The main features of the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus are as described above.
1) The presence of a supporting structure having a high supporting density in which aerobic microorganisms are supported at a high density in the microorganism culture solution;
2) Inclusion of micro / nano bubbles in the microorganism culture solution;
However, these items will be described in turn below.
 1)担持構造体
 担持構造体は、好気性微生物を細孔の奥まで担持させた、担持密度の高いものであり、この担持構造体は、多孔質構造体と、好気性微生物及びマイクロナノバブルを含有する培養液とを接触させることにより製造することができる。
1) Support structure The support structure has a high support density in which aerobic microorganisms are supported to the depths of the pores. The support structure includes a porous structure, aerobic microorganisms, and micro-nano bubbles. It can manufacture by making it contact with the culture solution containing.
 多孔質構造体としては、細孔を有するもの、特に、連続孔を有する三次元立体網目構造を有するものを用いることが好ましい。単にこのような構造を有する多孔質構造体を用いただけでは、通常、細孔の内部には酸素が十分に供給されないため、好気性微生物は多孔質構造体の表面にしか担持することができない。 As the porous structure, it is preferable to use those having pores, particularly those having a three-dimensional solid network structure having continuous pores. If only a porous structure having such a structure is used, oxygen is not sufficiently supplied to the inside of the pores, so that aerobic microorganisms can only be supported on the surface of the porous structure.
 一方、本発明では、多孔質構造体に接触させる培養液として、好気性微生物及びマイクロナノバブルを含有する培養液を用いることで、多孔質構造体の細孔の奥まで酸素を供給でき、細孔の奥まで好気性微生物を担持させることができ、好気性微生物の担持密度を高くすることができる。 On the other hand, in the present invention, by using a culture solution containing aerobic microorganisms and micro-nano bubbles as a culture solution to be contacted with the porous structure, oxygen can be supplied to the depths of the pores of the porous structure. It is possible to carry aerobic microorganisms to the back of the substrate, and to increase the carrying density of aerobic microorganisms.
 さらに、生物反応により得られた好気性微生物の代謝産物などの反応物(以下、「目的物」という。)を微生物培養槽から回収する際等には、微生物培養液から好気性微生物を分離して、ろ過液を回収する必要があるが、本発明では、好気性微生物を多孔質構造体で担持しているため、好気性微生物の分離を簡単かつ経済的に行うことができる。 Furthermore, when recovering a reaction product (hereinafter referred to as “target product”) such as a metabolite of an aerobic microorganism obtained by a biological reaction from a microorganism culture tank, the aerobic microorganism is separated from the microorganism culture solution. In the present invention, since the aerobic microorganisms are supported by the porous structure, the aerobic microorganisms can be separated easily and economically.
 次に、担持構造体の製造方法の好適例について説明する。
 多孔質構造体に好気性微生物を担持させる方法としては、培養液に好気性微生物を添加して、好気性微生物を培養・増殖させた後に多孔質構造体と接触させ担持させる方法、または、培養液に好気性微生物及び多孔質構造体を添加して、好気性微生物を培養・増殖させながら担持させる方法が挙げられる。
Next, a preferred example of the method for manufacturing the carrying structure will be described.
As a method for supporting aerobic microorganisms in a porous structure, aerobic microorganisms are added to a culture solution, and after aerobic microorganisms are cultured and grown, they are brought into contact with and supported by the porous structure, or culture. Examples include a method in which an aerobic microorganism and a porous structure are added to the liquid, and the aerobic microorganism is supported while being cultured and grown.
 前者の方法は、次のような手順で行う。
a)まず、必要とする好気性微生物以外の微生物、細菌等が存在しないようにするため、多孔質構造体、培養液等を滅菌する。
b)次に、培養液に好気性微生物を添加し、培養液にマイクロナノバブルを含有させながら、好気性微生物を培養・増殖させる。
c)好気性微生物が一定濃度以上に増殖した段階で、培養液にマイクロナノバブルを含有させながら、多孔質構造体と接触させる。
The former method is performed by the following procedure.
a) First, sterilize the porous structure, the culture solution, and the like so that microorganisms, bacteria, and the like other than the required aerobic microorganisms do not exist.
b) Next, aerobic microorganisms are added to the culture solution, and the aerobic microorganisms are cultured and grown while the culture solution contains micro-nano bubbles.
c) At the stage where aerobic microorganisms have grown to a certain concentration or higher, the medium is brought into contact with the porous structure while containing micro-nano bubbles in the culture solution.
 また、後者の方法は、次のような手順で行う。
a)まず、必要とする好気性微生物以外の微生物、細菌等が存在しないようにするため、多孔質構造体、培養液等を滅菌する。
d)次に、培養液に多孔質構造体を添加し、培養液にマイクロナノバブルを含有させる。
e)培養液に好気性微生物を添加し、培養液にマイクロナノバブルを含有させながら、好気性微生物を培養・増殖させる。
The latter method is performed in the following procedure.
a) First, sterilize the porous structure, the culture solution, and the like so that microorganisms, bacteria, and the like other than the required aerobic microorganisms do not exist.
d) Next, the porous structure is added to the culture solution, and the culture solution contains micro-nano bubbles.
e) Add aerobic microorganisms to the culture solution, and culture and proliferate the aerobic microorganisms while containing micro-nano bubbles in the culture solution.
 上記の方法において用いる培養液には、主として糖類、窒素源が含まれる。
 糖類としては、通常、マルトース、スクロース、グルコース、フルクトース、これらの混合物等の糖類が用いられ、培養液における糖類の濃度は、特に限定されないものの、0.1~10w/v%に設定するのが好ましい。また、窒素源としては、塩化アンモニウム、硫酸アンモニウムまたはコーンスティープリカー、酵母エキス、肉エキス、ペプトン等が用いられ、0.1~10w/v%に設定するのが好ましい。さらに、培養液には糖類、窒素源以外にも、必要に応じて、ビタミン、無機塩類等を添加することが好ましい。
The culture solution used in the above method mainly contains saccharides and a nitrogen source.
As saccharides, saccharides such as maltose, sucrose, glucose, fructose, and mixtures thereof are usually used. The concentration of saccharides in the culture solution is not particularly limited, but is set to 0.1 to 10 w / v%. preferable. As the nitrogen source, ammonium chloride, ammonium sulfate, corn steep liquor, yeast extract, meat extract, peptone or the like is used, and it is preferably set to 0.1 to 10 w / v%. Furthermore, it is preferable to add vitamins, inorganic salts, and the like to the culture solution as needed in addition to the saccharides and the nitrogen source.
 上記工程b)及び工程e)における好気性微生物の培養液への添加濃度は、特に限定されないものの、0.5~10g/Lとするのが好ましく、3.0~6.0g/Lにするのがより好ましい。 The concentration of the aerobic microorganism added to the culture solution in step b) and step e) is not particularly limited, but is preferably 0.5 to 10 g / L, and preferably 3.0 to 6.0 g / L. Is more preferable.
 なお、上記工程b)においては、好気性微生物の増殖を促進するために処理水にマイクロナノバブルを含有させているが、マイクロナノバブルを含有させなくても好気性微生物の培養・増殖が十分迅速に行える場合には、マイクロナノバブルの含有を省略することができる。 In the above step b), micronano bubbles are contained in the treated water in order to promote the growth of aerobic microorganisms. However, the culture and proliferation of aerobic microorganisms can be carried out sufficiently rapidly without the inclusion of micronano bubbles. If possible, the inclusion of micro-nano bubbles can be omitted.
 上記工程c)における、マイクロナノバブルの含有させた培養液と多孔質構造体との接触は、例えば、処理水中に多孔質構造体を入れて振とう撹拌することにより行うことができる。 In the step c), the contact between the culture solution containing the micro-nano bubbles and the porous structure can be performed, for example, by placing the porous structure in the treated water and stirring with shaking.
 本発明における好気性微生物としては、醸造、発酵等の技術分野で従来用いられている、アスペルギルス菌等の麹菌(5~10μm)、納豆菌(2~3μm)、酢酸菌(5~10μm)、酵母菌(5μm)、乳酸菌(2~4μm)等の好気性微生物のほか、遺伝子組み換え技術で創り出される各種好気性微生物を用いることができる。 As the aerobic microorganism in the present invention, aspergillus oryzae (5 to 10 μm), Bacillus natto (2 to 3 μm), acetic acid bacteria (5 to 10 μm), which are conventionally used in technical fields such as brewing and fermentation, In addition to aerobic microorganisms such as yeast (5 μm) and lactic acid bacteria (2 to 4 μm), various aerobic microorganisms created by genetic engineering techniques can be used.
 連続孔を有する三次元立体網目構造を有する多孔質構造体の連続孔の孔径は、担持する好気性微生物の大きさにもよるが、通常は1~30μmであるのが好ましく、5~10μm前後であるのがより好ましい。 The pore diameter of the continuous pores of the porous structure having a three-dimensional three-dimensional network structure having continuous pores is preferably 1 to 30 μm, although it depends on the size of the aerobic microorganism to be supported, usually around 5 to 10 μm. It is more preferable that
 本発明において好適に用いられる多孔質構造体の素材としては、ポリビニルアルコールといったビニルアルコール系樹脂、ポリエチレングリコールといったエーテル系樹脂、ポリメタクリル酸といったアクリル系樹脂、ポリアクリルアミドといったアクリルアミド系樹脂、ポリエチレン、ポリプロピレンといったオレフィン系樹脂、ポリスチレンといったスチレン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートといったエステル系樹脂、ポリアクリロニトリルといったアクリロニトリル系樹脂、ポリウレタンスポンジといったウレタン系樹脂、アルギン酸カルシウム、κ(カッパ)カラギーナン、寒天、セルロース誘導体といった多糖類、ポリエステルエアクリレート、エポキシアクリレート、ウレタンアクリレートといった光硬化性樹脂、活性炭といった多孔質無機化合物などを例示することができる。 Examples of the material of the porous structure suitably used in the present invention include vinyl alcohol resins such as polyvinyl alcohol, ether resins such as polyethylene glycol, acrylic resins such as polymethacrylic acid, acrylamide resins such as polyacrylamide, polyethylene, and polypropylene. Olefin resins, styrene resins such as polystyrene, ester resins such as polyethylene terephthalate and polybutylene terephthalate, acrylonitrile resins such as polyacrylonitrile, urethane resins such as polyurethane sponge, calcium alginate, κ (kappa) carrageenan, agar, and cellulose derivatives Sugar, polyester acrylate, epoxy acrylate, urethane acrylate It said photocurable resin, and the like can be exemplified porous inorganic compounds such as activated carbon.
 より好適には、内部に至るまで多孔質で網目状となった構造を有する点、及びゲル内に多量の水を取り込むことができる点で、ポリビニルアルコール系多孔質ゲルが好ましい。 More preferably, a polyvinyl alcohol-based porous gel is preferable in that it has a porous and mesh-like structure up to the inside and a large amount of water can be taken into the gel.
 さらに、多孔質ゲルの機械的強度を十分に向上させることができ、生物反応の際に強い撹拌を行っても十分に耐え得る強度を有する点で、ホルマール化ポリビニルアルコール系多孔質ゲルやアセタール化ポリビニルアルコール系多孔質ゲルがより好ましい。ポリビニルアルコール系多孔質ゲルの具体例としては、例えば、株式会社クラレの商品名クラゲールを挙げることができる。 In addition, the mechanical strength of the porous gel can be improved sufficiently, and it has the strength that it can withstand even with strong agitation during a biological reaction. Formalized polyvinyl alcohol porous gel and acetalization A polyvinyl alcohol-based porous gel is more preferable. Specific examples of the polyvinyl alcohol-based porous gel include, for example, Kuraray Co., Ltd. trade name.
 本発明の担持構造体は、上記のように、培養液にマイクロナノバブルを含有させることで、好気性微生物の担持密度を高くしたものである。 As described above, the carrying structure of the present invention is one in which the carrying density of aerobic microorganisms is increased by adding micro-nano bubbles to the culture solution.
 生物反応を効率的に行うための要素としては、微生物培養液の好気性微生物の菌体密度を高くすることが挙げられるが、菌体密度を高くしすぎると、好気性微生物に栄養分及び酸素が十分に提供されなくなるため生物反応の効率が低下することとなる。 An element for efficiently carrying out a biological reaction is to increase the cell density of aerobic microorganisms in the microorganism culture solution, but if the cell density is too high, nutrients and oxygen are added to the aerobic microorganisms. Since it is not provided sufficiently, the efficiency of the biological reaction is reduced.
 培養液だけを用いて好気性微生物を培養する場合、好気性微生物を適正に培養できる菌体密度は、3~6g/L程度とされている。 When aerobic microorganisms are cultured using only the culture solution, the cell density at which aerobic microorganisms can be cultured properly is about 3 to 6 g / L.
 一方、好気性微生物を多孔質構造体に担持させる場合には、好気性微生物への栄養分及び酸素の提供の点には問題はないものの、従来の担持方法では多孔質構造体の細孔の奥まで好気性微生物を担持させることが難しいため、上記培養液を多孔質構造体に高密度で菌体を担持し続けることが困難であった。(純粋培養における多孔質構造体の細孔の奥まで好気性微生物を担持させた事例は見当たらない。) On the other hand, when the aerobic microorganisms are supported on the porous structure, there is no problem in providing nutrients and oxygen to the aerobic microorganisms, but in the conventional supporting method, the pores of the porous structure are not deep. Since it is difficult to support aerobic microorganisms, it has been difficult to keep the above culture solution supported on the porous structure at a high density. (There are no cases where aerobic microorganisms are supported deep in the pores of the porous structure in pure culture.)
 これに対して、本発明の担持構造体では、培養液にマイクロナノバブルを含有させることにより、多孔質構造体の細孔の奥まで好気性微生物を担持させることができ、好気性微生物、多孔質構造体の素材等にもよるが、菌体密度を上記培養液の菌体密度の5~6倍程度にすることができる。 On the other hand, in the carrying structure of the present invention, by containing micro-nano bubbles in the culture solution, aerobic microorganisms can be carried deep into the pores of the porous structure. Depending on the material of the structure, etc., the cell density can be about 5 to 6 times the cell density of the culture medium.
 担持構造体の形状は、特に限定されないが、例えば球状、直方体形状、立方体形状等の粉粒体形状が好ましい。粉粒体を用いれば、好気性微生物固定化のための表面積を大きく増大させることができて、より高効率で目的物を製造することができる。多孔質ゲル粉粒体の乾燥時の粒径(直径)は0.5~10mmであるのが好ましい。 The shape of the supporting structure is not particularly limited, but for example, a granular shape such as a spherical shape, a rectangular parallelepiped shape or a cubic shape is preferable. If the powder is used, the surface area for aerobic microorganism immobilization can be greatly increased, and the target product can be produced with higher efficiency. The particle size (diameter) of the porous gel powder when dried is preferably 0.5 to 10 mm.
 担持構造体の使用形態は、微生物培養液中にカラム、網体等で固定されていても、また、微生物培養液中に分散した状態で存在してもよい。 The usage structure of the supporting structure may be fixed in the microorganism culture solution with a column, a net or the like, or may be present in a dispersed state in the microorganism culture solution.
 2)微生物培養液にマイクロナノバブルを含有させること
 本発明においては、上記1)で得られた担持構造体は、培養液と共に微生物培養槽に収容され、この微生物培養液にマイクロナノバブルを含有させて生物反応が行われる。
2) Inclusion of micro-nano bubbles in the microorganism culture solution In the present invention, the support structure obtained in 1) above is housed in a microorganism culture tank together with the culture solution, and the microorganism culture solution contains micro-nano bubbles. Biological reactions take place.
 本発明では、上記1)で述べたように、生物反応に、好気性微生物を細孔の奥まで担持させた、好気性微生物の担持密度の高い多孔質構造体を用いるが、微生物培養液にマイクロナノバブルを含有させることにより、多孔質構造体の細孔の奥に担持した好気性微生物にも呼吸に必要な酸素を十分に供給できるので、生物反応の効率を向上することができる。 In the present invention, as described in 1) above, a porous structure having a high aerobic microorganism loading density in which aerobic microorganisms are carried to the back of the pores is used for the biological reaction. By containing the micro / nano bubbles, oxygen necessary for respiration can be sufficiently supplied to the aerobic microorganisms supported in the back of the pores of the porous structure, so that the efficiency of the biological reaction can be improved.
 微生物培養液にマイクロナノバブルを含有させる手段としては、
a)微生物培養槽の外部に設けたマイクロナノバブル発生装置により、微生物培養槽の微生物培養液にマイクロナノバブルを放出する手段、
b)微生物培養槽に培養液を供給する管路に設けたマイクロナノバブル発生装置により、微生物培養槽に供給される培養液にマイクロナノバブルを含有させる手段、
c)微生物培養液から回収したろ過液に、マイクロナノバブル発生装置によりマイクロナノバブルを含有させ、このマイクロナノバブルを含有するろ過液を微生物培養槽に還流する手段
d)マイクロナノバブルを予め含有させた培養液を、管路を通じて微生物培養槽に供給する手段
を採用することができる。
As a means for containing micro-nano bubbles in a microorganism culture solution,
a) means for releasing the micro / nano bubbles into the microorganism culture solution in the microorganism culture tank by the micro / nano bubble generator provided outside the microorganism culture tank;
b) Means for containing micro / nano bubbles in the culture solution supplied to the microorganism culture tank by the micro / nano bubble generator provided in the pipeline for supplying the culture solution to the microorganism culture tank,
c) Means for causing the filtrate collected from the microorganism culture solution to contain micro / nano bubbles with a micro / nano bubble generator and refluxing the filtrate containing the micro / nano bubbles to the microorganism culture tank d) Culture solution containing the micro / nano bubbles in advance It is possible to employ a means for supplying the microorganisms to the microorganism culture tank through a pipe line.
 これらの手段は、単独で、あるいは、組み合わせて採用できるが、どの手段を採用するかは、使用する好気性微生物の剪断力等に対する耐性、生物反応の効率、経済性等を考慮して、適宜選択することができる。 These means can be employed singly or in combination, but which means should be adopted as appropriate in consideration of the resistance to the shearing force of the aerobic microorganism used, the efficiency of the biological reaction, the economics, etc. You can choose.
 好気性微生物に与えるストレスやダメージが最も少ない手段は、上記b)及びd)の手段である。一般的には、上記a)の手段ではナノバブルの放出によって生じる剪断力により、また、上記c)手段ではろ過の際に生じる剪断力により、好気性微生物にストレスやダメージが与えられるが、本発明では好気性微生物を多孔質構造体で担持しているため、このストレスやダメージを大幅に軽減することができる。 The means with the least stress and damage to the aerobic microorganism are the means b) and d) above. In general, aerobic microorganisms are stressed and damaged by the shearing force generated by the release of nanobubbles in the means a) and by the shearing force generated during filtration in the c) means. Then, since the aerobic microorganisms are supported by the porous structure, this stress and damage can be greatly reduced.
 マイクロナノバブル発生装置としては、公知あるいは市販されている装置を用いることができる。 As the micro / nano bubble generating device, a known or commercially available device can be used.
 マイクロバブル発生装置としては、例えば、ある程度の高圧で十分な量の気体を水中に溶解させた後、その圧力を解放してやることで溶解した気体の過飽和条件を作り出す「加圧溶解型マイクロバブル発生装置」、水流を起こして渦を発生させ、渦内に大きな気泡を巻き込み、この渦を崩壊させたときに気泡がバラバラに細分化する現象を利用した「気液二相流旋回型マイクロバブル発生装置」等を用いることができる。 As a microbubble generator, for example, a sufficient amount of gas is dissolved in water at a certain high pressure, and then the pressure is released to create a supersaturated condition of the dissolved gas. "A gas-liquid two-phase flow swirl type micro-bubble generator that utilizes the phenomenon of generating a vortex by generating a water flow, entraining a large bubble in the vortex, and then breaking the vortex into bubbles. Or the like.
 また、ナノバブル発生装置としては、例えば、特開2007-312690号公報、特開2006-289183号公報、特開2005-245817号公報、特開2007-136255号公報、特開2009-39600号公報に記載されたもの等を用いることができる。 Examples of nanobubble generators include, for example, JP 2007-312690, JP 2006-289183, JP 2005-245817, JP 2007-136255, and JP 2009-39600. Those described can be used.
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法の主要な特徴について、上記1)及び2)で説明したが、その他の特徴について、以下に説明する。 The main features of the biological reaction device of the present invention and the biological reaction method using this biological reaction device have been described in 1) and 2) above, but other features will be described below.
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法においては、目的物の回収は、バッチ式で行ってもよいし、連続式で行ってもよい。 In the bioreactor of the present invention and the bioreaction method using this bioreactor, the recovery of the target product may be performed batchwise or continuously.
 バッチ式で行う場合には、微生物培養槽内における生物反応が完了した後、培養槽ポンプを駆動して、ろ過したろ過液をろ過液貯槽に移送する。 In the case of carrying out in a batch system, after the biological reaction in the microorganism culture tank is completed, the culture tank pump is driven to transfer the filtered filtrate to the filtrate storage tank.
 連続式で行う場合には、微生物培養槽の微生物培養液の水位が一定に保たれるように、微生物培養槽に供給される培養液の量とバランスをとって、ろ過したろ過液を抜き出し、ろ過液貯槽に移送する。 When performing in a continuous mode, in order to keep the water level of the microorganism culture solution in the microorganism culture tank constant, balance the amount of the culture solution supplied to the microorganism culture tank, extract the filtered filtrate, Transfer to the filtrate storage tank.
 バッチ式、連続式のどちらを選定するかは、生物反応の効率、必要とされる目的物の純度、経済性等を考慮して、適宜選択することができる。 The batch type or the continuous type can be selected as appropriate in consideration of the efficiency of biological reaction, the required purity of the target product, economy, and the like.
 一般の生物反応装置、生物反応方法においては、目的物を回収する際に、微生物培養液から微生物を分離するために、精密なろ過を行う必要があるが、本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法では、好気性微生物は多孔質構造体に担持されているので、担持構造体を分離できる程度の粗いろ過を行えばよい。 In general biological reaction apparatuses and biological reaction methods, it is necessary to carry out precise filtration in order to separate microorganisms from a microorganism culture solution when recovering a target product. In the biological reaction method using the reaction apparatus, the aerobic microorganisms are supported on the porous structure, and therefore, it is only necessary to perform rough filtration to the extent that the supported structure can be separated.
 したがって、本発明では、ろ過を効率的、経済的に行うことができ、さらに、好気性微生物に与えるストレスやダメージを小さくすることができる。 Therefore, in the present invention, filtration can be performed efficiently and economically, and further, stress and damage given to aerobic microorganisms can be reduced.
 本発明のろ過に用いるろ過手段としては、ポリフッ化ビニリデン等の有機高分子化合物からなる多孔性膜、金属製の金網等のろ過膜を好適に用いることができる。 As a filtration means used for the filtration of the present invention, a porous membrane made of an organic polymer compound such as polyvinylidene fluoride, or a filtration membrane such as a metal wire mesh can be suitably used.
 また、生物反応中において、担持構造体から好気性微生物が脱離する可能性があるため、好気性微生物が僅かでも混入するのを回避したい場合には、上記ろ過手段による粗いろ過を行った後に、醸造や発酵の技術分野で通常行われている精密ろ過を行うことができる。 In addition, since there is a possibility that aerobic microorganisms may be detached from the support structure during a biological reaction, if it is desired to avoid even a slight amount of aerobic microorganisms from being mixed, after rough filtration by the filtration means, Microfiltration, which is normally performed in the technical fields of brewing and fermentation, can be performed.
 このように精密ろ過を併用する場合であっても、担持構造体を用いたこと及び粗いろ過を行ったことにより、精密ろ過における目詰まりを著しく減少できるという利点がある。 Even when microfiltration is used in this way, there is an advantage that clogging in microfiltration can be remarkably reduced by using the support structure and performing rough filtration.
 以上に説明したように、本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法は、マイクロナノバブルを利用して、好気性微生物用いた生物反応を効率的かつ経済的に行うことができ、醸造や発酵といった生物反応を利用する食品、薬品、化学品などの製造のみならず、バイオマスを利用してバイオエタノール等を製造するバイオリファイナリーにも適用できる有用なものである。 As described above, the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus can efficiently and economically perform biological reactions using aerobic microorganisms using micro-nano bubbles. It can be applied not only to the production of foods, chemicals, chemicals and the like using biological reactions such as brewing and fermentation, but also to a biorefinery for producing bioethanol and the like using biomass.
 また、本発明の好気性微生物を担持させた多孔質構造体は、生物反応を効率的かつ経済的に行うことのできる有用なものである。 Also, the porous structure carrying the aerobic microorganism of the present invention is useful for performing a biological reaction efficiently and economically.
 以下、本発明の実施形態を、添付の図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
 図1に、この発明の生物反応装置の第1実施形態を模式的に示す。
 第1実施形態では、
〇担持構造体7が、微生物培養槽1中に固定部材8で固定されていること、
〇マイクロナノバブル発生装置3が微生物培養槽1に培養液6を供給する管路に設けられており、微生物培養槽1に供給される培養液6にマイクロナノバブルを含有させること、
及び
〇マイクロナノバブル発生装置2が微生物培養槽1の外部に設けられており、微生物培養槽1の微生物培養液5にマイクロナノバブルを吹き込むこと、
を特徴としている。
FIG. 1 schematically shows a first embodiment of the biological reaction apparatus of the present invention.
In the first embodiment,
-The carrying structure 7 is fixed in the microorganism culture tank 1 by the fixing member 8;
O The micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
And a micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1,
It is characterized by.
 第1実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に供給する際に、マイクロナノバブル発生装置3により、培養液6にマイクロナノバブルを含有させる。
b)微生物培養槽1に供給した後にも、マイクロナノバブル発生装置2からマイクロナノバブルを吹き込んで、微生物培養液5にマイクロナノバブルを含有させる。
c)微生物培養槽1内で、担持構造体7に担持された好気性微生物の生物反応により、目的物を生成する。
d)培養槽ポンプ10を駆動し、ろ過手段9で、固定部材8から脱離した担持構造体7を分離し、目的物を含有するろ過水をろ過液貯槽13に回収する。
 このように、第1実施形態では、好気性微生物を細孔の奥まで担持させた、好気性微生物の担持密度の高い担持構造体7及びマイクロナノバブルを含有させた微生物培養液5を用いることにより、生物反応を効率良く進めて、目的物を効率良く得ることができる。
In the first embodiment, the target product is generated and collected by the following steps.
a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles.
b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles.
c) In the microorganism culture tank 1, a target product is generated by a biological reaction of aerobic microorganisms supported on the support structure 7.
d) The culture tank pump 10 is driven, the supporting structure 7 detached from the fixing member 8 is separated by the filtering means 9, and the filtrate containing the target substance is collected in the filtrate storage tank 13.
As described above, in the first embodiment, by using the supporting structure 7 having aerobic microorganisms supported to the back of the pores and having a high aerobic microorganism supporting density, and the microorganism culture solution 5 containing micro-nano bubbles. The biological reaction can be advanced efficiently, and the target product can be obtained efficiently.
 図2に、この発明の生物反応装置の第2実施形態を模式的に示す。
 第2実施形態は、第1実施形態における培養液6及び微生物培養液5にマイクロナノバブルを含有させる手段を、マイクロナノバブル発生装置4を用いて、ろ過手段9でろ過したろ過液にマイクロナノバブルを含有させ、このマイクロナノバブルを含有するろ過液を微生物培養槽1に還流する手段に変更したものである。
FIG. 2 schematically shows a second embodiment of the biological reaction apparatus of the present invention.
In the second embodiment, the means for causing the culture solution 6 and the microorganism culture solution 5 to contain micro-nano bubbles in the first embodiment, and the micro-nano bubbles are contained in the filtrate filtered by the filtration means 9 using the micro-nano bubble generator 4. And the means for refluxing the filtrate containing the micro / nano bubbles to the microorganism culture tank 1 is used.
 第2実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に培養液6を供給する。
b)バルブ11を開、バルブ12を閉とした状態で培養槽ポンプ10を駆動し、ろ過手段9で固定部材8から脱離した担持構造体7を分離し、ろ過液をマイクロナノバブル発生装置4に導き、マイクロナノバブルを含有させた後、微生物培養槽1に戻す。
c)微生物培養槽1内で、担持構造体7に担持された好気性微生物の生物反応により、目的物を生成する。
d)バルブ11を閉、バルブ12を開とした状態で培養槽ポンプ10を駆動し、ろ過手段9で、固定部材8から脱離した担持構造体7を分離して、目的物を含有するろ過水をろ過液貯槽13に回収する。
In the second embodiment, the target product is generated and collected by the following steps.
a) The culture solution 6 is supplied to the microorganism culture tank 1.
b) The culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the carrier structure 7 detached from the fixing member 8 is separated by the filtering means 9, and the filtrate is supplied to the micro / nano bubble generator 4. Then, after containing micro-nano bubbles, it is returned to the microorganism culture tank 1.
c) In the microorganism culture tank 1, a target product is generated by a biological reaction of aerobic microorganisms supported on the support structure 7.
d) The culture tank pump 10 is driven in a state in which the valve 11 is closed and the valve 12 is opened, and the supporting structure 7 detached from the fixing member 8 is separated by the filtering means 9 and filtered containing the target product. Water is collected in the filtrate storage tank 13.
 第2実施形態のろ過液にマイクロナノバブルを含有させる手段は、微生物培養槽1とは別の箇所で、ろ過液に対して適用されるので、好気性微生物が剪断力等によるストレスやダメージを受けにくいという利点がある。 The means for incorporating the micro-nano bubbles into the filtrate of the second embodiment is applied to the filtrate at a location different from the microorganism culture tank 1, so that the aerobic microorganisms are subjected to stress or damage due to shearing force or the like. There is an advantage that it is difficult.
 図3に、この発明の生物反応装置の第3実施形態を模式的に示す。
 第3実施形態は、培養液6また微生物培養液5にマイクロナノバブルを含有させる手段として、
 第1実施形態で用いられている、微生物培養槽1に供給される培養液6及び微生物培養槽1の微生物培養液5にマイクロナノバブルを含有させる手段と、第2実施形態で用いられているろ過手段9でろ過したろ過液にマイクロナノバブルを含有させ、このマイクロナノバブルを含有するろ過液を微生物培養槽1に還流する手段とを、併用したものである。
FIG. 3 schematically shows a third embodiment of the biological reaction apparatus of the present invention.
In the third embodiment, as means for containing micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5,
Means for containing micro-nano bubbles in the culture medium 6 supplied to the microorganism culture tank 1 and the microorganism culture liquid 5 in the microorganism culture tank 1 used in the first embodiment, and the filtration used in the second embodiment The filtrate filtered by the means 9 is made to contain micro-nano bubbles, and the means for refluxing the filtrate containing the micro-nano bubbles to the microorganism culture tank 1 is used in combination.
 微生物培養液5中のマイクロナノバブル含有量を高めたい場合には、このように複数のマイクロナノバブル含有手段を併用することが有効である。 When it is desired to increase the content of micro / nano bubbles in the microorganism culture solution 5, it is effective to use a plurality of means containing micro / nano bubbles in this way.
 図4に、この発明の生物反応装置の第4実施形態を模式的に示す。
 第4実施形態では、担持構造体7を微生物培養液5中に分散した状態で存在させており、さらに、微生物培養槽1には、微生物培養液5を撹拌するための培養槽撹拌機14が設置されている。
FIG. 4 schematically shows a fourth embodiment of the biological reaction apparatus of the present invention.
In the fourth embodiment, the support structure 7 is present in a dispersed state in the microorganism culture solution 5, and the microorganism culture vessel 1 further includes a culture vessel agitator 14 for stirring the microorganism culture solution 5. is set up.
 第4実施形態では、
〇担持構造体7が、微生物培養槽1中に分散した状態で存在しており、培養槽撹拌機14で撹拌されること、
〇マイクロナノバブル発生装置3が微生物培養槽1に培養液6を供給する管路に設けられており、微生物培養槽1に供給される培養液6にマイクロナノバブルを含有させること、
及び
〇マイクロナノバブル発生装置2が微生物培養槽1の外部に設けられており、微生物培養槽1の微生物培養液5にマイクロナノバブルを吹き込むこと、
を特徴としている。
In the fourth embodiment,
The carrier structure 7 is present in a dispersed state in the microorganism culture tank 1 and is stirred by the culture tank agitator 14;
O The micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
And a micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1,
It is characterized by.
 第4実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に供給する際に、マイクロナノバブル発生装置3により、培養液6にマイクロナノバブルを含有させる。
b)微生物培養槽1に供給した後にも、マイクロナノバブル発生装置2からマイクロナノバブルを吹き込んで、微生物培養液5にマイクロナノバブルを含有させる。
c)微生物培養槽1内で、撹拌される担持構造体7に担持された好気性微生物の生物反応により、目的物を生成する。
d)培養槽ポンプ10を駆動し、ろ過手段9で、担持構造体7を分離して、目的物を含有するろ過水をろ過液貯槽13に回収する。
 このように、第4実施形態では、好気性微生物を細孔の奥まで担持させた、好気性微生物の担持密度の高い担持構造体7及びマイクロナノバブルを含有させた微生物培養液5を用いることにより、生物反応を効率良く進めて、目的物を効率良く得ることができる。
In the fourth embodiment, the object is generated and collected by the following steps.
a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles.
b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles.
c) In the microorganism culture tank 1, a target product is generated by the biological reaction of the aerobic microorganisms supported on the support structure 7 to be stirred.
d) The culture tank pump 10 is driven, the supporting structure 7 is separated by the filtering means 9, and the filtrate containing the target substance is collected in the filtrate storage tank 13.
As described above, in the fourth embodiment, by using the supporting structure 7 having a high aerobic microorganism supporting density and supporting the aerobic microorganism to the back of the pores and the microorganism culture solution 5 containing the micro / nano bubbles. The biological reaction can be advanced efficiently, and the target product can be obtained efficiently.
 第4実施形態では、担持構造体7を微生物培養液5に分散し撹拌するため、多孔質構造体の細孔の奥に担持させている好気性微生物にも、栄養分及び酸素が十分に提供され、生物反応を促進できるというメリットがあるが、一方、撹拌による剪断力により、好気性微生物がストレスやダメージを受けやすく、好気性微生物が多孔質構造体から離脱しやすい等のデメリットがある。 In the fourth embodiment, since the support structure 7 is dispersed and stirred in the microorganism culture solution 5, nutrients and oxygen are sufficiently provided also to the aerobic microorganisms supported in the back of the pores of the porous structure. Although there is a merit that a biological reaction can be promoted, there is a demerit such that the aerobic microorganisms are easily subjected to stress and damage due to the shearing force by stirring, and the aerobic microorganisms are easily detached from the porous structure.
 図5に、この発明の生物反応装置の第5実施形態を模式的に示す。
 第5実施形態は、第4実施形態における培養液6及び微生物培養液5にマイクロナノバブルを含有させる手段を、マイクロナノバブル発生装置4を用いて、ろ過手段9でろ過したろ過液にマイクロナノバブルを含有させ、このマイクロナノバブルを含有するろ過液を微生物培養槽1に還流する手段に変更したものである。
FIG. 5 schematically shows a fifth embodiment of the biological reaction apparatus of the present invention.
In the fifth embodiment, the means for causing the culture solution 6 and the microorganism culture solution 5 to contain micro-nano bubbles in the fourth embodiment, and the micro-nano bubbles are contained in the filtrate filtered by the filtration means 9 using the micro-nano bubble generator 4. And the means for refluxing the filtrate containing the micro / nano bubbles to the microorganism culture tank 1 is used.
 第5実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に培養液6を供給する。
b)バルブ11を開、バルブ12を閉とした状態で培養槽ポンプ10を駆動し、ろ過手段9で担持構造体7を分離し、ろ過液をマイクロナノバブル発生装置4に導き、マイクロナノバブルを含有させた後、微生物培養槽1に戻す。
c)微生物培養槽1内で、撹拌される担持構造体7に担持された好気性微生物の生物反応により、目的物を生成する。
d)培養槽ポンプ10を駆動し、ろ過手段9で、担持構造体7を分離して、目的物を含有するろ過水をろ過液貯槽13に回収する。
In the fifth embodiment, the target object is generated and collected by the following steps.
a) The culture solution 6 is supplied to the microorganism culture tank 1.
b) The culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the supporting structure 7 is separated by the filtering means 9, the filtrate is guided to the micro / nano bubble generator 4, and contains micro / nano bubbles Then, return to the microorganism culture tank 1.
c) In the microorganism culture tank 1, a target product is generated by the biological reaction of the aerobic microorganisms supported on the support structure 7 to be stirred.
d) The culture tank pump 10 is driven, the supporting structure 7 is separated by the filtering means 9, and the filtrate containing the target substance is collected in the filtrate storage tank 13.
 第5実施形態では、第4実施形態と同じく、生物反応を促進できるというメリットがあるが、一方、撹拌による剪断力により、好気性微生物がストレスやダメージを受けやすく、好気性微生物が多孔質構造体から離脱しやすい等のデメリットがある。 In the fifth embodiment, as in the fourth embodiment, there is a merit that the biological reaction can be promoted. On the other hand, the aerobic microorganisms are easily subjected to stress and damage due to the shearing force by stirring, and the aerobic microorganisms have a porous structure. There are disadvantages such as being easy to leave the body.
 また、第5実施形態では、ろ過液にマイクロナノバブルを含有させる手段は、微生物培養槽1とは別の箇所で、ろ過液に対して適用されるので、好気性微生物が剪断力等によるストレスやダメージを受けにくいという利点がある。 In the fifth embodiment, the means for adding micro-nano bubbles to the filtrate is applied to the filtrate at a location different from the microorganism culture tank 1, so that the aerobic microorganisms are subjected to stress caused by shearing force or the like. There is an advantage that it is not easily damaged.
 図6に、この発明の生物反応装置の第6実施形態を模式的に示す。
 第6実施形態は、培養液6または微生物培養液5にマイクロナノバブルを含有させる手段として、
 第4実施形態で用いられている、微生物培養槽1に供給される培養液6及び微生物培養槽1の微生物培養液5にマイクロナノバブルを含有させる手段と、第5実施形態で用いられているろ過手段9でろ過したろ過液にマイクロナノバブルを含有させ、このマイクロナノバブルを含有するろ過液を微生物培養槽1に還流する手段とを、併用したものである。
FIG. 6 schematically shows a sixth embodiment of the biological reaction apparatus of the present invention.
In the sixth embodiment, as means for containing micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5,
Means for containing micro-nano bubbles in the culture medium 6 supplied to the microorganism culture tank 1 and the microorganism culture liquid 5 in the microorganism culture tank 1 used in the fourth embodiment, and the filtration used in the fifth embodiment The filtrate filtered by the means 9 is made to contain micro-nano bubbles, and the means for refluxing the filtrate containing the micro-nano bubbles to the microorganism culture tank 1 is used in combination.
 微生物培養液5中のマイクロナノバブル含有量を高めたい場合には、このように複数の手段を併用することが有効である。 In order to increase the content of micro / nano bubbles in the microorganism culture solution 5, it is effective to use a plurality of means in this way.
 1 微生物培養槽
 2~4 マイクロナノバブル発生装置
 5 微生物培養液
 6 培養液
 7 担持構造体(好気性微生物を担持させた多孔質構造体)
 8 固定部材
 9 ろ過手段
10 培養槽ポンプ
11~12 バルブ
13 ろ過液貯槽
14 培養槽撹拌機
DESCRIPTION OF SYMBOLS 1 Microbial culture tank 2-4 Micro-nano bubble generator 5 Microbial culture solution 6 Culture solution 7 Carrying structure (porous structure carrying aerobic microorganisms)
8 Fixing member 9 Filtration means 10 Culture tank pump 11 to 12 Valve 13 Filtrate storage tank 14 Culture tank agitator

Claims (13)

  1.  培養液、及び好気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体を含有する微生物培養液を収容する微生物培養槽と、
     上記微生物培養液にマイクロナノバブルを含有させるマイクロナノバブル発生装置とを備えることを特徴とする生物反応装置。
    A microorganism culture tank containing a culture solution and a microorganism culture solution containing a porous structure with a high loading density, in which an aerobic microorganism is supported to the depths of the pores;
    A biological reaction apparatus comprising: a micro / nano bubble generating apparatus for containing micro / nano bubbles in the microorganism culture solution.
  2.  上記担持密度の高い多孔質構造体が、多孔質構造体と、上記好気性微生物及びマイクロナノバブルを含有する培養液とを接触させることにより得られるものである、請求項1に記載の生物反応装置。 The biological reaction device according to claim 1, wherein the porous structure having a high loading density is obtained by bringing the porous structure into contact with a culture solution containing the aerobic microorganisms and micro-nano bubbles. .
  3.  上記担持密度の高い多孔質構造体が、連続孔のある三次元立体網目構造を有することを特徴とする、請求項1または2に記載の生物反応装置。 The biological reaction apparatus according to claim 1 or 2, wherein the porous structure having a high loading density has a three-dimensional three-dimensional network structure with continuous pores.
  4.  上記担持密度の高い多孔質構造体が、ポリビニルアルコール系多孔質ゲルであることを特徴とする、請求項1~3のいずれかに記載の生物反応装置。 The bioreactor according to any one of claims 1 to 3, wherein the porous structure having a high loading density is a polyvinyl alcohol-based porous gel.
  5.  上記マイクロナノバブル発生装置が上記微生物培養槽の外部に設けられ、上記微生物培養槽の微生物培養液にマイクロナノバブルを吹き込むことを特徴とする、請求項1~4のいずれかに記載の生物反応装置。 The biological reaction apparatus according to any one of claims 1 to 4, wherein the micro / nano bubble generating apparatus is provided outside the microorganism culture tank, and the micro / nano bubbles are blown into a microorganism culture solution in the microorganism culture tank.
  6.  上記マイクロナノバブル発生装置が上記微生物培養槽に培養液を供給する管路に設けられ、上記微生物培養槽に供給される培養液にマイクロナノバブルを含有させることを特徴とする、請求項1~5のいずれかに記載の生物反応装置。 6. The micro-nano bubble generating device is provided in a conduit for supplying a culture solution to the microorganism culture tank, and the culture solution supplied to the microorganism culture tank contains micro-nano bubbles. The biological reaction apparatus in any one.
  7.  上記担持密度の高い多孔質構造体が、上記微生物培養液中にカラム、網体等の固定部材で固定されていることを特徴とする、請求項1~6のいずれかに記載の生物反応装置。 The bioreactor according to any one of claims 1 to 6, wherein the porous structure having a high loading density is fixed in the microorganism culture solution by a fixing member such as a column or a net. .
  8.  上記担持密度の高い多孔質構造体が、上記微生物培養液中に分散した状態で存在することを特徴とする、請求項1~6のいずれかに記載の生物反応装置。 The biological reaction apparatus according to any one of claims 1 to 6, wherein the porous structure having a high loading density is present in a dispersed state in the microorganism culture solution.
  9.  上記微生物培養液から上記担持密度の高い多孔質構造体を分離し、ろ過液を回収するろ過手段を、上記微生物培養槽または上記微生物培養槽から上記微生物培養液を排出する管路に備えることを特徴とする、請求項1~8のいずれかに記載の生物反応装置。 A filtration means for separating the porous structure having a high carrying density from the microorganism culture solution and collecting the filtrate is provided in the microorganism culture tank or a conduit for discharging the microorganism culture solution from the microorganism culture tank. The biological reaction device according to any one of claims 1 to 8, characterized in that it is characterized in that:
  10.  上記ろ過液にマイクロナノバブルを含有させるマイクロナノバブル発生装置及びこのマイクロナノバブルを含有させたろ過液を微生物培養槽に還流する管路を備えることを特徴とする、請求項9記載の生物反応装置。 The bioreactor according to claim 9, further comprising a micro / nano bubble generator for containing micro / nano bubbles in the filtrate and a conduit for refluxing the filtrate containing the micro / nano bubbles to a microorganism culture tank.
  11.  上記請求項1~10のいずれかに記載の生物反応装置により、好気性微生物の代謝産物等の反応物を得ることを特徴とする、生物反応方法。 A biological reaction method, wherein a reaction product such as a metabolite of an aerobic microorganism is obtained by the biological reaction device according to any one of claims 1 to 10.
  12.  上記請求項1~11のいずれかに記載の生物反応装置または生物反応方法において使用される、好気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体。 A porous structure having a high loading density in which aerobic microorganisms are carried to the depths of the pores used in the biological reaction device or the biological reaction method according to any one of claims 1 to 11.
  13.  上記請求項12に記載の担持密度の高い多孔質構造体の製造方法であって、多孔質構造体と、上記好気性微生物及びマイクロナノバブルを含有する培養液とを接触させることを特徴とする、担持密度の高い多孔質構造体の製造方法。 A method for producing a porous structure having a high loading density according to claim 12, wherein the porous structure is contacted with a culture solution containing the aerobic microorganisms and micro-nano bubbles. A method for producing a porous structure having a high loading density.
PCT/JP2014/080574 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure WO2016079820A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/080574 WO2016079820A1 (en) 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure
JP2016560283A JPWO2016080487A1 (en) 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure carrying aerobic or facultative anaerobic microorganisms used in biological reaction apparatus, and method for producing the porous structure
PCT/JP2015/082548 WO2016080487A1 (en) 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080574 WO2016079820A1 (en) 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure

Publications (1)

Publication Number Publication Date
WO2016079820A1 true WO2016079820A1 (en) 2016-05-26

Family

ID=56013433

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/080574 WO2016079820A1 (en) 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure
PCT/JP2015/082548 WO2016080487A1 (en) 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082548 WO2016080487A1 (en) 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure

Country Status (2)

Country Link
JP (1) JPWO2016080487A1 (en)
WO (2) WO2016079820A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220373436A1 (en) * 2020-02-04 2022-11-24 Steve Naumovski A system and method for detecting airborne pathogens
KR102399749B1 (en) * 2021-12-14 2022-05-20 (주)해인시스템 Nanobubble generating device and water purification system using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503848A (en) * 1990-02-01 1993-06-24 アクゾ・エヌ・ヴエー Cell culture method
US5534143A (en) * 1990-09-18 1996-07-09 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Microbubble generator for the transfer of oxygen to microbial inocula, and microbubble generator immobilized cell reactor
JPH0937766A (en) * 1995-07-28 1997-02-10 Kansai Paint Co Ltd Interfacial bioreactor system
JP2007312690A (en) * 2006-05-26 2007-12-06 Sharp Corp Method for activating microorganism and device for activating the same
JP2007312689A (en) * 2006-05-26 2007-12-06 Sharp Corp Method for performing biological reaction, and device for performing the biological reaction
US20100076380A1 (en) * 2008-06-16 2010-03-25 Amprotein Corporation Bioreactors
JP2011120535A (en) * 2009-12-11 2011-06-23 Ihi Corp Adherent cell culture apparatus
US20110177564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuel production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091758B1 (en) * 1999-10-15 2000-09-25 アクアス株式会社 Oil-decomposing bacteria and method for treating oil-containing wastewater using the same
JP2002363279A (en) * 2001-06-01 2002-12-18 Nagase & Co Ltd METHOD FOR PRODUCING POLY-gamma-GLUTAMIC ACID
JP4879925B2 (en) * 2008-02-25 2012-02-22 シャープ株式会社 Water treatment apparatus and water treatment method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503848A (en) * 1990-02-01 1993-06-24 アクゾ・エヌ・ヴエー Cell culture method
US5534143A (en) * 1990-09-18 1996-07-09 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Microbubble generator for the transfer of oxygen to microbial inocula, and microbubble generator immobilized cell reactor
JPH0937766A (en) * 1995-07-28 1997-02-10 Kansai Paint Co Ltd Interfacial bioreactor system
JP2007312690A (en) * 2006-05-26 2007-12-06 Sharp Corp Method for activating microorganism and device for activating the same
JP2007312689A (en) * 2006-05-26 2007-12-06 Sharp Corp Method for performing biological reaction, and device for performing the biological reaction
US20100076380A1 (en) * 2008-06-16 2010-03-25 Amprotein Corporation Bioreactors
JP2011120535A (en) * 2009-12-11 2011-06-23 Ihi Corp Adherent cell culture apparatus
US20110177564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuel production

Also Published As

Publication number Publication date
WO2016080487A1 (en) 2016-05-26
JPWO2016080487A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP4146476B2 (en) Biological reactor
Bakonyi et al. Fermentative hydrogen production in anaerobic membrane bioreactors: a review
Margaritis et al. Advances in ethanol production using immobilized cell systems
JP5639098B2 (en) Membrane bioreactor
JP5374044B2 (en) Hydrogen fermentation apparatus and method for producing hydrogen
WO2016117599A1 (en) Bioreactor provided with device for supplying micro/nano-bubbles containing oxygen and micro/nano-bubbles containing microbicidal gas such as ozone
JP4956052B2 (en) Microbe activation device
WO2017029733A1 (en) Biological reaction device, and biological reaction method using said biological reaction device
JP2014024032A (en) Anaerobic biological treatment method and anaerobic biological treatment device
JP2005152763A (en) Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
WO2016079820A1 (en) Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure
JP2012076001A (en) Anaerobic wastewater treatment apparatus
CN114806810A (en) Oxygen micro-nano bubble enhanced aerobic fermentation bioreactor and application thereof
CN102127505B (en) Immobilized cell bioreactor
JP6499203B2 (en) Biological reaction device provided with device for supplying micro-nano bubbles of oxygen-containing gas, device for removing dissolved carbon dioxide, and biological reaction method using this biological reaction device
JP6087476B1 (en) Biological reaction device using oxygen-enriched micro-nano bubbles and biological reaction method using this biological reaction device
JP2012076000A (en) One tank type anaerobic wastewater treatment apparatus
US9534236B2 (en) Membranes for wastewater-generated energy and gas
JP2009261287A (en) Chlorella/hydrogen production method and chlorella/hydrogen production apparatus
Azbar et al. Use of immobilized cell systems in biohydrogen production
CN113980781A (en) Tidal carbon dioxide biological methanation device and method
KR20190081764A (en) Vertically symmetric open microalgae culture system
JP5985114B1 (en) Biological reaction apparatus and biological reaction method using the biological reaction apparatus
David et al. Cyanobacterial biofilms in natural and synthetic environments
CN204644337U (en) A kind of bioreactor guide shell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14906642

Country of ref document: EP

Kind code of ref document: A1