WO2016080487A1 - Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure - Google Patents

Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure Download PDF

Info

Publication number
WO2016080487A1
WO2016080487A1 PCT/JP2015/082548 JP2015082548W WO2016080487A1 WO 2016080487 A1 WO2016080487 A1 WO 2016080487A1 JP 2015082548 W JP2015082548 W JP 2015082548W WO 2016080487 A1 WO2016080487 A1 WO 2016080487A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous structure
biological reaction
microorganism culture
culture solution
micro
Prior art date
Application number
PCT/JP2015/082548
Other languages
French (fr)
Japanese (ja)
Inventor
信秀 国友
宏記 藤井
伸宏 田中
正守 樋口
Original Assignee
三菱化学エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学エンジニアリング株式会社 filed Critical 三菱化学エンジニアリング株式会社
Priority to JP2016560283A priority Critical patent/JPWO2016080487A1/en
Publication of WO2016080487A1 publication Critical patent/WO2016080487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/084Polymers containing vinyl alcohol units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof

Definitions

  • the present invention relates to a biological reaction apparatus and a biological reaction method using the biological reaction apparatus, and a porous medium in which an aerobic or facultative anaerobic microorganism is previously supported in a microorganism culture solution before the biological reaction.
  • the microorganism culture solution contains micro-nano bubbles.
  • aerobic or facultative anaerobic microorganisms are referred to as “aerobic microorganisms, etc.”
  • porous structures that do not carry aerobic or facultative anaerobic microorganisms are simply referred to as “porous structures”.
  • the present invention also relates to a support structure and a method for producing the support structure used in this bioreaction apparatus or bioreaction apparatus, a porous structure, a culture solution containing aerobic microorganisms and micro-nano bubbles, and the like. By contacting the aerobic microorganisms or the like to the depths of the pores of the biological porous structure before use in biological reactions.
  • Biological reactions differ from chemical reactions in that the reaction itself is slow, but because it does not use much energy and many chemical substances, it is a mild and meaningful reaction for the environment.
  • the biological reaction generally has a problem that the reaction is mild and slow. That is, for chemical reactions, a reaction within one hour is often sufficient, whereas in the case of biological reactions, a reaction time of several days or longer, several days or particularly several weeks or longer is required. There is also. For this reason, it is required to perform biological reactions efficiently and economically.
  • Patent Documents 1 to 3 disclose that in the cultivation of microorganisms, the presence of micro-nano bubbles or nano-bubbles in the culture medium promotes the activation of microorganisms and the like. It is disclosed that the efficiency and the reaction time are reduced.
  • Patent Document 1 in a batch method, a culture solution is extracted from a culture tank, filtered with a bacterial cell filter to obtain a filtrate, and micronano bubbles are mixed with the filtrate and returned to the culture tank. It is described to do.
  • Patent Document 2 describes that micro-nano bubbles and nano bubbles are mixed with the culture liquid before supplying the culture liquid to the culture tank.
  • Patent Document 3 supplies the culture liquid to the culture tank. It is described that the micro / nano bubbles are mixed in the previous stage.
  • Patent Documents 4 to 5 that a microorganism is supported by a porous carrier in a biological reaction.
  • Patent Document 4 describes that a microorganism used for wastewater treatment is attached to and supported on a polyvinyl alcohol-containing hydrogel
  • Patent Document 5 describes a citrate-fermenting bacterium.
  • treated water containing saccharides and saccharides is brought into contact with a polyvinyl alcohol-based porous gel so that citric acid-fermenting bacteria are supported on the polyvinyl alcohol-based porous gel.
  • the aerobic microorganism can be transformed into a polyvinyl alcohol-based hydrogel or polyvinyl by simply bringing the bacteria into contact with and supporting the polyvinyl alcohol-based hydrogel or polyvinyl alcohol-based porous gel. It cannot be supported to the back of the pores of the alcoholic porous gel.
  • the subject of the biological reaction apparatus of this invention and the biological reaction method using this biological reaction apparatus is the organism which can perform a biological reaction using an aerobic microorganism etc. efficiently and economically further using a micro nano bubble. It is to provide a reaction apparatus and a biological reaction method.
  • Another object of the porous structure carrying the aerobic microorganisms and the method for producing the porous structure of the present invention is to be used in a biological reaction apparatus or a biological reaction method to efficiently and economically perform a biological reaction.
  • An object of the present invention is to provide a porous structure and a method for producing the porous structure that can be performed.
  • the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus have a supporting structure in which aerobic microorganisms and the like are supported at a high density in the microorganism culture solution.
  • the microorganism culture solution contains micro / nano bubbles.
  • the porous structure carrying the aerobic microorganisms of the present invention is characterized by carrying the aerobic microorganisms etc. at a high density, and the method for producing the porous structure comprises a porous structure.
  • the structure is brought into contact with a culture solution containing aerobic microorganisms and micro / nano bubbles.
  • micro nano bubble of the present invention means “micro bubble” and / or “nano bubble”. While “normal bubbles” rapidly rise in water and burst and disappear on the surface, microbubbles with a diameter of 50 ⁇ m or less called “microbubbles” shrink in water and disappear. Together with free radicals, “nanobubbles”, which are ultrafine bubbles having a diameter of 100 nm or less, are generated, and these “nanobubbles” remain in water for a certain amount of time.
  • Nano bubbles which are very small bubbles, are also called “ultra fine bubbles”.
  • ISO International Organization for Standardization
  • the creation of an international standard for fine bubble technology is being considered, and once the international standard is created, the name of “nanobubble”, which is currently commonly used, There is a possibility that it will be unified into “Ultra Fine Bubble”.
  • micro / nano bubbles of the present invention can be formed from air or oxygen, but oxygen is preferably used from the viewpoint of efficiently supplying oxygen necessary for respiration to aerobic microorganisms and the like.
  • Patent Documents 1 to 3 utilize these micro-nano bubbles and the action of nano bubbles activating microorganisms.
  • micro-nano bubbles are deep inside the pores of the porous structure.
  • the bioreaction using an aerobic microorganism etc. is performed efficiently and economically using the effect
  • a porous structure having a high loading density in which aerobic microorganisms or the like are loaded in advance into the pores before the biological reaction using micro-nano bubbles is used.
  • the density of aerobic microorganisms etc. in a microorganism culture tank can be made high in a porous structure, the efficiency of a biological reaction can be improved.
  • the filtration step of separating the aerobic microorganisms and the like from the microorganism culture solution and collecting the filtrate can be easily performed. Can be carried out efficiently and economically without causing any significant stress or damage to the body.
  • the microorganism culture solution containing micro-nano bubbles since the microorganism culture solution containing micro-nano bubbles is used, the micro-nano bubbles penetrate deep into the pores of the porous structure, and the aerobic microorganisms supported in the deep pores of the porous structure Since oxygen necessary for respiration can be sufficiently supplied to the living body, the efficiency of the biological reaction can be increased.
  • FIG. 1 It is a photograph which shows the cross section which passes along the center point of the porous structure after carrying aerobic microorganisms etc. by Example 1.
  • FIG. 2 It is a photograph which shows the cross section which passes along the center point of the porous structure after carrying an aerobic microorganism etc. by the comparative example 1.
  • FIG. 1 It is a photograph which shows the cross section which passes along the center point of the porous structure after carrying an aerobic microorganism etc. by the comparative example 1.
  • the main features of the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus are as described above. 1) The presence of a supporting structure having a high supporting density in which aerobic microorganisms are supported at a high density in the microorganism culture solution; 2) Inclusion of micro / nano bubbles in the microorganism culture solution; However, these items will be described in turn below.
  • Support structure has a high support density in which aerobic microorganisms and the like are supported in advance before being used in biological reactions.
  • the support structure is composed of a porous structure and a support structure. It can be produced by bringing it into contact with an aerobic microorganism or the like and a culture solution containing micro-nano bubbles.
  • porous structure it is preferable to use those having pores, particularly those having a three-dimensional solid network structure having continuous pores.
  • oxygen is not sufficiently supplied to the inside of the pores, so that aerobic microorganisms and the like can only be supported on the surface of the porous structure. .
  • a culture solution containing aerobic microorganisms and micro-nano bubbles as a culture solution to be brought into contact with the porous structure, oxygen can be supplied to the depths of the pores of the porous structure. Aerobic microorganisms and the like can be supported to the depths of the pores, and the density of aerobic microorganisms and the like can be increased.
  • target product a reaction product such as an aerobic microorganism obtained by a biological reaction
  • target product a biological reaction
  • the aerobic microorganism is removed from the microorganism culture solution.
  • a method for supporting aerobic microorganisms or the like in the porous structure a method of adding aerobic microorganisms or the like to the culture solution, culturing and growing the aerobic microorganisms or the like, and then contacting and supporting the porous structure, Alternatively, an aerobic microorganism or the like and a porous structure are added to the culture solution, and the aerobic microorganism or the like is supported while being cultured and grown.
  • the former method is performed by the following procedure. a1) First, sterilize a porous structure, a culture solution, etc. so that microorganisms other than the required aerobic microorganisms, bacteria, etc. do not exist. b1) Next, aerobic microorganisms or the like are cultured and grown while adding aerobic microorganisms or the like to the culture solution and containing the micro / nano bubbles in the culture solution. c1) At the stage where aerobic microorganisms or the like have grown to a certain concentration or higher, the medium is brought into contact with the porous structure while containing micro-nano bubbles.
  • the latter method is performed in the following procedure. a2) First, sterilize the porous structure, the culture solution and the like so that microorganisms other than the required aerobic microorganisms, bacteria and the like are not present. b2) Next, a porous structure is added to the culture solution, and the micronano bubbles are contained in the culture solution. c2) Add aerobic microorganisms or the like to the culture solution, and culture and proliferate the aerobic microorganisms or the like while containing micro-nano bubbles in the culture solution.
  • the culture solution used in the above method mainly contains saccharides and a nitrogen source.
  • saccharides saccharides such as maltose, sucrose, glucose, fructose, and mixtures thereof are usually used.
  • concentration of saccharides in the culture solution is not particularly limited, but is set to 0.1 to 10 w / v%. preferable.
  • nitrogen source ammonium chloride, ammonium sulfate, corn steep liquor, yeast extract, meat extract, peptone or the like is used, and it is preferably set to 0.1 to 10 w / v%.
  • vitamins, inorganic salts, and the like to the culture solution as needed in addition to the saccharides and the nitrogen source.
  • the concentration of the aerobic microorganism or the like added to the culture solution in step b1) and step c2) is not particularly limited, but is preferably 0.5 to 10 g / L, and is preferably 3.0 to 6.0 g / L. More preferably.
  • micronano bubbles are included in the treated water in order to promote the growth of aerobic microorganisms. -The inclusion of micro-nano bubbles can be omitted if the growth can be performed quickly enough.
  • the contact between the culture solution containing the micro-nano bubbles and the porous structure in the above steps c1) and b2) can be performed, for example, by placing the porous structure in the treated water and stirring. .
  • the aerobic microorganisms and the like in the present invention include koji molds (5 to 10 ⁇ m), Bacillus natto (2 to 3 ⁇ m), acetic acid bacteria (5 to 10 ⁇ m) and the like that are conventionally used in technical fields such as brewing and fermentation.
  • koji molds 5 to 10 ⁇ m
  • Bacillus natto (2 to 3 ⁇ m)
  • acetic acid bacteria 5 to 10 ⁇ m
  • various aerobic microorganisms created by gene recombination techniques can be used.
  • the pore size of the continuous pores of the porous structure having a three-dimensional three-dimensional network structure having continuous pores is usually 1 to 30 ⁇ m, preferably 5 to 10 ⁇ m, although it depends on the size of the aerobic microorganisms to be carried. More preferably, it is before and after.
  • Examples of the material of the porous structure suitably used in the present invention include vinyl alcohol resins such as polyvinyl alcohol, ether resins such as polyethylene glycol, acrylic resins such as polymethacrylic acid, acrylamide resins such as polyacrylamide, polyethylene, and polypropylene.
  • vinyl alcohol resins such as polyvinyl alcohol
  • ether resins such as polyethylene glycol
  • acrylic resins such as polymethacrylic acid
  • acrylamide resins such as polyacrylamide, polyethylene, and polypropylene.
  • Olefin resins such as polystyrene, ester resins such as polyethylene terephthalate and polybutylene terephthalate, acrylonitrile resins such as polyacrylonitrile, urethane resins such as polyurethane sponge, calcium alginate, ⁇ (kappa) carrageenan, agar, and cellulose derivatives Sugar, polyester acrylate, epoxy acrylate, urethane acrylate It said photocurable resin, and the like can be exemplified porous inorganic compounds such as activated carbon.
  • a polyvinyl alcohol-based porous gel is preferable in that it has a porous and mesh-like structure up to the inside and a large amount of water can be taken into the gel.
  • the mechanical strength of the porous gel can be improved sufficiently, and it has the strength that it can withstand even with strong agitation during a biological reaction.
  • Formalized polyvinyl alcohol porous gel and acetalization A polyvinyl alcohol-based porous gel is more preferable.
  • Specific examples of the polyvinyl alcohol-based porous gel include, for example, Kuraray Co., Ltd. trade name.
  • the carrying structure of the present invention is one in which the carrying density of aerobic microorganisms and the like is increased by adding micro-nano bubbles to the culture solution.
  • An element for efficiently performing a biological reaction is to increase the density of aerobic microorganisms or the like in a microorganism culture solution. However, if the density of cells is too high, nutrients and Since oxygen is not sufficiently provided, the efficiency of the biological reaction is reduced.
  • the density of cells capable of appropriately culturing aerobic microorganisms and the like is about 3 to 6 g / L.
  • the support structure of the present invention by containing micro-nano bubbles in the culture solution, aerobic microorganisms and the like can be supported deep inside the pores of the porous structure, Depending on the material of the porous structure, etc., the cell density can be about 5 to 6 times the cell density of the culture solution.
  • the shape of the supporting structure is not particularly limited, but for example, a granular shape such as a spherical shape, a rectangular parallelepiped shape or a cubic shape is preferable. If the powder is used, the surface area for fixing aerobic microorganisms and the like can be greatly increased, and the target product can be produced with higher efficiency.
  • the particle size (diameter) of the porous gel powder when dried is preferably 0.5 to 10 mm.
  • the usage structure of the supporting structure may be fixed in the microorganism culture solution with a column, a net or the like, or may be present in a dispersed state in the microorganism culture solution.
  • the support structure obtained in 1) above is housed in a microorganism culture tank together with the culture solution, and the microorganism culture solution contains micro-nano bubbles. Biological reactions take place.
  • a porous structure having a high loading density of aerobic microorganisms or the like in which aerobic microorganisms or the like are previously supported in the biological reaction before the biological reaction is provided.
  • micro-nano bubbles in the microorganism culture solution it is possible to sufficiently supply oxygen necessary for respiration to aerobic microorganisms and the like carried deep inside the pores of the porous structure. Can be improved.
  • a means for containing micro-nano bubbles in a microorganism culture solution a) means for releasing the micro / nano bubbles into the microorganism culture solution in the microorganism culture tank by the micro / nano bubble generator provided outside the microorganism culture tank; b) Means for containing micro / nano bubbles in the culture solution supplied to the microorganism culture tank by the micro / nano bubble generator provided in the pipeline for supplying the culture solution to the microorganism culture tank, c) Means for causing the microorganism culture solution extracted from the microorganism culture vessel to contain micro-nano bubbles by a micro-nano bubble generator and circulating the microorganism culture solution containing the micro-nano bubbles to the microorganism culture vessel d) Pre-containing the micro-nano bubbles A means for supplying the culture solution to the microorganism culture tank through a pipe line can be employed.
  • the means with the least stress and damage given to aerobic microorganisms are the means b) and d) above.
  • stress and damage are given to aerobic microorganisms and the like by the shear force generated by the release of micro-nano bubbles in the means a) and by the shear force generated during filtration in the c) means.
  • this stress and damage can be greatly reduced.
  • micro / nano bubble generating device a known or commercially available device can be used.
  • microbubble generator for example, a sufficient amount of gas is dissolved in water at a certain high pressure, and then the pressure is released to create a supersaturated condition of the dissolved gas.
  • a gas-liquid two-phase flow swirl type micro-bubble generator that utilizes the phenomenon of generating a vortex by generating a water flow, entraining a large bubble in the vortex, and then breaking the vortex into bubbles. Or the like.
  • micro / nano bubble generating apparatus examples include, for example, JP 2007-312690 A, JP 2006-289183 A, JP 2005-245817 A, JP 2007-136255 A, and JP 2009-39600 A. Can be used.
  • the recovery of the target product may be performed batchwise or continuously.
  • the culture tank pump is driven to transfer the filtered filtrate to the filtrate storage tank.
  • the batch type or the continuous type can be selected as appropriate in consideration of the efficiency of biological reaction, the required purity of the target product, economy, and the like.
  • filtration can be performed efficiently and economically, and stress and damage given to aerobic microorganisms can be reduced.
  • a porous membrane made of an organic polymer compound such as polyvinylidene fluoride, or a filtration membrane such as a metal wire mesh can be suitably used.
  • the biological reaction apparatus of the present invention and the biological reaction method using the biological reaction apparatus efficiently and economically perform biological reactions using aerobic microorganisms or the like using micro-nano bubbles. It can be applied not only to the production of foods, chemicals, chemicals and the like using biological reactions such as brewing and fermentation, but also to a biorefinery for producing bioethanol and the like using biomass.
  • porous structure carrying the aerobic microorganisms of the present invention is useful for performing a biological reaction efficiently and economically.
  • FIG. 1 schematically shows a first embodiment of the biological reaction apparatus of the present invention.
  • the first embodiment
  • the carrying structure 7 is fixed in the microorganism culture tank 1 by the fixing member 8;
  • the micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
  • a micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1. It is characterized by.
  • the target product is generated and collected by the following steps. a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles. b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles. c) In the microorganism culture tank 1, a target product is generated by a biological reaction such as aerobic microorganisms supported on the support structure 7.
  • the culture tank pump 10 is driven, the supporting structure 7 detached from the fixing member 8 is separated by the filtration means 9, and the microorganism culture solution 5 containing the target product is collected in the filtrate storage tank 13.
  • the supporting structure 7 having a high supporting density such as aerobic microorganisms and the micro-nano bubbles, in which the aerobic microorganisms are supported in advance before the biological reaction, are provided.
  • the culture solution 5 By using the culture solution 5, a biological reaction can be advanced efficiently and a target object can be obtained efficiently.
  • FIG. 2 schematically shows a second embodiment of the biological reaction apparatus of the present invention.
  • the means for causing the culture solution 6 and the microorganism culture solution 5 to contain micro-nano bubbles in the first embodiment is extracted from the microorganism culture tank 1 by the circulation path 15 and the extracted microorganism culture is performed.
  • the liquid 5 contains micro-nano bubbles, and the microorganism culture solution 5 containing the micro-nano bubbles is changed to means for refluxing the microorganism culture tank 1 (hereinafter referred to as “circulated MNB-containing means”).
  • the microorganism culture solution 5 is extracted through the filtering means 9 and the extracted microorganism culture solution 5 is pressurized and sent to the next step, and the micro-nano bubbles containing the micro-nano bubbles in the pressurized microorganism culture solution 5
  • a generator 4 is provided.
  • the target product is generated and collected by the following steps.
  • a) The culture solution 6 is supplied to the microorganism culture tank 1.
  • the culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the carrier structure 7 detached from the fixing member 8 is separated by the filtering means 9, and the microorganism extracted from the microorganism culture tank 1
  • the culture solution 5 is guided to the micro / nano bubble generator 4 to contain the micro / nano bubbles and then refluxed to the microorganism culture tank 1.
  • a target product is generated by a biological reaction such as aerobic microorganisms supported on the support structure 7.
  • Microbe containing target substance by driving culture tank pump 10 with valve 11 closed and valve 12 open, and separating supporting structure 7 detached from fixing member 8 by filtration means 9
  • the culture solution 5 is collected in the filtrate storage tank 13.
  • the circulating MNB containing means by adopting the circulating MNB containing means, 1) Since micro-nano bubbles are contained in the microorganism culture solution 5 from which the support structure 7 is separated, the stress and damage that aerobic microorganisms and the like are subjected to in the filtration step, the micro-nano bubble-containing step, etc. can be reduced. 2) Since aerobic microorganisms are supported on the porous structure, filtration can be performed efficiently and economically. 3) Since the microorganism culture solution 5 is pressurized by the culture tank pump 10 and supplied to the micro / nano bubble generator 4, the generation of micro / nano bubbles can be performed smoothly and economically.
  • the microorganism culture solution 5 in the microorganism culture tank 1 is circulated through the circulation path 15 (that is, extracted from the microorganism culture tank 1 and refluxed), the microorganism culture solution 5 in the microorganism culture tank 1 is agitated. It has the merit of being able to.
  • FIG. 3 schematically shows a third embodiment of the biological reaction apparatus of the present invention.
  • the culture solution 6 supplied to the microorganism culture tank 1 and the microorganism culture tank 1 used in the first embodiment are used.
  • the means for containing the micro-nano bubbles in the microorganism culture solution 5 and the circulating MNB-containing means used in the second embodiment are used in combination.
  • FIG. 4 schematically shows a fourth embodiment of the biological reaction apparatus of the present invention.
  • the support structure 7 is present in a dispersed state in the microorganism culture solution 5, and the microorganism culture vessel 1 further includes a culture vessel agitator 14 for stirring the microorganism culture solution 5. is set up.
  • the support structure 7 is present in a dispersed state in the microorganism culture tank 1 and is stirred by the culture tank agitator 14;
  • the micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
  • a micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1. It is characterized by.
  • the object is generated and collected by the following steps. a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles. b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles. c) In the microorganism culture tank 1, a target product is generated by a biological reaction such as an aerobic microorganism supported on the stirred support structure 7.
  • the culture tank pump 10 is driven, the supporting structure 7 is separated by the filtration means 9, and the microorganism culture solution 5 containing the target product is collected in the filtrate storage tank 13.
  • the aerobic microorganism or the like is supported in advance before the biological reaction, and the supporting structure 7 such as the aerobic microorganism or the like and the micro-nano bubbles are contained.
  • the culture solution 5 By using the culture solution 5, a biological reaction can be advanced efficiently and a target object can be obtained efficiently.
  • the support structure 7 is dispersed and stirred in the microorganism culture solution 5 using the culture tank stirrer 14, the aerobic microorganisms or the like supported in the back of the pores of the porous structure are used.
  • the aerobic microorganisms or the like supported in the back of the pores of the porous structure are used.
  • nutrients and oxygen are sufficiently provided and a biological reaction can be promoted.
  • 1) the installation and operation of the culture tank agitator 14 is expensive, and 2) by the agitation of the culture tank agitator 14 Due to the shearing force, aerobic microorganisms and the like are susceptible to stress and damage, and aerobic microorganisms and the like are easily detached from the porous structure.
  • FIG. 5 schematically shows a fifth embodiment of the biological reaction apparatus of the present invention.
  • the means for containing micro-nano bubbles in the culture solution 6 and the microorganism culture solution 5 in the fourth embodiment is changed to circulating MNB-containing means.
  • the target object is generated and collected by the following steps.
  • a) The culture solution 6 is supplied to the microorganism culture tank 1.
  • the culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the supporting structure 7 is separated by the filtering means 9, and the microbial culture solution 5 extracted from the microbial culture tank 1 is generated as micro-nano bubbles. After being guided to the apparatus 4 and containing micro-nano bubbles, it is refluxed to the microorganism culture tank 1.
  • a target product is generated by a biological reaction such as an aerobic microorganism supported on the stirred support structure 7.
  • the culture tank pump 10 is driven, the supporting structure 7 is separated by the filtration means 9, and the microorganism culture solution 5 containing the target product is collected in the filtrate storage tank 13.
  • the fifth embodiment has the merit that the biological reaction can be promoted as in the fourth embodiment.
  • the fifth embodiment is provided with a culture tank agitator 14 as in the fourth embodiment.
  • a culture tank agitator 14 as in the fourth embodiment.
  • microorganisms are used. Since the microorganism culture solution 5 in the culture tank 1 can be stirred, stirring using the culture tank stirrer 14 can be reduced.
  • the fifth embodiment uses the circulating MNB-containing means as in the fourth embodiment, it has the advantages 1) to 4) described in the second embodiment.
  • FIG. 6 schematically shows a sixth embodiment of the biological reaction apparatus of the present invention.
  • Means for containing micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5 Means for containing micro-nano bubbles in the culture solution 6 supplied to the microorganism culture tank 1 and the microorganism culture solution 5 of the microorganism culture tank 1 used in the first embodiment, the third embodiment, and the fourth embodiment;
  • the circulating MNB-containing means used in the second embodiment, the third embodiment, and the fifth embodiment is used in combination.
  • the circulating MNB containing means used in the second embodiment, the third embodiment, the fifth embodiment and the sixth embodiment will be further described.
  • the microorganism culture solution 5 in the microorganism culture tank 1 is circulated through the circulation path 15 (that is, extracted from the microorganism culture tank 1 and refluxed), the microorganism culture solution 5 in the microorganism culture tank 1 is agitated. It has the merit that it can be.
  • the circulation path 15 is not limited to a single line, but around the microorganism culture tank 1. It is preferable to provide a plurality of series, and it is more preferable to provide a plurality of series at an equal angle with respect to the central axis of the microorganism culture tank 1. Thereby, the biological culture solution 5 in the biological culture tank 1 is agitated and the dissolved oxygen amount of the biological culture solution 5 is kept uniform without giving excessive stress or damage due to shearing force or the like to the aerobic microorganism. Can do.
  • the microorganism culture solution 5 is extracted from the microorganism culture tank 1 and the microorganism culture solution 5 containing micro-nano bubbles is returned to the microorganism culture tank 1.
  • the suction part and the part where the microorganism culture solution 5 is circulated (hereinafter referred to as “blowing part”), the suction and blowing direction, and the like, are the microorganism culture solution 5 in the microorganism culture tank 1. It can be designed so that the agitation can be performed optimally.
  • a suction part is provided above the microorganism culture tank 1, and the blow part is arranged in the vertical direction in the vicinity of the bottom of the culture tank on the side of the microorganism culture tank 1.
  • an upward flow is generated on the side surface side of the cylindrical microorganism culture tank 1 from the lower blowing part side toward the upper suction part side, and descends toward the center part side of the cylindrical microorganism culture tank 1. A flow can be generated.
  • the vertical and vertical agitation can be uniformly performed over the entire cylindrical microorganism culture tank 1. Well done.
  • the enzyme or the like can be returned to the upper side of the cylindrical microorganism culture tank 1.
  • this circulating MNB-containing means can be used effectively not only for biological reactions, but also for the production of porous structures having a high loading density in the same way as biological reactions.
  • porous structure having a high loading density in which aerobic microorganisms and the like are loaded in advance to the back of the pores before the biological reaction using micro-nano bubbles will be further described.
  • Example 1 Briefly explaining the main points of Example 1 and Comparative Example 1, a case where aerobic microorganisms, a microorganism culture solution, a porous structure and the like are accommodated in a microorganism culture tank and micro / nano bubbles are supplied to the culture tank is implemented.
  • Comparative Example 1 is a case where bubbles having a particle size larger than that of micro-nano bubbles are supplied.
  • a microorganism culture apparatus (microbe culture apparatus BMZ-P manufactured by Able Co., Ltd., internal volume 1000 ml) is used as a microorganism culture tank, and aerobic microorganisms and the like [standard strain of coryneform bacteria (corynebacterium glutamicum)], microorganisms Contains culture solution [synthetic medium containing ammonium sulfate as the main component, glucose concentration: 4%], porous structure [Kuraray Aqua Co., Ltd. “Kragale (registered trademark)”, polyvinyl alcohol-based spherical gel, size diameter of about 4 mm] The liquid volume was 500 ml.
  • this microbial culture tank was reduced to an air flow rate of 250 ml / min and dissolved oxygen concentration below 1 mg / L using a micro / nano bubble generator [nozzle-type micro / nano bubble generator manufactured by OK Engineering, model number: OK-MB 200 ml].
  • the microorganisms were supported on the porous structure for 6 hours by automatically controlling the rotation speed of the culture tank stirrer.
  • coryneform bacteria corynebacterium glutamicum
  • corynebacterium glutamicum which are aerobic microorganisms and the like used in Example 1 and Comparative Example 1
  • the porous structure is cut in a cross section passing through the center point, and the cut surface is By observing the yellow colored state, the state where aerobic microorganisms and the like are supported on the porous structure was evaluated.
  • FIGS. 7 to 9 Porous structure before supporting aerobic microorganisms, porous structure after supporting aerobic microorganisms in Example 1, and porous structure after supporting aerobic microorganisms in Comparative Example 1 Photographs showing a cross section passing through the center point of the body are shown in FIGS. 7 to 9, respectively.
  • the saturation of the cross section of the porous body shown in these photographs was measured.
  • the saturation value of the cross section of the porous structure before supporting the aerobic microorganisms is represented by 1
  • the saturation of the cross section of the porous structure after supporting the aerobic microorganisms in Example 1 is shown.
  • the degree of saturation is about 4, and the saturation of the cross section of the porous structure after supporting aerobic microorganisms or the like in Comparative Example 1 is about 2.
  • the time average value of the rotation speed of the culture vessel agitator automatically controlled so that the dissolved oxygen concentration does not fall below 1 mg / L was 330 rpm in Example 1 and 470 rpm in Comparative Example 1. From this, it is possible to reduce agitation by supporting aerobic microorganisms and the like on the porous structure using micro-nano bubbles as in Example 1, and 1) the operating energy of the culture tank agitator can be reduced. It can be seen that 2) the stress and damage received by the aerobic microorganisms can be reduced, and 3) the aerobic microorganisms and the like are easily carried on the porous structure.
  • a porous structure having a high loading density in which aerobic microorganisms and the like are carried to the depths of the pores is economically, efficiently and stressed by aerobic microorganisms and the like. It can be manufactured with reduced damage.
  • the porous structure is loaded with aerobic microorganisms that are not subject to much stress or damage to the depths of the pores and at a high density, and 2) the micro-nano bubbles are fine in the porous structure.
  • the oxygen necessary for breathing can be sufficiently supplied to aerobic microorganisms and the like carried deep inside the pores of the porous structure, Therefore, the biological reaction can be performed efficiently.
  • aerobic microorganisms and the like are supported on the porous structure, it is possible to reduce stress and damage that aerobic microorganisms and the like are subjected to in a filtration process in a biological reaction, a micro-nano bubble-containing process, and the like.
  • Example 1 and Comparative Example 1 the use of micro-nano bubbles can reduce stirring to keep the dissolved oxygen concentration constant, so that microorganisms can be used using a culture tank stirrer in biological reactions. Even when the culture solution is agitated, 1) the operating energy of the culture vessel agitator can be reduced, 2) the stress and damage to the aerobic microorganisms can be reduced, and 3) aerobicity is released from the porous structure. There are merits such as being difficult.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

In this biological reaction apparatus and biological reaction method using the biological reaction apparatus, in order to efficiently and economically perform a biological reaction using an aerobic or facultative anaerobic microorganism (referred to below as an "aerobic microorganism or the like"), a porous structure having a high carrying density on which the aerobic microorganism or the like is supported deep inside pores thereof prior to the biological reaction is placed in a microorganism culture liquid, and the microorganism culture liquid is caused to contain micro-nanobubbles. In order to perform the biological reaction efficiently and economically, this porous structure supporting an aerobic microorganism or the like is caused to support the aerobic microorganism or the like at a high carrying density prior to the biological reaction. In order for the aerobic microorganism or the like to be supported at a high carrying density, this method for manufacturing a porous structure on which an aerobic microorganism or the like is supported comprises bringing a porous structure and a culture liquid containing micro-nanobubbles and an aerobic microorganism or the like into contact.

Description

生物反応装置、生物反応方法、並びに、生物反応装置において使用される好気性もしくは通性嫌気性微生物を担持させた多孔質構造体及びこの多孔質構造体の製造方法Biological reaction apparatus, biological reaction method, porous structure carrying aerobic or facultative anaerobic microorganisms used in biological reaction apparatus, and method for producing the porous structure
 本発明は、生物反応装置及びこの生物反応装置を用いた生物反応方法に関し、微生物培養液中に、生物反応前に予め好気性もしくは通性嫌気性微生物を細孔の奥まで担持させた多孔質構造体を存在させると共に、この微生物培養液にマイクロナノバブルを含有させることを特徴とするものである。(以下、好気性もしくは通性嫌気性微生物を「好気性微生物等」といい、好気性もしくは通性嫌気性微生物を担持させていない多孔質構造体を単に「多孔質構造体」といい、好気性もしくは通性嫌気性微生物を担持させた多孔質構造体を「担持構造体」という。)
 また、本発明は、この生物反応装置または生物反応装置において用いられる、担持構造体及びこの担持構造体の製造方法に関し、多孔質構造体と、好気性微生物等及びマイクロナノバブルを含有する培養液とを接触させることにより、生物反応に用いる前に予め生物多孔質構造体の細孔の奥まで好気性微生物等を担持させることを特徴とするものである。
The present invention relates to a biological reaction apparatus and a biological reaction method using the biological reaction apparatus, and a porous medium in which an aerobic or facultative anaerobic microorganism is previously supported in a microorganism culture solution before the biological reaction. In addition to the presence of the structure, the microorganism culture solution contains micro-nano bubbles. (Hereinafter, aerobic or facultative anaerobic microorganisms are referred to as “aerobic microorganisms, etc.”, and porous structures that do not carry aerobic or facultative anaerobic microorganisms are simply referred to as “porous structures”. (A porous structure carrying aerobic or facultative anaerobic microorganisms is called a "supporting structure".)
The present invention also relates to a support structure and a method for producing the support structure used in this bioreaction apparatus or bioreaction apparatus, a porous structure, a culture solution containing aerobic microorganisms and micro-nano bubbles, and the like. By contacting the aerobic microorganisms or the like to the depths of the pores of the biological porous structure before use in biological reactions.
 生物反応は、化学反応と異なり、反応自体は遅いが、多大なエネルギーや多くの化学物質を使用しないので、環境にとって温和で有意義な反応である。 Biological reactions differ from chemical reactions in that the reaction itself is slow, but because it does not use much energy and many chemical substances, it is a mild and meaningful reaction for the environment.
 しかし、生物反応は、一般的に反応が温和で遅いという問題があった。すなわち、化学反応には、1時間以内の反応で十分な場合が多いのに対して、生物反応の場合は、数時間から長い場合は数日または特に長い場合数週間以上の反応時間を要する場合もある。このため、生物反応を効率的、経済的に行うことが求められている。 However, the biological reaction generally has a problem that the reaction is mild and slow. That is, for chemical reactions, a reaction within one hour is often sufficient, whereas in the case of biological reactions, a reaction time of several days or longer, several days or particularly several weeks or longer is required. There is also. For this reason, it is required to perform biological reactions efficiently and economically.
 生物反応を効率化する技術として、特許文献1~3には、微生物等の培養において、培養液中にマイクロナノバブルあるいはナノバブルを存在させることにより、微生物等の活性化を促進し、生物反応の反応効率、反応時間の短縮等を図ることが開示されている。 As techniques for improving the efficiency of biological reactions, Patent Documents 1 to 3 disclose that in the cultivation of microorganisms, the presence of micro-nano bubbles or nano-bubbles in the culture medium promotes the activation of microorganisms and the like. It is disclosed that the efficiency and the reaction time are reduced.
 具体的には、特許文献1には、バッチ方式において、培養槽から培養液を抜き出し、菌体ろ過器でろ過してろ過液を得、このろ過液にマイクロナノバブルを混合して培養槽に返送することが記載されている。特許文献2には、培養液を培養槽に供給する前段階で、培養液にマイクロナノバブル及びナノバブルを混合することが記載されており、また、特許文献3には、培養液を培養槽に供給する前段階で、マイクロナノバブルを混合することが記載されている。 Specifically, in Patent Document 1, in a batch method, a culture solution is extracted from a culture tank, filtered with a bacterial cell filter to obtain a filtrate, and micronano bubbles are mixed with the filtrate and returned to the culture tank. It is described to do. Patent Document 2 describes that micro-nano bubbles and nano bubbles are mixed with the culture liquid before supplying the culture liquid to the culture tank. Patent Document 3 supplies the culture liquid to the culture tank. It is described that the micro / nano bubbles are mixed in the previous stage.
 しかしながら、上記特許文献1~3に開示されるような、マイクロナノバブルあるいはナノバブルにより、微生物を活性化するだけでは、まだ、生物反応をまだ十分に効率的、経済的に行うことはできない。 However, biological reactions cannot be performed sufficiently efficiently and economically yet by activating microorganisms with micro-nano bubbles or nano bubbles as disclosed in Patent Documents 1 to 3 above.
 また、生物反応において、微生物を多孔質担体で担持することは、特許文献4~5に開示されている。 Also, it is disclosed in Patent Documents 4 to 5 that a microorganism is supported by a porous carrier in a biological reaction.
 具体的には、特許文献4には、排水処理などに用いられる微生物を、ポリビニルアルコール系含水ゲルに付着させて担持することが記載されており、また、特許文献5には、クエン酸発酵菌及び糖類を含有した処理水を、ポリビニルアルコール系多孔質ゲルと接触させて、ポリビニルアルコール系多孔質ゲルにクエン酸発酵菌を担持させることが記載されている。 Specifically, Patent Document 4 describes that a microorganism used for wastewater treatment is attached to and supported on a polyvinyl alcohol-containing hydrogel, and Patent Document 5 describes a citrate-fermenting bacterium. In addition, it is described that treated water containing saccharides and saccharides is brought into contact with a polyvinyl alcohol-based porous gel so that citric acid-fermenting bacteria are supported on the polyvinyl alcohol-based porous gel.
 しかしながら、上記特許文献4~5に開示されるような、菌をポリビニルアルコール系含水ゲルまたはポリビニルアルコール系多孔質ゲルと単に接触させ担持させるだけでは、好気性微生物を、ポリビニルアルコール系含水ゲルまたはポリビニルアルコール系多孔質ゲルの細孔の奥まで担持させることはできない。 However, as disclosed in Patent Documents 4 to 5, the aerobic microorganism can be transformed into a polyvinyl alcohol-based hydrogel or polyvinyl by simply bringing the bacteria into contact with and supporting the polyvinyl alcohol-based hydrogel or polyvinyl alcohol-based porous gel. It cannot be supported to the back of the pores of the alcoholic porous gel.
特許第4146476号公報Japanese Patent No. 4146476 特許第4805120号公報Japanese Patent No. 4805120 特許第4956052号公報Japanese Patent No. 4956552 特開2004-075763号公報JP 2004-075763 A 特開2007-282543号公報JP 2007-282543 A
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法の課題は、マイクロナノバブルをさらに活用して、好気性微生物等を用いた生物反応を効率的かつ経済的に行うことのできる生物反応装置及び生物反応方法を提供することにある。 The subject of the biological reaction apparatus of this invention and the biological reaction method using this biological reaction apparatus is the organism which can perform a biological reaction using an aerobic microorganism etc. efficiently and economically further using a micro nano bubble. It is to provide a reaction apparatus and a biological reaction method.
 また、本発明の好気性微生物等を担持させた多孔質構造体及びこの多孔質構造体の製造方法の課題は、生物反応装置または生物反応方法において使用され、生物反応を効率的かつ経済的に行うことのできる、多孔質構造体及びこの多孔質構造体の製造方法を提供することにある。 Another object of the porous structure carrying the aerobic microorganisms and the method for producing the porous structure of the present invention is to be used in a biological reaction apparatus or a biological reaction method to efficiently and economically perform a biological reaction. An object of the present invention is to provide a porous structure and a method for producing the porous structure that can be performed.
 上記課題を解決するため、本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法は、微生物培養液中に、好気性微生物等を高い密度で担持させた担持構造体を存在させると共に、この微生物培養液にマイクロナノバブルを含有させることを特徴とするものである。 In order to solve the above problems, the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus have a supporting structure in which aerobic microorganisms and the like are supported at a high density in the microorganism culture solution. The microorganism culture solution contains micro / nano bubbles.
 また、本発明の好気性微生物等を担持させた多孔質構造体は、好気性微生物等を高い密度で担持することを特徴とするものであり、この多孔質構造体の製造方法は、多孔質構造体と、好気性微生物等及びマイクロナノバブルを含有する培養液とを接触させることを特徴とするものである。 Further, the porous structure carrying the aerobic microorganisms of the present invention is characterized by carrying the aerobic microorganisms etc. at a high density, and the method for producing the porous structure comprises a porous structure. The structure is brought into contact with a culture solution containing aerobic microorganisms and micro / nano bubbles.
 本発明の「マイクロナノバブル」とは、「マイクロバブル」および/または「ナノバブル」を意味する。「通常の気泡」は水中を急速に上昇して表面で破裂して消えるのに対し、「マイクロバブル」といわれる直径50μm以下の微小気泡は、水中で縮小していって消滅し、この際に、フリーラジカルと共に、直径100nm以下の極微小気泡である「ナノバブル」を発生し、この「ナノバブル」はある程度の長時間水中に残存する。 The “micro nano bubble” of the present invention means “micro bubble” and / or “nano bubble”. While “normal bubbles” rapidly rise in water and burst and disappear on the surface, microbubbles with a diameter of 50 μm or less called “microbubbles” shrink in water and disappear. Together with free radicals, “nanobubbles”, which are ultrafine bubbles having a diameter of 100 nm or less, are generated, and these “nanobubbles” remain in water for a certain amount of time.
 極微小気泡である「ナノバブル」は、「ウルトラファインバブル」とも呼ばれる。なお、現在、ISO(国際標準化機構)において、ファインバブル技術に関する国際標準の作成が検討されており、国際標準が作成されれば、現在一般的に用いられている「ナノバブル」との呼称が、「ウルトラファインバブル」に統一される可能性もある。 “Nano bubbles”, which are very small bubbles, are also called “ultra fine bubbles”. Currently, in the ISO (International Organization for Standardization), the creation of an international standard for fine bubble technology is being considered, and once the international standard is created, the name of “nanobubble”, which is currently commonly used, There is a possibility that it will be unified into “Ultra Fine Bubble”.
 本発明のマイクロナノバブルは空気または酸素から形成することができるが、好気性微生物等に呼吸に必要な酸素を効率的に供給する観点からは、酸素を用いるのが好ましい。 The micro / nano bubbles of the present invention can be formed from air or oxygen, but oxygen is preferably used from the viewpoint of efficiently supplying oxygen necessary for respiration to aerobic microorganisms and the like.
 上記特許文献1~3は、これらマイクロナノバブル、ナノバブルが微生物を活性化する作用を利用したものであるが、本発明では、この活性化作用と共に、マイクロナノバブルが多孔質構造体の細孔の奥まで侵入できるという作用も利用して、好気性微生物等を用いた生物反応を効率的かつ経済的に行うものである。 Patent Documents 1 to 3 utilize these micro-nano bubbles and the action of nano bubbles activating microorganisms. In the present invention, along with this activation action, micro-nano bubbles are deep inside the pores of the porous structure. The bioreaction using an aerobic microorganism etc. is performed efficiently and economically using the effect | action that it can penetrate | invade.
 すなわち、まず、本発明では、マイクロナノバブルを利用して生物反応前に予め好気性微生物等を細孔の奥まで担持させた、担持密度の高い多孔質構造体を用いる。これにより、多孔質構造体中、ひいては微生物培養槽内の好気性微生物等の密度を高くできるので、生物反応の効率を高めることができる。 That is, first, in the present invention, a porous structure having a high loading density in which aerobic microorganisms or the like are loaded in advance into the pores before the biological reaction using micro-nano bubbles is used. Thereby, since the density of aerobic microorganisms etc. in a microorganism culture tank can be made high in a porous structure, the efficiency of a biological reaction can be improved.
 さらに、本発明では、好気性微生物等は多孔質構造体に担持されているため、微生物培養液から好気性微生物等を分離し、ろ過液を回収するろ過工程を、簡単に、好気性微生物等に大きなストレスやダメージを与えることなく、効率的、経済的に行うことができる。 Furthermore, in the present invention, since the aerobic microorganisms and the like are supported on the porous structure, the filtration step of separating the aerobic microorganisms and the like from the microorganism culture solution and collecting the filtrate can be easily performed. Can be carried out efficiently and economically without causing any significant stress or damage to the body.
 さらに、本発明では、マイクロナノバブルを含有させた微生物培養液を用いるため、マイクロナノバブルが多孔質構造体の細孔の奥まで入り込み、多孔質構造体の細孔の奥に担持された好気性微生物等にも呼吸に必要な酸素を十分に供給することができるので、生物反応の効率を高めることができる。 Furthermore, in the present invention, since the microorganism culture solution containing micro-nano bubbles is used, the micro-nano bubbles penetrate deep into the pores of the porous structure, and the aerobic microorganisms supported in the deep pores of the porous structure Since oxygen necessary for respiration can be sufficiently supplied to the living body, the efficiency of the biological reaction can be increased.
本発明の生物反応装置の第1の実施形態を示す模式図である。It is a schematic diagram which shows 1st Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第2の実施形態を示す模式図である。It is a schematic diagram which shows 2nd Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第3の実施形態を示す模式図である。It is a schematic diagram which shows 3rd Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第4の実施形態を示す模式図である。It is a schematic diagram which shows 4th Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第5の実施形態を示す模式図である。It is a schematic diagram which shows 5th Embodiment of the biological reaction apparatus of this invention. 本発明の生物反応装置の第6の実施形態を示す模式図である。It is a schematic diagram which shows 6th Embodiment of the biological reaction apparatus of this invention. 好気性微生物等を担持させる前の多孔質構造体の中心点を通る断面を示す写真である。It is a photograph which shows the cross section which passes along the center point of the porous structure before carrying aerobic microorganisms. 実施例1により、好気性微生物等を担持させた後の多孔質構造体の中心点を通る断面を示す写真である。It is a photograph which shows the cross section which passes along the center point of the porous structure after carrying aerobic microorganisms etc. by Example 1. FIG. 比較例1により、好気性微生物等を担持させた後の多孔質構造体の中心点を通る断面を示す写真である。It is a photograph which shows the cross section which passes along the center point of the porous structure after carrying an aerobic microorganism etc. by the comparative example 1. FIG.
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法の主要な特徴は、前述のように、
1)微生物培養液中に、好気性微生物等を高い密度で担持させた、担持密度の高い担持構造体を存在させること、
2)微生物培養液にマイクロナノバブルを含有させること、
にあるが、これらの事項について、以下に順次説明する。
The main features of the biological reaction apparatus of the present invention and the biological reaction method using this biological reaction apparatus are as described above.
1) The presence of a supporting structure having a high supporting density in which aerobic microorganisms are supported at a high density in the microorganism culture solution;
2) Inclusion of micro / nano bubbles in the microorganism culture solution;
However, these items will be described in turn below.
 1)担持構造体
 担持構造体は、生物反応に用いる前に予め好気性微生物等を細孔の奥まで担持させた、担持密度の高いものであり、この担持構造体は、多孔質構造体と、好気性微生物等及びマイクロナノバブルを含有する培養液とを接触させることにより製造することができる。
1) Support structure The support structure has a high support density in which aerobic microorganisms and the like are supported in advance before being used in biological reactions. The support structure is composed of a porous structure and a support structure. It can be produced by bringing it into contact with an aerobic microorganism or the like and a culture solution containing micro-nano bubbles.
 多孔質構造体としては、細孔を有するもの、特に、連続孔を有する三次元立体網目構造を有するものを用いることが好ましい。単にこのような構造を有する多孔質構造体を用いただけでは、通常、細孔の内部には酸素が十分に供給されないため、好気性微生物等は多孔質構造体の表面にしか担持することができない。 As the porous structure, it is preferable to use those having pores, particularly those having a three-dimensional solid network structure having continuous pores. By simply using a porous structure having such a structure, oxygen is not sufficiently supplied to the inside of the pores, so that aerobic microorganisms and the like can only be supported on the surface of the porous structure. .
 一方、本発明では、多孔質構造体に接触させる培養液として、好気性微生物等及びマイクロナノバブルを含有する培養液を用いることで、多孔質構造体の細孔の奥まで酸素を供給でき、細孔の奥まで好気性微生物等を担持させることができ、好気性微生物等の担持密度を高くすることができる。 On the other hand, in the present invention, by using a culture solution containing aerobic microorganisms and micro-nano bubbles as a culture solution to be brought into contact with the porous structure, oxygen can be supplied to the depths of the pores of the porous structure. Aerobic microorganisms and the like can be supported to the depths of the pores, and the density of aerobic microorganisms and the like can be increased.
 さらに、生物反応により得られた好気性微生物等の代謝産物などの反応物(以下、「目的物」という。)を微生物培養槽から回収する際等には、微生物培養液から好気性微生物等を分離して、ろ過液を回収する必要があるが、本発明では、好気性微生物等を多孔質構造体で担持しているため、好気性微生物等の分離を簡単かつ経済的に行うことができる。 Furthermore, when recovering a reaction product such as an aerobic microorganism obtained by a biological reaction (hereinafter referred to as “target product”) from a microorganism culture tank, the aerobic microorganism is removed from the microorganism culture solution. Although it is necessary to separate and collect the filtrate, in the present invention, since the aerobic microorganisms are supported by the porous structure, the aerobic microorganisms can be separated easily and economically. .
 次に、担持構造体の製造方法の好適例について説明する。
 多孔質構造体に好気性微生物等を担持させる方法としては、培養液に好気性微生物等を添加して、好気性微生物等を培養・増殖させた後に多孔質構造体と接触させ担持させる方法、または、培養液に好気性微生物等及び多孔質構造体を添加して、好気性微生物等を培養・増殖させながら担持させる方法が挙げられる。
Next, a preferred example of the method for manufacturing the carrying structure will be described.
As a method for supporting aerobic microorganisms or the like in the porous structure, a method of adding aerobic microorganisms or the like to the culture solution, culturing and growing the aerobic microorganisms or the like, and then contacting and supporting the porous structure, Alternatively, an aerobic microorganism or the like and a porous structure are added to the culture solution, and the aerobic microorganism or the like is supported while being cultured and grown.
 前者の方法は、次のような手順で行う。
a1)まず、必要とする好気性微生物等以外の微生物、細菌等が存在しないようにするため、多孔質構造体、培養液等を滅菌する。
b1)次に、培養液に好気性微生物等を添加し、培養液にマイクロナノバブルを含有させながら、好気性微生物等を培養・増殖させる。
c1)好気性微生物等が一定濃度以上に増殖した段階で、培養液にマイクロナノバブルを含有させながら、多孔質構造体と接触させる。
The former method is performed by the following procedure.
a1) First, sterilize a porous structure, a culture solution, etc. so that microorganisms other than the required aerobic microorganisms, bacteria, etc. do not exist.
b1) Next, aerobic microorganisms or the like are cultured and grown while adding aerobic microorganisms or the like to the culture solution and containing the micro / nano bubbles in the culture solution.
c1) At the stage where aerobic microorganisms or the like have grown to a certain concentration or higher, the medium is brought into contact with the porous structure while containing micro-nano bubbles.
 また、後者の方法は、次のような手順で行う。
a2)まず、必要とする好気性微生物等以外の微生物、細菌等が存在しないようにするため、多孔質構造体、培養液等を滅菌する。
b2)次に、培養液に多孔質構造体を添加し、培養液にマイクロナノバブルを含有させる。
c2)培養液に好気性微生物等を添加し、培養液にマイクロナノバブルを含有させながら、好気性微生物等を培養・増殖させる。
The latter method is performed in the following procedure.
a2) First, sterilize the porous structure, the culture solution and the like so that microorganisms other than the required aerobic microorganisms, bacteria and the like are not present.
b2) Next, a porous structure is added to the culture solution, and the micronano bubbles are contained in the culture solution.
c2) Add aerobic microorganisms or the like to the culture solution, and culture and proliferate the aerobic microorganisms or the like while containing micro-nano bubbles in the culture solution.
 上記の方法において用いる培養液には、主として糖類、窒素源が含まれる。
 糖類としては、通常、マルトース、スクロース、グルコース、フルクトース、これらの混合物等の糖類が用いられ、培養液における糖類の濃度は、特に限定されないものの、0.1~10w/v%に設定するのが好ましい。また、窒素源としては、塩化アンモニウム、硫酸アンモニウムまたはコーンスティープリカー、酵母エキス、肉エキス、ペプトン等が用いられ、0.1~10w/v%に設定するのが好ましい。さらに、培養液には糖類、窒素源以外にも、必要に応じて、ビタミン、無機塩類等を添加することが好ましい。
The culture solution used in the above method mainly contains saccharides and a nitrogen source.
As saccharides, saccharides such as maltose, sucrose, glucose, fructose, and mixtures thereof are usually used. The concentration of saccharides in the culture solution is not particularly limited, but is set to 0.1 to 10 w / v%. preferable. As the nitrogen source, ammonium chloride, ammonium sulfate, corn steep liquor, yeast extract, meat extract, peptone or the like is used, and it is preferably set to 0.1 to 10 w / v%. Furthermore, it is preferable to add vitamins, inorganic salts, and the like to the culture solution as needed in addition to the saccharides and the nitrogen source.
 上記工程b1)及び工程c2)における好気性微生物等の培養液への添加濃度は、特に限定されないものの、0.5~10g/Lとするのが好ましく、3.0~6.0g/Lにするのがより好ましい。 The concentration of the aerobic microorganism or the like added to the culture solution in step b1) and step c2) is not particularly limited, but is preferably 0.5 to 10 g / L, and is preferably 3.0 to 6.0 g / L. More preferably.
 なお、上記工程b1)及び工程c2)においては、好気性微生物等の増殖を促進するために処理水にマイクロナノバブルを含有させているが、マイクロナノバブルを含有させなくても好気性微生物等の培養・増殖が十分迅速に行える場合には、マイクロナノバブルの含有を省略することができる。 In the above steps b1) and c2), micronano bubbles are included in the treated water in order to promote the growth of aerobic microorganisms. -The inclusion of micro-nano bubbles can be omitted if the growth can be performed quickly enough.
 上記工程c1)及び工程b2)における、マイクロナノバブルの含有させた培養液と多孔質構造体との接触は、例えば、処理水中に多孔質構造体を入れて振とう撹拌することにより行うことができる。 The contact between the culture solution containing the micro-nano bubbles and the porous structure in the above steps c1) and b2) can be performed, for example, by placing the porous structure in the treated water and stirring. .
 本発明における好気性微生物等としては、醸造、発酵等の技術分野で従来用いられている、アスペルギルス菌等の麹菌(5~10μm)、納豆菌(2~3μm)、酢酸菌(5~10μm)、酵母菌(5μm)、乳酸菌(2~4μm)、コリネ型細菌(2~4μm)等の好気性微生物等のほか、遺伝子組み換え技術で創り出される各種好気性微生物等を用いることができる。 The aerobic microorganisms and the like in the present invention include koji molds (5 to 10 μm), Bacillus natto (2 to 3 μm), acetic acid bacteria (5 to 10 μm) and the like that are conventionally used in technical fields such as brewing and fermentation. In addition to aerobic microorganisms such as yeast (5 μm), lactic acid bacteria (2-4 μm), and coryneform bacteria (2-4 μm), various aerobic microorganisms created by gene recombination techniques can be used.
 連続孔を有する三次元立体網目構造を有する多孔質構造体の連続孔の孔径は、担持する好気性微生物等の大きさにもよるが、通常は1~30μmであるのが好ましく、5~10μm前後であるのがより好ましい。 The pore size of the continuous pores of the porous structure having a three-dimensional three-dimensional network structure having continuous pores is usually 1 to 30 μm, preferably 5 to 10 μm, although it depends on the size of the aerobic microorganisms to be carried. More preferably, it is before and after.
 本発明において好適に用いられる多孔質構造体の素材としては、ポリビニルアルコールといったビニルアルコール系樹脂、ポリエチレングリコールといったエーテル系樹脂、ポリメタクリル酸といったアクリル系樹脂、ポリアクリルアミドといったアクリルアミド系樹脂、ポリエチレン、ポリプロピレンといったオレフィン系樹脂、ポリスチレンといったスチレン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレートといったエステル系樹脂、ポリアクリロニトリルといったアクリロニトリル系樹脂、ポリウレタンスポンジといったウレタン系樹脂、アルギン酸カルシウム、κ(カッパ)カラギーナン、寒天、セルロース誘導体といった多糖類、ポリエステルエアクリレート、エポキシアクリレート、ウレタンアクリレートといった光硬化性樹脂、活性炭といった多孔質無機化合物などを例示することができる。 Examples of the material of the porous structure suitably used in the present invention include vinyl alcohol resins such as polyvinyl alcohol, ether resins such as polyethylene glycol, acrylic resins such as polymethacrylic acid, acrylamide resins such as polyacrylamide, polyethylene, and polypropylene. Olefin resins, styrene resins such as polystyrene, ester resins such as polyethylene terephthalate and polybutylene terephthalate, acrylonitrile resins such as polyacrylonitrile, urethane resins such as polyurethane sponge, calcium alginate, κ (kappa) carrageenan, agar, and cellulose derivatives Sugar, polyester acrylate, epoxy acrylate, urethane acrylate It said photocurable resin, and the like can be exemplified porous inorganic compounds such as activated carbon.
 より好適には、内部に至るまで多孔質で網目状となった構造を有する点、及びゲル内に多量の水を取り込むことができる点で、ポリビニルアルコール系多孔質ゲルが好ましい。 More preferably, a polyvinyl alcohol-based porous gel is preferable in that it has a porous and mesh-like structure up to the inside and a large amount of water can be taken into the gel.
 さらに、多孔質ゲルの機械的強度を十分に向上させることができ、生物反応の際に強い撹拌を行っても十分に耐え得る強度を有する点で、ホルマール化ポリビニルアルコール系多孔質ゲルやアセタール化ポリビニルアルコール系多孔質ゲルがより好ましい。ポリビニルアルコール系多孔質ゲルの具体例としては、例えば、株式会社クラレの商品名クラゲールを挙げることができる。 In addition, the mechanical strength of the porous gel can be improved sufficiently, and it has the strength that it can withstand even with strong agitation during a biological reaction. Formalized polyvinyl alcohol porous gel and acetalization A polyvinyl alcohol-based porous gel is more preferable. Specific examples of the polyvinyl alcohol-based porous gel include, for example, Kuraray Co., Ltd. trade name.
 本発明の担持構造体は、上記のように、培養液にマイクロナノバブルを含有させることで、好気性微生物等の担持密度を高くしたものである。 As described above, the carrying structure of the present invention is one in which the carrying density of aerobic microorganisms and the like is increased by adding micro-nano bubbles to the culture solution.
 生物反応を効率的に行うための要素としては、微生物培養液の好気性微生物等の菌体密度を高くすることが挙げられるが、菌体密度を高くしすぎると、好気性微生物等に栄養分及び酸素が十分に提供されなくなるため生物反応の効率が低下することとなる。 An element for efficiently performing a biological reaction is to increase the density of aerobic microorganisms or the like in a microorganism culture solution. However, if the density of cells is too high, nutrients and Since oxygen is not sufficiently provided, the efficiency of the biological reaction is reduced.
 培養液だけを用いて好気性微生物等を培養する場合、好気性微生物等を適正に培養できる菌体密度は、3~6g/L程度とされている。 When aerobic microorganisms and the like are cultured using only the culture solution, the density of cells capable of appropriately culturing aerobic microorganisms and the like is about 3 to 6 g / L.
 一方、好気性微生物等を多孔質構造体に担持させる場合には、好気性微生物等への栄養分及び酸素の提供の点には問題はないものの、従来の担持方法では多孔質構造体の細孔の奥まで好気性微生物等を担持させることが難しいため、上記培養液を多孔質構造体に高密度で菌体を担持し続けることが困難であった。(純粋培養における多孔質構造体の細孔の奥まで好気性微生物等を担持させた事例は見当たらない。)
 これに対して、本発明の担持構造体では、培養液にマイクロナノバブルを含有させることにより、多孔質構造体の細孔の奥まで好気性微生物等を担持させることができ、好気性微生物等、多孔質構造体の素材等にもよるが、菌体密度を上記培養液の菌体密度の5~6倍程度にすることができる。
On the other hand, when aerobic microorganisms and the like are supported on the porous structure, there is no problem in providing nutrients and oxygen to the aerobic microorganisms, but in the conventional supporting method, pores of the porous structure are not present. Since it is difficult to carry aerobic microorganisms and the like to the back of the above, it is difficult to keep the above culture solution carried on the porous structure at a high density. (There are no examples of supporting aerobic microorganisms or the like deep inside the pores of the porous structure in pure culture.)
On the other hand, in the support structure of the present invention, by containing micro-nano bubbles in the culture solution, aerobic microorganisms and the like can be supported deep inside the pores of the porous structure, Depending on the material of the porous structure, etc., the cell density can be about 5 to 6 times the cell density of the culture solution.
 担持構造体の形状は、特に限定されないが、例えば球状、直方体形状、立方体形状等の粉粒体形状が好ましい。粉粒体を用いれば、好気性微生物等固定化のための表面積を大きく増大させることができて、より高効率で目的物を製造することができる。多孔質ゲル粉粒体の乾燥時の粒径(直径)は0.5~10mmであるのが好ましい。 The shape of the supporting structure is not particularly limited, but for example, a granular shape such as a spherical shape, a rectangular parallelepiped shape or a cubic shape is preferable. If the powder is used, the surface area for fixing aerobic microorganisms and the like can be greatly increased, and the target product can be produced with higher efficiency. The particle size (diameter) of the porous gel powder when dried is preferably 0.5 to 10 mm.
 担持構造体の使用形態は、微生物培養液中にカラム、網体等で固定されていても、また、微生物培養液中に分散した状態で存在してもよい。 The usage structure of the supporting structure may be fixed in the microorganism culture solution with a column, a net or the like, or may be present in a dispersed state in the microorganism culture solution.
 2)微生物培養液にマイクロナノバブルを含有させること
 本発明においては、上記1)で得られた担持構造体は、培養液と共に微生物培養槽に収容され、この微生物培養液にマイクロナノバブルを含有させて生物反応が行われる。
2) Inclusion of micro-nano bubbles in the microorganism culture solution In the present invention, the support structure obtained in 1) above is housed in a microorganism culture tank together with the culture solution, and the microorganism culture solution contains micro-nano bubbles. Biological reactions take place.
 本発明では、上記1)で述べたように、生物反応に、生物反応前に予め好気性微生物等を細孔の奥まで担持させた、好気性微生物等の担持密度の高い多孔質構造体を用いるが、微生物培養液にマイクロナノバブルを含有させることにより、多孔質構造体の細孔の奥に担持した好気性微生物等にも呼吸に必要な酸素を十分に供給できるので、生物反応の効率を向上することができる。 In the present invention, as described in 1) above, a porous structure having a high loading density of aerobic microorganisms or the like in which aerobic microorganisms or the like are previously supported in the biological reaction before the biological reaction is provided. However, by incorporating micro-nano bubbles in the microorganism culture solution, it is possible to sufficiently supply oxygen necessary for respiration to aerobic microorganisms and the like carried deep inside the pores of the porous structure. Can be improved.
 微生物培養液にマイクロナノバブルを含有させる手段としては、
a)微生物培養槽の外部に設けたマイクロナノバブル発生装置により、微生物培養槽の微生物培養液にマイクロナノバブルを放出する手段、
b)微生物培養槽に培養液を供給する管路に設けたマイクロナノバブル発生装置により、微生物培養槽に供給される培養液にマイクロナノバブルを含有させる手段、
c)微生物培養槽から抜き出した微生物培養液に、マイクロナノバブル発生装置によりマイクロナノバブルを含有させ、このマイクロナノバブルを含有する微生物培養液を微生物培養槽に循環する手段
d)マイクロナノバブルを予め含有させた培養液を、管路を通じて微生物培養槽に供給する手段
を採用することができる。
As a means for containing micro-nano bubbles in a microorganism culture solution,
a) means for releasing the micro / nano bubbles into the microorganism culture solution in the microorganism culture tank by the micro / nano bubble generator provided outside the microorganism culture tank;
b) Means for containing micro / nano bubbles in the culture solution supplied to the microorganism culture tank by the micro / nano bubble generator provided in the pipeline for supplying the culture solution to the microorganism culture tank,
c) Means for causing the microorganism culture solution extracted from the microorganism culture vessel to contain micro-nano bubbles by a micro-nano bubble generator and circulating the microorganism culture solution containing the micro-nano bubbles to the microorganism culture vessel d) Pre-containing the micro-nano bubbles A means for supplying the culture solution to the microorganism culture tank through a pipe line can be employed.
 これらの手段は、単独で、あるいは、組み合わせて採用できるが、どの手段を採用するかは、使用する好気性微生物等の剪断力等に対する耐性、生物反応の効率、経済性等を考慮して、適宜選択することができる。 These means can be employed singly or in combination, but which means is adopted in consideration of the resistance to the shearing force of the aerobic microorganisms used, the efficiency of the biological reaction, the economics, etc. It can be selected appropriately.
 好気性微生物等に与えるストレスやダメージが最も少ない手段は、上記b)及びd)の手段である。一般的には、上記a)の手段ではマイクロナノバブルの放出によって生じる剪断力により、また、上記c)手段ではろ過の際に生じる剪断力により、好気性微生物等にストレスやダメージが与えられるが、本発明では好気性微生物等を多孔質構造体で担持しているため、このストレスやダメージを大幅に軽減することができる。 The means with the least stress and damage given to aerobic microorganisms are the means b) and d) above. Generally, stress and damage are given to aerobic microorganisms and the like by the shear force generated by the release of micro-nano bubbles in the means a) and by the shear force generated during filtration in the c) means. In the present invention, since aerobic microorganisms and the like are supported by the porous structure, this stress and damage can be greatly reduced.
 マイクロナノバブル発生装置としては、公知あるいは市販されている装置を用いることができる。 As the micro / nano bubble generating device, a known or commercially available device can be used.
 マイクロバブル発生装置としては、例えば、ある程度の高圧で十分な量の気体を水中に溶解させた後、その圧力を解放してやることで溶解した気体の過飽和条件を作り出す「加圧溶解型マイクロバブル発生装置」、水流を起こして渦を発生させ、渦内に大きな気泡を巻き込み、この渦を崩壊させたときに気泡がバラバラに細分化する現象を利用した「気液二相流旋回型マイクロバブル発生装置」等を用いることができる。 As a microbubble generator, for example, a sufficient amount of gas is dissolved in water at a certain high pressure, and then the pressure is released to create a supersaturated condition of the dissolved gas. "A gas-liquid two-phase flow swirl type micro-bubble generator that utilizes the phenomenon of generating a vortex by generating a water flow, entraining a large bubble in the vortex, and then breaking the vortex into bubbles. Or the like.
 また、マイクロナノバブル発生装置としては、例えば、特開2007-312690号公報、特開2006-289183号公報、特開2005-245817号公報、特開2007-136255号公報、特開2009-39600号公報に記載されたもの等を用いることができる。 Examples of the micro / nano bubble generating apparatus include, for example, JP 2007-312690 A, JP 2006-289183 A, JP 2005-245817 A, JP 2007-136255 A, and JP 2009-39600 A. Can be used.
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法の主要な特徴について、上記1)及び2)で説明したが、その他の特徴について、以下に説明する。 The main features of the biological reaction device of the present invention and the biological reaction method using this biological reaction device have been described in 1) and 2) above, but other features will be described below.
 本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法においては、目的物の回収は、バッチ式で行ってもよいし、連続式で行ってもよい。 In the bioreactor of the present invention and the bioreaction method using this bioreactor, the recovery of the target product may be performed batchwise or continuously.
 バッチ式で行う場合には、微生物培養槽内における生物反応が完了した後、培養槽ポンプを駆動して、ろ過したろ過液をろ過液貯槽に移送する。 In the case of carrying out in a batch system, after the biological reaction in the microorganism culture tank is completed, the culture tank pump is driven to transfer the filtered filtrate to the filtrate storage tank.
 連続式で行う場合には、微生物培養槽の微生物培養液の水位が一定に保たれるように、微生物培養槽に供給される培養液の量とバランスをとって、ろ過したろ過液を抜き出し、ろ過液貯槽に移送する。 When performing in a continuous mode, in order to keep the water level of the microorganism culture solution in the microorganism culture tank constant, balance the amount of the culture solution supplied to the microorganism culture tank, extract the filtered filtrate, Transfer to the filtrate storage tank.
 バッチ式、連続式のどちらを選定するかは、生物反応の効率、必要とされる目的物の純度、経済性等を考慮して、適宜選択することができる。 The batch type or the continuous type can be selected as appropriate in consideration of the efficiency of biological reaction, the required purity of the target product, economy, and the like.
 一般の生物反応装置、生物反応方法においては、目的物を回収する際に、微生物培養液から微生物を分離するために、精密なろ過を行う必要があるが、本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法では、好気性微生物等は多孔質構造体に担持されているので、担持構造体を分離できる程度の粗いろ過を行えばよい。 In general biological reaction apparatuses and biological reaction methods, it is necessary to carry out precise filtration in order to separate microorganisms from a microorganism culture solution when recovering a target product. In the biological reaction method using the reaction apparatus, aerobic microorganisms and the like are supported on the porous structure, and therefore, it is sufficient to perform rough filtration to the extent that the supported structure can be separated.
 したがって、本発明では、ろ過を効率的、経済的に行うことができ、さらに、好気性微生物等に与えるストレスやダメージを小さくすることができる。 Therefore, in the present invention, filtration can be performed efficiently and economically, and stress and damage given to aerobic microorganisms can be reduced.
 本発明のろ過に用いるろ過手段としては、ポリフッ化ビニリデン等の有機高分子化合物からなる多孔性膜、金属製の金網等のろ過膜を好適に用いることができる。 As a filtration means used for the filtration of the present invention, a porous membrane made of an organic polymer compound such as polyvinylidene fluoride, or a filtration membrane such as a metal wire mesh can be suitably used.
 また、生物反応中において、担持構造体から好気性微生物等が脱離する可能性があるため、好気性微生物等が僅かでも混入するのを回避したい場合には、上記ろ過手段による粗いろ過を行った後に、醸造や発酵の技術分野で通常行われている精密ろ過を行うことができる。 In addition, since there is a possibility that aerobic microorganisms and the like may be detached from the support structure during the biological reaction, if it is desired to avoid even a slight amount of aerobic microorganisms or the like from being mixed, rough filtration by the filtration means is performed. After that, it is possible to carry out the microfiltration usually performed in the technical field of brewing and fermentation.
 このように精密ろ過を併用する場合であっても、担持構造体を用いたこと及び粗いろ過を行ったことにより、精密ろ過における目詰まりを著しく減少できるという利点がある。 Even when microfiltration is used in this way, there is an advantage that clogging in microfiltration can be remarkably reduced by using the support structure and performing rough filtration.
 以上に説明したように、本発明の生物反応装置及びこの生物反応装置を用いた生物反応方法は、マイクロナノバブルを利用して、好気性微生物等用いた生物反応を効率的かつ経済的に行うことができ、醸造や発酵といった生物反応を利用する食品、薬品、化学品などの製造のみならず、バイオマスを利用してバイオエタノール等を製造するバイオリファイナリーにも適用できる有用なものである。 As described above, the biological reaction apparatus of the present invention and the biological reaction method using the biological reaction apparatus efficiently and economically perform biological reactions using aerobic microorganisms or the like using micro-nano bubbles. It can be applied not only to the production of foods, chemicals, chemicals and the like using biological reactions such as brewing and fermentation, but also to a biorefinery for producing bioethanol and the like using biomass.
 また、本発明の好気性微生物等を担持させた多孔質構造体は、生物反応を効率的かつ経済的に行うことのできる有用なものである。 Moreover, the porous structure carrying the aerobic microorganisms of the present invention is useful for performing a biological reaction efficiently and economically.
 以下、本発明の実施形態を、添付の図面を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.
 図1に、この発明の生物反応装置の第1実施形態を模式的に示す。
 第1実施形態は、
○担持構造体7が、微生物培養槽1中に固定部材8で固定されていること、
○マイクロナノバブル発生装置3が微生物培養槽1に培養液6を供給する管路に設けられており、微生物培養槽1に供給される培養液6にマイクロナノバブルを含有させること、
及び
○マイクロナノバブル発生装置2が微生物培養槽1の外部に設けられており、微生物培養槽1の微生物培養液5にマイクロナノバブルを吹き込むこと、
を特徴としている。
FIG. 1 schematically shows a first embodiment of the biological reaction apparatus of the present invention.
The first embodiment
○ The carrying structure 7 is fixed in the microorganism culture tank 1 by the fixing member 8;
The micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
And ○ A micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1.
It is characterized by.
 第1実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に供給する際に、マイクロナノバブル発生装置3により、培養液6にマイクロナノバブルを含有させる。
b)微生物培養槽1に供給した後にも、マイクロナノバブル発生装置2からマイクロナノバブルを吹き込んで、微生物培養液5にマイクロナノバブルを含有させる。
c)微生物培養槽1内で、担持構造体7に担持された好気性微生物等の生物反応により、目的物を生成する。
d)培養槽ポンプ10を駆動し、ろ過手段9で、固定部材8から脱離した担持構造体7を分離し、目的物を含有する微生物培養液5をろ過液貯槽13に回収する。
 このように、第1実施形態では、生物反応前に予め好気性微生物等を細孔の奥まで担持させた、好気性微生物等の担持密度の高い担持構造体7及びマイクロナノバブルを含有させた微生物培養液5を用いることにより、生物反応を効率良く進めて、目的物を効率良く得ることができる。
In the first embodiment, the target product is generated and collected by the following steps.
a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles.
b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles.
c) In the microorganism culture tank 1, a target product is generated by a biological reaction such as aerobic microorganisms supported on the support structure 7.
d) The culture tank pump 10 is driven, the supporting structure 7 detached from the fixing member 8 is separated by the filtration means 9, and the microorganism culture solution 5 containing the target product is collected in the filtrate storage tank 13.
As described above, in the first embodiment, the supporting structure 7 having a high supporting density such as aerobic microorganisms and the micro-nano bubbles, in which the aerobic microorganisms are supported in advance before the biological reaction, are provided. By using the culture solution 5, a biological reaction can be advanced efficiently and a target object can be obtained efficiently.
 図2に、この発明の生物反応装置の第2実施形態を模式的に示す。
 第2実施形態は、第1実施形態における培養液6及び微生物培養液5にマイクロナノバブルを含有させる手段を、循環経路15により、微生物培養槽1から微生物培養液5を抜き出し、この抜き出した微生物培養液5にマイクロナノバブルを含有させ、このマイクロナノバブルを含有させた微生物培養液5を微生物培養槽1に還流する手段(以下、「循環MNB含有手段」という。)に変更したものである。
FIG. 2 schematically shows a second embodiment of the biological reaction apparatus of the present invention.
In the second embodiment, the means for causing the culture solution 6 and the microorganism culture solution 5 to contain micro-nano bubbles in the first embodiment is extracted from the microorganism culture tank 1 by the circulation path 15 and the extracted microorganism culture is performed. The liquid 5 contains micro-nano bubbles, and the microorganism culture solution 5 containing the micro-nano bubbles is changed to means for refluxing the microorganism culture tank 1 (hereinafter referred to as “circulated MNB-containing means”).
 この循環経路15には、
 微生物培養槽1または微生物培養槽1から微生物培養液5を抜き出す管路に設けられ、微生物培養液5から多孔質構造体7を分離するろ過手段9、
 ろ過手段9を通じて微生物培養液5を抜き出し、抜き出した微生物培養液5に圧力をかけて次の工程に送る培養槽ポンプ10、及び
 この加圧された微生物培養液5にマイクロナノバブルを含有させるマイクロナノバブル発生装置4が設けられている。
In this circulation path 15,
A filtration means 9 for separating the porous structure 7 from the microorganism culture solution 5, which is provided in the microorganism culture tank 1 or a conduit for extracting the microorganism culture solution 5 from the microorganism culture tank 1;
The microorganism culture solution 5 is extracted through the filtering means 9 and the extracted microorganism culture solution 5 is pressurized and sent to the next step, and the micro-nano bubbles containing the micro-nano bubbles in the pressurized microorganism culture solution 5 A generator 4 is provided.
 第2実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に培養液6を供給する。
b)バルブ11を開、バルブ12を閉とした状態で培養槽ポンプ10を駆動し、ろ過手段9で固定部材8から脱離した担持構造体7を分離し、微生物培養槽1から抜き出した微生物培養液5をマイクロナノバブル発生装置4に導き、マイクロナノバブルを含有させた後、微生物培養槽1に還流する。
c)微生物培養槽1内で、担持構造体7に担持された好気性微生物等の生物反応により、目的物を生成する。
d)バルブ11を閉、バルブ12を開とした状態で培養槽ポンプ10を駆動し、ろ過手段9で、固定部材8から脱離した担持構造体7を分離して、目的物を含有する微生物培養液5をろ過液貯槽13に回収する。
In the second embodiment, the target product is generated and collected by the following steps.
a) The culture solution 6 is supplied to the microorganism culture tank 1.
b) The culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the carrier structure 7 detached from the fixing member 8 is separated by the filtering means 9, and the microorganism extracted from the microorganism culture tank 1 The culture solution 5 is guided to the micro / nano bubble generator 4 to contain the micro / nano bubbles and then refluxed to the microorganism culture tank 1.
c) In the microorganism culture tank 1, a target product is generated by a biological reaction such as aerobic microorganisms supported on the support structure 7.
d) Microbe containing target substance by driving culture tank pump 10 with valve 11 closed and valve 12 open, and separating supporting structure 7 detached from fixing member 8 by filtration means 9 The culture solution 5 is collected in the filtrate storage tank 13.
 第2実施形態は、循環MNB含有手段を採用することにより、
1)担持構造体7を分離した微生物培養液5にマイクロナノバブルを含有させるので、ろ過工程、マイクロナノバブル含有工程等において好気性微生物等が受けるストレスやダメージを低減できる、
2)好気性微生物等を多孔質構造体に担持させているので、ろ過を効率的、経済的に行うことができる、
3)微生物培養液5を培養槽ポンプ10で加圧してマイクロナノバブル発生装置4に供給するので、マイクロナノバブルの発生を円滑、経済的に行うことができる、
4)微生物培養槽1内の微生物培養液5は循環経路15を通じて循環される(すなわち、微生物培養槽1から抜き出され、還流される)ので、微生物培養槽1の微生物培養液5を撹拌することができる
等のメリットを有している。
In the second embodiment, by adopting the circulating MNB containing means,
1) Since micro-nano bubbles are contained in the microorganism culture solution 5 from which the support structure 7 is separated, the stress and damage that aerobic microorganisms and the like are subjected to in the filtration step, the micro-nano bubble-containing step, etc. can be reduced.
2) Since aerobic microorganisms are supported on the porous structure, filtration can be performed efficiently and economically.
3) Since the microorganism culture solution 5 is pressurized by the culture tank pump 10 and supplied to the micro / nano bubble generator 4, the generation of micro / nano bubbles can be performed smoothly and economically.
4) Since the microorganism culture solution 5 in the microorganism culture tank 1 is circulated through the circulation path 15 (that is, extracted from the microorganism culture tank 1 and refluxed), the microorganism culture solution 5 in the microorganism culture tank 1 is agitated. It has the merit of being able to.
 図3に、この発明の生物反応装置の第3実施形態を模式的に示す。
 第3実施形態は、培養液6また微生物培養液5にマイクロナノバブルを含有させる手段として、第1実施形態で用いられている、微生物培養槽1に供給される培養液6及び微生物培養槽1の微生物培養液5にマイクロナノバブルを含有させる手段と、第2実施形態で用いられている循環MNB含有手段とを、併用したものである。
FIG. 3 schematically shows a third embodiment of the biological reaction apparatus of the present invention.
In the third embodiment, as a means for containing the micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5, the culture solution 6 supplied to the microorganism culture tank 1 and the microorganism culture tank 1 used in the first embodiment are used. The means for containing the micro-nano bubbles in the microorganism culture solution 5 and the circulating MNB-containing means used in the second embodiment are used in combination.
 微生物培養液5のマイクロナノバブル含有量を高めたい場合には、このように複数のマイクロナノバブル含有手段を併用することが有効である。 In order to increase the micro / nano bubble content of the microorganism culture solution 5, it is effective to use a plurality of micro / nano bubble-containing means in this way.
 図4に、この発明の生物反応装置の第4実施形態を模式的に示す。
 第4実施形態では、担持構造体7を微生物培養液5中に分散した状態で存在させており、さらに、微生物培養槽1には、微生物培養液5を撹拌するための培養槽撹拌機14が設置されている。
FIG. 4 schematically shows a fourth embodiment of the biological reaction apparatus of the present invention.
In the fourth embodiment, the support structure 7 is present in a dispersed state in the microorganism culture solution 5, and the microorganism culture vessel 1 further includes a culture vessel agitator 14 for stirring the microorganism culture solution 5. is set up.
 第4実施形態は、
○担持構造体7が、微生物培養槽1中に分散した状態で存在しており、培養槽撹拌機14で撹拌されること、
○マイクロナノバブル発生装置3が微生物培養槽1に培養液6を供給する管路に設けられており、微生物培養槽1に供給される培養液6にマイクロナノバブルを含有させること、
及び
○マイクロナノバブル発生装置2が微生物培養槽1の外部に設けられており、微生物培養槽1の微生物培養液5にマイクロナノバブルを吹き込むこと、
を特徴としている。
In the fourth embodiment,
The support structure 7 is present in a dispersed state in the microorganism culture tank 1 and is stirred by the culture tank agitator 14;
The micro / nano bubble generating device 3 is provided in a pipeline for supplying the culture solution 6 to the microorganism culture tank 1, and the culture solution 6 supplied to the microorganism culture tank 1 contains micro / nano bubbles.
And ○ A micro-nano bubble generator 2 is provided outside the microorganism culture tank 1, and the micro-nano bubbles are blown into the microorganism culture solution 5 of the microorganism culture tank 1.
It is characterized by.
 第4実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に供給する際に、マイクロナノバブル発生装置3により、培養液6にマイクロナノバブルを含有させる。
b)微生物培養槽1に供給した後にも、マイクロナノバブル発生装置2からマイクロナノバブルを吹き込んで、微生物培養液5にマイクロナノバブルを含有させる。
c)微生物培養槽1内で、撹拌される担持構造体7に担持された好気性微生物等の生物反応により、目的物を生成する。
d)培養槽ポンプ10を駆動し、ろ過手段9で、担持構造体7を分離して、目的物を含有する微生物培養液5をろ過液貯槽13に回収する。
 このように、第4実施形態では、生物反応前に予め好気性微生物等を細孔の奥まで担持させた、好気性微生物等の担持密度の高い担持構造体7及びマイクロナノバブルを含有させた微生物培養液5を用いることにより、生物反応を効率良く進めて、目的物を効率良く得ることができる。
In the fourth embodiment, the object is generated and collected by the following steps.
a) When supplying to the microorganism culture tank 1, the micro / nano bubble generator 3 causes the culture solution 6 to contain micro / nano bubbles.
b) Even after supplying to the microorganism culture tank 1, the micro / nano bubbles are blown from the micro / nano bubble generator 2 to cause the microorganism culture solution 5 to contain the micro / nano bubbles.
c) In the microorganism culture tank 1, a target product is generated by a biological reaction such as an aerobic microorganism supported on the stirred support structure 7.
d) The culture tank pump 10 is driven, the supporting structure 7 is separated by the filtration means 9, and the microorganism culture solution 5 containing the target product is collected in the filtrate storage tank 13.
As described above, in the fourth embodiment, the aerobic microorganism or the like is supported in advance before the biological reaction, and the supporting structure 7 such as the aerobic microorganism or the like and the micro-nano bubbles are contained. By using the culture solution 5, a biological reaction can be advanced efficiently and a target object can be obtained efficiently.
 第4実施形態には、培養槽撹拌機14を用いて担持構造体7を微生物培養液5に分散し撹拌するため、多孔質構造体の細孔の奥に担持させている好気性微生物等にも、栄養分及び酸素が十分に提供され、生物反応を促進できるというメリットがあるが、一方、1)培養槽撹拌機14の設置・運転に費用を要する、2)培養槽撹拌機14の撹拌による剪断力により、好気性微生物等がストレスやダメージを受けやすい、好気性微生物等が多孔質構造体から離脱しやすい等のデメリットがある。 In the fourth embodiment, since the support structure 7 is dispersed and stirred in the microorganism culture solution 5 using the culture tank stirrer 14, the aerobic microorganisms or the like supported in the back of the pores of the porous structure are used. However, there is a merit that nutrients and oxygen are sufficiently provided and a biological reaction can be promoted. On the other hand, 1) the installation and operation of the culture tank agitator 14 is expensive, and 2) by the agitation of the culture tank agitator 14 Due to the shearing force, aerobic microorganisms and the like are susceptible to stress and damage, and aerobic microorganisms and the like are easily detached from the porous structure.
 図5に、この発明の生物反応装置の第5実施形態を模式的に示す。
 第5実施形態は、第4実施形態における培養液6及び微生物培養液5にマイクロナノバブルを含有させる手段を、循環MNB含有手段に変更したものである。
FIG. 5 schematically shows a fifth embodiment of the biological reaction apparatus of the present invention.
In the fifth embodiment, the means for containing micro-nano bubbles in the culture solution 6 and the microorganism culture solution 5 in the fourth embodiment is changed to circulating MNB-containing means.
 第5実施形態では、次のような工程により、目的物が生成・回収される。
a)微生物培養槽1に培養液6を供給する。
b)バルブ11を開、バルブ12を閉とした状態で培養槽ポンプ10を駆動し、ろ過手段9で担持構造体7を分離し、微生物培養槽1から抜き出した微生物培養液5をマイクロナノバブル発生装置4に導き、マイクロナノバブルを含有させた後、微生物培養槽1に還流する。
c)微生物培養槽1内で、撹拌される担持構造体7に担持された好気性微生物等の生物反応により、目的物を生成する。
d)培養槽ポンプ10を駆動し、ろ過手段9で、担持構造体7を分離して、目的物を含有する微生物培養液5をろ過液貯槽13に回収する。
In the fifth embodiment, the target object is generated and collected by the following steps.
a) The culture solution 6 is supplied to the microorganism culture tank 1.
b) The culture tank pump 10 is driven with the valve 11 opened and the valve 12 closed, the supporting structure 7 is separated by the filtering means 9, and the microbial culture solution 5 extracted from the microbial culture tank 1 is generated as micro-nano bubbles. After being guided to the apparatus 4 and containing micro-nano bubbles, it is refluxed to the microorganism culture tank 1.
c) In the microorganism culture tank 1, a target product is generated by a biological reaction such as an aerobic microorganism supported on the stirred support structure 7.
d) The culture tank pump 10 is driven, the supporting structure 7 is separated by the filtration means 9, and the microorganism culture solution 5 containing the target product is collected in the filtrate storage tank 13.
 第5実施形態には、第4実施形態と同じく、生物反応を促進できるというメリットがある。 The fifth embodiment has the merit that the biological reaction can be promoted as in the fourth embodiment.
 また、第5実施形態は、第4実施形態と同じく、培養槽撹拌機14を設けたものであるが、第2実施形態で述べたように、循環MNB含有手段を用いていることにより、微生物培養槽1の微生物培養液5を撹拌することができるので、培養槽撹拌機14を用いた撹拌を軽減することができる。 Further, the fifth embodiment is provided with a culture tank agitator 14 as in the fourth embodiment. However, as described in the second embodiment, by using the circulating MNB-containing means, microorganisms are used. Since the microorganism culture solution 5 in the culture tank 1 can be stirred, stirring using the culture tank stirrer 14 can be reduced.
 このように、培養槽撹拌機14による撹拌は、循環MNB含有手段による撹拌が十分でない場合に限って行えばよいので、実施形態4で述べた、培養槽撹拌機14を用いることに伴うデメリットは、かなり改善することができる。 Thus, since the stirring by the culture tank stirrer 14 may be performed only when the stirring by the circulating MNB-containing means is not sufficient, the disadvantages associated with using the culture tank stirrer 14 described in the fourth embodiment are Can be improved considerably.
 また、第5実施形態は、第4実施形態と同じく、循環MNB含有手段を用いているため、第2実施形態で述べた1)~4)のようなメリットを有している。 Further, since the fifth embodiment uses the circulating MNB-containing means as in the fourth embodiment, it has the advantages 1) to 4) described in the second embodiment.
 図6に、この発明の生物反応装置の第6実施形態を模式的に示す。
 第6実施形態は、培養液6または微生物培養液5にマイクロナノバブルを含有させる手段として、
 第1実施形態、第3実施形態及び第4実施形態で用いられている、微生物培養槽1に供給される培養液6及び微生物培養槽1の微生物培養液5にマイクロナノバブルを含有させる手段と、第2実施形態、第3実施形態及び第5実施形態で用いられている、循環MNB含有手段とを、併用したものである。
FIG. 6 schematically shows a sixth embodiment of the biological reaction apparatus of the present invention.
In the sixth embodiment, as means for containing micro-nano bubbles in the culture solution 6 or the microorganism culture solution 5,
Means for containing micro-nano bubbles in the culture solution 6 supplied to the microorganism culture tank 1 and the microorganism culture solution 5 of the microorganism culture tank 1 used in the first embodiment, the third embodiment, and the fourth embodiment; The circulating MNB-containing means used in the second embodiment, the third embodiment, and the fifth embodiment is used in combination.
 微生物培養液5のマイクロナノバブル含有量を高めたい場合には、このように複数の手段を併用することが有効である。 When it is desired to increase the content of micro / nano bubbles in the microorganism culture solution 5, it is effective to use a plurality of means in this way.
 最後に、第2実施形態、第3実施形態、第5実施形態及び第6実施形態で用いられている、循環MNB含有手段についてさらに説明する。この手段は、第2実施態様で説明したように、
1)担持構造体7を分離した微生物培養液5にマイクロナノバブルを含有させるので、ろ過工程、マイクロナノバブル含有工程等において好気性微生物等が受けるストレスやダメージを低減できる、
2)好気性微生物等を多孔質構造体に担持させているので、ろ過を効率的、経済的に行うことができる、
3)微生物培養液5を培養槽ポンプ10で加圧してマイクロナノバブル発生装置4に供給するので、マイクロナノバブルの発生を円滑、経済的に行うことができる、
4)微生物培養槽1内の微生物培養液5は循環経路15を通じて循環される(すなわち、微生物培養槽1から抜き出され、還流される)ので、微生物培養槽1の微生物培養液5を撹拌することができる
等のメリットを有しているものである。
Finally, the circulating MNB containing means used in the second embodiment, the third embodiment, the fifth embodiment and the sixth embodiment will be further described. This means, as explained in the second embodiment,
1) Since micro-nano bubbles are contained in the microorganism culture solution 5 from which the support structure 7 is separated, the stress and damage that aerobic microorganisms and the like are subjected to in the filtration step, the micro-nano bubble-containing step, etc. can be reduced.
2) Since aerobic microorganisms are supported on the porous structure, filtration can be performed efficiently and economically.
3) Since the microorganism culture solution 5 is pressurized by the culture tank pump 10 and supplied to the micro / nano bubble generator 4, the generation of micro / nano bubbles can be performed smoothly and economically.
4) Since the microorganism culture solution 5 in the microorganism culture tank 1 is circulated through the circulation path 15 (that is, extracted from the microorganism culture tank 1 and refluxed), the microorganism culture solution 5 in the microorganism culture tank 1 is agitated. It has the merit that it can be.
 特に、上記4)のメリットを十分に活用し、微生物培養槽1の微生物培養液5の撹拌を十分かつ均一に行うためには、循環経路15を一系列だけでなく、微生物培養槽1の周囲に複数系列設けることが好ましく、微生物培養槽1の中心軸に対して等角度に複数系列設けることがさらに好ましい。これにより、好気性微生物等に剪断力等による過度のストレスやダメージを与えることなく、生物培養槽1内の生物培養液5を撹拌し、生物培養液5の溶存酸素量等を均一に保つことができる。 In particular, in order to fully utilize the advantage 4) and to sufficiently and uniformly agitate the microorganism culture solution 5 in the microorganism culture tank 1, the circulation path 15 is not limited to a single line, but around the microorganism culture tank 1. It is preferable to provide a plurality of series, and it is more preferable to provide a plurality of series at an equal angle with respect to the central axis of the microorganism culture tank 1. Thereby, the biological culture solution 5 in the biological culture tank 1 is agitated and the dissolved oxygen amount of the biological culture solution 5 is kept uniform without giving excessive stress or damage due to shearing force or the like to the aerobic microorganism. Can do.
 また、循環MNB含有手段では、微生物培養槽1から微生物培養液5を抜き出し、マイクロナノバブルを含有させた微生物培養液5を微生物培養槽1に還流する訳であるが、微生物培養液5を抜き出す部分(以下、「吸込部」という。)及び微生物培養液5を還流する部分(以下、「吹込部」という。)の設置位置、吸込及び吹込方向等は、微生物培養槽1内の微生物培養液5の撹拌が最適に行えるように設計することができる。 In the circulating MNB-containing means, the microorganism culture solution 5 is extracted from the microorganism culture tank 1 and the microorganism culture solution 5 containing micro-nano bubbles is returned to the microorganism culture tank 1. (Hereinafter referred to as the “suction part”) and the part where the microorganism culture solution 5 is circulated (hereinafter referred to as “blowing part”), the suction and blowing direction, and the like, are the microorganism culture solution 5 in the microorganism culture tank 1. It can be designed so that the agitation can be performed optimally.
 例えば、円筒形の微生物培養槽を用いる場合には、微生物培養槽1の上方に吸込部を設け、微生物培養槽1の側面の培養槽底面近辺に、この吸込部と鉛直方向に並べて吹込部を設けることにより、円筒形の微生物培養槽1の側面側に、下部の吹込部側から上部の吸込部側に向かう上昇流を生じさせ、また、円筒形の微生物培養槽1の中心部側に下降流を生じさせることができる。 For example, when a cylindrical microorganism culture tank is used, a suction part is provided above the microorganism culture tank 1, and the blow part is arranged in the vertical direction in the vicinity of the bottom of the culture tank on the side of the microorganism culture tank 1. By providing, an upward flow is generated on the side surface side of the cylindrical microorganism culture tank 1 from the lower blowing part side toward the upper suction part side, and descends toward the center part side of the cylindrical microorganism culture tank 1. A flow can be generated.
 また、吸込部及び吹込部の対を、円筒形の微生物培養槽1の側面に沿って等間隔に複数対設けることにより、円筒形の微生物培養槽1全体にわたって、鉛直上下方向の撹拌を均一かつ十分に行うことができる。 In addition, by providing a plurality of pairs of suction parts and blowing parts at equal intervals along the side surface of the cylindrical microorganism culture tank 1, the vertical and vertical agitation can be uniformly performed over the entire cylindrical microorganism culture tank 1. Well done.
 また、複数の吹込部を、それぞれ、円筒形の微生物培養槽1の底面に向かって時計回り方向または反時計回り方向のいずれか一方に隣合う他の吹込部の方向に向けることにより、鉛直上下方向の撹拌と共に、水平方向の撹拌も十分に行うことができる。 Further, by vertically orienting the plurality of blowing parts toward the bottom of the cylindrical microorganism culture tank 1 in the direction of another blowing part adjacent to either the clockwise direction or the counterclockwise direction, Along with the stirring in the direction, the stirring in the horizontal direction can be sufficiently performed.
 また、吹込部を水平方向に対し下方に向ける、好ましくは、水平方向に対する角度を下向きに20°~40°とすることにより、円筒形の微生物培養槽1の底部に沈降してくる担持構造体、酵素等を円筒形の微生物培養槽1の上方に戻すことができる。 Also, the support structure that sinks to the bottom of the cylindrical microorganism culture tank 1 by directing the blowing portion downward with respect to the horizontal direction, preferably by setting the angle to the horizontal direction to 20 ° to 40 ° downward. The enzyme or the like can be returned to the upper side of the cylindrical microorganism culture tank 1.
 また、吹込み部にインサートノズルを設置し、当該ノズルの直径を、培養槽を循環させる配管の直径と同じもしくはそれ以下とすることにより、噴流を生じ、円筒型の微生物培養槽1内部の、当該ノズルより遠方へ向けてマイクロナノバブルをすみやかに移送することでよりいっそう撹拌することができる。 In addition, by installing an insert nozzle in the blowing section, and making the diameter of the nozzle the same as or less than the diameter of the pipe for circulating the culture tank, a jet flow is generated, and the inside of the cylindrical microorganism culture tank 1, Stirring can be further achieved by promptly transferring the micro-nano bubbles toward a distance from the nozzle.
 さらに、この循環MNB含有手段は、生物反応のみならず、担持密度の高い多孔質構造体の製造においても、生物反応と同様に有効に利用できるものである。 Furthermore, this circulating MNB-containing means can be used effectively not only for biological reactions, but also for the production of porous structures having a high loading density in the same way as biological reactions.
 以下に実施例を挙げて、本発明の、マイクロナノバブルを利用して生物反応前に予め好気性微生物等を細孔の奥まで担持させた、担持密度の高い多孔質構造体についてさらに説明する。 Hereinafter, with reference to examples, the porous structure having a high loading density in which aerobic microorganisms and the like are loaded in advance to the back of the pores before the biological reaction using micro-nano bubbles will be further described.
 実施例1及び比較例1の主旨を簡単に説明すると、微生物培養槽中に好気性微生物等、微生物培養液、多孔質構造体等を収容し、この培養槽にマイクロナノバブルを供給したケースが実施例1、マイクロナノバブルよりも粒径の大きな気泡を供給したケースが比較例1である。 Briefly explaining the main points of Example 1 and Comparative Example 1, a case where aerobic microorganisms, a microorganism culture solution, a porous structure and the like are accommodated in a microorganism culture tank and micro / nano bubbles are supplied to the culture tank is implemented. In Example 1, Comparative Example 1 is a case where bubbles having a particle size larger than that of micro-nano bubbles are supplied.
 [実施例1]
 微生物培養槽として微生物培養装置(エイブル株式会社製微生物培養装置BMZ-P、内容積1000ml)を用い、この中に好気性微生物等[コリネ型細菌(コリネバクテリウムグルタミカム)の標準株]、微生物培養液[硫酸アンモニウムを主成分とする合成培地、グルコース濃度:4%]、多孔質構造体[クラレアクア株式会社製「クラゲール(登録商標)」、ポリビニルアルコール性球状ゲル、サイズ直径約4mm]を収容し、液量を500mlとした。
[Example 1]
A microorganism culture apparatus (microbe culture apparatus BMZ-P manufactured by Able Co., Ltd., internal volume 1000 ml) is used as a microorganism culture tank, and aerobic microorganisms and the like [standard strain of coryneform bacteria (corynebacterium glutamicum)], microorganisms Contains culture solution [synthetic medium containing ammonium sulfate as the main component, glucose concentration: 4%], porous structure [Kuraray Aqua Co., Ltd. “Kragale (registered trademark)”, polyvinyl alcohol-based spherical gel, size diameter of about 4 mm] The liquid volume was 500 ml.
 この微生物培養槽の内容物を、マイクロナノバブル発生装置[有限会社OKエンジニアリング製ノズル式マイクロナノバブル発生装置、型番:OKE-MB 200ml]により通気量250ml/min、溶存酸素濃度が1mg/Lを下回らないよう培養槽撹拌機の回転数を自動制御して6時間、多孔質構造体に微生物を担持させた。 The contents of this microbial culture tank were reduced to an air flow rate of 250 ml / min and dissolved oxygen concentration below 1 mg / L using a micro / nano bubble generator [nozzle-type micro / nano bubble generator manufactured by OK Engineering, model number: OK-MB 200 ml]. The microorganisms were supported on the porous structure for 6 hours by automatically controlling the rotation speed of the culture tank stirrer.
 [比較例1]
 通気を、マイクロナノバブル発生装置[有限会社OKエンジニアリング製ノズル式マイクロナノバブル発生装置、型番:OKE-MB 200ml]に代えて、通常のスパージャー[エイブル株式会社製微生物培養装置BMZ-P付属品]を用いて行った以外は、実施例1と同様にして、多孔質構造体に微生物を担持させた。
[Comparative Example 1]
Instead of the micro-nano bubble generator [nozzle-type micro-nano bubble generator manufactured by OK Engineering Co., Ltd., model number: OK-MB 200 ml], an ordinary sparger [accessory for microbial culture apparatus BMZ-P manufactured by Able Co., Ltd.] Except that it was used, microorganisms were supported on the porous structure in the same manner as in Example 1.
 [評価]
 実施例1及び比較例1で用いた好気性微生物等であるコリネ型細菌(コリネバクテリウムグルタミカム)は黄色であることから、多孔質構造体を中心点を通る断面で切断し、切断面が黄色に着色している状態を観察することにより、多孔質構造体に好気性微生物等が担持されている状態を評価した。
[Evaluation]
Since coryneform bacteria (corynebacterium glutamicum), which are aerobic microorganisms and the like used in Example 1 and Comparative Example 1, are yellow, the porous structure is cut in a cross section passing through the center point, and the cut surface is By observing the yellow colored state, the state where aerobic microorganisms and the like are supported on the porous structure was evaluated.
 好気性微生物等を担持させる前の多孔質構造体、実施例1により好気性微生物等を担持させた後の多孔質構造体及び比較例1により好気性微生物等を担持させた後の多孔質構造体の中心点を通る断面を示す写真を、それぞれ、図7~9に示す。 Porous structure before supporting aerobic microorganisms, porous structure after supporting aerobic microorganisms in Example 1, and porous structure after supporting aerobic microorganisms in Comparative Example 1 Photographs showing a cross section passing through the center point of the body are shown in FIGS. 7 to 9, respectively.
 また、これらの写真に示す多孔質体の断面の彩度を測定した。
 好気性微生物等を担持させる前の多孔質構造体断面の彩度を1とした場合の相対値で示すと、実施例1により好気性微生物等を担持させた後の多孔質構造体断面の彩度は4程度、比較例1により好気性微生物等を担持させた後の多孔質構造体断面の彩度は2程度となっている。
Moreover, the saturation of the cross section of the porous body shown in these photographs was measured.
When the saturation value of the cross section of the porous structure before supporting the aerobic microorganisms is represented by 1, the saturation of the cross section of the porous structure after supporting the aerobic microorganisms in Example 1 is shown. The degree of saturation is about 4, and the saturation of the cross section of the porous structure after supporting aerobic microorganisms or the like in Comparative Example 1 is about 2.
 図7~9の写真の目視及び上記彩度の相対値からわかるように、実施例1のマイクロナノバブルを用いて好気性微生物等を担持させた後の多孔質構造体では、好気性微生物等が中心部まで高密度に担持されていることがわかる。 As can be seen from the visual observation of the photographs in FIGS. 7 to 9 and the relative value of the saturation, in the porous structure after the aerobic microorganisms are supported using the micro-nano bubbles of Example 1, the aerobic microorganisms are It can be seen that the core is supported at a high density.
 さらに、溶存酸素濃度が1mg/Lを下回らないよう自動制御された培養槽撹拌機回転数の時間平均値は、実施例1では330rpm、比較例1では470rpmであった。このことから、実施例1のようにマイクロナノバブルを用いて好気性微生物等を多孔質構造体に担持させることにより、撹拌を軽減することができ、1)培養槽撹拌機の運転エネルギーを低減できる、2)好気性微生物等が受けるストレスやダメージを軽減できる、3)多孔質構造体に好気性微生物等が担持されやすくなる等のメリットが生じることがわかる。 Furthermore, the time average value of the rotation speed of the culture vessel agitator automatically controlled so that the dissolved oxygen concentration does not fall below 1 mg / L was 330 rpm in Example 1 and 470 rpm in Comparative Example 1. From this, it is possible to reduce agitation by supporting aerobic microorganisms and the like on the porous structure using micro-nano bubbles as in Example 1, and 1) the operating energy of the culture tank agitator can be reduced. It can be seen that 2) the stress and damage received by the aerobic microorganisms can be reduced, and 3) the aerobic microorganisms and the like are easily carried on the porous structure.
 このように、マイクロナノバブルを利用することにより、好気性微生物等を細孔の奥まで担持させた、担持密度の高い多孔質構造体を、経済的、効率的かつ好気性微生物等が受けるストレスやダメージを軽減させて製造することができる。 In this way, by using micro-nano bubbles, a porous structure having a high loading density in which aerobic microorganisms and the like are carried to the depths of the pores is economically, efficiently and stressed by aerobic microorganisms and the like. It can be manufactured with reduced damage.
 さらに、このような多孔質構造体を用いると共に、マイクロナノバブルを利用して生物反応を行うことにより、
1)多孔質構造体には、ストレスやダメージをあまり受けていない好気性微生物等が、細孔の奥までかつ高い密度で担持されていること、及び
2)マイクロナノバブルが多孔質構造体の細孔の奥まで入り込むため、多孔質構造体の細孔の奥に担持された好気性微生物等にも呼吸に必要な酸素を十分に供給できること、
から、生物反応を効率良く行うことができるようになる。
Furthermore, by using such a porous structure and performing a biological reaction using micro-nano bubbles,
1) The porous structure is loaded with aerobic microorganisms that are not subject to much stress or damage to the depths of the pores and at a high density, and 2) the micro-nano bubbles are fine in the porous structure. In order to penetrate deep into the pores, the oxygen necessary for breathing can be sufficiently supplied to aerobic microorganisms and the like carried deep inside the pores of the porous structure,
Therefore, the biological reaction can be performed efficiently.
 また、好気性微生物等は多孔質構造体に担持されているため、生物反応におけるろ過工程、マイクロナノバブル含有工程等において好気性微生物等が受けるストレスやダメージを低減することができる。 In addition, since aerobic microorganisms and the like are supported on the porous structure, it is possible to reduce stress and damage that aerobic microorganisms and the like are subjected to in a filtration process in a biological reaction, a micro-nano bubble-containing process, and the like.
 また、実施例1、比較例1で示したように、マイクロナノバブルを用いることにより溶存酸素濃度を一定に保つための撹拌を軽減することができるので、生物反応において培養槽撹拌機を用いて微生物培養液を撹拌する場合においても、1)培養槽撹拌機の運転エネルギーを低減できる、2)好気性微生物等が受けるストレスやダメージを軽減できる、3)好気性等が多孔質構造体から離脱しにくくできる等のメリットがある。 In addition, as shown in Example 1 and Comparative Example 1, the use of micro-nano bubbles can reduce stirring to keep the dissolved oxygen concentration constant, so that microorganisms can be used using a culture tank stirrer in biological reactions. Even when the culture solution is agitated, 1) the operating energy of the culture vessel agitator can be reduced, 2) the stress and damage to the aerobic microorganisms can be reduced, and 3) aerobicity is released from the porous structure. There are merits such as being difficult.
 1 微生物培養槽
 2~4 マイクロナノバブル発生装置
 5 微生物培養液
 6 培養液
 7 担持構造体(好気性微生物等を担持させた多孔質構造体)
 8 固定部材
 9 ろ過手段
10 培養槽ポンプ
11~12 バルブ
13 ろ過液貯槽
14 培養槽撹拌機
15 循環経路
DESCRIPTION OF SYMBOLS 1 Microbial culture tank 2-4 Micro-nano bubble generator 5 Microbial culture solution 6 Culture solution 7 Support structure (porous structure carrying aerobic microorganisms, etc.)
8 Fixing member 9 Filtration means 10 Culture tank pump 11-12 Valve 13 Filtrate storage tank 14 Culture tank agitator 15 Circulation path

Claims (13)

  1.  培養液、及び生物反応前に予め好気性もしくは通性嫌気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体を含有する微生物培養液を収容する微生物培養槽と、
     上記微生物培養液にマイクロナノバブルを含有させるマイクロナノバブル発生装置とを備えることを特徴とする生物反応装置。
    A microorganism culture tank containing a culture medium and a microorganism culture liquid containing a porous structure having a high loading density, in which aerobic or facultative anaerobic microorganisms are loaded to the depths of the pores before biological reaction;
    A biological reaction apparatus comprising: a micro / nano bubble generating apparatus for containing micro / nano bubbles in the microorganism culture solution.
  2.  上記担持密度の高い多孔質構造体が、生物反応前に予め、多孔質構造体と、上記好気性もしくは通性嫌気性微生物及びマイクロナノバブルを含有する培養液とを接触させることにより得られるものである、請求項1に記載の生物反応装置。 The porous structure having a high loading density is obtained by bringing the porous structure into contact with a culture solution containing the aerobic or facultative anaerobic microorganisms and micro-nano bubbles in advance before biological reaction. The biological reaction apparatus according to claim 1, wherein
  3.  上記担持密度の高い多孔質構造体が、連続孔のある三次元立体網目構造を有することを特徴とする、請求項1または2に記載の生物反応装置。 The biological reaction apparatus according to claim 1 or 2, wherein the porous structure having a high loading density has a three-dimensional three-dimensional network structure with continuous pores.
  4.  上記担持密度の高い多孔質構造体が、ポリビニルアルコール系多孔質ゲルであることを特徴とする、請求項1~3のいずれかに記載の生物反応装置。 The bioreactor according to any one of claims 1 to 3, wherein the porous structure having a high loading density is a polyvinyl alcohol-based porous gel.
  5.  上記担持密度の高い多孔質構造体が、上記微生物培養液中にカラム、網体等の固定部材で固定されていることを特徴とする、請求項1~4のいずれかに記載の生物反応装置。 The bioreactor according to any one of claims 1 to 4, wherein the porous structure having a high loading density is fixed in the microorganism culture solution by a fixing member such as a column or a net. .
  6.  上記担持密度の高い多孔質構造体が、上記微生物培養液中に分散した状態で存在することを特徴とする、請求項1~4のいずれかに記載の生物反応装置。 The biological reaction apparatus according to any one of claims 1 to 4, wherein the porous structure having a high loading density is present in a dispersed state in the microorganism culture solution.
  7.  上記マイクロナノバブル発生装置が上記微生物培養槽に培養液を供給する管路に設けられ、上記微生物培養槽に供給される培養液にマイクロナノバブルを含有させることを特徴とする、請求項1~6のいずれかに記載の生物反応装置。 The micro-nano bubble generating device is provided in a conduit for supplying a culture solution to the microorganism culture tank, and the micro-nano bubbles are contained in the culture solution supplied to the microorganism culture tank. The biological reaction apparatus in any one.
  8.  上記マイクロナノバブル発生装置が上記微生物培養槽の外部に設けられ、上記微生物培養槽の微生物培養液にマイクロナノバブルを吹き込むことを特徴とする、請求項1~7のいずれかに記載の生物反応装置。 The biological reaction apparatus according to any one of claims 1 to 7, wherein the micro / nano bubble generating device is provided outside the microorganism culture tank, and the micro / nano bubbles are blown into a microorganism culture solution in the microorganism culture tank.
  9.  上記微生物培養槽から上記微生物培養液を抜き出し、マイクロナノバブルを含有させた後、上記微生物培養槽に還流する循環経路を有し、該循環経路には、
     上記微生物培養槽または上記微生物培養槽から上記微生物培養液を抜き出す管路に設けられ、上記微生物培養液から上記多孔質構造体を分離するろ過手段、
     上記ろ過手段を通じて上記微生物培養槽から上記微生物培養液を抜き出し、この抜き出した微生物培養液に圧力をかけて次の工程に送る培養槽ポンプ、及び
     この加圧された微生物培養液にマイクロナノバブルを含有させるマイクロナノバブル発生装置
    を備えることを特徴とする、請求項8に記載の生物反応装置。
    After having extracted the microorganism culture solution from the microorganism culture tank and containing micro-nano bubbles, the circulation path is refluxed to the microorganism culture tank.
    Filter means for separating the porous structure from the microorganism culture solution, provided in a conduit for extracting the microorganism culture solution from the microorganism culture vessel or the microorganism culture vessel,
    A culture tank pump that extracts the microorganism culture solution from the microorganism culture tank through the filtering means, applies pressure to the extracted microorganism culture solution and sends it to the next step, and contains micro-nano bubbles in the pressurized microorganism culture solution The bioreaction apparatus according to claim 8, further comprising a micro / nano bubble generation apparatus.
  10.  上記請求項1~9のいずれかに記載の生物反応装置により、好気性もしくは通性嫌気性微生物の代謝産物等の反応物を得ることを特徴とする、生物反応方法。 A biological reaction method characterized in that a reaction product such as a metabolite of an aerobic or facultative anaerobic microorganism is obtained by the biological reaction device according to any one of claims 1 to 9.
  11.  上記請求項1~10のいずれかに記載の生物反応装置または生物反応方法において使用される、生物反応前に予め好気性もしくは通性嫌気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体。 An aerobic or facultative anaerobic microorganism used in the biological reaction apparatus or biological reaction method according to any one of claims 1 to 10 previously supported to the back of the pores before the biological reaction. High porous structure.
  12.  上記請求項11に記載の担持密度の高い多孔質構造体の製造方法であって、多孔質構造体と、上記好気性もしくは通性嫌気性微生物及びマイクロナノバブルを含有する培養液とを接触させることを特徴とする、好気性もしくは通性嫌気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体の製造方法。 The method for producing a porous structure having a high loading density according to claim 11, wherein the porous structure is contacted with a culture solution containing the aerobic or facultative anaerobic microorganisms and micro-nano bubbles. A method for producing a porous structure having a high loading density, in which an aerobic or facultative anaerobic microorganism is supported deep inside the pores.
  13.  微生物培養槽中に好気性もしくは通性嫌気性微生物、微生物培養液、多孔質構造体等を収容し、循環経路を通じて、該微生物培養槽から該微生物培養液を抜き出し、マイクロナノバブルを含有させた後、該微生物培養槽に還流することにより、好気性もしくは通性嫌気性微生物を細孔の奥まで担持させた、担持密度の高い多孔質構造体を製造する方法であって、該循環経路では、
     ろ過手段により、上記微生物培養液から上記多孔質構造体を分離し、
     培養槽ポンプにより、上記ろ過手段を通じて上記微生物培養槽から上記微生物培養液を抜き出し、この抜き出した微生物培養液に圧力をかけて次の工程に送り、
     マイクロナノバブル発生装置により、この加圧された微生物培養液にマイクロナノバブルを含有させることを特徴とする、請求項12に記載の担持密度の高い多孔質構造体の製造方法。
     
    After containing aerobic or facultative anaerobic microorganisms, microbial culture solution, porous structure, etc. in a microbial culture tank, and extracting the microbial culture solution from the microbial culture tank through a circulation path and containing micro-nano bubbles , A method for producing a porous structure having a high loading density in which aerobic or facultative anaerobic microorganisms are carried to the back of the pores by refluxing to the microorganism culture tank,
    The porous structure is separated from the microorganism culture solution by filtration means,
    With the culture tank pump, the microorganism culture solution is extracted from the microorganism culture tank through the filtration means, and the extracted microorganism culture solution is pressurized and sent to the next step.
    The method for producing a porous structure having a high loading density according to claim 12, wherein the pressurized microorganism culture solution contains micro-nano bubbles by a micro-nano bubble generator.
PCT/JP2015/082548 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure WO2016080487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560283A JPWO2016080487A1 (en) 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure carrying aerobic or facultative anaerobic microorganisms used in biological reaction apparatus, and method for producing the porous structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/080574 2014-11-19
PCT/JP2014/080574 WO2016079820A1 (en) 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure

Publications (1)

Publication Number Publication Date
WO2016080487A1 true WO2016080487A1 (en) 2016-05-26

Family

ID=56013433

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/080574 WO2016079820A1 (en) 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure
PCT/JP2015/082548 WO2016080487A1 (en) 2014-11-19 2015-11-19 Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080574 WO2016079820A1 (en) 2014-11-19 2014-11-19 Biological reaction device, biological reaction method, aerobic microorganism-carrying porous structure to be used in biological reaction device and method for producing porous structure

Country Status (2)

Country Link
JP (1) JPWO2016080487A1 (en)
WO (2) WO2016079820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399749B1 (en) * 2021-12-14 2022-05-20 (주)해인시스템 Nanobubble generating device and water purification system using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503848A (en) * 1990-02-01 1993-06-24 アクゾ・エヌ・ヴエー Cell culture method
US5534143A (en) * 1990-09-18 1996-07-09 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Microbubble generator for the transfer of oxygen to microbial inocula, and microbubble generator immobilized cell reactor
JPH0937766A (en) * 1995-07-28 1997-02-10 Kansai Paint Co Ltd Interfacial bioreactor system
JP2007312690A (en) * 2006-05-26 2007-12-06 Sharp Corp Method for activating microorganism and device for activating the same
US20100076380A1 (en) * 2008-06-16 2010-03-25 Amprotein Corporation Bioreactors
JP2011120535A (en) * 2009-12-11 2011-06-23 Ihi Corp Adherent cell culture apparatus
US20110177564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuel production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091758B1 (en) * 1999-10-15 2000-09-25 アクアス株式会社 Oil-decomposing bacteria and method for treating oil-containing wastewater using the same
JP2002363279A (en) * 2001-06-01 2002-12-18 Nagase & Co Ltd METHOD FOR PRODUCING POLY-gamma-GLUTAMIC ACID
JP4146476B2 (en) * 2006-05-26 2008-09-10 シャープ株式会社 Biological reactor
JP4879925B2 (en) * 2008-02-25 2012-02-22 シャープ株式会社 Water treatment apparatus and water treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503848A (en) * 1990-02-01 1993-06-24 アクゾ・エヌ・ヴエー Cell culture method
US5534143A (en) * 1990-09-18 1996-07-09 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Microbubble generator for the transfer of oxygen to microbial inocula, and microbubble generator immobilized cell reactor
JPH0937766A (en) * 1995-07-28 1997-02-10 Kansai Paint Co Ltd Interfacial bioreactor system
JP2007312690A (en) * 2006-05-26 2007-12-06 Sharp Corp Method for activating microorganism and device for activating the same
US20100076380A1 (en) * 2008-06-16 2010-03-25 Amprotein Corporation Bioreactors
JP2011120535A (en) * 2009-12-11 2011-06-23 Ihi Corp Adherent cell culture apparatus
US20110177564A1 (en) * 2010-01-15 2011-07-21 Massachusetts Institute Of Technology Bioprocess and microbe engineering for total carbon utilization in biofuel production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399749B1 (en) * 2021-12-14 2022-05-20 (주)해인시스템 Nanobubble generating device and water purification system using the same

Also Published As

Publication number Publication date
WO2016079820A1 (en) 2016-05-26
JPWO2016080487A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP4146476B2 (en) Biological reactor
JP5374044B2 (en) Hydrogen fermentation apparatus and method for producing hydrogen
JP5639098B2 (en) Membrane bioreactor
CN102776117B (en) Use the bioreactor for cultivating microalgae of hollow-fibre membrane
CN102350256B (en) Micro-nano bubble generating device, and fermentation apparatus and fermentation method using same
WO2017029733A1 (en) Biological reaction device, and biological reaction method using said biological reaction device
JPWO2016117599A1 (en) Biological reaction device provided with device for supplying micro-nano bubbles containing oxygen and micro-nano bubbles containing bactericidal gas such as ozone
JP2005152763A (en) Gas-liquid mixed solution containing ultrafine bubble for reactor, production method of the same, chemical reactor apparatus, and bioreactor apparatus
CN102978113A (en) Stirring, aerating and cell filtering bioreactor integrating
WO2018139343A1 (en) Biological reaction device in which micro-nano bubbles are used, and biological reaction method in which said biological reaction device is used
CN217459384U (en) Oxygen micro-nano bubble enhanced aerobic fermentation bioreactor
JP2007312690A (en) Method for activating microorganism and device for activating the same
KR20220002585A (en) Bioreactor for growing microorganisms
US20100291621A1 (en) Anaerobic process
CN114806810A (en) Oxygen micro-nano bubble enhanced aerobic fermentation bioreactor and application thereof
JPWO2019004478A1 (en) Method and apparatus for manufacturing chemical products by continuous fermentation
WO2016080487A1 (en) Biological reaction apparatus, biological reaction method, porous structure supporting aerobic or facultative anaerobic microorganism used in biological reaction apparatus, and method for manufacturing porous structure
JP6087476B1 (en) Biological reaction device using oxygen-enriched micro-nano bubbles and biological reaction method using this biological reaction device
CN102127505B (en) Immobilized cell bioreactor
CN202297606U (en) Stirring, aerating and cell filtering integrated bioreactor
JP2009060876A (en) Method for producing hydrogen and device for producing hydrogen
JP2011177046A (en) Method and apparatus for culturing cell
JP6499203B2 (en) Biological reaction device provided with device for supplying micro-nano bubbles of oxygen-containing gas, device for removing dissolved carbon dioxide, and biological reaction method using this biological reaction device
JP5985114B1 (en) Biological reaction apparatus and biological reaction method using the biological reaction apparatus
De la Fuente Salcido et al. Challenges of fermentation engineering

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861828

Country of ref document: EP

Kind code of ref document: A1