WO2016078617A1 - Image forming system and image sensor - Google Patents

Image forming system and image sensor Download PDF

Info

Publication number
WO2016078617A1
WO2016078617A1 PCT/CN2015/095208 CN2015095208W WO2016078617A1 WO 2016078617 A1 WO2016078617 A1 WO 2016078617A1 CN 2015095208 W CN2015095208 W CN 2015095208W WO 2016078617 A1 WO2016078617 A1 WO 2016078617A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel subunit
pixel
subunit
electroluminescent sheet
Prior art date
Application number
PCT/CN2015/095208
Other languages
French (fr)
Inventor
Kun Liu
Xianqing GUO
Jingjun Fu
Original Assignee
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Company Limited filed Critical Byd Company Limited
Publication of WO2016078617A1 publication Critical patent/WO2016078617A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/581Control of the dynamic range involving two or more exposures acquired simultaneously
    • H04N25/585Control of the dynamic range involving two or more exposures acquired simultaneously with pixels having different sensitivities within the sensor, e.g. fast or slow pixels or pixels having different sizes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components

Definitions

  • Embodiments of the present disclosure generally relate to an image technology, and more particularly to an image forming system and an image sensor.
  • CMOS complementary metal-oxide semiconductor
  • A/D analog to digital
  • the dynamic range of the image sensor is a ratio between the maximum unsaturated signal and the dark noise, which is a key factor for the quality of the image sensor.
  • the dynamic range of the CMOS image sensor is only about 60db, while the dynamic range of the photographic environment often exceeds 100db, and thus the image contrast of the CMOS image sensor is not high enough.
  • the pixel information obtained for twice or more than twice are synthesized to achieve the wide dynamic range.
  • the image sensor achieves the wide dynamic range.
  • the output signals during different integration time are stored and processed, thus increasing the area of the image sensor memory circuit, and affecting the output frame rate of the image.
  • the area of the image sensor memory circuit may be increased and the frame rate of the image may be affected.
  • Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent.
  • Embodiments of a first aspect of the present disclosure provide an image forming system, the image forming system includes: a substrate; a pixel array, formed on the substrate, wherein the pixel array includes a plurality of pixel units, each pixel unit includes: an image pixel subunit, a collecting pixel subunit and an electroluminescent sheet, covering the image pixel subunit; and a controller, connected with the pixel array and configured to control the collecting pixel subunit to detect incident light, such that the collecting pixel subunit generates a voltage signal according to an intensity of the incident light and outputs the voltage signal to the electroluminescent sheet so as to enable the electroluminescent sheet to generate an attenuated optical signal from the incident light, and to control the image pixel subunit to detect the attenuated optical signal, such that image pixel subunit generates the image signal according to the attenuated optical signal.
  • the collecting pixel subunit generates the voltage signal
  • the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit.
  • the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
  • Embodiments of a second aspect of the present disclosure provide an image sensor, the image sensor includes: a row decoder circuit; the above image forming system, connected with the row decoder circuit, and configured to output an image signal; a sampling circuit, connected with the image forming system, and configured to sample the image signal to obtain an analog image signal; a column decoder circuit, connected with the sampling circuit, and configured to output the analog image signal; and an A/D converter, connected with the column decoder circuit and configured to convert the analog image signal into a digital image signal.
  • the collecting pixel subunit generates the voltage signal
  • the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit.
  • the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
  • Fig. 1 is a block diagram of an image forming system according to an embodiment of the present disclosure
  • Fig. 2 is a block diagram of an image forming system according to another embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a pixel array according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of a pixel array according to another embodiment of the present disclosure.
  • Fig. 5 is a cross-sectional diagram of Fig. 4 along a line L;
  • Fig. 6 is a cross-sectional diagram of a pixel array according to another embodiment of the present disclosure.
  • Fig. 7 is a circuit diagram of a collecting pixel subunit according to an embodiment of the present disclosure.
  • Fig. 8 is a circuit diagram of an image pixel subunit according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of an electroluminescent sheet according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic diagram of a transmission rate of incident light through an electroluminescent sheet according to an embodiment of the present disclosure
  • Fig. 11 is a block diagram of an image sensor according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of an image sensor according to another embodiment of the present disclosure.
  • a structure in which a first feature is “on” a second feature may include an embodiment in which the first feature directly contacts the second feature, and may also include an embodiment in which an additional feature is formed between the first feature and the second feature so that the first feature does not directly contact the second feature.
  • Fig. 1 is a block diagram of an image forming system according to an embodiment of the present disclosure.
  • the image forming system 100 includes a substrate 10, a pixel array 20 formed on the substrate 10 and a controller 30.
  • the substrate 10 is a silicon substrate.
  • the pixel array 20 includes a plurality of pixel units, and each pixel unit includes an image pixel subunit 25, a collecting pixel subunit 24 and an electroluminescent sheet 26.
  • the image pixel subunit 25 is configured to generate an image signal.
  • the collecting pixel subunit 24 is configured to detect incident light and generate a voltage signal according to an intensity of the incident light, the intensity of the incident light detected by the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. The larger the intensity of the incident light, the higher the voltage signal.
  • the electroluminescent sheet 26 is configured to cover the image pixel subunit 25. When the voltage signal is applied to the electroluminescent sheet 26, a transmission rate of the electroluminescent sheet 26 is reduced.
  • the controller 30 is connected with the pixel array 20, and is configured to control the collecting pixel subunit 24 to detect the incident light, such that the collecting pixel subunit 24 generates the voltage signal according to the intensity of the incident light and outputs the voltage signal to the electroluminescent sheet 26 so as to enable the electroluminescent sheet 26 to generate an attenuated optical signal from the incident light, and to control the image pixel subunit 25 to detect the attenuated optical signal, such that image pixel subunit 25 generates the image signal according to the attenuated optical signal.
  • the higher the voltage signal the lower the transmission rate of the electroluminescent sheet 26.
  • the transmission rate of the electroluminescent sheet 26 is reduced due to the higher voltage signal applied to the electroluminescent sheet 26, such that the intensity of the incident light through the electroluminescent sheet 26 is attenuated to some extent, and then the attenuated optical signal may be obtained.
  • the controller 30 controls the image pixel subunit 25 to receive the attenuated optical signal during the integration period and controls the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
  • the electroluminescent sheet 26 is connected with the image pixel subunit 25.
  • Fig. 2 is a block diagram of an image forming system according to an embodiment of the present disclosure.
  • the image forming system 100 includes a substrate 10, a pixel array 20 formed on the substrate 10 and a controller 30.
  • the substrate 10 is a silicon substrate.
  • the pixel array 20 includes a plurality of pixel units, and each pixel unit includes an image pixel subunit 25, a collecting pixel subunit 24 and an electroluminescent sheet 26.
  • the image pixel subunit 25 is configured to generate an image signal.
  • the collecting pixel subunit 24 is configured to detect incident light and generate a voltage signal according to an intensity of the incident light, the intensity of the incident light detected by the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. The larger the intensity of the incident light, the higher the voltage signal.
  • the electroluminescent sheet 26 is configured to cover the image pixel subunit 25. When the voltage signal is applied to the electroluminescent sheet 26, a transmission rate of the electroluminescent sheet 26 is reduced.
  • the controller 30 is connected with the pixel array 20, and is configured to control the collecting pixel subunit 24 to generate the voltage signal according to the intensity of the incident light and to output the voltage signal to the electroluminescent sheet 26 so as to obtain an attenuated optical signal, and to control the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
  • the higher the voltage signal the lower the transmission rate of the electroluminescent sheet 26.
  • the controller 30 controls the image pixel subunit 25 to receive the attenuated optical signal during the integration period and controls the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
  • the electroluminescent sheet 26 is embedded in the image pixel subunit 25.
  • Fig. 3 is a schematic diagram of a pixel array according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a pixel array according to another embodiment of the present disclosure.
  • the collecting pixel subunit 24 is disposed close to or connected with the image pixel subunit 25, which can ensure that the intensity of an incident light for generating the voltage signal in the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25.
  • the collecting pixel subunit 24 may be disposed close to the image pixel subunit 25.
  • Each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25.
  • a first pixel subunit 11 and a second pixel subunit 11a are formed into a red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit.
  • the image pixel subunit e.g., the first pixel subunit 11
  • the collecting pixel subunit e.g., the second pixel subunit 11a
  • the image pixel subunit in a pixel unit is separated from the image pixel subunit in an adjacent pixel unit.
  • the first pixel subunit 11 is separated from each of the first pixel subunit 12 and the first pixel subunit 21.
  • a size of the image pixel subunit 25 is larger than that of the collecting pixel subunit 24.
  • a light receiving area of the image pixel subunit 25 may be increased significantly, and the ability of collecting the incident light of the image pixel subunit 25 may be improved.
  • each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25.
  • the first pixel subunit 11 and the second pixel subunit 11a are formed into the red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit.
  • the first pixel subunit 22 and the second pixel subunit 22a are formed into a green pixel unit, in which the first pixel subunit 22 is the image pixel subunit, and the second pixel subunit 22a is the collecting pixel subunit.
  • Other pixel units are formed in such a manner with pixel subunits such as the first pixel subunit 33 and the second pixel subunit 33a.
  • the size of the first pixel subunit 11 is larger than that of the second pixel subunit 11a, and is disposed close to or connected with the second pixel subunit 11a.
  • each pixel unit further includes a color filter 27 and a microlens 28.
  • the color filter 27 is configured to cover the image pixel subunit 25, or cover both the image pixel subunit 25 and the collecting pixel subunit 24.
  • the microlens is disposed on the color filter 27 and is configured to cover both the image pixel subunit 25 and the collecting pixel subunit 24.
  • the electroluminescent sheet 26 may be connected with and covers the color filter 27, or may be connected with and covers the microlens 28.
  • the electrochromic (EC) is a phenomenon that the color changes with optical properties, generally refers that the color of the material can change in a continual but reversible manner on application of an external electric field or current , which may be intuitively expressed as the process that the color and the transparent of the material occur a reversible change, the reversible change is continual and adjustable, i.e. the proportional relationship of the transmission rate, the absorbance rate, and the reflectance ratio of the material can be adjustable.
  • the discoloration material may be tungsten trioxide.
  • the collecting pixel subunit 24 generates the voltage signal which is applied to the transparent conductive layer of the electroluminescent sheet 26 covering the image pixel subunit 25 so as to adjust the transmission rate of the electroluminescent sheet 26.
  • the transparent conductive layer may be indium tin oxide, silver ink and so on.
  • Fig. 5 is a cross-sectional diagram of Fig. 4 along a line L.
  • Each of A1, B1 and C1 is a photodiode in a collecting pixel subunit 24, and each of A, B and C is a photodiode in an image pixel subunit 25.
  • the electroluminescent sheet 26 covers the first pixel subunit 11 i.e.
  • the image pixel subunit 25 U and D are the transparent conductive layers in the electroluminescent sheet 26
  • the transparent conductive layer U and the transparent conductive layer D in the electroluminescent sheet 26 are respectively connected with the voltage signal generating circuit of the second subunit pixel 11a, the voltage signal generated by the second pixel subunit 11a is applied to the electroluminescent sheet 26 covering the first pixel subunit 11.
  • the working principles of the pixel subunits 22, 22a, 33 and 33a are the same as that of the pixel subunits 11 and 11a. The larger the intensity of the incident light, the higher the voltage signal generated by the collecting pixel subunit 24.
  • Fig. 6 is a cross-sectional diagram of a pixel array according to another embodiment of the present disclosure.
  • Two color filters may be disposed on the collecting pixel submit 24 and the image pixel subunit 25 respectively.
  • the color filter disposed on the collecting pixel subunit 24 has the same color as that disposed on the image pixel subunit 25. If the color filter 27 is disposed on the collecting pixel subunit 24, the intensity of the voltage signal detected by the collecting pixel subunit 24 is proportional to the color brightness.
  • Fig. 7 is a circuit diagram of a collecting pixel subunit according to an embodiment of the present disclosure.
  • Reference numeral 242 represents a reset tube
  • reference numeral 244 represents a transmission gate tube
  • reference numeral 246 represents a voltage following tube
  • reference numeral 248 represents the photodiode.
  • the reset tube 242 and the transmission gate tube 244 are respectively controlled to be reset under the control signal RST
  • the photodiode 248 collects the incident light.
  • the collected incident light is transmitted to a floating diffusion node fd.
  • the floating diffusion node fd is controlled to generate an output signal under a transmission gate signal, that is, the voltage signal between Vddp and Out and proportional to the intensity of the incident light is generated. That is, the lager the intensity the incident light, the larger the potential difference between Vddp and Out.
  • the voltage signal is applied to the transparent conductive layer of the electroluminescent sheet 26.
  • Fig. 8 is a circuit diagram of an image pixel subunit according to an embodiment of the present disclosure.
  • Reference numeral 252 represents a reset tube
  • reference numeral 254 represents a transmission gate tube
  • reference numeral 256 represents a source following tube
  • reference numeral 248 represents the photodiode
  • reference numeral 25a represents a row selecting tube.
  • the difference between the circuit of the collecting pixel subunit 24 and that of the image pixel subunit 25 is that the output voltage of the collecting pixel subunit 24 is directly applied to the transparent conductive layer of the electroluminescent sheet 26, while the output signal of the image pixel subunit 25 is sent to a column sampling circuit and is used to generate the image.
  • the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light before controlling the image pixel subunit 25 to sample the light signal, that is, the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light, and control the collecting pixel subunit 24 to generate the voltage signal according to the incident light, apply the voltage signal to the electroluminescent sheet 26 so as to obtain an attenuated optical signal from the incident light, and then control the image pixel subunit 25 to receive the attenuated optical signal during the integration period of the image pixel subunit 25, and control the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
  • Fig. 9 is a schematic diagram of an electroluminescent sheet according to an embodiment of the present disclosure.
  • the electroluminescent sheet 26 includes a first transparent conductive layer 261, an ion storage layer 262, a dielectric layer 263, an electrochromic layer 264, and a second transparent conductive layer 265.
  • the ion storage layer 262 is disposed on the first transparent conductive layer 261.
  • the dielectric layer 263 is disposed on the ion storage layer 262.
  • the electrochromic layer 264 is disposed on the dielectric layer 263.
  • the second transparent conductive layer 265 is disposed on the electrochromic layer 264.
  • Fig. 10 is a schematic diagram of a transmission rate of incident light through an electroluminescent sheet according to an embodiment of the present disclosure.
  • the collecting pixel subunit generates the voltage signal
  • the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit.
  • the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
  • Fig. 11 is a block diagram of an image sensor according to an embodiment of the present disclosure.
  • the mage sensor 200 includes the image forming system 100 and an analog to digital converter 208.
  • the image forming system 100 may include a row decoder circuit 202, a sampling circuit 204 and a column decoder circuit 206.
  • the row decoder circuit 202 is configured to control the collecting pixel subunit 24 to generate the voltage signal and the image pixel subunit 25 to perform a photoelectric conversion so as to obtain an image signal.
  • the sampling circuit 204 is configured to sample the image signal to obtain an analog image signal.
  • the column decoder circuit 206 is connected with the sampling circuit 204, and is configured to output the analog image signal.
  • the analog to digital converter 208 is connected with the column decoder circuit 206 and configured to convert the analog image signal into a digital image signal.
  • the image forming system 100 includes a substrate 10, a pixel array 20 formed on the substrate 10 and a controller 30.
  • the substrate 10 is a silicon substrate.
  • the pixel array 20 includes a plurality of pixel units, and each pixel unit includes an image pixel subunit 22, a collecting pixel subunit 24 and an electroluminescent sheet 26.
  • the image pixel subunit 25 is configured to generate an image signal.
  • the collecting pixel subunit 24 is configured to detect incident light and generate a voltage signal according to an intensity of the incident light, the intensity of the incident light detected by the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. The larger the intensity of the incident light, the higher the voltage signal.
  • the electroluminescent sheet 26 is configured to cover the image pixel subunit 25. When the voltage signal is applied to the electroluminescent sheet 26, a transmission rate of the electroluminescent sheet 26 is reduced.
  • the controller 30 is connected with the pixel array 20, and is configured to control the collecting pixel subunit 24 to detect the incident light, such that the collecting pixel subunit 24 generates the voltage signal according to the intensity of the incident light and outputs the voltage signal to the electroluminescent sheet 26 so as to enable the electroluminescent sheet 26 to generate an attenuated optical signal from the incident light, and to control the image pixel subunit 25 to detect the attenuated optical signal, such that image pixel subunit 25 generates the image signal according to the attenuated optical signal.
  • the higher the voltage signal the lower the transmission rate of the electroluminescent sheet 26.
  • the transmission rate of the electroluminescent sheet 26 is reduced due to the voltage signal applied to the electroluminescent sheet 26, such that the intensity of the incident light through the electroluminescent sheet 26 is attenuated to some extent, and then the attenuated optical signal may be obtained.
  • the controller 30 controls the image pixel subunit 25 to receive the attenuated optical signal during the integration period and controls the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
  • the electroluminescent sheet 26 may be connected with the image pixel subunit 25, or the electroluminescent sheet 26 may be embedded in the image pixel subunit 25.
  • Fig. 3 is a schematic diagram of a pixel array according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of a pixel array according to another embodiment of the present disclosure.
  • the collecting pixel subunit 24 is disposed close to or connected with the image pixel subunit 25, which can ensure that the intensity of an incident light for generating the voltage signal in the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25.
  • the collecting pixel subunit 24 may be disposed close to the image pixel subunit 25.
  • Each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25.
  • a first pixel subunit 11 and a second pixel subunit 11a are formed into a red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit.
  • the image pixel subunit e.g., the first pixel subunit 11
  • the collecting pixel subunit e.g., the second pixel subunit 11a
  • the image pixel subunit in a pixel unit is separated from the image pixel subunit in an adjacent pixel unit.
  • the first pixel subunit 11 is separated from each of the first pixel subunit 12 and the first pixel subunit 21.
  • a size of the image pixel subunit 25 is larger than that of the collecting pixel subunit 24.
  • a light receiving area of the image pixel subunit 25 may be increased significantly, and the ability of collecting the incident light of the image pixel subunit 25 may be improved.
  • each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25.
  • the first pixel subunit 11 and the second pixel subunit 11a are formed into the red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit.
  • the first pixel subunit 22 and the second pixel subunit 22a are formed into a green pixel unit, in which, the first pixel subunit 22 is the image pixel subunit, and the second pixel subunit 22a is the collecting pixel subunit.
  • Other pixel units are formed in such a manner with pixel subunits such as the first pixel subunit 33 and the second pixel subunit 33a.
  • the size of the first pixel subunit 11 is larger than that of the second pixel subunit 11a, and is disposed close to or connected with the second pixel subunit 11a.
  • each pixel unit further includes a color filter 27 and a microlens 28.
  • the color filter 27 is configured to cover the image pixel subunit 25, or cover both the image pixel subunit 25 and the collecting pixel subunit 24.
  • the microlens is disposed above the color filter 27 and is configured to cover both the image pixel subunit 25 and the collecting pixel subunit 24.
  • an electrochromic is a phenomenon that the color changes with optical properties, generally refers that the color of the material can change in a continual but reversible manner on application of an external electric field or current, which may be intuitively expressed as the process that the color and the transparent of the material occur a reversible change, the reversible change is continual and adjustable, i.e. the proportional relationship of the transmission rate, the absorbance rate, and the reflectance ratio of the material can be adjustable.
  • the discoloration material may be tungsten trioxide.
  • the collecting pixel subunit 24 generates the voltage signal which is applied to the transparent conductive layer of the electroluminescent sheet 26 covering the image pixel subunit 25 so as to adjust the transmission rate of the electroluminescent sheet 26.
  • the transparent conductive layer may be indium tin oxide, silver ink and so on.
  • Fig. 5 is a cross-sectional diagram of Fig. 4 along a line L. Each of A1, B1 and C1 is a photodiode in the collecting pixel subunit 24, and each of A, B and C is a photodiode in the image pixel subunit 25. As shown in Fig. 5, the electroluminescent sheet 26 covers the first pixel subunit 11 i.e.
  • the image pixel subunit 25 U and D are the transparent conductive layers in the electroluminescent sheet 26
  • the transparent conductive layer U and the transparent conductive layer D in the electroluminescent sheet 26 are respectively connected with the voltage signal generating circuit of the second pixel subunit 11a, the voltage signal generated by the second pixel subunit 11a is applied to the electroluminescent sheet 26 covering the first pixel subunit 11.
  • the working principles of the subunits 22, 22a, 33 and 33a are the same with as of the pixel subunits 11 and 11a. The larger the intensity of the incident light, the higher the voltage signal generated by the collecting pixel subunit 24.
  • Fig. 6 is a cross-sectional diagram of a pixel array according to another embodiment of the present disclosure.
  • the color filter 27 disposed on the collecting pixel subunit 24 has the same color as the image pixel subunit 25. If the color filter 27 is disposed on the collecting pixel subunit 24, the intensity of the voltage signal collected by the collecting pixel subunit 24 is proportional to the color brightness.
  • Fig. 7 is a circuit diagram of a collecting pixel subunit according to an embodiment of the present disclosure.
  • Reference numeral 242 represents a reset tube
  • reference numeral 244 represents a transmission gate tube
  • reference numeral 246 represents a voltage following tube
  • reference numeral 248 represents the photodiode.
  • the reset tube 242 and the transmission gate tube 244 are respectively controlled to be reset under the control signal RST
  • the photodiode 248 collects the incident light.
  • the collected incident light is transmitted to a floating diffusion node fd.
  • the floating diffusion node fd is controlled to generate an output signal by a transmission gate signal, that is, the voltage signal between Vddp and Out and proportional to the intensity of the incident light is generated. That is, the lager the intensity the incident light, the larger the potential difference between Vddp and Out.
  • the voltage signal is applied to the transparent conductive layer of the electroluminescent sheet 26.
  • Fig. 8 is a circuit diagram of an image pixel subunit according to an embodiment of the present disclosure.
  • Reference numeral 252 represents a reset tube
  • reference numeral 254 represents a transmission gate tube
  • reference numeral 256 represents a source following tube
  • reference numeral 248 represents the photodiode
  • reference numeral 25a represents a row selecting tube.
  • the difference between the circuit of the collecting pixel subunit 24 and that of the image pixel subunit 25 is that the output voltage of the collecting pixel subunit 24 is directly applied to the transparent conductive layer of the electroluminescent sheet 26, while the output signal of the image pixel subunit 25 is sent to a column sampling circuit and is used to generate the image.
  • the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light before controlling the image pixel subunit 25 to sample the light signal, that is, the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light, and control the collecting pixel subunit 24 to generate the voltage signal according to the incident light, apply the voltage signal to the electroluminescent sheet 26 so as to obtain an attenuated optical signal from the incident light, and then control the image pixel subunit 25 to receive the attenuated optical signal during the integration period of the image pixel subunit 25, and control the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
  • Fig. 9 is a schematic diagram of an electroluminescent sheet according to an embodiment of the present disclosure.
  • the electroluminescent sheet 26 includes a first transparent conductive layer 261, an ion storage layer 262, a dielectric layer 263, an electrochromic layer 264, and a second transparent conductive layer 265.
  • the ion storage layer 262 is disposed on the first transparent conductive layer 261.
  • the dielectric layer 263 is disposed on the ion storage layer 262.
  • the electrochromic layer 264 is disposed on the dielectric layer 263.
  • the second transparent conductive layer 265 is disposed on the electrochromic layer 264.
  • Fig. 10 is a schematic diagram of a transmission rate of incident light through an electroluminescent sheet according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of an image sensor according to another embodiment of the present disclosure.
  • the row decoder circuit 202 controls the collecting pixel subunit 24 to generate the voltage signal and the image pixel subunit 25 to perform a photoelectric conversion in the pixel array 20 of the image forming system 100 of the image sensor, and the output of the image signal by the image pixel subunit 25 is controlled by the sampling circuit 204 and the column decoder circuit 206.
  • the column decoder circuit 206 selects a pixel to be read out and controls the the sampling circuit 204 to output the image signal so as to eliminate the fixed pattern noise (FPN) , and then the image signal is amplified via the differential amplifier circuit, and converted from analog to digital via the analog to digital converter (ADC) 208 in sequence.
  • FPN fixed pattern noise
  • the collecting pixel subunit generates the voltage signal
  • the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit.
  • the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
  • Any procedure or method described in the flow charts or described in any other way herein may be understood to comprise one or more modules, portions or parts for storing executable codes that realize particular logic functions or procedures.
  • advantageous embodiments of the present disclosure comprises other implementations in which the order of execution is different from that which is depicted or discussed, including executing functions in a substantially simultaneous manner or in an opposite order according to the related functions. This should be understood by those skilled in the art which embodiments of the present disclosure belong to.
  • a particular sequence table of executable instructions for realizing the logical function may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment.
  • each part of the present disclosure may be realized by the hardware, software, firmware or their combination.
  • a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system.
  • the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
  • each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module.
  • the integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
  • the storage medium mentioned above may be read-only memories, magnetic disks or CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An image forming system and an image sensor are provided. The image forming system (100), including: a substrate (10); a pixel array (20), formed on the substrate (10), including a plurality of pixel units, wherein each pixel unit includes: an image pixel subunit (25), a collecting pixel subunit (24), and an electroluminescent sheet (26), configured to cover the image pixel subunit (25); and a controller (30), connected with the pixel array (20) and configured to control the collecting pixel subunit (24) to detect incident light, such that the collecting pixel subunit (24) generates a voltage signal according to an intensity of the incident light and outputs the voltage signal to the electroluminescent sheet (26) so as to enable the electroluminescent sheet (26) to generate an attenuated optical signal from the incident light; and to control the image pixel subunit (25) to detect the attenuated optical signal, such that image pixel subunit (25) generates an image signal according to the attenuated optical signal.

Description

IMAGE FORMING SYSTEM AND IMAGE SENSOR
CROSS REFERENCE TO RELATED APPLICATION
This application claims priority and benefits of Chinese Patent Application No. 201410670290.0, filed with State Intellectual Property Office, P.R.C. on November 21, 2014, the entire content of which is incorporated herein by reference.
FIELD
Embodiments of the present disclosure generally relate to an image technology, and more particularly to an image forming system and an image sensor.
BACKGROUND
Nowadays, a complementary metal-oxide semiconductor (CMOS) image sensor includes a pixel array, a control circuit, an analog front end processing circuit, an analog to digital (A/D) conversion circuit, an image signal processing circuit and a related storage unit. Due to a high integration, a high stability, and a low cost of the CMOS technology, application systems based on the CMOS image sensor are used more and more widely, and the CMOS image sensor has become the first choice for the most vision systems.
In addition, more and more attention is paid to the CMOS image sensor with a wide dynamic range. The dynamic range of the image sensor is a ratio between the maximum unsaturated signal and the dark noise, which is a key factor for the quality of the image sensor. The dynamic range of the CMOS image sensor is only about 60db, while the dynamic range of the photographic environment often exceeds 100db, and thus the image contrast of the CMOS image sensor is not high enough.
Currently, there are following methods for enhancing the dynamic range of the CMOS image sensor.
1, by obtaining the pixel information of the CMOS image sensor for twice or more than twice by means of the long integration time and short integration time, the pixel information obtained for twice or more than twice are synthesized to achieve the wide dynamic range.
2, by using two or more levels gain for the pixel array, the image sensor achieves the wide dynamic range.
In order to achieve the high dynamic range in the current technology, the output signals during different integration time are stored and processed, thus increasing the area of the image sensor memory circuit, and affecting the output frame rate of the image. In addition, by processing the image signal with multi-level gain, the area of the image sensor memory circuit may be increased and the frame rate of the image may be affected.
SUMMARY
Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent.
Embodiments of a first aspect of the present disclosure provide an image forming system, the image forming system includes: a substrate; a pixel array, formed on the substrate, wherein the pixel array includes a plurality of pixel units, each pixel unit includes: an image pixel subunit, a collecting pixel subunit and an electroluminescent sheet, covering the image pixel subunit; and a controller, connected with the pixel array and configured to control the collecting pixel subunit to detect incident light, such that the collecting pixel subunit generates a voltage signal according to an intensity of the incident light and outputs the voltage signal to the electroluminescent sheet so as to enable the electroluminescent sheet to generate an attenuated optical signal from the incident light, and to control the image pixel subunit to detect the attenuated optical signal, such that image pixel subunit generates the image signal according to the attenuated optical signal.
With the image forming system according to embodiments of the present disclosure, the collecting pixel subunit generates the voltage signal, the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit. Because the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
Embodiments of a second aspect of the present disclosure provide an image sensor, the image sensor includes: a row decoder circuit; the above image forming system, connected with the row decoder circuit, and configured to output an image signal; a sampling circuit, connected with the  image forming system, and configured to sample the image signal to obtain an analog image signal; a column decoder circuit, connected with the sampling circuit, and configured to output the analog image signal; and an A/D converter, connected with the column decoder circuit and configured to convert the analog image signal into a digital image signal.
With the image sensor according to embodiments of the present disclosure, the collecting pixel subunit generates the voltage signal, the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit. Because the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the accompanying drawings, in which:
Fig. 1 is a block diagram of an image forming system according to an embodiment of the present disclosure;
Fig. 2 is a block diagram of an image forming system according to another embodiment of the present disclosure;
Fig. 3 is a schematic diagram of a pixel array according to an embodiment of the present disclosure;
Fig. 4 is a schematic diagram of a pixel array according to another embodiment of the present disclosure;
Fig. 5 is a cross-sectional diagram of Fig. 4 along a line L;
Fig. 6 is a cross-sectional diagram of a pixel array according to another embodiment of the  present disclosure;
Fig. 7 is a circuit diagram of a collecting pixel subunit according to an embodiment of the present disclosure;
Fig. 8 is a circuit diagram of an image pixel subunit according to an embodiment of the present disclosure;
Fig. 9 is a schematic diagram of an electroluminescent sheet according to an embodiment of the present disclosure;
Fig. 10 is a schematic diagram of a transmission rate of incident light through an electroluminescent sheet according to an embodiment of the present disclosure;
Fig. 11 is a block diagram of an image sensor according to an embodiment of the present disclosure; and
Fig. 12 is a schematic diagram of an image sensor according to another embodiment of the present disclosure.
DETAILED DESCRIPTION
Reference will be made in detail to embodiments of the present disclosure. Embodiments of the present disclosure will be shown in drawings, in which the same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein according to drawings are explanatory and illustrative, not construed to limit the present disclosure.
Various embodiments and examples are provided in the following description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings will be described. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numerals may be repeated in different examples in the present disclosure. This repeating is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it would be appreciated by those skilled in the art that other processes and/or materials may be also applied. Moreover, a structure in which a first feature is “on” a second feature may include an embodiment in which the first feature directly contacts the second feature, and may also include an embodiment in which an additional feature is formed between the first feature and the second feature so that the first feature does not directly contact the second feature.
In the description of the present disclosure, unless specified or limited otherwise, it should be  noted that, terms “mounted, ” “connected” and “coupled” may be understood broadly, such as electronic connections or mechanical connections, inner communications between two elements, direct connections or indirect connections through intervening structures, which can be understood by those skilled in the art according to specific situations.
With reference to the following descriptions and drawings, these and other aspects of embodiments of the present disclosure will become apparent. In the descriptions and drawings, some particular embodiments are described in order to show the principles of embodiments according to the present disclosure, however, it should be appreciated that the scope of embodiments according to the present disclosure is not limited herein. On the contrary, changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the attached claims.
In the following, an image forming system and an image sensor are described in detail with reference to drawings.
Fig. 1 is a block diagram of an image forming system according to an embodiment of the present disclosure. As shown in Fig. 1, the image forming system 100 includes a substrate 10, a pixel array 20 formed on the substrate 10 and a controller 30. In an embodiment, the substrate 10 is a silicon substrate.
The pixel array 20 includes a plurality of pixel units, and each pixel unit includes an image pixel subunit 25, a collecting pixel subunit 24 and an electroluminescent sheet 26. The image pixel subunit 25 is configured to generate an image signal. The collecting pixel subunit 24 is configured to detect incident light and generate a voltage signal according to an intensity of the incident light, the intensity of the incident light detected by the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. The larger the intensity of the incident light, the higher the voltage signal. The electroluminescent sheet 26 is configured to cover the image pixel subunit 25. When the voltage signal is applied to the electroluminescent sheet 26, a transmission rate of the electroluminescent sheet 26 is reduced. The controller 30 is connected with the pixel array 20, and is configured to control the collecting pixel subunit 24 to detect the incident light, such that the collecting pixel subunit 24 generates the voltage signal according to the intensity of the incident light and outputs the voltage signal to the electroluminescent sheet 26 so as to enable the electroluminescent sheet 26 to generate an attenuated optical signal from the incident light, and to control the image pixel subunit 25 to detect the attenuated optical signal, such that image pixel subunit 25 generates the image signal according to the attenuated optical signal. The higher the voltage signal, the lower the transmission rate of the electroluminescent sheet 26.  The transmission rate of the electroluminescent sheet 26 is reduced due to the higher voltage signal applied to the electroluminescent sheet 26, such that the intensity of the incident light through the electroluminescent sheet 26 is attenuated to some extent, and then the attenuated optical signal may be obtained. After the transmission rate of the electroluminescent sheet 26 is changed, the controller 30 controls the image pixel subunit 25 to receive the attenuated optical signal during the integration period and controls the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
In this embodiment, the electroluminescent sheet 26 is connected with the image pixel subunit 25.
Fig. 2 is a block diagram of an image forming system according to an embodiment of the present disclosure. As shown in Fig. 2, the image forming system 100 includes a substrate 10, a pixel array 20 formed on the substrate 10 and a controller 30. In an embodiment, the substrate 10 is a silicon substrate.
The pixel array 20 includes a plurality of pixel units, and each pixel unit includes an image pixel subunit 25, a collecting pixel subunit 24 and an electroluminescent sheet 26. The image pixel subunit 25 is configured to generate an image signal. The collecting pixel subunit 24 is configured to detect incident light and generate a voltage signal according to an intensity of the incident light, the intensity of the incident light detected by the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. The larger the intensity of the incident light, the higher the voltage signal. The electroluminescent sheet 26 is configured to cover the image pixel subunit 25. When the voltage signal is applied to the electroluminescent sheet 26, a transmission rate of the electroluminescent sheet 26 is reduced. The controller 30 is connected with the pixel array 20, and is configured to control the collecting pixel subunit 24 to generate the voltage signal according to the intensity of the incident light and to output the voltage signal to the electroluminescent sheet 26 so as to obtain an attenuated optical signal, and to control the image pixel subunit 25 to generate the image signal according to the attenuated optical signal. The higher the voltage signal, the lower the transmission rate of the electroluminescent sheet 26. After the transmission rate of the electroluminescent sheet 26 is changed, the controller 30 controls the image pixel subunit 25 to receive the attenuated optical signal during the integration period and controls the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
In this embodiment, the electroluminescent sheet 26 is embedded in the image pixel subunit 25.
Fig. 3 is a schematic diagram of a pixel array according to an embodiment of the present disclosure. Fig. 3 is a schematic diagram of a pixel array according to another embodiment of the present disclosure. The collecting pixel subunit 24 is disposed close to or connected with the image pixel subunit 25, which can ensure that the intensity of an incident light for generating the voltage signal in the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. As shown in Fig. 3 and Fig. 4, the collecting pixel subunit 24 may be disposed close to the image pixel subunit 25. Each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25. As shown in Fig. 3, take a 3*3 array for example, a first pixel subunit 11 and a second pixel subunit 11a are formed into a red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit. In each pixel unit, both the image pixel subunit (e.g., the first pixel subunit 11) and the collecting pixel subunit (e.g., the second pixel subunit 11a) are symmetrical about a diagonal line of each pixel unit. And the image pixel subunit in a pixel unit is separated from the image pixel subunit in an adjacent pixel unit. For example, the first pixel subunit 11 is separated from each of the first pixel subunit 12 and the first pixel subunit 21.
In an embodiment, a size of the image pixel subunit 25 is larger than that of the collecting pixel subunit 24. With the arrangement structure, as shown in Fig. 4, a light receiving area of the image pixel subunit 25 may be increased significantly, and the ability of collecting the incident light of the image pixel subunit 25 may be improved. As shown in Fig. 4, take the 3*3 array for example, each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25. The first pixel subunit 11 and the second pixel subunit 11a are formed into the red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit. The first pixel subunit 22 and the second pixel subunit 22a are formed into a green pixel unit, in which the first pixel subunit 22 is the image pixel subunit, and the second pixel subunit 22a is the collecting pixel subunit. Other pixel units are formed in such a manner with pixel subunits such as the first pixel subunit 33 and the second pixel subunit 33a. The size of the first pixel subunit 11 is larger than that of the second pixel subunit 11a, and is disposed close to or connected with the second pixel subunit 11a.
In an embodiment, each pixel unit further includes a color filter 27 and a microlens 28. The  color filter 27 is configured to cover the image pixel subunit 25, or cover both the image pixel subunit 25 and the collecting pixel subunit 24. The microlens is disposed on the color filter 27 and is configured to cover both the image pixel subunit 25 and the collecting pixel subunit 24.
In an embodiment, the electroluminescent sheet 26 may be connected with and covers the color filter 27, or may be connected with and covers the microlens 28.
In an embodiment, the electrochromic (EC) is a phenomenon that the color changes with optical properties, generally refers that the color of the material can change in a continual but reversible manner on application of an external electric field or current , which may be intuitively expressed as the process that the color and the transparent of the material occur a reversible change, the reversible change is continual and adjustable, i.e. the proportional relationship of the transmission rate, the absorbance rate, and the reflectance ratio of the material can be adjustable. In an embodiment, the discoloration material may be tungsten trioxide. The collecting pixel subunit 24 generates the voltage signal which is applied to the transparent conductive layer of the electroluminescent sheet 26 covering the image pixel subunit 25 so as to adjust the transmission rate of the electroluminescent sheet 26. The transparent conductive layer may be indium tin oxide, silver ink and so on.
Fig. 5 is a cross-sectional diagram of Fig. 4 along a line L. Each of A1, B1 and C1 is a photodiode in a collecting pixel subunit 24, and each of A, B and C is a photodiode in an image pixel subunit 25. As shown in Fig. 5, the electroluminescent sheet 26 covers the first pixel subunit 11 i.e. the image pixel subunit 25, U and D are the transparent conductive layers in the electroluminescent sheet 26, the transparent conductive layer U and the transparent conductive layer D in the electroluminescent sheet 26 are respectively connected with the voltage signal generating circuit of the second subunit pixel 11a, the voltage signal generated by the second pixel subunit 11a is applied to the electroluminescent sheet 26 covering the first pixel subunit 11. The working principles of the  pixel subunits  22, 22a, 33 and 33a are the same as that of the pixel subunits 11 and 11a. The larger the intensity of the incident light, the higher the voltage signal generated by the collecting pixel subunit 24.
Fig. 6 is a cross-sectional diagram of a pixel array according to another embodiment of the present disclosure. Two color filters may be disposed on the collecting pixel submit 24 and the image pixel subunit 25 respectively. The color filter disposed on the collecting pixel subunit 24 has the same color as that disposed on the image pixel subunit 25. If the color filter 27 is disposed on the collecting pixel subunit 24, the intensity of the voltage signal detected by the collecting pixel subunit 24 is proportional to the color brightness.
Fig. 7 is a circuit diagram of a collecting pixel subunit according to an embodiment of the  present disclosure. Reference numeral 242 represents a reset tube, reference numeral 244 represents a transmission gate tube, reference numeral 246 represents a voltage following tube, and reference numeral 248 represents the photodiode. When the reset tube 242 and the transmission gate tube 244 are respectively controlled to be reset under the control signal RST, the photodiode 248 collects the incident light. The collected incident light is transmitted to a floating diffusion node fd. According to the collected incident light, the floating diffusion node fd is controlled to generate an output signal under a transmission gate signal, that is, the voltage signal between Vddp and Out and proportional to the intensity of the incident light is generated. That is, the lager the intensity the incident light, the larger the potential difference between Vddp and Out. During the integration period of the image pixel subunit 25, the voltage signal is applied to the transparent conductive layer of the electroluminescent sheet 26.
Fig. 8 is a circuit diagram of an image pixel subunit according to an embodiment of the present disclosure. Reference numeral 252 represents a reset tube, reference numeral 254 represents a transmission gate tube, reference numeral 256 represents a source following tube, reference numeral 248 represents the photodiode, and reference numeral 25a represents a row selecting tube. The difference between the circuit of the collecting pixel subunit 24 and that of the image pixel subunit 25 is that the output voltage of the collecting pixel subunit 24 is directly applied to the transparent conductive layer of the electroluminescent sheet 26, while the output signal of the image pixel subunit 25 is sent to a column sampling circuit and is used to generate the image.
In an embodiment, the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light before controlling the image pixel subunit 25 to sample the light signal, that is, the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light, and control the collecting pixel subunit 24 to generate the voltage signal according to the incident light, apply the voltage signal to the electroluminescent sheet 26 so as to obtain an attenuated optical signal from the incident light, and then control the image pixel subunit 25 to receive the attenuated optical signal during the integration period of the image pixel subunit 25, and control the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
Fig. 9 is a schematic diagram of an electroluminescent sheet according to an embodiment of the present disclosure. As shown in Fig. 9, the electroluminescent sheet 26 includes a first transparent conductive layer 261, an ion storage layer 262, a dielectric layer 263, an electrochromic layer 264, and a second transparent conductive layer 265. The ion storage layer 262 is disposed on the first transparent conductive layer 261. The dielectric layer 263 is disposed on the ion storage layer 262. The electrochromic layer 264 is disposed on the dielectric layer 263.  The second transparent conductive layer 265 is disposed on the electrochromic layer 264. The lower the transmission rate of the electroluminescent sheet 26, the larger the voltage signal of the collecting pixel subunit 24. Fig. 10 is a schematic diagram of a transmission rate of incident light through an electroluminescent sheet according to an embodiment of the present disclosure.
With the image forming system according to embodiments of the present disclosure, the collecting pixel subunit generates the voltage signal, the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit. Because the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus increasing the dynamic range of the image.
Fig. 11 is a block diagram of an image sensor according to an embodiment of the present disclosure. As shown in Fig. 11, the mage sensor 200 includes the image forming system 100 and an analog to digital converter 208. In an embodiment, the image forming system 100 may include a row decoder circuit 202, a sampling circuit 204 and a column decoder circuit 206. The row decoder circuit 202 is configured to control the collecting pixel subunit 24 to generate the voltage signal and the image pixel subunit 25 to perform a photoelectric conversion so as to obtain an image signal. The sampling circuit 204 is configured to sample the image signal to obtain an analog image signal. The column decoder circuit 206 is connected with the sampling circuit 204, and is configured to output the analog image signal. The analog to digital converter 208 is connected with the column decoder circuit 206 and configured to convert the analog image signal into a digital image signal.
In an embodiment, the image forming system 100 includes a substrate 10, a pixel array 20 formed on the substrate 10 and a controller 30. In an embodiment, the substrate 10 is a silicon substrate.
The pixel array 20 includes a plurality of pixel units, and each pixel unit includes an image pixel subunit 22, a collecting pixel subunit 24 and an electroluminescent sheet 26. The image pixel subunit 25 is configured to generate an image signal. The collecting pixel subunit 24 is configured to detect incident light and generate a voltage signal according to an intensity of the incident light, the intensity of the incident light detected by the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. The larger the intensity of the incident light, the higher the voltage signal. The electroluminescent sheet 26 is configured to cover the image  pixel subunit 25. When the voltage signal is applied to the electroluminescent sheet 26, a transmission rate of the electroluminescent sheet 26 is reduced. The controller 30 is connected with the pixel array 20, and is configured to control the collecting pixel subunit 24 to detect the incident light, such that the collecting pixel subunit 24 generates the voltage signal according to the intensity of the incident light and outputs the voltage signal to the electroluminescent sheet 26 so as to enable the electroluminescent sheet 26 to generate an attenuated optical signal from the incident light, and to control the image pixel subunit 25 to detect the attenuated optical signal, such that image pixel subunit 25 generates the image signal according to the attenuated optical signal. The higher the voltage signal, the lower the transmission rate of the electroluminescent sheet 26. The transmission rate of the electroluminescent sheet 26 is reduced due to the voltage signal applied to the electroluminescent sheet 26, such that the intensity of the incident light through the electroluminescent sheet 26 is attenuated to some extent, and then the attenuated optical signal may be obtained. After the transmission rate of the electroluminescent sheet 26 is changed, the controller 30 controls the image pixel subunit 25 to receive the attenuated optical signal during the integration period and controls the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
The electroluminescent sheet 26 may be connected with the image pixel subunit 25, or the electroluminescent sheet 26 may be embedded in the image pixel subunit 25.
Fig. 3 is a schematic diagram of a pixel array according to an embodiment of the present disclosure. Fig. 4 is a schematic diagram of a pixel array according to another embodiment of the present disclosure. The collecting pixel subunit 24 is disposed close to or connected with the image pixel subunit 25, which can ensure that the intensity of an incident light for generating the voltage signal in the collecting pixel subunit 24 is the same as that of the incident light through the image pixel subunit 25. As shown in Fig. 3 and Fig. 4, the collecting pixel subunit 24 may be disposed close to the image pixel subunit 25. Each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25. As shown in Fig. 3, take a 3*3 array for example, a first pixel subunit 11 and a second pixel subunit 11a are formed into a red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit. In each pixel unit, both the image pixel subunit (e.g., the first pixel subunit 11) and the collecting pixel subunit (e.g., the second pixel subunit 11a) are symmetrical about a diagonal line of each pixel unit. And the image pixel subunit in a pixel unit is separated  from the image pixel subunit in an adjacent pixel unit. For example, the first pixel subunit 11 is separated from each of the first pixel subunit 12 and the first pixel subunit 21.
In an embodiment, a size of the image pixel subunit 25 is larger than that of the collecting pixel subunit 24. With the arrangement structure, as shown in Fig. 4, a light receiving area of the image pixel subunit 25 may be increased significantly, and the ability of collecting the incident light of the image pixel subunit 25 may be improved. As shown in Fig. 4, take the 3*3 array for example, each pixel unit includes two pixel subunits, i.e. the collecting pixel subunit 24 and the image pixel subunit 25. The first pixel subunit 11 and the second pixel subunit 11a are formed into the red pixel unit, in which the first pixel subunit 11 is the image pixel subunit, and the second pixel subunit 11a is the collecting pixel subunit. The first pixel subunit 22 and the second pixel subunit 22a are formed into a green pixel unit, in which, the first pixel subunit 22 is the image pixel subunit, and the second pixel subunit 22a is the collecting pixel subunit. Other pixel units are formed in such a manner with pixel subunits such as the first pixel subunit 33 and the second pixel subunit 33a. The size of the first pixel subunit 11 is larger than that of the second pixel subunit 11a, and is disposed close to or connected with the second pixel subunit 11a.
In an embodiment, each pixel unit further includes a color filter 27 and a microlens 28. The color filter 27 is configured to cover the image pixel subunit 25, or cover both the image pixel subunit 25 and the collecting pixel subunit 24. The microlens is disposed above the color filter 27 and is configured to cover both the image pixel subunit 25 and the collecting pixel subunit 24.
In an embodiment, an electrochromic (EC) is a phenomenon that the color changes with optical properties, generally refers that the color of the material can change in a continual but reversible manner on application of an external electric field or current, which may be intuitively expressed as the process that the color and the transparent of the material occur a reversible change, the reversible change is continual and adjustable, i.e. the proportional relationship of the transmission rate, the absorbance rate, and the reflectance ratio of the material can be adjustable. In an embodiment, the discoloration material may be tungsten trioxide. The collecting pixel subunit 24 generates the voltage signal which is applied to the transparent conductive layer of the electroluminescent sheet 26 covering the image pixel subunit 25 so as to adjust the transmission rate of the electroluminescent sheet 26. The transparent conductive layer may be indium tin oxide, silver ink and so on. Fig. 5 is a cross-sectional diagram of Fig. 4 along a line L. Each of A1, B1 and C1 is a photodiode in the collecting pixel subunit 24, and each of A, B and C is a photodiode in the image pixel subunit 25. As shown in Fig. 5, the electroluminescent sheet 26 covers the first  pixel subunit 11 i.e. the image pixel subunit 25, U and D are the transparent conductive layers in the electroluminescent sheet 26, the transparent conductive layer U and the transparent conductive layer D in the electroluminescent sheet 26 are respectively connected with the voltage signal generating circuit of the second pixel subunit 11a, the voltage signal generated by the second pixel subunit 11a is applied to the electroluminescent sheet 26 covering the first pixel subunit 11. The working principles of the  subunits  22, 22a, 33 and 33a are the same with as of the pixel subunits 11 and 11a. The larger the intensity of the incident light, the higher the voltage signal generated by the collecting pixel subunit 24.
Fig. 6 is a cross-sectional diagram of a pixel array according to another embodiment of the present disclosure. The color filter 27 disposed on the collecting pixel subunit 24 has the same color as the image pixel subunit 25. If the color filter 27 is disposed on the collecting pixel subunit 24, the intensity of the voltage signal collected by the collecting pixel subunit 24 is proportional to the color brightness.
Fig. 7 is a circuit diagram of a collecting pixel subunit according to an embodiment of the present disclosure. Reference numeral 242 represents a reset tube, reference numeral 244 represents a transmission gate tube, reference numeral 246 represents a voltage following tube, and reference numeral 248 represents the photodiode. When the reset tube 242 and the transmission gate tube 244 are respectively controlled to be reset under the control signal RST, the photodiode 248 collects the incident light. The collected incident light is transmitted to a floating diffusion node fd. According to the collected incident light, the floating diffusion node fd is controlled to generate an output signal by a transmission gate signal, that is, the voltage signal between Vddp and Out and proportional to the intensity of the incident light is generated. That is, the lager the intensity the incident light, the larger the potential difference between Vddp and Out. During the integration period of the image pixel subunit 25, the voltage signal is applied to the transparent conductive layer of the electroluminescent sheet 26.
Fig. 8 is a circuit diagram of an image pixel subunit according to an embodiment of the present disclosure. Reference numeral 252 represents a reset tube, reference numeral 254 represents a transmission gate tube, reference numeral 256 represents a source following tube, reference numeral 248 represents the photodiode, and reference numeral 25a represents a row selecting tube. The difference between the circuit of the collecting pixel subunit 24 and that of the image pixel subunit 25 is that the output voltage of the collecting pixel subunit 24 is directly applied to the transparent conductive layer of the electroluminescent sheet 26, while the output signal of the image pixel subunit 25 is sent to a column sampling circuit and is used to generate the image.
In an embodiment, the controller 30 is configured to control the collecting pixel subunit 24 to  collect the incident light before controlling the image pixel subunit 25 to sample the light signal, that is, the controller 30 is configured to control the collecting pixel subunit 24 to collect the incident light, and control the collecting pixel subunit 24 to generate the voltage signal according to the incident light, apply the voltage signal to the electroluminescent sheet 26 so as to obtain an attenuated optical signal from the incident light, and then control the image pixel subunit 25 to receive the attenuated optical signal during the integration period of the image pixel subunit 25, and control the image pixel subunit 25 to generate the image signal according to the attenuated optical signal.
Fig. 9 is a schematic diagram of an electroluminescent sheet according to an embodiment of the present disclosure. As shown in Fig. 9, the electroluminescent sheet 26 includes a first transparent conductive layer 261, an ion storage layer 262, a dielectric layer 263, an electrochromic layer 264, and a second transparent conductive layer 265. The ion storage layer 262 is disposed on the first transparent conductive layer 261. The dielectric layer 263 is disposed on the ion storage layer 262. The electrochromic layer 264 is disposed on the dielectric layer 263. The second transparent conductive layer 265 is disposed on the electrochromic layer 264. The lower the transmission rate of the electroluminescent sheet 26, the larger the voltage signal of the collecting pixel subunit 24. Fig. 10 is a schematic diagram of a transmission rate of incident light through an electroluminescent sheet according to an embodiment of the present disclosure.
Fig. 12 is a schematic diagram of an image sensor according to another embodiment of the present disclosure. As shown in Fig. 12, the row decoder circuit 202 controls the collecting pixel subunit 24 to generate the voltage signal and the image pixel subunit 25 to perform a photoelectric conversion in the pixel array 20 of the image forming system 100 of the image sensor, and the output of the image signal by the image pixel subunit 25 is controlled by the sampling circuit 204 and the column decoder circuit 206. The column decoder circuit 206 selects a pixel to be read out and controls the the sampling circuit 204 to output the image signal so as to eliminate the fixed pattern noise (FPN) , and then the image signal is amplified via the differential amplifier circuit, and converted from analog to digital via the analog to digital converter (ADC) 208 in sequence.
With the image sensor according to embodiments of the present disclosure, the collecting pixel subunit generates the voltage signal, the voltage signal is applied to the electroluminescent sheet so as to adjust the transmission rate of the electroluminescent sheet, such that when the intensity of the incident light is small, the transmission rate of the electroluminescent sheet is high, and when the intensity of the incident light is larger, the transmission rate of the electroluminescent sheet is low, thus increasing the sensing range of the intensity of the collected incident light during the integration period of the image pixel subunit. Because the dynamic range of the image pixel subunit is in accordance with the sensing range of the image pixel subunit, thus  increasing the dynamic range of the image.
Any procedure or method described in the flow charts or described in any other way herein may be understood to comprise one or more modules, portions or parts for storing executable codes that realize particular logic functions or procedures. Moreover, advantageous embodiments of the present disclosure comprises other implementations in which the order of execution is different from that which is depicted or discussed, including executing functions in a substantially simultaneous manner or in an opposite order according to the related functions. This should be understood by those skilled in the art which embodiments of the present disclosure belong to.
The logic and/or step described in other manners herein or shown in the flow chart, for example, a particular sequence table of executable instructions for realizing the logical function, may be specifically achieved in any computer readable medium to be used by the instruction execution system, device or equipment (such as the system based on computers, the system comprising processors or other systems capable of obtaining the instruction from the instruction execution system, device and equipment and executing the instruction) , or to be used in combination with the instruction execution system, device and equipment.
It is understood that each part of the present disclosure may be realized by the hardware, software, firmware or their combination. In the above embodiments, a plurality of steps or methods may be realized by the software or firmware stored in the memory and executed by the appropriate instruction execution system. For example, if it is realized by the hardware, likewise in another embodiment, the steps or methods may be realized by one or a combination of the following techniques known in the art: a discrete logic circuit having a logic gate circuit for realizing a logic function of a data signal, an application-specific integrated circuit having an appropriate combination logic gate circuit, a programmable gate array (PGA) , a field programmable gate array (FPGA) , etc.
Those skilled in the art shall understand that all or parts of the steps in the above exemplifying method of the present disclosure may be achieved by commanding the related hardware with programs. The programs may be stored in a computer readable storage medium, and the programs comprise one or a combination of the steps in the method embodiments of the present disclosure when run on a computer.
In addition, each function cell of the embodiments of the present disclosure may be integrated in a processing module, or these cells may be separate physical existence, or two or more cells are integrated in a processing module. The integrated module may be realized in a form of hardware or in a form of software function modules. When the integrated module is realized in a form of  software function module and is sold or used as a standalone product, the integrated module may be stored in a computer readable storage medium.
The storage medium mentioned above may be read-only memories, magnetic disks or CD, etc.
Reference throughout this specification to “an embodiment, ” “some embodiments, ” “one embodiment” , “another example, ” “an example, ” “aspecific example, ” or “some examples, ” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments, ” “in one embodiment” , “in an embodiment” , “in another example, ” “in an example, ” “in a specific example, ” or “in some examples, ” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure.

Claims (13)

  1. An image forming system, comprising:
    a substrate;
    a pixel array, formed on the substrate, and comprising a plurality of pixel units, wherein each pixel unit comprises: an image pixel subunit, a collecting pixel subunit, and an electroluminescent sheet covering the image pixel subunit; and
    a controller, connected with the pixel array and configured to:
    control the collecting pixel subunit to detect incident light, such that the collecting pixel subunit generates a voltage signal according to an intensity of the incident light and outputs the voltage signal to the electroluminescent sheet so as to enable the electroluminescent sheet to generate an attenuated optical signal according to the incident light; and
    control the image pixel subunit to detect the attenuated optical signal, such that the image pixel subunit generates an image signal according to the attenuated optical signal.
  2. The image forming system of claim 1, wherein the collecting pixel subunit is disposed close to or connected with the image pixel subunit.
  3. The image forming system of claim 1 or 2, wherein the electroluminescent sheet is connected with the image pixel subunit, or the electroluminescent sheet is embedded in the image pixel subunit.
  4. The image forming system of claim 1 or 2, wherein each pixel unit further comprises:
    a color filter, configured to cover the image pixel subunit, or to cover both the image pixel subunit and the collecting pixel subunit; and
    a microlens, disposed on the color filter, and configured to cover both the image pixel subunit and the collecting pixel subunit.
  5. The image forming system of claim 4, wherein the electroluminescent sheet is disposed on the color filter or on the microlens or on the image pixel subunit.
  6. The image forming system of claim 4, wherein the electroluminescent sheet is embedded in the image pixel subunit.
  7. The image forming system of claim 5, wherein if the electroluminescent sheet is disposed on the image pixel subunit, the electroluminescent sheet is connected with the image pixel subunit.
  8. The image forming system of claim 5, wherein if the electroluminescent sheet is disposed on the color filter, the electroluminescent sheet is connected with and covers the color filter.
  9. The image forming system of claim 5, wherein if the electroluminescent sheet is disposed on the microlens, the electroluminescent sheet is connected with and covers the microlens.
  10. The image forming system of any one of claims 1-9, wherein a size of the image pixel subunit is larger than that of the collecting pixel subunit.
  11. The image forming system of any one of claims 1-10, wherein a transmission rate of the electroluminescent sheet is related with a strength of the voltage signal.
  12. The image forming system of any one of claims 1-11, wherein the electroluminescent sheet comprises:
    a first transparent conductive layer,
    an ion storage layer, disposed on the first transparent conductive layer;
    a dielectric layer, disposed on the ion storage layer;
    an electrochromic layer, disposed on the dielectric layer; and
    a second transparent conductive layer, disposed on the electrochromic layer.
  13. An image sensor, comprising:
    an image forming system according to any one of claims 1-12.
PCT/CN2015/095208 2014-11-21 2015-11-20 Image forming system and image sensor WO2016078617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410670290.0A CN105681771A (en) 2014-11-21 2014-11-21 Array imaging system and image sensor
CN201410670290.0 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016078617A1 true WO2016078617A1 (en) 2016-05-26

Family

ID=56013313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095208 WO2016078617A1 (en) 2014-11-21 2015-11-20 Image forming system and image sensor

Country Status (3)

Country Link
CN (1) CN105681771A (en)
TW (1) TWI592017B (en)
WO (1) WO2016078617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091664A (en) * 2017-12-13 2018-05-29 德淮半导体有限公司 Sensitive pixel elements, imaging sensor and manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9994091B2 (en) * 2016-08-12 2018-06-12 GM Global Technology Operations LLC Window system for a passenger compartment of a vehicle
CN107919373B (en) * 2017-11-07 2019-03-12 德淮半导体有限公司 Back side illumination image sensor
CN110518029A (en) * 2019-09-23 2019-11-29 德淮半导体有限公司 Imaging sensor and preparation method thereof
CN110830697A (en) * 2019-11-27 2020-02-21 Oppo广东移动通信有限公司 Control method, electronic device, and storage medium
CN111193880B (en) * 2020-01-13 2022-05-24 刘元哲 Image sensor, optical filter and image sensor brightness adjusting method
CN113949818A (en) * 2020-07-17 2022-01-18 深圳市万普拉斯科技有限公司 Pixel structure and exposure method thereof
CN114070968B (en) * 2020-08-06 2024-02-02 深圳市万普拉斯科技有限公司 Pixel structure unit, lens module, electronic equipment and shadow elimination method
CN115022520A (en) * 2022-07-07 2022-09-06 维沃移动通信有限公司 Camera module, electronic equipment, control method and control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208421A (en) * 2010-03-31 2011-10-05 索尼公司 Solid-state image capturing device and electronic device
CN103442185A (en) * 2013-09-02 2013-12-11 上海集成电路研发中心有限公司 CMOS image pixel array
US8618588B2 (en) * 2010-10-29 2013-12-31 International Business Machines Corporation Anti-blooming pixel sensor cell with active neutral density filter, methods of manufacture, and design structure
CN103491319A (en) * 2012-06-11 2014-01-01 索尼公司 Imaging device
CN103515397A (en) * 2012-06-18 2014-01-15 联咏科技股份有限公司 An image sensing device with pixel level automatic optical attenuators

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585339B2 (en) * 2010-07-30 2014-09-10 ソニー株式会社 Solid-state imaging device, driving method thereof, and electronic apparatus
CN102497517B (en) * 2011-11-25 2013-09-11 吉林大学 Low-operating voltage wide dynamic range image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208421A (en) * 2010-03-31 2011-10-05 索尼公司 Solid-state image capturing device and electronic device
US8618588B2 (en) * 2010-10-29 2013-12-31 International Business Machines Corporation Anti-blooming pixel sensor cell with active neutral density filter, methods of manufacture, and design structure
CN103491319A (en) * 2012-06-11 2014-01-01 索尼公司 Imaging device
CN103515397A (en) * 2012-06-18 2014-01-15 联咏科技股份有限公司 An image sensing device with pixel level automatic optical attenuators
CN103442185A (en) * 2013-09-02 2013-12-11 上海集成电路研发中心有限公司 CMOS image pixel array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108091664A (en) * 2017-12-13 2018-05-29 德淮半导体有限公司 Sensitive pixel elements, imaging sensor and manufacturing method

Also Published As

Publication number Publication date
CN105681771A (en) 2016-06-15
TWI592017B (en) 2017-07-11
TW201620292A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2016078617A1 (en) Image forming system and image sensor
KR102088401B1 (en) Image sensor and imaging device including the same
CN102347341B (en) Solid-state imaging device, its driving method and electronic installation
TWI502737B (en) Big-small pixel scheme for image sensors
JP6639385B2 (en) Reset image sensor with split gate condition
US8754968B2 (en) Solid-state imaging device and electronic equipment
US9793306B2 (en) Imaging systems with stacked photodiodes and chroma-luma de-noising
US11665436B2 (en) Imaging device and camera system
US20080179490A1 (en) Solid-state image pickup device
TWI797629B (en) High dynamic range cmos image sensor design
TWI781599B (en) Hybrid cmos image sensor with event driven sensing
JP2008113236A (en) Shading correction method and device in imaging apparatus
US9843746B2 (en) Image sensor combining high dynamic range techniques
US9337223B2 (en) Imaging systems with image pixels having adjustable responsivity
US10051216B2 (en) Imaging apparatus and imaging method thereof using correlated double sampling
CN103369263A (en) System, apparatus and method for dark current correction
US9083899B2 (en) Circuit structure for providing conversion gain of a pixel array
TW202232942A (en) Dark current calibration method and associated pixel circuitry
JP6274897B2 (en) Image sensor and image sensor driving method
US20210105412A1 (en) Image sensor with pixelated cutoff filter for phase detection autofocus
JP5253856B2 (en) Solid-state imaging device
US8885072B2 (en) Solid-state imaging device, imaging method, and camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860397

Country of ref document: EP

Kind code of ref document: A1