WO2016078560A1 - 复眼透镜装置和相关的光源系统 - Google Patents

复眼透镜装置和相关的光源系统 Download PDF

Info

Publication number
WO2016078560A1
WO2016078560A1 PCT/CN2015/094685 CN2015094685W WO2016078560A1 WO 2016078560 A1 WO2016078560 A1 WO 2016078560A1 CN 2015094685 W CN2015094685 W CN 2015094685W WO 2016078560 A1 WO2016078560 A1 WO 2016078560A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
light
lens
fly
eye lens
Prior art date
Application number
PCT/CN2015/094685
Other languages
English (en)
French (fr)
Inventor
张权
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2016078560A1 publication Critical patent/WO2016078560A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape

Definitions

  • the utility model relates to the field of projection display technology, and in particular to a compound eye lens device and an associated light source system.
  • LED Light-Emitting Diode
  • Light-emitting diodes are widely used in various industries due to their advantages of energy saving, environmental protection, high brightness and controllable color temperature. And, as LED costs decrease and luminous efficiency increases, LEDs The light source is likely to replace the traditional light source and become the most widely used illumination source.
  • An existing zoom illumination system using an LED light source includes a light source 101 and a first lens 102.
  • the second lens 103, the fly-eye lens 104, and the third lens 105 In the zoom illumination system, the light emitted by the light source 101 is received by the first lens 102 and enters the second lens 103. After the dimming is performed, the light is modulated into parallel light, and the emitted parallel light is homogenized by the fly-eye lens 104 and projected onto the predetermined plane through the third lens 105.
  • the third lens 105 is opposite to the fly-eye lens 104 Move to adjust the size of the spot.
  • the light incident surface and the light exit surface of the fly-eye lens 104 each have a plurality of microlenses 1040 arranged in an array.
  • the fly-eye lens of this structure can perform a certain leveling action, the compounding lens has a poor uniformization effect and a single function, which cannot meet the requirements of a higher-demand lighting system.
  • the present invention provides a fly-eye lens device and a related light source system to solve the problem of poor uniformization effect and single function of the fly-eye lens in the existing zoom illumination system.
  • the present invention provides the following technical solutions:
  • a compound eye lens device comprising a first lens and a second lens that are parallel to each other, a light emitting surface of the first lens has a first fly-eye lens array, and a light incident surface of the second lens has a second fly-eye lens array
  • the light-emitting surface of the second lens has a third fly-eye lens array, the light-emitting surface of the first lens is opposite to the light-incident surface of the second lens, and the second fly-eye lens and the first fly-eye lens are Equally, the third fly-eye lens is smaller than the second fly-eye lens.
  • the light incident surface and the light exit surface of the first lens are opposite surfaces, and the light incident surface of the first lens is a plane; the light incident surface and the light exit surface of the second lens are opposite. Two surfaces.
  • the surface of the third fly-eye lens is a smooth surface or a frosted surface.
  • a light source system comprising:
  • a light emitting component having at least one light emitting module
  • fly-eye lens device located on an optical path of the light emitted by the first lens, the fly-eye lens device being the fly-eye lens device according to any one of the above;
  • the method further includes:
  • a third lens located between the light emitting member and the first lens and condensing light.
  • the at least one light emitting module is arranged in a circular array, wherein at least one light emitting module is located on a center of the circular array, and other light emitting modules are evenly distributed on the circular array ring .
  • the light emitting module comprises a substrate and an LED light source on the surface of the substrate, and the LED on the light emitting module
  • the light sources are arranged in an approximately regular hexagonal array, and the regular hexagonal array comprises a first array of light sources and a second array of light sources located around the first array of light sources.
  • the first light source array is a rectangular array
  • the second light source array comprises a first light source group, a second light source group, a third light source group and a fourth light source group
  • the first light source group is The fourth light source group is sequentially arranged on four sides of the rectangular array.
  • the first array of light sources is a rectangular array of four white LED light sources.
  • the first light source group includes a red LED light source and an amber LED arranged in a clockwise direction.
  • a light source comprising a blue LED light source and a cyan LED light source arranged in a clockwise direction
  • the third light source group comprising a red LED arranged in a clockwise direction
  • the fourth light source set including a dark blue LED light source and a green LED light source arranged in a clockwise direction.
  • the first light source group includes a red LED light source and an amber LED arranged in a clockwise direction.
  • a light source comprising a blue LED light source and a green LED light source arranged in a clockwise direction
  • the third light source group comprising a red LED arranged in a clockwise direction
  • the fourth light source set including a blue LED light source and a green LED light source arranged in a clockwise direction.
  • the first light source group includes a red LED light source and a white LED arranged in a clockwise direction.
  • a light source comprising a blue LED light source and a green LED light source arranged in a clockwise direction
  • the third light source group comprising a red LED arranged in a clockwise direction
  • the fourth light source group including a blue LED light source and a green LED light source arranged in a clockwise direction.
  • the compound eye lens device and the related light source system provided by the present invention, the first fly-eye lens on the light-emitting surface of the first lens and the second fly-eye lens on the light-incident surface of the second lens are equal in size, and the first The focus of the fly-eye lens is located at the center of the second fly-eye lens, so that the light can be made uniform, and since the light-emitting surface of the second lens has the third fly-eye lens array, the third fly-eye lens is smaller than the second fly-eye lens, The light extraction angle of the light can be increased, and the light extraction efficiency of the compound eye lens device and the light source system can be improved on the basis of improving the uniformity of the emitted light.
  • FIG. 1 is a schematic structural view of a conventional zoom illumination system
  • FIG. 2a is a schematic structural view of a compound eye lens device according to Embodiment 1 of the present invention.
  • FIG. 2b is a schematic structural view of a first fly-eye lens to a third fly-eye lens according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural view of a light source system according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural view of a light emitting module according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural view of a light-emitting component according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural view of another light-emitting component according to Embodiment 2 of the present invention.
  • FIG. 7 is a layout view of an LED light source according to Embodiment 2 of the present invention.
  • FIG. 8 is a layout view of another LED light source according to Embodiment 2 of the present invention.
  • FIG. 9 is a layout diagram of still another LED light source according to Embodiment 2 of the present invention.
  • the present embodiment provides a fly-eye lens device, as shown in FIG. 2a, including a first lens 20 and a second lens 21 that are parallel to each other.
  • the light-emitting surface 202 of the first lens 20 has a first fly-eye lens array, that is, a first lens.
  • the light-emitting surface 202 of 20 has a plurality of first fly-eye lenses 2020 arranged in an array
  • the light-incident surface 211 of the second lens 21 has a second fly-eye lens array, that is, the light-incident surface 211 of the second lens 21 has an array
  • the plurality of second fly-eye lenses 2110 are arranged, and the light-emitting surface 212 of the second lens 21 has a third fly-eye lens array, that is, the light-emitting surface 212 of the second lens 21 has a plurality of third fly-eye lenses 2120 arranged in an array.
  • the light incident surface 201 of the first lens 20 is a flat surface, and the light incident surface 201 and the light exit surface 202 of the first lens 20 are opposite surfaces, and the light incident surface 211 and the light emitting surface of the second lens 21 are formed.
  • 212 is also the opposite two surfaces, and the light incident surface 211 of the second lens 21 is disposed opposite to the light emitting surface 202 of the first lens 20, based on which the first fly-eye lens array and the second fly-eye lens array in this embodiment are used.
  • the one-to-one corresponding second fly-eye lens 2110 is equal in size to the first fly-eye lens 2020, and the third fly-eye lens 2120 is smaller than the second fly-eye lens 2110.
  • the first fly-eye lens 2020 has a convex surface 2021 and a bottom surface 2022 opposite to the convex surface 2021.
  • the second fly-eye lens 2110 has a convex surface 2111 and a bottom surface opposite to the convex surface 2111.
  • 2112 the third fly-eye lens 2120 has a convex surface 2121 and a bottom surface 2122 opposite to the convex surface 2121.
  • the convex surface 2111 of the second fly-eye lens 2110 is opposite to the convex surface 2021 of the first fly-eye lens 2020
  • the bottom surface 2122 of the third fly-eye lens 2120 is opposite to the bottom surface 2112 of the second fly-eye lens 2110
  • the second fly-eye lens 2110 is first.
  • the equal size of the fly-eye lens 2020 means that the diameter of the bottom surface 2112 of the second fly-eye lens 2110 is equal to the diameter of the bottom surface 2022 of the first fly-eye lens 2020
  • the convex surface 2111 of the second fly-eye lens 2110 has the same convex surface 2021 as the first fly-eye lens 2020.
  • the third fly-eye lens 2120 is smaller than the second fly-eye lens 2110 means that the diameter of the bottom surface 2122 of the third fly-eye lens 2120 is smaller than the diameter of the bottom surface 2112 of the second fly-eye lens 2110.
  • the incident light beam is focused on the center of the second fly-eye lens 2110 after passing through the first fly-eye lens 2020, since the first fly-eye lens 2020 will be incident wide.
  • the beam is split into a plurality of small beams, and each of the divided small beams is superimposed with the symmetrical small beams. Therefore, the small unevenness in each small beam range is compensated, so that the entire beam is Light energy is effectively and uniformly utilized.
  • the light passing through the second fly-eye lens 2110 is incident on the third fly-eye lens 2120. Since the third fly-eye lens 2120 is smaller than the second fly-eye lens 2110, the light exiting angle of the light can be increased by the third fly-eye lens 2120. Based on the uniformity of the light, the light extraction efficiency of the fly-eye lens device is further improved.
  • the surface of the third fly-eye lens 2120 may be a smooth surface or a frosted surface to further improve the uniformity of the emitted light through the frosted surface.
  • the first fly-eye lens on the light-emitting surface of the first lens and the second fly-eye lens on the light-incident surface of the second lens are equal in size, and the focus of the first fly-eye lens is located at At the center of the second fly-eye lens, therefore, the light can be made uniform, and since the light-emitting surface of the second lens has the third fly-eye lens array, the third fly-eye lens is smaller than the second fly-eye lens, so that the light can be increased.
  • the light extraction angle improves the light extraction efficiency of the fly-eye lens device on the basis of improving the uniformity of the emitted light.
  • the present embodiment provides a light source system, as shown in FIG. 3, including a light-emitting component 302 having at least one light-emitting module 301, a third lens 303 for receiving light emitted from the light-emitting component 302, and a third lens 303.
  • the emitted light is adjusted to a first lens 304 having a certain angle of light, a fly-eye lens device 305 located on the optical path of the light emitted from the first lens 304, and a second lens 306 projecting light emitted from the fly-eye lens device 305 to a predetermined plane.
  • the fly-eye lens device 305 is the compound eye lens device provided in the first embodiment, that is, the fly-eye lens device 305 includes first and second lenses parallel to each other, and the light-emitting surface of the first lens has the first fly-eye lens array.
  • the light incident surface of the second lens has a second fly-eye lens array, and the light emitting surface of the second lens has a third fly-eye lens array, and the light emitting surface of the first lens is opposite to the light incident surface of the second lens, and the second fly-eye lens is disposed.
  • the first fly-eye lens is equal in size to the first fly-eye lens, and the third fly-eye lens is smaller than the second fly-eye lens to improve the light-emitting efficiency of the fly-eye lens device 305 on the basis of improving the uniformity of the emitted light.
  • the third lens 303 receives the light, and the first lens 304 adjusts the light emitted by the third lens 303 to have a certain angle of light.
  • the light emitted from the first lens 304 is incident on the fly-eye lens device 305 at a certain angle, and after the fly-eye lens device 305 aligns the approximately parallel incident light, the second lens 306 projects it onto a predetermined plane, wherein The second lens 306 is movable relative to the fly-eye lens device 305 to adjust the size of the output spot. Since the third fly-eye lens 2120 in the fly-eye lens device 305 can change the exit angle of the light, the light-emitting efficiency can be improved on the basis of improving the uniformity of the emitted light.
  • the light emitting module 301 includes a substrate 3010 and an LED light source 3011 on the surface of the substrate 3010.
  • the LED light source 3011 located on the surface of the substrate 3010 may include four white LED light sources W and two.
  • the light source system provided in this embodiment makes the mixed white light more uniform by adopting the above-mentioned LED light source, and by using the amber LED light source, the color of the mixed white light is more pure, which is more in line with the requirements of the illumination system.
  • the light-emitting component 302 can include a light-emitting module 301, and can also include a plurality of light-emitting modules 301 to increase the light-emitting brightness of the light source system.
  • the light-emitting component 302 includes a plurality of light-emitting modules 301, preferably, the plurality of light-emitting modules 301 are arranged in a circular array, wherein at least one light-emitting module is located on a center of the circular array, and other light-emitting modules are evenly distributed. Arranged on the circular ring of the circular array.
  • the light emitting module 3010 is located on the center of the circular array, and the light emitting module 3011 ⁇ the light emitting module 3016 is sequentially arranged on the circular array of the ring, and the light emitting module 3011 ⁇ the light emitting module 3016
  • the sides of the ring are parallel to each other.
  • the present invention does not limit this.
  • the side of the light-emitting module 3011 ⁇ the light-emitting module 3016 closest to the center of the circle may be located on each tangent of the ring.
  • the light-emitting modules located on the ring are evenly arranged. As shown in FIGS. 5 and 6, the light-emitting module 3011, the light-emitting module 3010, and the light-emitting module 3014 are located on the same straight line, and the light-emitting module 3012 The light-emitting module 3010 and the light-emitting module 3015 are located on the same straight line, and the light-emitting module 3013, the light-emitting module 3010, and the light-emitting module 3016 are located on the same straight line, and the angles between the straight lines are equal, for example, FIG. The angle a in the middle is equal to the angle b.
  • the LED light sources on each of the light-emitting modules in this embodiment are arranged in an approximately regular hexagonal array.
  • the approximate regular hexagon array includes a first light source array 80 and a second light source array 81 located around the first light source array, wherein the first light source array 80 is a rectangular array, and the second light source array 81 includes A light source group 810, a second light source group 811, a third light source group 812, and a fourth light source group 813, and the first light source group 810 to the fourth light source group 813 are sequentially arranged on four sides of the first light source array 80.
  • the first light source array 80 includes four white LED light sources W
  • the first light source group 810 of the second light source array 81 includes a red LED light source R arranged in a clockwise direction.
  • an amber LED light source A the second light source group 811 includes a blue LED light source B and a cyan LED light source C arranged in a clockwise direction
  • the third light source group 812 includes a red LED arranged in a clockwise direction.
  • the light source R and an amber LED light source A, the fourth light source group 813 includes a dark blue LED light source dB and a green LED light source G arranged in a clockwise direction.
  • the first light source array 80 includes four white LED light sources W
  • the first light source group 810 of the second light source array 81 includes A red LED light source R and an amber LED light source A and a second light source group 811 arranged in a clockwise direction include a blue LED light source B and a green LED light source G arranged in a clockwise direction
  • the 812 includes a red LED light source R and an amber LED light source A arranged in a clockwise direction
  • the fourth light source group 813 includes a blue LED light source B and a green LED light source G which are sequentially arranged in a clockwise direction.
  • the first light source array 80 includes four white LED light sources W, and the first light source group 810 of the second light source array 81.
  • the utility model comprises a red LED light source R and a white LED light source W arranged in a clockwise direction
  • the second light source group 811 comprises a blue LED light source B and a green LED light source G arranged in a clockwise direction
  • the 812 includes a red LED light source R and a white LED light source A arranged in a clockwise direction
  • the fourth light source group 813 includes a blue LED light source B and a green LED light source G which are sequentially arranged in the clockwise direction.
  • the color LED light source is located around the white LED light source, the color of the mixed white light can be made more uniform, and the light emitted by the light emitting part 302 can be enlarged by the use of the amber LED light source, the cyan LED light source or the deep blue LED light source.
  • the color gamut makes the color of the mixed white light more pure.
  • the light-emitting component 302 in this embodiment may include a plurality of light-emitting modules as shown in FIG. 7 , and may also include multiple light-emitting modules as shown in FIG. 8 or multiple light-emitting modules as shown in FIG. 9 . At least two types of light-emitting modules as shown in FIGS. 7 to 9 may be included, and the present invention is not limited thereto.
  • the light source system provided by the embodiment improves the uniformity of the emitted light and the light extraction efficiency by the fly-eye lens device, and the light-emitting module arranged by the circular matrix improves the light-emitting brightness, and the mixing is improved by the LED light source arranged by the approximate hexagonal matrix.
  • the uniformity of the white light and the adoption of the amber LED light source make the mixed white light color more pure and more in line with the requirements of the light source lighting system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种复眼透镜装置和相关的光源系统,包括相互平行的第一镜片(20)和第二镜片(21),所述第一镜片(20)的出光面(202)具有第一复眼透镜阵列,所述第二镜片(21)的入光面(211)具有第二复眼透镜阵列,所述第二镜片(21)的出光面(212)具有第三复眼透镜阵列,所述第一镜片(20)的出光面(202)与所述第二镜片(21)的入光面(211)相对设置,且所述第二复眼透镜(2110)与所述第一复眼透镜(2020)大小相等,所述第三复眼透镜(2120)小于所述第二复眼透镜(2110)。由于第二镜片(21)的出光面(212)具有第三复眼透镜阵列,且第三复眼透镜(2120)小于第二复眼透镜(2110),因此,可以增大光线的出光角度,在提高出射光线的均匀性的基础上,提高复眼透镜装置和光源系统的出光效率。

Description

复眼透镜装置和相关的光源系统 技术领域
本实用新型涉及投影显示技术领域,更具体地说,涉及一种复眼透镜装置和相关的光源系统。
背景技术
随着半导体光源的飞速发展, LED ( Light-Emitting Diode ,发光二极管)光源以节能、环保、亮度高以及色温可控等优点,被广泛应用在各行各业上。并且,随着 LED 成本的降低以及发光效率的提高, LED 光源极有可能会取代传统光源,成为应用最广泛的照明光源。
现有的一种应用 LED 光源的变焦照明系统,如图 1 所示,包括光源 101 、第一透镜 102 、第二透镜 103 、复眼透镜 104 和第三透镜 105 。该变焦照明系统中,光源 101 发出的光线经过第一透镜 102 收光后,进入第二透镜 103 进行调光即将光线调制成平行光后出射,出射的平行光经由复眼透镜 104 匀光后经过第三透镜 105 投影至预定的平面上。其中,第三透镜 105 可相对复眼透镜 104 移动,以调节光斑的大小。
技术问题
上述变焦照明系统中,复眼透镜 104 的入光面和出光面均具有呈阵列式排布的多个微透镜 1040 ,以实现光线的均匀化。虽然这种结构的复眼透镜能够起到一定的匀光作用,但是,该复眼透镜的匀光效果较差,且功能比较单一,不能满足更高要求的照明系统的需求。
技术解决方案
有鉴于此,本实用新型提供了一种复眼透镜装置和相关的光源系统,以解决现有变焦照明系统中复眼透镜的匀光效果较差以及功能比较单一的问题。
为实现上述目的,本实用新型提供如下技术方案:
一种复眼透镜装置,包括相互平行的第一镜片和第二镜片,所述第一镜片的出光面具有第一复眼透镜阵列,所述第二镜片的入光面具有第二复眼透镜阵列,所述第二镜片的出光面具有第三复眼透镜阵列,所述第一镜片的出光面与所述第二镜片的入光面相对设置,且所述第二复眼透镜与所述第一复眼透镜大小相等,所述第三复眼透镜小于所述第二复眼透镜。
优选的,所述第一镜片的入光面和出光面为相对的两个表面,且所述第一镜片的入光面为平面;所述第二镜片的入光面和出光面为相对的两个表面。
优选的,所述第三复眼透镜的表面为光滑的表面或磨砂的表面。
一种光源系统,包括:
具有至少一个发光模组的发光部件;
将所述发光部件发射的光线调整成具有一定角度的光的第一透镜;
位于所述第一透镜出射光的光路上的复眼透镜装置,所述复眼透镜装置为如上任一项所述的复眼透镜装置;
将所述复眼透镜装置出射的光投影至预定平面的第二透镜,所述第二透镜可相对所述复眼透镜装置移动。
优选的,还包括:
位于所述发光部件与所述第一透镜之间且对光线进行会聚的第三透镜。
优选的,所述至少一个发光模组排布成圆形阵列,其中,至少一个发光模组位于所述圆形阵列的圆心上,其他发光模组均匀分布于所述圆形阵列的圆环上。
优选的,所述发光模组包括衬底和位于所述衬底表面的 LED 光源,所述发光模组上的 LED 光源呈近似正六边形阵列排布,且所述正六边形阵列包括第一光源阵列和位于所述第一光源阵列四周的第二光源阵列。
优选的,所述第一光源阵列为矩形阵列,所述第二光源阵列包括第一光源组、第二光源组、第三光源组和第四光源组,且所述第一光源组 ~ 第四光源组依次排布于所述矩形阵列的四个边上。
优选的,所述第一光源阵列为由四个白色 LED 光源组成的矩形阵列。
优选的,所述第一光源组包括沿顺时针方向依次排列的一个红色 LED 光源和一个琥珀色 LED 光源,所述第二光源组包括沿顺时针方向依次排列的一个蓝色 LED 光源和一个青色 LED 光源,所述第三光源组包括沿顺时针方向依次排列的一个红色 LED 光源和一个琥珀色 LED 光源,所述第四光源组包括沿顺时针方向依次排列的一个深蓝色 LED 光源和一个绿色 LED 光源。
优选的,所述第一光源组包括沿顺时针方向依次排列的一个红色 LED 光源和一个琥珀色 LED 光源,所述第二光源组包括沿顺时针方向依次排列的一个蓝色 LED 光源和一个绿色 LED 光源,所述第三光源组包括沿顺时针方向依次排列的一个红色 LED 光源和一个琥珀色 LED 光源,所述第四光源组包括沿顺时针方向依次排列的一个蓝色 LED 光源和一个绿色 LED 光源。
优选的,所述第一光源组包括沿顺时针方向依次排列的一个红色 LED 光源和一个白色 LED 光源,所述第二光源组包括沿顺时针方向依次排列的一个蓝色 LED 光源和一个绿色 LED 光源,所述第三光源组包括沿顺时针方向依次排列的一个红色 LED 光源和一个白色 LED 光源,所述第四光源组包括沿顺时针方向依次排列的一个蓝色 LED 光源和一个绿色 LED 光源。
与现有技术相比,本实用新型所提供的技术方案具有以下优点:
有益效果
本实用新型所提供的复眼透镜装置和相关的光源系统,由于第一镜片的出光面上的第一复眼透镜与第二镜片的入光面上的第二复眼透镜大小相等,且所述第一复眼透镜的焦点位于所述第二复眼透镜的中心上,因此,可以将光线均匀化,并且,由于第二镜片的出光面具有第三复眼透镜阵列,第三复眼透镜小于第二复眼透镜,因此,可以增大光线的出光角度,在提高出射光线的均匀性的基础上,提高复眼透镜装置和光源系统的出光效率。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图 1 为现有的变焦照明系统的结构示意图;
图 2a 为本实用新型的实施例一提供的复眼透镜装置结构示意图;
图 2b 为本实用新型的实施例一提供的第一复眼透镜 ~ 第三复眼透镜的结构示意图;
图 3 为本实用新型的实施例二提供的光源系统的结构示意图;
图 4 为本实用新型的实施例二提供的一种发光模组的结构示意图;
图 5 为本实用新型的实施例二提供的一种发光部件的结构示意图;
图 6 为本实用新型的实施例二提供的另一种发光部件的结构示意图;
图 7 为本实用新型的实施例二提供的一种 LED 光源的排布图;
图 8 为本实用新型的实施例二提供的另一种 LED 光源的排布图;
图 9 为本实用新型的实施例二提供的又一种 LED 光源的排布图。
本发明的最佳实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
实施例一
本实施例提供了一种复眼透镜装置,如图2a所示,包括相互平行的第一镜片20和第二镜片21,第一镜片20的出光面202具有第一复眼透镜阵列,即第一镜片20的出光面202具有呈阵列式排布的多个第一复眼透镜2020,第二镜片21的入光面211具有第二复眼透镜阵列,即第二镜片21的入光面211具有呈阵列式排布的多个第二复眼透镜2110,第二镜片21的出光面212具有第三复眼透镜阵列,即第二镜片21的出光面212具有呈阵列式排布的多个第三复眼透镜2120。
如图2a所示,第一镜片20的入光面201为平面,第一镜片20的入光面201和出光面202为相对的两个表面,第二镜片21的入光面211和出光面212也为相对的两个表面,且第二镜片21的入光面211与第一镜片20的出光面202相对设置,基于此,本实施例中的第一复眼透镜阵列与第二复眼透镜阵列相对设置,且一一对应的第二复眼透镜2110与第一复眼透镜2020大小相等,第三复眼透镜2120小于第二复眼透镜2110。
如图2b所示,第一复眼透镜2020具有凸起的表面2021以及与该凸起表面2021相对的底面2022,第二复眼透镜2110具有凸起的表面2111以及与该凸起表面2111相对的底面2112,第三复眼透镜2120具有凸起的表面2121以及与该凸起表面2121相对的底面2122。
其中,第二复眼透镜2110的凸面2111与第一复眼透镜2020的凸面2021相对,第三复眼透镜2120的底面2122与第二复眼透镜2110的底面2112相对,并且,第二复眼透镜2110与第一复眼透镜2020大小相等是指第二复眼透镜2110的底面2112的直径与第一复眼透镜2020的底面2022的直径相等,且第二复眼透镜2110的凸面2111与第一复眼透镜2020的凸面2021具有相同的曲率。第三复眼透镜2120小于第二复眼透镜2110是指第三复眼透镜2120的底面2122的直径小于第二复眼透镜2110的底面2112的直径。
由于第一复眼透镜2020的焦点位于第二复眼透镜2110的中心上,因此,入射光束经过第一复眼透镜2020后聚焦到第二复眼透镜2110的中心上,由于第一复眼透镜2020将入射的宽光束分成了多个细小的光束,而分成的每个细小光束又与对称的细小光束进行了叠加,因此,每个细小光束范围内的微小不均匀性都得到了补偿,从而使得整个光束内的光能量得到了有效且均匀的利用。
此后,经过第二复眼透镜2110的光线入射到第三复眼透镜2120上,由于第三复眼透镜2120小于第二复眼透镜2110,因此,可以通过第三复眼透镜2120增加光线的出光角度,在提高出射光线的均匀性的基础上,进一步提高复眼透镜装置的出光效率。本实施例中,第三复眼透镜2120的表面可以为光滑的表面,也可以为磨砂的表面,以通过磨砂的表面进一步提高出射光线的均匀性。
本实施例提供的复眼透镜装置,由于第一镜片的出光面上的第一复眼透镜与第二镜片的入光面上的第二复眼透镜大小相等,且所述第一复眼透镜的焦点位于所述第二复眼透镜的中心上,因此,可以将光线均匀化,并且,由于第二镜片的出光面具有第三复眼透镜阵列,第三复眼透镜小于第二复眼透镜,因此,可以增大光线的出光角度,在提高出射光线的均匀性的基础上,提高复眼透镜装置的出光效率。
实施例二
本实施例提供了一种光源系统,如图3所示,包括具有至少一个发光模组301的发光部件302、对发光部件302出射的光线进行收光的第三透镜303、将第三透镜303出射的光线调整成具有一定角度的光的第一透镜304、位于第一透镜304出射光的光路上的复眼透镜装置305和将复眼透镜装置305出射的光投影至预定平面的第二透镜306。
本实施例中,复眼透镜装置305为上述实施例一提供的复眼透镜装置,即复眼透镜装置305包括相互平行的第一镜片和第二镜片,且第一镜片的出光面具有第一复眼透镜阵列,第二镜片的入光面具有第二复眼透镜阵列,第二镜片的出光面具有第三复眼透镜阵列,且第一镜片的出光面与第二镜片的入光面相对设置,第二复眼透镜与第一复眼透镜大小相等,第三复眼透镜小于第二复眼透镜,以在提高出射光线均匀性的基础上,提高复眼透镜装置305的出光效率。
如图3所示,发光部件302上的发光模组301发射光线后,第三透镜303对光线进行收光,第一透镜304将第三透镜303出射的光线调整成具有一定角度的光,该第一透镜304出射的光以一定的角度入射到复眼透镜装置305上,复眼透镜装置305对近似平行的入射光进行匀光后,第二透镜306将其投影至预定的平面上,其中,第二透镜306可相对复眼透镜装置305移动,以调节输出光斑的大小。由于复眼透镜装置305中的第三复眼透镜2120可以改变光线的出射角度,因此,可以在提高出射光线均匀性的基础上,提高出光效率。
本实施例中,发光模组301包括衬底3010和位于衬底3010表面的LED光源3011,如图4所示,位于衬底3010表面的LED光源3011可以包括四个白色LED光源W、两个红色LED光源R、两个蓝色LED光源B、两个绿色LED光源G和两个琥珀色LED光源A,并且这些LED光源呈正六边形阵列排布,以形成均匀的光斑。本实施例提供的光源系统,通过采用上述LED光源使得混合后的白光更加均匀,并且,通过采用琥珀色LED光源,使得混合后的白光的颜色更加纯正,更加符合照明系统的需求。
本实施例中,发光部件302可以包括一个发光模组301,也可以包括多个发光模组301,以增大光源系统的出光亮度。当发光部件302包括多个发光模组301时,优选的,多个发光模组301呈圆形阵列排布,其中,至少一个发光模组位于该圆形阵列的圆心上,其他发光模组均匀排布于该圆形阵列的圆环上。
如图5所示,发光模组3010位于圆形阵列的圆心上,发光模组3011~发光模组3016依次排布于圆形阵列的圆环上,并且,发光模组3011~发光模组3016的各个边相互平行,当然,本实用新型并不对此进行限定,如图6所示,发光模组3011~发光模组3016距离圆心最近的边可以位于圆环的各个切线上。
本实施例中,位于圆环上的发光模组均匀排布,如图5和6所示,发光模组3011、发光模组3010和发光模组3014位于同一条直线上,发光模组3012、发光模组3010和发光模组3015位于同一条直线上,发光模组3013、发光模组3010和发光模组3016位于同一条直线上,并且,各个直线之间的夹角大小相等,例如图5中的夹角a等于夹角b。
此外,本实施例中每个发光模组上的LED光源均呈近似正六边形阵列排布。如图7所示,该近似正六边形阵列包括第一光源阵列80和位于第一光源阵列四周的第二光源阵列81,其中,第一光源阵列80为矩形阵列,第二光源阵列81包括第一光源组810、第二光源组811、第三光源组812和第四光源组813,且第一光源组810~第四光源组813依次排布于第一光源阵列80的四个边上。
本实施例中,如图7所示,第一光源阵列80包括四个白色的LED光源W,第二光源阵列81中的第一光源组810包括沿顺时针方向依次排列的一个红色LED光源R和一个琥珀色LED光源A、第二光源组811包括沿顺时针方向依次排列的一个蓝色LED光源B和一个青色LED光源C,第三光源组812包括沿顺时针方向依次排列的一个红色LED光源R和一个琥珀色LED光源A,第四光源组813包括沿顺时针方向依次排列的一个深蓝色LED光源dB和一个绿色LED光源G。
在其他实施例中,发光模组的另一种LED光源排列结构如图8所示,第一光源阵列80包括四个白色的LED光源W,第二光源阵列81中的第一光源组810包括沿顺时针方向依次排列的一个红色LED光源R和一个琥珀色LED光源A、第二光源组811包括沿顺时针方向依次排列的一个蓝色LED光源B和一个绿色LED光源G,第三光源组812包括沿顺时针方向依次排列的一个红色LED光源R和一个琥珀色LED光源A,第四光源组813包括沿顺时针方向依次排列的一个蓝色LED光源B和一个绿色LED光源G。
在另一个实施例中,发光模组的又一种LED光源排列结构如图9所示,第一光源阵列80包括四个白色的LED光源W,第二光源阵列81中的第一光源组810包括沿顺时针方向依次排列的一个红色LED光源R和一个白色LED光源W、第二光源组811包括沿顺时针方向依次排列的一个蓝色LED光源B和一个绿色LED光源G,第三光源组812包括沿顺时针方向依次排列的一个红色LED光源R和一个白色LED光源A,第四光源组813包括沿顺时针方向依次排列的一个蓝色LED光源B和一个绿色LED光源G。
由于彩色LED光源位于白色LED光源的四周,因此,可以使得混合后的白光的颜色更加均匀,并且,通过琥珀色LED光源、青色LED光源或深蓝色LED光源的采用,可以扩大发光部件302发射光的色域,使得混合后的白光的颜色更加纯正。
本实施例中的发光部件302可以包括如图7所示的多个发光模组,也可以包括如图8所示的多个发光模组或如图9所示的多个发光模组,还可以包括如图7~9中所示的至少两种发光模组,本实用新型并不对此进行限定。
本实施例提供的光源系统,通过复眼透镜装置提高了出射光线的均匀性以及出光效率,通过圆形矩阵排列的发光模组提高了出光亮度,通过近似正六边形矩阵排列的LED光源提高了混合后白光的均匀性,并通过琥珀色LED光源的采用,使得混合后的白光颜色更加纯正,更符合光源照明系统的需求。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本实用新型。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本实用新型的精神或范围的情况下,在其它实施例中实现。因此,本实用新型将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

1、一种复眼透镜装置,其特征在于,包括相互平行的第一镜片和第二镜片,所述第一镜片的出光面具有第一复眼透镜阵列,所述第二镜片的入光面具有第二复眼透镜阵列,所述第二镜片的出光面具有第三复眼透镜阵列,所述第一镜片的出光面与所述第二镜片的入光面相对设置,且所述第二复眼透镜与所述第一复眼透镜大小相等,所述第三复眼透镜小于所述第二复眼透镜。
2、根据权利要求1所述的复眼透镜装置,其特征在于,所述第一镜片的入光面和出光面为相对的两个表面,且所述第一镜片的入光面为平面;所述第二镜片的入光面和出光面为相对的两个表面。
3、根据权利要求2所述的复眼透镜装置,其特征在于,所述第三复眼透镜的表面为光滑的表面或磨砂的表面。
4、一种光源系统,其特征在于,包括:
具有至少一个发光模组的发光部件;
将所述发光部件发射的光线调整成具有一定角度的光的第一透镜;
位于所述第一透镜出射光的光路上的复眼透镜装置,所述复眼透镜装置为如权利要求1-3任一项所述的复眼透镜装置;
将所述复眼透镜装置出射的光投影至预定平面的第二透镜,所述第二透镜可相对所述复眼透镜装置移动。
5、根据权利要求4所述的光源系统,其特征在于,还包括:
位于所述发光部件与所述第一透镜之间且对光线进行会聚的第三透镜。
6、根据权利要求4或5所述的光源系统,其特征在于,所述至少一个发光模组排布成圆形阵列,其中,至少一个发光模组位于所述圆形阵列的圆心上,其他发光模组均匀分布于所述圆形阵列的圆环上。
7、根据权利要求6所述的光源系统,其特征在于,所述发光模组包括衬底和位于所述衬底表面的LED光源,所述发光模组上的LED光源呈近似正六边形阵列排布,且所述正六边形阵列包括第一光源阵列和位于所述第一光源阵列四周的第二光源阵列。
8、根据权利要求7所述的光源系统,其特征在于,所述第一光源阵列为矩形阵列,所述第二光源阵列包括第一光源组、第二光源组、第三光源组和第四光源组,且所述第一光源组~第四光源组依次排布于所述矩形阵列的四个边上。
9、根据权利要求8所述的光源系统,其特征在于,所述第一光源阵列为由四个白色LED光源组成的矩形阵列。
10、根据权利要求9所述的光源系统,其特征在于,所述第一光源组包括沿顺时针方向依次排列的一个红色LED光源和一个琥珀色LED光源,所述第二光源组包括沿顺时针方向依次排列的一个蓝色LED光源和一个青色LED光源,所述第三光源组包括沿顺时针方向依次排列的一个红色LED光源和一个琥珀色LED光源,所述第四光源组包括沿顺时针方向依次排列的一个深蓝色LED光源和一个绿色LED光源。
11、根据权利要求9所述的光源系统,其特征在于,所述第一光源组包括沿顺时针方向依次排列的一个红色LED光源和一个琥珀色LED光源,所述第二光源组包括沿顺时针方向依次排列的一个蓝色LED光源和一个绿色LED光源,所述第三光源组包括沿顺时针方向依次排列的一个红色LED光源和一个琥珀色LED光源,所述第四光源组包括沿顺时针方向依次排列的一个蓝色LED光源和一个绿色LED光源。
12、根据权利要求9所述的光源系统,其特征在于,所述第一光源组包括沿顺时针方向依次排列的一个红色LED光源和一个白色LED光源,所述第二光源组包括沿顺时针方向依次排列的一个蓝色LED光源和一个绿色LED光源,所述第三光源组包括沿顺时针方向依次排列的一个红色LED光源和一个白色LED光源,所述第四光源组包括沿顺时针方向依次排列的一个蓝色LED光源和一个绿色LED光源。
PCT/CN2015/094685 2014-11-20 2015-11-16 复眼透镜装置和相关的光源系统 WO2016078560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420700937.5U CN204254511U (zh) 2014-11-20 2014-11-20 复眼透镜装置和相关的光源系统
CN201420700937.5 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016078560A1 true WO2016078560A1 (zh) 2016-05-26

Family

ID=52958814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094685 WO2016078560A1 (zh) 2014-11-20 2015-11-16 复眼透镜装置和相关的光源系统

Country Status (2)

Country Link
CN (1) CN204254511U (zh)
WO (1) WO2016078560A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113253469A (zh) * 2021-05-22 2021-08-13 南开大学 一种用于太赫兹频段的匀光系统及其成像方法
CN115097552A (zh) * 2020-11-05 2022-09-23 深圳市爱普拓思科技有限公司 透镜、光源组件以及打印机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204254511U (zh) * 2014-11-20 2015-04-08 深圳市绎立锐光科技开发有限公司 复眼透镜装置和相关的光源系统
US10837619B2 (en) 2018-03-20 2020-11-17 Ledengin, Inc. Optical system for multi-emitter LED-based lighting devices
CN108490744B (zh) * 2018-05-15 2024-03-29 东莞市中誉光电科技有限公司 Uv-led光学系统及曝光机
CN211289688U (zh) * 2019-08-30 2020-08-18 深圳市绎立锐光科技开发有限公司 一种照明装置
CN113064283B (zh) * 2021-03-25 2022-08-23 南开大学 一种用于太赫兹频段的匀光棱镜结构及其成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684759A (ja) * 1992-09-04 1994-03-25 Nikon Corp 照明装置
JPH09222581A (ja) * 1996-02-19 1997-08-26 Sharp Corp 照明光学装置
JP2002214592A (ja) * 2001-01-15 2002-07-31 Seiko Epson Corp 投射型表示装置
CN102722028A (zh) * 2011-03-31 2012-10-10 上海三鑫科技发展有限公司 采用双复眼透镜的激光投影光学系统
CN203258423U (zh) * 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 Led单元模组、发光装置以及光源系统
CN204254511U (zh) * 2014-11-20 2015-04-08 深圳市绎立锐光科技开发有限公司 复眼透镜装置和相关的光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684759A (ja) * 1992-09-04 1994-03-25 Nikon Corp 照明装置
JPH09222581A (ja) * 1996-02-19 1997-08-26 Sharp Corp 照明光学装置
JP2002214592A (ja) * 2001-01-15 2002-07-31 Seiko Epson Corp 投射型表示装置
CN102722028A (zh) * 2011-03-31 2012-10-10 上海三鑫科技发展有限公司 采用双复眼透镜的激光投影光学系统
CN203258423U (zh) * 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 Led单元模组、发光装置以及光源系统
CN204254511U (zh) * 2014-11-20 2015-04-08 深圳市绎立锐光科技开发有限公司 复眼透镜装置和相关的光源系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115097552A (zh) * 2020-11-05 2022-09-23 深圳市爱普拓思科技有限公司 透镜、光源组件以及打印机
CN113253469A (zh) * 2021-05-22 2021-08-13 南开大学 一种用于太赫兹频段的匀光系统及其成像方法
CN113253469B (zh) * 2021-05-22 2022-07-01 南开大学 一种用于太赫兹频段的匀光系统及其成像方法

Also Published As

Publication number Publication date
CN204254511U (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016078560A1 (zh) 复眼透镜装置和相关的光源系统
EP2334978B1 (en) Method of manufacturing an illumination apparatus
CA2401461A1 (en) Led light source with field-of-view-controlling optics
TWI418855B (zh) 多變曲率光學模組
WO2011124140A1 (zh) 混光灯具
CN108415212A (zh) 一种led和激光光源构成的投影照明系统
US6623126B2 (en) Projector for use in planetarium
WO2020177445A1 (zh) 一种多色led照明系统
CN104460112A (zh) 一种背光源、发光二极管灯条、显示装置
CN204300745U (zh) 光源系统和舞台灯
WO2018196195A1 (zh) 光源系统及显示设备
CN215489560U (zh) 光源模组及光源装置
WO2017092665A1 (zh) 一种照明装置
CN206421144U (zh) 光源装置及数字光处理投影显示系统
CN113126308B (zh) 光学模组、显示装置及照明装置
CN104676485B (zh) 一种用于离散led光源的配光透镜及设备
CN207349826U (zh) 非同轴混光装置
CN205938756U (zh) 一种用于多颗彩色led灯珠成像灯的光学系统
CN110425431A (zh) 一种混光装置及电子设备
CN206257466U (zh) 一种聚光混色成像灯
CN207196401U (zh) 一种光源组件与灯
CN210771966U (zh) 一种直下式背光透镜系统
CN218153798U (zh) 一种照明装置
CN209819453U (zh) 一种光源透镜
CN206207216U (zh) 一种用于led灯具的混光效果好的多源光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861962

Country of ref document: EP

Kind code of ref document: A1