WO2016078501A1 - 动车组网侧谐波测试系统及方法 - Google Patents

动车组网侧谐波测试系统及方法 Download PDF

Info

Publication number
WO2016078501A1
WO2016078501A1 PCT/CN2015/093027 CN2015093027W WO2016078501A1 WO 2016078501 A1 WO2016078501 A1 WO 2016078501A1 CN 2015093027 W CN2015093027 W CN 2015093027W WO 2016078501 A1 WO2016078501 A1 WO 2016078501A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
digital
harmonic component
detected
currents
Prior art date
Application number
PCT/CN2015/093027
Other languages
English (en)
French (fr)
Inventor
余进
邓小军
刘韶庆
徐跃
于伟凯
徐冠基
贺竹林
张博
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to US15/120,014 priority Critical patent/US20180180651A1/en
Publication of WO2016078501A1 publication Critical patent/WO2016078501A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • G01R23/20Measurement of non-linear distortion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging

Definitions

  • the present invention relates to the field of testing technology, and more particularly to an EMU network side harmonic testing system and method.
  • EMUs generally use AC-DC-AC speed regulation, which inevitably generates harmonics on the grid side.
  • harmonics may cause interference to surrounding communication equipment.
  • harmonics will also cause the magnetic saturation of the traction transformer, the loss will increase, and the heat will be intensified. Therefore, it is necessary to accurately grasp the harmonic distribution law and content of the EMU as accurately as possible.
  • the current in-vehicle detection equipment and technology can not effectively complete the detection of the whole train current.
  • the train current can only be obtained by separately testing the current of each power unit and then superimposing and synthesizing the current, and then obtaining the harmonic component according to the whole train current.
  • the object of the present invention is to provide an EMU network side harmonic test system and method for improving the harmonic test accuracy of the EMU network side.
  • the embodiment of the present invention provides the following technical solutions:
  • An EMU network side harmonic test system comprising:
  • the first type of acquisition card is connected to the current sensor one by one, and the first type of acquisition card is used for sampling the current detected by the current sensor, and performing quantization processing to detect each sensor.
  • the obtained analog current signal is converted into a digital current signal;
  • the first controller is connected to the plurality of first type of acquisition cards, and is configured to superimpose each digital current to obtain a full train current, and obtain a harmonic component according to the total train current.
  • the current sensor is a current sensor having an accuracy of 0.05%.
  • the above system preferably, is a first controller for superimposing each digital current to obtain a full train current:
  • the above system is a first controller for superimposing each of the digital currents after temperature compensation to obtain a full train current:
  • the first type of acquisition card is an analog-to-digital converter with a sampling frequency greater than or equal to the preset value and a conversion accuracy of 24 bits.
  • the above system preferably further comprises:
  • a plurality of synchronization cards, the synchronization card and the first type of acquisition card are connected one-to-one.
  • An EMU network side harmonic test method comprising:
  • a harmonic component is obtained based on the full train current.
  • the superposing the digital currents to obtain the whole train current includes:
  • the digital currents after temperature compensation are superimposed to obtain the whole train current.
  • the digital currents after temperature compensation are superposed to obtain a total train current, including:
  • the currents after the temperature supplementation are nonlinearly compensated, wherein the nonlinear compensation amount is determined experimentally in advance;
  • an EMU network side harmonic test system and method provided by the embodiment of the present invention detects the current of each power unit, samples and quantizes the detected current, and obtains a digital current signal of each power unit.
  • the digital currents are superimposed to obtain the whole train current, and the harmonic components are obtained according to the whole train current.
  • the sampling frequency is determined according to the frequency of the harmonic component to be detected and the target phase angle error of the harmonic component to be detected.
  • the EMU network side harmonic test system and method provided by the embodiments of the present invention improve the harmonic current detection accuracy, and can detect harmonic components with a frequency above 3000 Hz.
  • 1 is a network side harmonic test system for an EMU provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of an implementation of a method for testing a harmonic side of an EMU of an EMU according to an embodiment of the present invention
  • FIG. 3 is a flowchart of an implementation of superimposing various digital currents to obtain a whole train current according to an embodiment of the present invention
  • FIG. 4 is a flowchart of an implementation of superimposing various digital currents after temperature compensation according to an embodiment of the present invention to obtain a full train current.
  • FIG. 1 is a schematic structural diagram of a network side harmonic test system for an EMU according to an embodiment of the present invention, which may include:
  • the current sensor 11 is in one-to-one correspondence with the power unit on the motor train, that is, one current sensor 11 collects the current of one power unit;
  • the current sensor 11 can select a current sensor with an accuracy of 0.05%. Of course, you can also choose a sensor with higher precision.
  • the first type of acquisition card 12 is connected to the current sensor 11 in one-to-one correspondence, and the current detected by the current sensor 11 is an analog signal.
  • the first type of acquisition card 12 is used for sampling the current detected by the current sensor 11 and performing quantization processing.
  • the analog current signal detected by each sensor is converted into a digital current signal;
  • the analog current signal is an analog signal carrying current information of the power unit;
  • the digital current signal is a digital signal carrying current information of the power unit.
  • the first controller 13 is connected to the plurality of first type of acquisition cards 12 for superimposing the digital currents to obtain a full train current, and acquiring harmonic components according to the total train current.
  • the current of each power unit is detected by the current sensor 11, and the detected current is sampled and quantized by the first type of acquisition card 12 to obtain a digital current signal of each power unit, which passes through the first controller 13
  • the digital currents are superimposed to obtain the whole train current, and the harmonic components are obtained according to the whole train current.
  • the sampling frequency of the sampling card is determined according to the frequency of the harmonic component to be detected and the target phase angle error of the harmonic component to be detected. It has been experimentally determined that the EMU network side harmonic test system and method provided by the embodiments of the present invention improve the harmonic current detection accuracy, and can detect harmonic components with a frequency above 3000 Hz.
  • the first controller 13 for superimposing the digital currents to obtain the whole train current is:
  • the first controller 13 after receiving the digital currents, performs temperature compensation on each of the digital currents, and superimposes the currents after the temperature compensation to obtain the whole train current.
  • the first controller 13 for performing temperature compensation on each digital current is used to acquire the ambient temperature in real time, and when receiving each digital current, obtain the change value of the ambient temperature with respect to 25 ° C, and change the change.
  • the value is multiplied by the temperature coefficient of the current sensor 11, that is, the magnitude of the temperature compensation value is obtained, and the magnitude of each digital current is added to the temperature compensation value to obtain the digital current after the temperature compensation.
  • the change of the ambient temperature with respect to 25 ° C is the difference between the ambient temperature and 25 ° C.
  • temperature compensation is performed on each digital current, which further improves the accuracy of the harmonic test of the EMU.
  • the first controller 13 is configured to superimpose the digital currents after the temperature compensation to obtain the full train current:
  • the first controller 13 performs nonlinear compensation, and adds the digital current after the temperature compensation to the predetermined nonlinear compensation amount to obtain temperature compensation.
  • the various digital currents are examples of the various digital currents.
  • the determination of the nonlinear compensation amount is based on a large number of experiments, mainly using a standard power supply, and the current sensor 11 is used to detect the current output by the standard current source multiple times (at least 3 times), and the current sensor 11 is detected.
  • the current is compared with the current output by the standard current source to determine the error of each sensor, and the average value of the error obtained multiple times is used as the nonlinear compensation amount in the harmonic test process.
  • temperature compensation is performed for each current, and nonlinear compensation is performed, thereby further improving the harmonic test accuracy of the EMU.
  • the first type of acquisition card 12 may select an analog to digital converter with a sampling frequency greater than or equal to the preset threshold and a conversion accuracy of 24 bits.
  • the EMU network side harmonic testing system provided by the present application may further include:
  • the synchronization card is connected to the first type of capture card 12 one by one.
  • each of the first type of capture cards 12 uses a separate synchronous card to obtain a clock signal, and each synchronous card has the same model.
  • Each of the first type of acquisition 12 cards operates with the IEEE-1588 clock synchronization protocol. Ensure that each of the first type of capture cards 12 is capable of simultaneous sampling.
  • the EMU network side harmonic testing system may further include:
  • a plurality of voltage sensors wherein the voltage sensors are in one-to-one correspondence with the power unit, that is, a voltage sensor is used to detect the voltage of one power unit.
  • a second type of acquisition card connected in one-to-one correspondence with the voltage sensor is configured to sample the analog voltage signal detected by the voltage sensor and perform quantization processing to convert the analog voltage signal detected by each sensor into a digital voltage signal .
  • the analog voltage signal is an analog signal carrying voltage information of the power unit;
  • the digital voltage signal is a digital signal carrying voltage information of the power unit.
  • the second controller is connected to the plurality of second type of acquisition cards for acquiring digital voltage signals output by the respective voltage acquisition cards, and obtaining harmonics of voltages of the respective power units according to the digital voltage signals output by the respective voltage acquisition cards Component.
  • EMU network side harmonic testing system provided by the embodiment of the present invention may further include:
  • the memory for storing harmonic test result data.
  • the memory may be a redundant disk array.
  • harmonic test result data can be used.
  • the chunks are stored in a redundant disk array.
  • the data in the damaged disk can be recovered according to the data in other uncorrupted disks, which can reduce the probability of data test result data loss due to misoperation or disk damage.
  • the present application further provides a method for testing the harmonics of the EMU of the EMU.
  • One implementation flowchart of the method for testing the harmonics of the EMU of the EMU is as shown in FIG. 2, which may include:
  • Step S21 detecting an analog current signal of each power unit on the EMU
  • the analog current signal of each power unit on the EMU can be detected by the current sensor 11 with an accuracy of 0.05%.
  • Step S23 superimposing each digital current to obtain a full train current
  • Step S24 Obtain a harmonic component according to the whole train current.
  • the current of each power unit is detected, the detected current is sampled and quantized, the digital current signal of each power unit is obtained, and the digital currents are superimposed to obtain the whole train current, and according to the whole The train current acquires harmonic components.
  • the sampling frequency of the sampling card is determined according to the frequency of the harmonic component to be detected and the target phase angle error of the harmonic component to be detected. It has been experimentally determined that the EMU network side harmonic test system and method provided by the embodiments of the present invention improve the harmonic current detection accuracy, and can detect harmonic components with a frequency above 3000 Hz.
  • an implementation flowchart of superimposing the digital currents to obtain the whole train current is as shown in FIG. 3, and may include:
  • Step S31 performing temperature compensation on each digital current
  • the ambient temperature can be obtained in real time.
  • the change value of the ambient temperature with respect to 25 ° C is obtained, and the change value is multiplied by the temperature coefficient of the current sensor 11 to obtain the temperature compensation value.
  • the magnitude of each digital current is added to the temperature compensation With the value, each digital current after temperature compensation can be obtained.
  • the change of the ambient temperature with respect to 25 ° C is the difference between the ambient temperature and 25 ° C.
  • Step S32 superimposing the digital currents after the temperature compensation to obtain the whole train current.
  • the digital currents of each channel are temperature-compensated, and the currents after the temperature compensation are superimposed to obtain the whole train current, thereby further improving the accuracy of the harmonic test.
  • a flowchart for realizing superimposing the digital currents after temperature compensation to obtain the whole train current is as shown in FIG. 4, and may include:
  • Step S41 performing nonlinear compensation on each current after performing temperature supplementation, wherein the nonlinear compensation amount is determined in advance by experiments;
  • the determination of the nonlinear compensation amount is based on a large number of experiments, mainly using a standard power supply, performing proofreading one by one, determining the error of the sensor under the input of each standard current value, and recording the error as a harmonic test process.
  • the amount of nonlinear compensation in the middle is based on a large number of experiments, mainly using a standard power supply, performing proofreading one by one, determining the error of the sensor under the input of each standard current value, and recording the error as a harmonic test process.
  • Step S42 superimposing the digital currents after the nonlinear compensation to obtain the whole train current.
  • each digital current after temperature compensation is added with a predetermined nonlinear compensation amount to obtain each digital current after temperature compensation. .
  • the accuracy of the harmonic test of the EMU side is further improved.
  • the method for testing the network side harmonic of the EMU provided by the embodiment of the present invention may further include:
  • the detected analog voltage signal is sampled and quantized to convert the analog voltage signal detected by each sensor into a digital voltage signal.
  • the digital voltage signals output by the respective voltage acquisition cards are obtained, and the harmonic components of the voltages of the respective power units are obtained according to the digital voltage signals output by the respective voltage acquisition cards.
  • the harmonic test result data can be stored, and the harmonic test result data can be stored through the redundant disk array.
  • the harmonic test result data can be partitioned into redundant disk arrays.
  • the data in the damaged disk can be recovered according to the data in other uncorrupted disks, which can reduce the probability of data test result data loss due to misoperation or disk damage.
  • the disclosed systems and methods can be implemented in other ways.
  • the system embodiment described above is merely illustrative.
  • the division of the device is only a logical function division.
  • there may be another division manner for example, multiple devices or components may be combined or It can be integrated into another device, or some features can be ignored or not executed.
  • the coupling or direct coupling or communication connection shown or discussed herein may be through some interface, indirect coupling or communication connection of the device, and may be electrical, mechanical or otherwise.
  • each control device in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种动车组网侧谐波测试系统及方法,用于检测各个动力单元的电流,对检测到的电流进行采样并量化处理,得到各个动力单元的数字电流信号,将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。其中,采样频率根据待检测谐波分量的频率,以及待检测谐波分量的目标相位角误差确定。提供的动车组网侧谐波测试系统及方法提高了谐波电流检测精度,可以检测到频率在3000Hz以上的谐波分量。

Description

动车组网侧谐波测试系统及方法
本申请要求于2014年11月17日提交中国专利局、申请号为201410654751.5、发明名称为“动车组网侧谐波测试系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及测试技术领域,更具体的说,涉及一种动车组网侧谐波测试系统及方法。
背景技术
动车组普遍采用交-直-交调速,不可避免地会在网侧产生谐波,一方面谐波可能会对周围通讯设备产生干扰,另一方面电流通过钢轨回流,可能会影响到轨道电路正常工作,同时,谐波也会引起牵引变压器磁饱和,损耗增大,发热加剧。因此,需要尽可能准确掌握动车组谐波分布规律及其含量。
目前的车载检测设备和技术无法有效完成对全列车电流的检测,只能通过分别测试各动力单元网侧电流再瞬时叠加合成的方式得到全列车电流,然后根据全列车电流获取谐波分量。
然而,发明人在实现本发明的过程中发现,目前的谐波电流检测方法的测试精度较低,难以检测频率在3000Hz以上的谐波分量。
发明内容
本发明的目的在于提供一种动车组网侧谐波测试系统和方法,以提高动车组网侧的谐波测试精度。
为实现上述目的,本发明实施例提供了如下技术方案:
一种动车组网侧谐波测试系统,包括:
若干电流传感器,电流传感器与动车组上的动力单元一一对应连接;
若干第一类采集卡,第一类采集卡与电流传感器一一对应连接,所述第一类采集卡用于对电流传感器检测到的电流进行采样,并进行量化处理,以将各路传感器检测到的模拟电流信号转换为数字电流信号;所述第一类 采集卡的采样频率大于或等于预设阈值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
第一控制器,与所述若干第一类采集卡相连接,用于将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。
上述系统,优选地,所述电流传感器为精度为0.05%的电流传感器。
上述系统,优选地,用于将各路数字电流进行叠加得到全列车电流的第一控制器:
用于将各路数字电流进行温度补偿,将进行温度补偿后的各路数字电流进行叠加得到全列车电流。
上述系统,优选地,用于将进行温度补偿后的各路数字电流进行叠加得到全列车电流的第一控制器:
用于对进行温度补充后的各路电流进行非线性补偿,将进行非线性补偿后的各路数字电流进行叠加得到全列车电流;其中,非线性补偿量预先通过实验确定。
上述系统,优选地,所述第一类采集卡为采样频率大于或等于所述预设值,且转换精度为24位的模数转换器。
上述系统,优选地,还包括:
若干同步卡,同步卡与第一类采集卡一一对应连接。
一种动车组网侧谐波测试方法,包括:
检测动车组上的各个动力单元的模拟电流信号;
将检测到的各个动力单元的模拟电流信号进行采样,并进行量化处理,以将各路模拟电流信号转换为数字电流信号;其中,采样频率大于或等于预设域值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
将各路数字电流进行叠加得到全列车电流;
依据所述全列车电流获取谐波分量。
上述方法,优选地,所述将各路数字电流进行叠加得到全列车电流包括:
将各路数字电流进行温度补偿;
将进行温度补偿后的各路数字电流进行叠加得到全列车电流。
上述方法,优选地,所述将进行温度补偿后的各路数字电流进行叠加得到全列车电流包括:
将进行温度补充后的各路电流进行非线性补偿,其中,非线性补偿量预先通过实验确定;
将进行非线性补偿后的各路数字电流进行叠加得到全列车电流。
通过以上方案可知,本发明实施例提供的一种动车组网侧谐波测试系统及方法,检测各个动力单元的电流,对检测到的电流进行采样并量化处理,得到各个动力单元的数字电流信号,将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。其中,采样频率根据待检测谐波分量的频率,以及待检测谐波分量的目标相位角误差确定。本发明实施例提供的动车组网侧谐波测试系统及方法提高了谐波电流检测精度,可以检测到频率在3000Hz以上的谐波分量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例提供的动车组网侧谐波测试系统;
图2为本发明实施例提供的动车组网侧谐波测试方法的一种实现流程图;
图3为本发明实施例提供的将各路数字电流进行叠加得到全列车电流的一种实现流程图;
图4为本发明实施例提供的将进行温度补偿后的各路数字电流进行叠加得到全列车电流的一种实现流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进 行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明实施例提供的动车组网侧谐波测试系统的一种结构示意图,可以包括:
若干电流传感器11,若干第一类采集卡12和第一控制器13;其中,
电流传感器11与动车组上的动力单元一一对应联系,即一个电流传感器11采集一个动力单元的电流;
可选地,电流传感器11可以选择精度为0.05%的电流传感器。当然,也可以选择更高精度的传感器。
第一类采集卡12与电流传感器11一一对应连接,电流传感器11检测到的电流为模拟信号,第一类采集卡12用于对电流传感器11检测到的电流进行采样,并进行量化处理,以将各路传感器检测到的模拟电流信号转换为数字电流信号;所述第一类采样卡的采样频率大于或等于预设域值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
本发明实施例中,模拟电流信号为承载动力单元电流信息的模拟信号;数字电流信号为承载动力单元电流信息的数字信号。
第一控制器13与所述若干第一类采集卡12相连接,用于将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。
本发明实施例中,通过电流传感器11检测各个动力单元的电流,通过第一类采集卡12对检测到的电流进行采样并量化处理,得到各个动力单元的数字电流信号,通过第一控制器13将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。其中,采样卡的采样频率根据待检测谐波分量的频率,以及待检测谐波分量的目标相位角误差确定。经过试验确定,本发明实施例提供的动车组网侧谐波测试系统及方法提高了谐波电流检测精度,可以检测到频率在3000Hz以上的谐波分量。
上述实施例中,可选地,用于将各路数字电流进行叠加得到全列车电流的第一控制器13:
用于将各路数字电流进行温度补偿,将进行温度补偿后的各路数字电流进行叠加得到全列车电流。
本发明实施例中,第一控制器13在接收到各路数字电流后,先将各路数字电流进行温度补偿,将进行温度补偿后的电流进行叠加,得到全列车电流。
具体的,用于将各路数字电流进行温度补偿的第一控制器13,用于实时获取环境温度,当接收到各路数字电流时,获取环境温度相对于25℃的变化值,将该变化值乘以电流传感器11的温度系数即得到温度补偿值的大小,将各路数字电流的大小分别加上所述温度补偿值,即可得到进行温度补偿后的各路数字电流。其中,环境温度相对于25℃的变化值即为环境温度与25℃的差值。
本发明实施例中,对各路数字电流进行温度补偿,进一步提高了动车组网侧谐波测试的精度。
进一步的,用于将进行温度补偿后的各路数字电流进行叠加得到全列车电流的第一控制器13:
用于对进行温度补充后的各路电流进行非线性补偿,将进行非线性补偿后的各路数字电流进行叠加得到全列车电流。
本发明实施例中,第一控制器13在对各路数字电流温度补偿后,进行非线性补偿,将进行温度补偿后的各路数字电流加上预先确定的非线性补偿量得到进行温度补偿后的各路数字电流。
本发明实施例中,非线性补偿量的确定建立在大量实验基础上,主要是采用标准电源,用电流传感器11多次(至少3次)检测标准电流源输出的电流,将电流传感器11检测到的电流与标准电流源输出的电流进行比较,确定每次传感器的误差,将多次得到的误差的平均值作为谐波测试过程中的非线性补偿量。
本发明实施例中,对各路电流既进行温度补偿,又进行非线性补偿,进一步提高了动车组网侧谐波测试精度。
上述实施例中,可选地,第一类采集卡12可以选用采样频率大于或等于所述预设阈值,且转换精度为24位的模数转换器。
上述实施例中,可选地,本申请提供的动车组网侧谐波测试系统还可以包括:
若干同步卡,同步卡与第一类采集卡12一一对应连接。
本发明实施例中,各个第一类采集卡12采用独立的同步卡获取时钟信号,且各个同步卡的型号相同。各个第一类采集12卡以IEEE-1588时钟同步协议工作。确保各个第一类采集卡12能够达到同步采样。
本发明实施例中,以硬件同步代替软件同步,进一步提高动车组网侧谐波测试精度。
可选地,本发明实施例提供的动车组网侧谐波测试系统还可以包括:
若干电压传感器,其中,电压传感器与动力单元一一对应,即一个电压传感器用于检测一个动力单元的电压。
若干与电压传感器一一对应连接的第二类采集卡,用于对电压传感器检测到的模拟电压信号进行采样,并进行量化处理,以将各路传感器检测到的模拟电压信号转换为数字电压信号。其中,第二类采集卡的采样频率大于或等于预设域值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
本发明实施例中,模拟电压信号为承载动力单元电压信息的模拟信号;数字电压信号为承载动力单元电压信息的数字信号。
第二控制器,与所述若干第二类采集卡相连接,用于获取各个电压采集卡输出的数字电压信号,并依据各个电压采集卡输出的数字电压信号获得各个动力单元的电压的谐波分量。
进一步的,本发明实施例提供的动车组网侧谐波测试系统还可以包括:
存储器,用于存储谐波测试结果数据。具体的,所述存储器可以为冗余磁盘阵列。
由于冗余磁盘阵列由多组磁盘组成,因此,可以将谐波测试结果数据 分块存储到冗余磁盘阵列中。当部分磁盘损坏时,可以根据其它未受损坏的磁盘中的数据恢复已损坏磁盘中的数据,可以降低由于误操作或磁盘损坏导致数据测试结果数据丢失发生的概率。
与系统实施例相对应,本申请还提供一种动车组网侧谐波测试方法,本申请提供的动车组网侧谐波测试方法的一种实现流程图如图2所示,可以包括:
步骤S21:检测动车组上的各个动力单元的模拟电流信号;
可以通过精度为0.05%的电流传感器11检测动车组上的各个动力单元的模拟电流信号。
步骤S22:将检测到的各个动力单元的模拟电流信号进行采样,并进行量化处理,以将各路模拟电流信号转换为数字电流信号;其中,采样频率大于或等于预设域值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
步骤S23:将各路数字电流进行叠加得到全列车电流;
步骤S24:依据所述全列车电流获取谐波分量。
本发明实施例中,检测各个动力单元的电流,对检测到的电流进行采样并量化处理,得到各个动力单元的数字电流信号,将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。其中,采样卡的采样频率根据待检测谐波分量的频率,以及待检测谐波分量的目标相位角误差确定。经过试验确定,本发明实施例提供的动车组网侧谐波测试系统及方法提高了谐波电流检测精度,可以检测到频率在3000Hz以上的谐波分量。
上述实施例中,可选地,将各路数字电流进行叠加得到全列车电流的一种实现流程图如图3所示,可以包括:
步骤S31:将各路数字电流进行温度补偿;
具体的,可以实时获取环境温度,当接收到各路数字电流时,获取环境温度相对于25℃的变化值,将该变化值乘以电流传感器11的温度系数即得到温度补偿值的大小,将各路数字电流的大小分别加上所述温度补偿 值,即可得到进行温度补偿后的各路数字电流。其中,环境温度相对于25℃的变化值即为环境温度与25℃的差值。
步骤S32:将进行温度补偿后的各路数字电流进行叠加得到全列车电流。
本发明实施例中,在得到各路数字电流信号后,先将各路数字电流进行温度补偿,将进行温度补偿后的电流进行叠加,得到全列车电流,进一步提高了谐波测试的精度。
图3所示实施例中,可选地,将进行温度补偿后的各路数字电流进行叠加得到全列车电流的一种实现流程图如图4所示,可以包括:
步骤S41:将进行温度补充后的各路电流进行非线性补偿,其中,非线性补偿量预先通过实验确定;
本发明实施例中,非线性补偿量的确定建立在大量实验基础上,主要是采用标准电源,逐一进行校对,确定各标准电流值输入情况下传感器的误差,记录该误差,作为谐波测试过程中的非线性补偿量。
步骤S42:将进行非线性补偿后的各路数字电流进行叠加得到全列车电流。
本发明实施例中,在对各路数字电流温度补偿后,进行非线性补偿,将进行温度补偿后的各路数字电流加上预先确定的非线性补偿量得到进行温度补偿后的各路数字电流。进一步提高了动车组网侧谐波测试的精度。
可选地,本发明实施例提供的动车组网侧谐波测试方法还可以包括:
检测动车组上的各个动力单元的模拟电压信号;
对检测到的模拟电压信号进行采样,并进行量化处理,以将各路传感器检测到的模拟电压信号转换为数字电压信号。其中,第二类采集卡的采样频率大于或等于预设域值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
获取各个电压采集卡输出的数字电压信号,并依据各个电压采集卡输出的数字电压信号获得各个动力单元的电压的谐波分量。
进一步的,还可以包括:
储谐波测试结果数据,具体可以通过冗余磁盘阵列存储谐波测试结果数据。
由于冗余磁盘阵列由多组磁盘组成,因此,可以将谐波测试结果数据分块存储到冗余磁盘阵列中。当部分磁盘损坏时,可以根据其它未受损坏的磁盘中的数据恢复已损坏磁盘中的数据,可以降低由于误操作或磁盘损坏导致数据测试结果数据丢失发生的概率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述装置的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个装置或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本发明各个实施例中的各控制装置可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的 范围。

Claims (9)

  1. 一种动车组网侧谐波测试系统,其特征在于,包括:
    若干电流传感器,电流传感器与动车组上的动力单元一一对应连接;
    若干第一类采集卡,第一类采集卡与电流传感器一一对应连接,所述第一类采集卡用于对电流传感器检测到的电流进行采样,并进行量化处理,以将各路传感器检测到的模拟电流信号转换为数字电流信号;所述第一类采集卡的采样频率大于或等于预设阈值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
    第一控制器,与所述若干第一类采集卡相连接,用于将各路数字电流进行叠加得到全列车电流,并依据所述全列车电流获取谐波分量。
  2. 根据权利要求1所述的系统,其特征在于,所述电流传感器为精度为0.05%的电流传感器。
  3. 根据权利要求1所述的系统,其特征在于,用于将各路数字电流进行叠加得到全列车电流的第一控制器:
    用于将各路数字电流进行温度补偿,将进行温度补偿后的各路数字电流进行叠加得到全列车电流。
  4. 根据权利要求3所述的系统,其特征在于,用于将进行温度补偿后的各路数字电流进行叠加得到全列车电流的第一控制器:
    用于对进行温度补充后的各路电流进行非线性补偿,将进行非线性补偿后的各路数字电流进行叠加得到全列车电流;其中,非线性补偿量预先通过实验确定。
  5. 根据权利要求1所述的系统,其特征在于,所述第一类采集卡为采样频率大于或等于所述预设值,且转换精度为24位的模数转换器。
  6. 根据权利要求1-5任意一项所述的系统,其特征在于,还包括:
    若干同步卡,同步卡与第一类采集卡一一对应连接。
  7. 一种动车组网侧谐波测试方法,其特征在于,包括:
    检测动车组上的各个动力单元的模拟电流信号;
    将检测到的各个动力单元的模拟电流信号进行采样,并进行量化处理, 以将各路模拟电流信号转换为数字电流信号;其中,采样频率大于或等于预设域值,所述预设阈值为fT=(360/Δθ)×f0,其中,fT为所述预设阈值,Δθ为待检测谐波分量的相位角误差,f0为待检测谐波分量的频率;
    将各路数字电流进行叠加得到全列车电流;
    依据所述全列车电流获取谐波分量。
  8. 根据权利要求7所述的方法,其特征在于,所述将各路数字电流进行叠加得到全列车电流包括:
    将各路数字电流进行温度补偿;
    将进行温度补偿后的各路数字电流进行叠加得到全列车电流。
  9. 根据权利要求8所述的方法,其特征在于,所述将进行温度补偿后的各路数字电流进行叠加得到全列车电流包括:
    将进行温度补充后的各路电流进行非线性补偿,其中,非线性补偿量预先通过实验确定;
    将进行非线性补偿后的各路数字电流进行叠加得到全列车电流。
PCT/CN2015/093027 2014-11-17 2015-10-28 动车组网侧谐波测试系统及方法 WO2016078501A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/120,014 US20180180651A1 (en) 2014-11-17 2015-10-28 System and method for testing network-side harmonic component of motor train unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410654751.5 2014-11-17
CN201410654751.5A CN104391177B (zh) 2014-11-17 2014-11-17 动车组网侧谐波测试系统及方法

Publications (1)

Publication Number Publication Date
WO2016078501A1 true WO2016078501A1 (zh) 2016-05-26

Family

ID=52609102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093027 WO2016078501A1 (zh) 2014-11-17 2015-10-28 动车组网侧谐波测试系统及方法

Country Status (3)

Country Link
US (1) US20180180651A1 (zh)
CN (1) CN104391177B (zh)
WO (1) WO2016078501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771584A (zh) * 2016-11-16 2017-05-31 合肥普望电子有限责任公司 一种应用于配电网的谐波检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104391177B (zh) * 2014-11-17 2017-10-31 中车青岛四方机车车辆股份有限公司 动车组网侧谐波测试系统及方法
CN107064633B (zh) * 2017-03-29 2019-10-18 广西电网有限责任公司电力科学研究院 城市轨道交通负荷谐波电流迭加系数确定方法
CN111008167A (zh) * 2019-11-28 2020-04-14 四川观想科技股份有限公司 一种分布式计算机总线背板
CN111579849B (zh) * 2020-04-10 2022-09-16 中国南方电网有限责任公司超高压输电公司检修试验中心 一种谐波电流分布获取方法及装置
CN113346493B (zh) * 2021-04-25 2023-03-28 西安交通大学 一种配电网末端电能质量治理集群系统的优化调度方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638061A (zh) * 2009-08-26 2010-02-03 上海磁浮交通发展有限公司 可回馈制动能量的磁浮列车牵引供电系统抑制网侧谐波的方法
US8169683B2 (en) * 2009-09-29 2012-05-01 Nec Laboratories America, Inc. Optical signal generation with D/A converters and optical clock pulse stream
CN102684518A (zh) * 2012-05-18 2012-09-19 东北大学 基于瞬时电流前馈控制的高频冗余pwm整流装置及方法
WO2013112885A2 (en) * 2012-01-25 2013-08-01 Carnegie Mellon University Railway transport management
CN104391177A (zh) * 2014-11-17 2015-03-04 南车青岛四方机车车辆股份有限公司 动车组网侧谐波测试系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896090A (en) * 1988-10-31 1990-01-23 General Electric Company Locomotive wheelslip control system
US7880425B2 (en) * 2007-11-26 2011-02-01 GM Global Technology Operations LLC Electric motor drive systems, motor vehicles, and methods of phase current regulation
EP2083418A1 (en) * 2008-01-24 2009-07-29 Deutsche Thomson OHG Method and Apparatus for determining and using the sampling frequency for decoding watermark information embedded in a received signal sampled with an original sampling frequency at encoder side
CN101936791B (zh) * 2010-07-28 2011-11-16 四川蜀谷仪表科技有限公司 数字压力计
CN202284970U (zh) * 2011-10-26 2012-06-27 无锡闻德科技有限公司 应用于移动通讯终端的声测装置
CN103293378B (zh) * 2013-05-03 2015-08-19 西南交通大学 一种牵引供电系统谐波谐振频率的辨识方法
US8982989B2 (en) * 2013-06-28 2015-03-17 Rosemount Inc. Process variable transmitter with variable frequency clock circuit for rejection of clock synchronous noise
TWI571026B (zh) * 2013-07-18 2017-02-11 Decentralized load current sensing system
CN103389473B (zh) * 2013-07-29 2015-05-20 北京国铁路阳技术有限公司 一种双路实时信号电源监测装置的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638061A (zh) * 2009-08-26 2010-02-03 上海磁浮交通发展有限公司 可回馈制动能量的磁浮列车牵引供电系统抑制网侧谐波的方法
US8169683B2 (en) * 2009-09-29 2012-05-01 Nec Laboratories America, Inc. Optical signal generation with D/A converters and optical clock pulse stream
WO2013112885A2 (en) * 2012-01-25 2013-08-01 Carnegie Mellon University Railway transport management
CN102684518A (zh) * 2012-05-18 2012-09-19 东北大学 基于瞬时电流前馈控制的高频冗余pwm整流装置及方法
CN104391177A (zh) * 2014-11-17 2015-03-04 南车青岛四方机车车辆股份有限公司 动车组网侧谐波测试系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, TIANYU: "Study on the Inhibition of High-Speed Railway Harmonic Resonance", CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 November 2013 (2013-11-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771584A (zh) * 2016-11-16 2017-05-31 合肥普望电子有限责任公司 一种应用于配电网的谐波检测方法

Also Published As

Publication number Publication date
CN104391177A (zh) 2015-03-04
CN104391177B (zh) 2017-10-31
US20180180651A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
WO2016078501A1 (zh) 动车组网侧谐波测试系统及方法
CN101247039B (zh) 基于实时仿真系统对电力系统录波回放的方法
CA2922581C (en) Method and system for identifying full parameters of element by fault recording and fault locating method
EP3267316B1 (en) Recording method and recording apparatus of power module
CN103592480A (zh) 一种基于usb接口的微波功率探头温度补偿装置
US9075088B2 (en) Power quality monitoring apparatus and method thereof
US20180017621A1 (en) Measuring a slew rate on-chip
US20160187400A1 (en) Bi-directional electric energy meter
KR20200102836A (ko) 병렬 pcs 및 그 시스템의 pwm 스위칭 동기화 방법
RU2666757C1 (ru) Способ дифференциальной защиты и устройство дифференциальной защиты для трансформатора
JP6589222B2 (ja) 電圧推定装置、電圧推定方法及びプログラム
TWI462486B (zh) 視訊訊號自動相位偵測裝置及其方法
CN114362097A (zh) 高压漏电保护电路及漏电分析芯片
KR102300326B1 (ko) 직류배전망에서 전력품질 계측을 위한 장치 및 이를 위한 방법
US20160301927A1 (en) Output circuit and method for detecting whether load connected to connection port corresponding to output circuit
TWI634405B (zh) 電源偵測及傳輸電路以及電源供應器
CN106649001B (zh) Cpci总线背板测试系统
JP7452888B2 (ja) 補正装置、補正システム、補正方法およびプログラム
KR102485653B1 (ko) 보호 계전기 및 그 보호 계전기의 단선 검출 방법
WO2019184454A1 (zh) 电能监测装置和方法、电能表
Schael et al. Sensor applications in charging stations for electric vehicles
CN117970209A (zh) 一种单相四象限pwm变流器电流测试数据的处理方法及装置
JP2010112771A (ja) 蓄電装置の充放電試験システム
CN103248363B (zh) 模拟到数字转换电路以及模拟到数字转换方法
JP6373765B2 (ja) 濾波装置および濾波方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861015

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120014

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861015

Country of ref document: EP

Kind code of ref document: A1