CN101936791B - 数字压力计 - Google Patents

数字压力计 Download PDF

Info

Publication number
CN101936791B
CN101936791B CN2010102386130A CN201010238613A CN101936791B CN 101936791 B CN101936791 B CN 101936791B CN 2010102386130 A CN2010102386130 A CN 2010102386130A CN 201010238613 A CN201010238613 A CN 201010238613A CN 101936791 B CN101936791 B CN 101936791B
Authority
CN
China
Prior art keywords
temperature
pressure
compensation
piezoresistive
sensing circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102386130A
Other languages
English (en)
Other versions
CN101936791A (zh
Inventor
李自强
银河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SICHUAN SHUGU INSTRUMENT TECHNOLOGY Co Ltd
Original Assignee
SICHUAN SHUGU INSTRUMENT TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SICHUAN SHUGU INSTRUMENT TECHNOLOGY Co Ltd filed Critical SICHUAN SHUGU INSTRUMENT TECHNOLOGY Co Ltd
Priority to CN2010102386130A priority Critical patent/CN101936791B/zh
Publication of CN101936791A publication Critical patent/CN101936791A/zh
Application granted granted Critical
Publication of CN101936791B publication Critical patent/CN101936791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种数字压力计,其特征在于:包括一个压阻式压力传感器,一个温度检测电路,两个A/D转换电路以及微处理器。微处理器通过A/D转换电路I进行采样,获得当前压力信号对应的电压值;另一方面,微处理器通过A/D转换电路II采样,获取温度检测电路的输出电压值,并准确计算出所述压阻式压力传感器的温度,然后根据温度补偿方法和非线性补偿方法进行修正,计算出更为精确的压力值,最后通过通信模块传输数字信号。本发明的温度检测电路能够准确检测到压阻式传感器中压敏元件的温度,从而进行更为精确的温度补偿。

Description

数字压力计
技术领域:
本发明涉及一种压力测量系统,适用于所有以压阻式压敏元件为传感器的产品,特别是使用压阻式传感器的压力计、压力变送器等产品。
背景技术:
压阻式压力传感器的是目前测量压力的一种重要传感器,广泛应用于工业控制、汽车电子、航空航天等领域,它是利用半导体材料的压阻效应和微电子技术制成的,具有灵敏系数大、分辨率高、频率响应高、体积小等特点,它主要用于测量压力、加速度和载荷等参数。由于半导体材料对温度很敏感,因此压阻式压力传感器存在着明显的温度效应,实际应用时必须进行温度补偿。另外,现有的工艺水平制造的压力传感器还存在零位温漂、非线性等问题,影响传感器的准确性。目前,零点漂移、温度漂移、非线性问题仍然是尚未完全解决的难题,而温度漂移是影响传感器精度的主要原因,为了满足精密压力测量的需要,人们设计了多种补偿方案,可以分为模拟电路补偿和数字补偿。补偿的关键在于如何准确的测量到压阻式压力传感器中压敏元件的温度,而压敏元件中不可能集成一个温度传感器,只能通过外围的温度检测电路或者温度传感器测量压敏元件的温度,只有这个温度测量准确了,才能做到精确的温度补偿。
模拟电路补偿主要是采用电子电路来减小温度漂移、非线性等影响,由于电子器件参数存在误差以及其本身也会受到温度的影响,所以这种补偿效果不理想。数字补偿则是采用数值方法或者智能算法来修正传感器的原始信号,用嵌入式软件来实现算法,从而进行数字式补偿,但各种算法都无法对数据完全拟合。
申请号为200820222717.0的中国实用新型专利“智能压力变送器”中,提出了一种温度补偿方法,是使用数字温度传感器测量压力传感器温度,然后在利用神经网络算法进行修正,从而实现提高传感器精度的目的。由于温度传感器与压力传感器中敏感元件不在同一位置,温度传感器测量到的温度不是敏感元件真实的温度,所以该专利温度补偿效果受到限制。
申请号为200820222721.7的中国实用新型专利“带温度补偿电路的压力变送器”中,提出了一种温度采样电路与桥式传感器调节芯片PGA309配合使用的一种温度补偿和非线性补偿方法,能够有效解决压力传感器的温度漂移问题。但是芯片PGA309本身需要使用温度传感器来测量温度,同样无法精确测量到压力传感器中压敏元件的温度。
申请号为200710050622.5的中国发明专利“扩散硅压力传感器的非线性滞回智能补偿方法和智能补偿系统”中,提出了一种非线性滞回智能补偿方法,补偿效果较好,但是该算法复杂、计算量较大,很难移植到低功耗的微型压力测量系统中。
基于以上情况,需要设计一种新型的压力、温度测量系统以满足人们工作需求,使其既能准确测量到压阻式压力传感器中敏感元件的真实温度,又具有简便的数字补偿方法。
发明内容:
本发明的目的是设计一种数字式压力计,具有稳定、可靠的温度检测电路,能够准确地测量到压阻式传感器中压敏元件的温度,进行更为精确的温度补偿。
本发明是这样实现的,构造一种数字压力计,其特征在于:包括,
一个压阻式压力传感器,它内部的压敏元件是由扩散硅制的应变片组成的惠斯通电桥,用于将所述压阻式压力传感器所承受的压力转换为电压信号;
一个温度检测电路,它用于精确的检测出压阻式压力传感器中压敏元件的温度,并将该温度用于温度补偿方法和非线性补偿方法中;
A/D转换电路I,对压力信号转换;
A/D转换电路II,对温度检测电路的输出电压值转换;
还包括微处理器,微处理器通过A/D转换电路I进行采样,获得当前压力信号对应的电压值;另一方面,微处理器通过A/D转换电路II采样,获取温度检测电路的输出电压值,并根据此电压值准确的计算出所述压阻式压力传感器中压敏元件的温度,然后根据温度补偿方法和非线性补偿方法进行修正,计算出更为精确的压力值,最后通过通信模块上传数字信号;
所述温度检测电路由一个低温漂的精密电阻构成,连接方式为压阻式压力传感器内惠斯通电桥的输入正端A连接到数字压力计系统的供电电源VCC上,输入负端C连接精密电阻,并使精密电阻的另一端接地,这样使整个温度检测电路构成一个恒压源的测量方式。
压敏元件内惠斯通电桥电阻随温度变化而变化,将惠斯通电桥等效为一个阻值随温度变化的可变电阻,低温漂精密电阻的阻值自身随温度变化极其微小、阻值几乎不变,低温漂精密电阻两端的电压只与压阻式压力传感器中惠斯通电桥等效电阻的变化有关,所以通过检测低温漂精密电阻的电压变化量,就能测出压阻式压力传感器惠斯通电桥的阻值变化量,最终准确的计算出压阻式压力传感器中压敏元件的温度变化量;
所述温度补偿方法如下:
由所述温度检测电路准确地测量出所述压阻式压力传感器中压敏元件的温度t,温度t条件下压力传感器的输出信号U0与温度t0条件下压力传感器的输出信号U0b的关系式,其形式如下:
U0b=f(t)·U0
其中,f(t)为实际标定的关于温度变量t的函数表达式,其形式由实际标定时确定;
所述非线性补偿方法为:在温度t0条件下,拟合出一条精度较高的压力曲线,该压力曲线的输出变量为压力p,自变量为所述压阻式压力传感器的输出信号Uob,其形式如下:
p = k 1 U 0 b + k 2 U ob 2 + b 0
其中,k1、k2和b0为温度t0条件下的拟合系数。
本发明与现有技术相比具有如下优点:(1)温度检测电路能够准确测量压力传感器中敏感元件的真实工作温度;(2)温度补偿和非线性方法简单、适用、补偿效果显著;(3)结构简单合理、制作工艺操作简便,整机功耗低;(4)适用范围广,温度检测电路、温度补偿方法和非线性补偿方法适用于所有压阻式压敏元件的补偿设计。
附图说明:
图1是本发明的电路原理框图
图2是本发明的温度检测原理框图
图3是本发明的温度检测电路的等效电路
图4是补偿前压力传感器不同温度下的输出特性
图5是补偿前和补偿后的标准压力值与测量压力值的关系图
图中:1、压阻式压力传感器,2、温度检测电路,3、微处理器,4、信号处理电路,5、A/D转换电路I,6、A/D转换电路II,7、通信模块,8、压阻式压力传感器中压敏元件的惠斯通电桥,9、精密电阻,10、惠斯通电桥的等效电阻。
具体实施方式:
本发明的目标是设计一种新型的数字式压力计,使其能够准确测量到压阻式传感器中敏感元件的真实工作温度,从而进行更为精确的温度补偿,同时具有简洁高效的温度补偿方法和非线性补偿方法,并用低功耗的微处理器来实现补偿方法。
下面将参考图1、图2和图3对本发明的进行详细的说明,特别是温度检测电路能够准确测量到压敏元件的温度。图1是本发明的电路原理框图,提供一种数字压力计。该数字压力计包括:压阻式压力传感器1,信号处理电路4,A/D转换电路I 5,温度测量电路2,A/D转换电路II 6,微处理器3和通信模块7。一方面,压阻式压力传感器1测得其环境压力并转换为电压信号,经信号处理电路2进行放大、滤波等处理后,微处理器3通过A/D转换电路I 5进行采样,获得当前压力信号对应的电压值。另一方面,微处理器3还连通温度测量电路2,A/D转换电路II 6,此时微处理器3通过A/D转换电路II 6采样,其目的在于获取温度检测电路的输出电压值。然后根据温度补偿方法和非线性补偿方法进行修正,计算出更为精确的压力值,最后通过通信模块7上传数字信号。
图2为本发明温度检测电路的构成原理框图,所述温度检测电路2由一个低温漂的精密电阻9构成,连接方式为压阻式压力传感器内惠斯通电桥8的输入正端A连接到数字压力计系统的供电电源VCC上,输入负端C连接精密电阻9,并使精密电阻9的另一端接地,这样使整个温度检测电路构成一个恒压源的测量方式。
图3是温度检测电路2的一个等效电路,由于压敏元件内惠斯通电桥电阻随温度变化而变化,可将惠斯通电桥等效为一个阻值随温度变化的可变电阻10,其阻值随温度变化,而低温漂精密电阻9的阻值几乎不变,因此低温漂精密电阻9两端电压的变化量直接反映出可变电阻10的阻值变化量,于是计算出压敏元件内惠斯通电桥的阻值变化量,进而计算出压敏元件的真实温度变化量,再结合本发明的温度补偿方法可以进行精确的补偿。
所述非线性补偿方法:首先设置温度t0为20℃,在空气浴(高低温试验箱)中标定一条高精度的压力曲线,其形式如下所示:
p = k 1 U 0 b + k 2 U ob 2 + b 0 - - - ( 1 )
其中,k1、k2和b0为20℃条件下的拟合系数,在相同的温度环境下,并在微处理器中存储k1、k2和b0的值,供补偿运算使用。
所述温度补偿方法,在压力计使用过程中,根据任意温度t条件下压力传感器的输出信号U0与20℃条件下压力传感器的输出信号U0b的关系式,其形式如下:
U0b=f(t)·U0        (2)
其中,f(t)为实际标定的关于温度变量t的函数表达式,其形式由实际标定时确定。
归一化处理,将公式(2)带入公式(1),得出任意温度t条件下压力计算表达式,其形式如下:
p = k 1 · f ( t ) · U 0 + k 2 · f ( t ) · U o 2 + b 0 - - - ( 3 )
根据所述温度检测电路准确的计算出当前压阻式压力传感器中压敏元件的温度t,再由公式(3)实现温度补偿和非线性补偿运算,计算出当前的压力值。由于温度t是准确值,所以温度补偿更为有效,压力计算值的精度更高。
本发明所述的数字式压力计,具有稳定、可靠的温度检测电路,能够准确地测量到压阻式传感器中压敏元件的温度,进行更为精确的温度补偿。同时具有简洁高效的温度补偿方法和非线性补偿方法,并用低功耗的微处理器来实现补偿方法。
图4显示了本实施例的压力传感器补偿前-25℃、20℃和70℃条件下的输出特性,图5显示了补偿前和补偿后的标准压力值与测量压力值的比较图,通过补偿前和补偿后测量压力值的对比,可以清楚的看出本实施例的补偿效果显著,补偿后的压力计算值准确度高,一致性好。为了进一步说明补偿后的计算精度,下面给出部分实验数据,在-25℃、20℃和70℃温度条件下,分别施加0.5MPa、1.5MPa、2.5MPa、3.5MPa和4.5MPa的标准压力,记录下本实施例压力计的补偿前和补偿后的测量结果,并计算补偿前和补偿后的绝对误差。
表一为-25℃条件下的实验数据:
Figure GSB00000599787300071
表二为20℃条件下的实验数据:
Figure GSB00000599787300072
表三为70℃条件下的实验数据:
Figure GSB00000599787300073
上面三组实验数据表中,20℃条件下补偿前和补偿后的测量压力值几乎一致,这是由于在本实施例中,就是在20℃条件下标定的标准曲线,所以补偿前和补偿后的计算结果是一样的。-25℃和70℃条件下,补偿前后的测量值差异明显,补偿前的测量最大绝对误差为0.5252MPa,补偿后的测量最大绝对误差仅为-0.0011MPa。由上述结果可知,应用本发明的温度检测电路的压力计,实现了精确的温度补偿,大幅度减小了温度对压力测量值的影响,从而达到了提高压阻式压力传感器测量精度的目的。
在本实施例中,主要器件选择如下:
所述压阻式压力传感器1型号为MPM283;
所述低温漂精密电阻9采用100Ω(10ppm/℃)的电阻;
所述微处理器3采用MSP430F1611;
所述通信模块7采用RS485通讯方式。
以上所述,仅仅是用来说明本发明,并非对本发明作任何限制,本技术领域技术员在阅读完本文后会立刻明白,可对本发明进行等价材料和技术上的各种修改和替代,并且这些修改和替代都属于所附权利要求的范围之内。

Claims (1)

1.一种数字压力计,其特征在于:包括,
一个压阻式压力传感器(1),它内部的压敏元件是由扩散硅制的应变片组成的惠斯通电桥,用于将所述压阻式压力传感器所承受的压力转换为电压信号;
一个温度检测电路(2),它用于精确检测出所述压阻式压力传感器(1)中压敏元件的温度,并将该温度用于温度补偿方法和非线性补偿方法中;
A/D转换电路I(5),对压力信号转换;
A/D转换电路II(6),对温度检测电路的输出电压值转换;
还包括微处理器(3),微处理器(3)通过A/D转换电路I(5)进行采样,获得当前压力信号对应的电压值;另一方面,微处理器(3)通过A/D转换电路II(6)采样,获取温度检测电路(2)的输出电压值,并根据此电压值准确的计算出所述压阻式压力传感器(1)中压敏元件的温度,然后根据温度补偿方法和非线性补偿方法进行修正,计算出更为精确的压力值,最后通过通信模块(7)上传数字信号;
所述温度检测电路(2)由一个低温漂的精密电阻(9)构成,连接方式为压阻式压力传感器内惠斯通电桥(8)的输入正端A连接到数字压力计系统的供电电源VCC上,输入负端C连接精密电阻(9),并使精密电阻(9)的另一端接地,这样使整个温度检测电路构成一个恒压源的测量方式。
CN2010102386130A 2010-07-28 2010-07-28 数字压力计 Active CN101936791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102386130A CN101936791B (zh) 2010-07-28 2010-07-28 数字压力计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102386130A CN101936791B (zh) 2010-07-28 2010-07-28 数字压力计

Publications (2)

Publication Number Publication Date
CN101936791A CN101936791A (zh) 2011-01-05
CN101936791B true CN101936791B (zh) 2011-11-16

Family

ID=43390239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102386130A Active CN101936791B (zh) 2010-07-28 2010-07-28 数字压力计

Country Status (1)

Country Link
CN (1) CN101936791B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048087B (zh) * 2011-10-13 2015-02-11 贾庆锋 压力传感器调试系统及其调试方法
US9857782B2 (en) 2011-12-28 2018-01-02 Fuji Electric Co., Ltd. Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
AU2013292313B2 (en) * 2012-07-20 2017-04-20 Endophys Holdings, Llc Transducer interface system and method
CN103837285A (zh) * 2012-11-23 2014-06-04 上海朝辉压力仪器有限公司 压力表
CN103317025B (zh) * 2013-06-28 2015-08-26 苏州唐氏机械制造有限公司 一种智能压力检测增压冲压模具
CN103302186A (zh) * 2013-06-28 2013-09-18 苏州唐氏机械制造有限公司 一种智能压力检测冲压模具
CN103410501B (zh) * 2013-07-03 2016-04-06 中国石油天然气股份有限公司 井下电子压力计的温度漂移补偿方法和温度漂移补偿系统
CN104568289A (zh) * 2013-10-23 2015-04-29 北京临近空间飞行器系统工程研究所 基于硅谐振式传感器的压力生成方法
CN104596678A (zh) * 2013-10-31 2015-05-06 精工爱普生株式会社 力检测装置、机器人、电子部件输送装置以及检查装置
CN104391177B (zh) * 2014-11-17 2017-10-31 中车青岛四方机车车辆股份有限公司 动车组网侧谐波测试系统及方法
DE102015202029A1 (de) * 2015-02-05 2016-08-11 Robert Bosch Gmbh Abgleichverfahren und Vorrichtung für einen Drucksensor
CN105067040A (zh) * 2015-08-12 2015-11-18 吴江佳亿电子科技有限公司 一种温度压力一体式测试仪
CN106908197B (zh) * 2017-03-02 2019-03-15 成都信息工程大学 一种压力计温度漂移标定校正方法
CN107514860A (zh) * 2017-09-06 2017-12-26 芯海科技(深圳)股份有限公司 一种电容式冰箱凝霜传感器检测电路
CN107966236A (zh) * 2018-01-18 2018-04-27 深圳市永盟电子科技限公司 压力传感器、血压计及压力传感器制造方法
CN108716957A (zh) * 2018-06-21 2018-10-30 迈格仪表(成都)有限公司 一种特征化压变模盒
CN110687675B (zh) * 2019-09-09 2022-04-29 歌尔股份有限公司 振镜系统、微投影设备以及电子设备
CN112729661B (zh) * 2020-12-29 2024-03-19 北京金迈捷科技有限公司 一种带温度信号输出的超低温压力传感器
CN112621762B (zh) * 2021-01-07 2022-04-08 太原理工大学 一种具有温度补偿功能的触觉感知采集系统及其方法
CN112763136B (zh) * 2021-04-08 2021-07-23 南京英锐创电子科技有限公司 动力电池包压力报警系统及报警方法
CN113358015A (zh) * 2021-04-16 2021-09-07 上海兰宝传感科技股份有限公司 一种电涡流位移传感器及拓展其线性范围的方法
CN113720524B (zh) * 2021-08-26 2022-09-23 北京七星华创流量计有限公司 压力检测方法和压力检测系统
CN115096348B (zh) * 2022-08-26 2022-11-22 成都晨电智能科技有限公司 一种全桥温漂补偿电路、方法及应变传感系统
CN115575032A (zh) * 2022-10-26 2023-01-06 航宇救生装备有限公司 一种基于弹射座椅程控器的数字式压力传感器补偿方法
CN117147022B (zh) * 2023-10-31 2024-01-16 深圳市力准传感技术有限公司 力传感器非线性补偿方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2741951B1 (fr) * 1995-12-04 1998-02-20 Europ Propulsion Pont de wheatstone avec compensation de gradient de temperature entre resistances principales du pont et application a un capteur de pression a jauges extensometriques
CN100533087C (zh) * 2006-12-14 2009-08-26 昆山双桥传感器测控技术有限公司 高精度压力传感器的误差补偿方法
CN100524107C (zh) * 2007-11-23 2009-08-05 桂林电子科技大学 扩散硅压力传感器的非线性滞回智能补偿方法和智能补偿系统
CN201331406Y (zh) * 2008-12-02 2009-10-21 西安中星测控有限公司 智能型压力变送器
CN201293698Y (zh) * 2008-12-02 2009-08-19 西安中星测控有限公司 带温度补偿电路的压力变送器

Also Published As

Publication number Publication date
CN101936791A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
CN101936791B (zh) 数字压力计
CN201754115U (zh) 数字压力计
CN201293698Y (zh) 带温度补偿电路的压力变送器
CN101858811A (zh) 高精度压力传感器信号补偿方法
CN205537488U (zh) 一种电涡流位移传感器
CN104793151B (zh) 一种磁性元件的磁场测量装置及测量方法
CN102830248A (zh) 小型温度补偿石英加速度计伺服电路
CN102519666B (zh) 一种数字温度补偿系统及方法
CN104678340A (zh) 一种磁强计测量误差纠正方法及系统
CN203203693U (zh) 高精度电子秤
CN203824695U (zh) 抑制硅纳米线巨压阻传感器灵敏度热漂移和噪声的装置
CN103226165A (zh) Tmr自校零数字电流传感器及其自校零方法
CN206488794U (zh) 一种电阻应变式传感器的高精度电桥电路
CN102288815B (zh) 一种用于巨磁电阻效应电流传感器的温度补偿器
CN207991561U (zh) 一种用于电阻应变片输出调节的装置
CN104420865A (zh) 一种石化井用一体化智能传感器
CN203053529U (zh) 一种称重装置
CN201060079Y (zh) 智能差压变送器
CN106441403B (zh) 桥式传感器初始零位电压调零方法
Kleckers Force sensors for strain gauge and piezoelectric crystal-based mechatronic systems-a comparison
CN106644193A (zh) 一种压强值的测定方法及系统
CN204556804U (zh) 一种磁性元件的磁场测量装置
CN203672371U (zh) 一种基于石英挠性加速度计的倾角测量仪
CN203929849U (zh) 一种电子式电压互感器中的电流检测电路
CN203011610U (zh) 基于avr单片机的新型数字气压计

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant