WO2016078089A1 - 发送信号、处理信号的设备及方法 - Google Patents

发送信号、处理信号的设备及方法 Download PDF

Info

Publication number
WO2016078089A1
WO2016078089A1 PCT/CN2014/091923 CN2014091923W WO2016078089A1 WO 2016078089 A1 WO2016078089 A1 WO 2016078089A1 CN 2014091923 W CN2014091923 W CN 2014091923W WO 2016078089 A1 WO2016078089 A1 WO 2016078089A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
signals
precoding
matrix
represented
Prior art date
Application number
PCT/CN2014/091923
Other languages
English (en)
French (fr)
Inventor
闫华
陈磊
吴丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/091923 priority Critical patent/WO2016078089A1/zh
Priority to CN201480082734.7A priority patent/CN107078994B/zh
Publication of WO2016078089A1 publication Critical patent/WO2016078089A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to an apparatus and method for transmitting signals and processing signals.
  • OFDM Orthogonal Frequency Division Multiplex
  • OFDM/OQAM Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation
  • OFDM/OQAM satisfies the orthogonality of the real-number domain.
  • the orthogonality of this real-number domain causes the technique to be combined with Multi-Input Multi-Output (MIMO).
  • MIMO Multi-Input Multi-Output
  • One way is to use circular convolution filtering for isolation, that is, to move the trailing and trailing tails of the OFDM/OQAM symbol sequence in one precoding block to the body of the symbol sequence, so that two pre-advanced in the time domain There is no overlap between the coded blocks, which serves to isolate the critical position interference of the time domain precoding block.
  • this method can only eliminate the interference between the time domain precoding blocks, and can not eliminate the interference of the critical position in the frequency domain.
  • Another way is to leave a guard subcarrier in the critical position of the frequency domain to isolate the critical position interference between the precoding blocks in the frequency domain; or to leave a guard symbol in the critical position of the time domain to isolate the precoding blocks.
  • the role of domain critical position interference can eliminate the precoding of the time domain adjacent Inter-block interference can eliminate interference between pre-coded blocks in the frequency domain, but this method will waste the spectrum resources.
  • Embodiments of the present invention provide a method for transmitting a signal and processing a signal, which can eliminate interference between precoding blocks and does not cause waste of spectrum resources.
  • an apparatus for transmitting a signal including:
  • An acquiring unit configured to acquire N/2 first symbols, where N is an even number
  • a first generating unit configured to generate N second symbols according to the N/2 first symbols acquired by the acquiring unit by using a spreading code group
  • a precoding unit configured to perform precoding processing on the N second symbols generated by the first generating unit, to obtain N third symbols respectively;
  • mapping unit configured to map the N third symbols obtained by the precoding unit to N boundary resource elements RE of a precoding block, where the N boundary REs are located in the precoding block On the boundary subcarrier or on the boundary symbol of the precoding block;
  • a second generating unit configured to generate a filter bank multi-carrier FBMC signal according to the third symbol after the mapping unit mapping
  • a sending unit configured to send the FBMC signal generated by the second generating unit.
  • the obtaining unit is further configured to acquire N fourth symbols
  • the precoding unit is further configured to perform precoding processing on the N fourth symbols acquired by the acquiring unit, to obtain N fifth symbols respectively;
  • the mapping unit is further configured to map the N fifth symbols obtained by the precoding unit to N REs adjacent to the N border REs in the precoding block;
  • the second generating unit is specifically configured to generate the FBMC signal according to the third symbol after the mapping unit mapping and the fifth symbol after the mapping unit mapping.
  • the extended code group includes N/2 spreading codes, the N/2 Each of the spreading codes has a length of N,
  • the first generating unit is specifically configured to:
  • the pre-coding unit is specifically configured to:
  • the N/2 first symbols are configured by a complex number, and N/2 first symbols are determined according to N real symbols,
  • the precoding matrix is represented as P 1 ;
  • the N/2 first symbols are represented as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block.
  • the obtaining unit is further configured to acquire N fourth symbols
  • the first generating unit is configured to generate, by using the extended code group, the N second symbols according to the N/2 first symbols and N/2 first interference pre-offsets;
  • the first generating unit is further configured to generate the N sixth symbols according to the N fourth symbols and the N second interference pre-offsets;
  • the precoding unit is further configured to perform precoding processing on the N sixth symbols to obtain N seventh symbols;
  • the mapping unit is further configured to map the N seventh symbols obtained by the precoding unit to N REs adjacent to the N border REs in the precoding block;
  • the second generating unit is configured to generate the FBMC signal according to the third symbol after the mapping unit mapping and the seventh symbol after the mapping unit mapping;
  • the N/2 first interference pre-offsets and the N second interference pre-offsets are determined according to the N/2 first symbols and the N fourth symbols.
  • the extended code group includes N/2 spreading codes, the N/2 Each of the spreading codes has a length of N,
  • the first generating unit is specifically configured to:
  • the pre-coding unit is specifically configured to:
  • the N/2 first symbols are configured by a complex number, and N/2 first symbols are determined according to N real symbols,
  • the precoding matrix is represented as P 1 ;
  • the N/2 first symbols are represented as:
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block.
  • the N/2 first interference pre-offsets And the N second interference pre-cancellation amounts ⁇ S 1 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 1 and A 2 are multiplexes related to the setting of the filter.
  • C 1 represents a spreading code matrix
  • the device is a transmitter.
  • an apparatus for processing a signal including:
  • a receiving unit configured to receive N first signals on N boundary resource elements RE of the precoding block, and receive N pieces of N REs adjacent to the N boundary REs in the precoding block a second signal, where the N boundary REs are located on a boundary subcarrier of the precoding block or a boundary symbol of the precoding block, and N is an even number;
  • An equalization unit configured to perform equalization processing on the N first signals received by the receiving unit to obtain N third signals, and perform equalization processing on the second signals of the N to obtain N fourth signals;
  • a processing unit configured to perform, by using a spreading code group, despreading the N third signals obtained by the equalizing unit to obtain N/2 fifth signals; and obtaining the N fourth signals obtained by the equalizing unit Taking the effective part to obtain N sixth signals;
  • a determining unit configured to determine the decoded signal according to the N/2 fifth signals and the N sixth signals obtained by the processing unit.
  • the equalizing unit is specifically configured to:
  • the extended code group includes N/2 spreading codes, and the N/2 Each extension code in the spreading code has a length of N,
  • the processing unit is specifically configured to:
  • the N third signals are sequentially multiplied and summed with the conjugate of the corresponding spreading code element of each spreading code to obtain the N/2 fifth signals.
  • the determining unit is specifically configured to:
  • a signal recovery matrix is used, Determine the decoded signal.
  • the N first signals are expressed as:
  • the N second signals are represented as:
  • the first equalization matrix is expressed as:
  • the second equalization matrix is expressed as: W 1 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • L 1 represents the number of layers of the transmitted signal of the precoded block.
  • the effective part is a real part
  • the N/2 fifth signals are expressed as:
  • the N sixth signals are represented as:
  • T Represents the real number field
  • L 1 represents the number of layers of the transmitted signal of the pre-coded block
  • Re ⁇ represents the real part.
  • the decoded signal is represented by: S 1 and Where S 1 is composed of real numbers, Composed of plurals, and
  • the determining unit is specifically configured to:
  • S 1 is N decoded signals on N REs adjacent to N border REs in the precoding block, and determining with N decoded signals on N boundary REs of the precoding block;
  • R 1 represents the sixth signal
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • Q means the signal recovery matrix
  • the signal recovery matrix is represented as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 1 and A 2 are multiplexed response coefficient matrices related to the setting of the filter
  • L 1 denotes transmission of the pre-coded block
  • the number of layers of the signal, C 1 represents the spreading code matrix
  • the signal recovery matrix is expressed as:
  • I represents a unit square matrix
  • the device is a receiver.
  • the taking the effective part includes: taking the real part, or taking the imaginary part, or According to the position of the RE, the virtual and real are taken alternately.
  • a method of transmitting a signal including:
  • the FBMC signal is sent.
  • the method further includes:
  • Generating the FBMC signal according to the third symbol after the mapping including:
  • the FBMC signal is generated according to the third symbol after the mapping and the fifth symbol after the mapping.
  • the extended code group includes N/2 spreading codes, where the N/2 Each extension code has a length of N,
  • the performing the Precoding processing, respectively obtaining N third symbols comprising: multiplying each of the second symbols of the precoding matrix and the N second symbols to obtain the N third symbols respectively;
  • Performing precoding processing on the N fourth symbols to obtain N fifth symbols respectively including: multiplying the precoding matrix and each of the N fourth symbols by a respective one, respectively The N fifth symbols are obtained.
  • the N/2 first symbols are configured by a complex number, and N/2 first symbols are determined according to N real symbols,
  • the precoding matrix is represented as P 1 ;
  • the N/2 first symbols are represented as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block.
  • the method further includes:
  • Generating the FBMC signal according to the third symbol after the mapping including:
  • the N/2 first interference pre-offsets and the N second interference pre-offsets are determined according to the N/2 first symbols and the N fourth symbols.
  • the extended code group includes N/2 spreading codes, and the N/2 Each extension code has a length of N,
  • Generating the N sixth symbols according to the N fourth symbols and the N second interference pre-offsets including:
  • the performing the pre-coding processing on the N second symbols to obtain N a third symbol comprising: multiplying a precoding matrix and each of the N second symbols to obtain the N third symbols respectively;
  • Performing precoding processing on the N sixth symbols to obtain N seventh symbols including: multiplying the precoding matrix and each of the N sixth symbols to obtain respectively The N seventh symbols.
  • the N/2 first symbols are configured by a complex number, and N/2 first symbols are determined according to N real symbols,
  • the precoding matrix is represented as P 1 ;
  • the N/2 first symbols are represented as:
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block.
  • the N/2 first interference pre-offsets And the N second interference pre-cancellation amounts ⁇ S 1 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 1 and A 2 are multiplexes related to the setting of the filter.
  • C 1 represents a spreading code matrix
  • a method of processing a signal comprising:
  • N boundary resource elements RE of the precoding block Receiving N first signals on the N boundary resource elements RE of the precoding block, and receiving N second signals on the N REs adjacent to the N boundary REs in the precoding block, where The N boundary REs are located on a boundary subcarrier of the precoding block or a boundary symbol of the precoding block, and N is an even number;
  • the performing the equalizing processing on the N first signals to obtain N third signals, and performing equalization on the second signal of the N Processing to obtain N fourth signals including:
  • the extended code group includes N/2 spreading codes, and the N/2 Each extension code in the spreading code has a length of N,
  • the N third signals are sequentially multiplied and summed with the conjugate of the corresponding spreading code element of each spreading code to obtain the N/2 fifth signals.
  • the third possible implementation manner of the fourth aspect including:
  • the N first signals are expressed as:
  • the N second signals are represented as:
  • the first equalization matrix is expressed as:
  • the second equalization matrix is expressed as: W 1 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • L 1 represents the number of layers of the transmitted signal of the precoded block.
  • the effective part is a real part
  • the N/2 fifth signals are expressed as:
  • the N sixth signals are represented as:
  • T Represents the real number field
  • L 1 represents the number of layers of the transmitted signal of the pre-coded block
  • Re ⁇ represents the real part.
  • the decoded signal is expressed as: S 1 and Where S 1 is composed of real numbers, Composed of plurals, and
  • S 1 is N decoded signals on N REs adjacent to N border REs in the precoding block, and determining with N decoded signals on N boundary REs of the precoding block;
  • R 1 represents the sixth signal
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • Q means the signal recovery matrix
  • the signal recovery matrix is represented as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 1 and A 2 are multiplexed response coefficient matrices related to the setting of the filter
  • L 1 denotes transmission of the pre-coded block
  • the number of layers of the signal, C 1 represents the spreading code matrix
  • the signal recovery matrix is expressed as:
  • I represents a unit square matrix
  • the taking the effective part includes: taking the real part, or taking the imaginary part, or According to the position of the RE, the virtual and real are taken alternately.
  • an apparatus for transmitting a signal including:
  • a receiver for acquiring N/2 first symbols, where N is an even number.
  • a processor configured to generate N second symbols according to the N/2 first symbols acquired by the receiver by using a spreading code group.
  • the processor is further configured to perform precoding processing on the N second symbols to obtain N third symbols respectively.
  • the processor is further configured to map the N third symbols to N boundary REs of the precoding block, where the N boundary REs are located on a boundary subcarrier of the precoding block or On the boundary symbol of the precoding block.
  • the processor is further configured to generate a filter bank multi-carrier FBMC signal according to the third symbol after the mapping.
  • a transmitter configured to send the FBMC signal generated by the processor.
  • an apparatus for processing a signal including:
  • a receiver configured to receive N first signals on N boundary resource elements RE of the precoding block, and receive N pieces of N REs adjacent to the N boundary REs in the precoding block a second signal, where the N boundary REs are located on a boundary subcarrier of the precoding block or a boundary symbol of the precoding block, and N is an even number;
  • a processor configured to perform equalization processing on the N first signals received by the receiver to obtain N third signals, and perform equalization processing on the second signals of the N to obtain N fourth signals;
  • the processor is further configured to perform a despreading operation on the N third signals by using a spreading code group to obtain N/2 fifth signals, and take an effective part of the N fourth signals to obtain N sixth signal;
  • the processor is further configured to determine the decoded signal according to the N/2 fifth signals and the N sixth signals.
  • the N/2 first symbols are converted into N second symbols by using a spreading code group, and then precoding processing is performed by using a precoding matrix, so that symbols mapped to the boundary RE of the precoding block can be eliminated.
  • precoding processing is performed by using a precoding matrix, so that symbols mapped to the boundary RE of the precoding block can be eliminated.
  • 1 is a schematic diagram of an adjacent precoding block.
  • Figure 2 is a schematic diagram of the multiplexer response coefficients.
  • FIG. 3 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a form of a transmission signal according to an embodiment of the present invention.
  • Figure 5 is a schematic illustration of the form of a transmitted signal in accordance with another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an apparatus for processing signals according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of transmitting a signal in accordance with an embodiment of the present invention.
  • Figure 8 is a flow diagram of a method of processing a signal in accordance with one embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an apparatus for processing a signal according to another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an adjacent precoding block. Specifically, FIG. 1 shows four precoding blocks, and the precoding matrices of the four precoding blocks are P n , P n+1 , P n+2 , and P n+3 , respectively . Also shown are the frequency domain critical position and the time domain critical position. It can be understood that the frequency domain critical position is a boundary between pre-coded blocks adjacent in the frequency direction, and the time domain critical position is a boundary between pre-coded blocks adjacent in the time direction.
  • a critical position between a precoding block in which the precoding matrix is P n and a precoding block in which the precoding matrix is P n+1 is a frequency domain critical position, and the precoding matrix is P n+ .
  • the critical position between the precoding block of 2 and the precoding block whose precoding matrix is P n+3 is the frequency domain critical position.
  • the precoding block whose precoding matrix is P n and the precoding block whose precoding matrix is P n+2 is the time domain critical position
  • the precoding matrix is P n+1 precoding block and precoding matrix
  • the critical position between the precoding blocks of P n+3 is the time domain critical position.
  • j represents an imaginary unit, where the first and fourth terms are pure real numbers, and the second and third terms are pure imaginary numbers, so by taking the real part, you can get
  • the data to be sent in the pre-encoded block may be a pure real number, or may be a pure imaginary number, or may be alternately virtual and real.
  • the invention is not limited thereto. Specifically, the embodiment of the present invention is described by taking a case of a pure real number as an example.
  • the multiplexer response coefficient may also be simply referred to as a multiplexed response coefficient.
  • the multiplexed response coefficient is related to the setting of the filter.
  • the settings of the filters are such that the multiplexed response coefficients of the OFDM/OQAM system spread only to the REs of adjacent subcarriers in the frequency domain.
  • FIG. 2 takes the case of the frequency domain as an example.
  • Fig. 2(a) shows the data of the sender, the signal at one RE is 1, and the signals of the remaining REs are all zero.
  • the RE whose signal is 1 is 1 as the first RE.
  • Figure 2(b) shows the data of the recipient.
  • the signal received on the corresponding first RE is 1.
  • the signal received on the RE near the first RE is not 0, which is ⁇ ml
  • ⁇ ml is a pure imaginary number
  • ⁇ ml is a multiplexer response coefficient, specifically as shown in the figure. 2 is shown. Since the embodiment of the present invention multiplexes the filter response coefficient diffusion assumption, FIG. 2 shows only three subcarriers on the frequency domain axis.
  • REs are shown in the direction of the time axis in FIG. 2, but the number of REs is only schematic, and may be other lengths, specifically, the number is related to the setting of the filter.
  • embodiments of the present invention may also assume that the settings of the filters are such that the multiplexed response coefficients of the OFDM/OQAM system spread only to the REs of adjacent FBMC symbols in the time domain.
  • the situation of the time domain can be similarly obtained by referring to FIG. 2. To avoid repetition, details are not described herein again.
  • the setting of the filter is assumed such that the multiplexed response coefficient of the OFDM/OQAM system spreads only to the RE of the adjacent subcarrier in the frequency domain, and the present invention implements
  • the example provides a method of signal transmission and processing based on this assumption.
  • the precoding blocks located on both sides of the critical position are respectively a first precoding block and a second precoding block
  • the first precoding block has a first precoding matrix P 1
  • the second precoding block has a second precoding matrix P 2 and satisfies
  • M, L 1 and L 2 represent the number of transmitting antennas, the number of layers of the transmission signal of the first precoding block, and the number of layers of the transmission signal of the second precoding block, respectively.
  • the first precoding block may be a precoding block whose precoding matrix is P n+2
  • the critical location may be a time domain critical location.
  • the first precoding block may be a precoding block whose precoding matrix is P n
  • P 2 P n+2 .
  • the first precoding block may be a precoding block whose precoding matrix is P n+1
  • the embodiment of the present invention mainly considers the case where the critical position is a critical position in the frequency domain. Moreover, those skilled in the art can easily determine that the critical position is a critical position in the time domain on the basis of this, and to avoid repetition, no further details are provided herein.
  • the embodiment of the present invention only considers the distance from the critical position of the frequency domain as The form of the symbol on the RE within 3 subcarriers.
  • Representing that the distance from the critical position of the frequency domain in the first precoding block is an OQAM symbol transmitted on the pth RE on the three subcarriers Representing that the distance from the critical position of the frequency domain in the first precoding block is an OQAM symbol transmitted on the pth RE on the two subcarriers, Indicates that the distance from the critical position of the frequency domain in the first precoding block is an OQAM symbol transmitted on the pth RE on one subcarrier.
  • FIG. 3 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present invention.
  • the apparatus 100 shown in FIG. 3 includes an obtaining unit 101, a first generating unit 102, a pre-encoding unit 103, a mapping unit 104, a second generating unit 105, and a transmitting unit 106.
  • the obtaining unit 101 is configured to acquire N/2 first symbols, where N is an even number.
  • the first generating unit 102 is configured to generate N second symbols according to the N/2 first symbols acquired by the acquiring unit 101 by using a spreading code group.
  • the precoding unit 103 is configured to perform precoding processing on the N second symbols generated by the first generating unit 102 to obtain N third symbols respectively.
  • the mapping unit 104 is configured to map the N third symbols obtained by the precoding unit 103 to N borders RE of the precoding block, where the N boundary REs are located at a boundary of the precoding block. On the carrier or on the boundary symbol of the precoding block.
  • a second generating unit 105 configured to generate a filter according to the third symbol after mapping by the mapping unit 104 Wavebox group multi-carrier FBMC signal.
  • the sending unit 106 is configured to send the FBMC signal generated by the second generating unit 105.
  • N/2 first symbols are converted into N second symbols by using a spreading code group, and then FBMC signals are generated by precoding processing, thereby eliminating interference in a critical position in the frequency domain.
  • the boundary RE is a frequency domain boundary. If the N boundary REs are located on the boundary symbol, the boundary RE is a time domain boundary.
  • the boundary symbol may be a boundary filter bank (Filter Bank Multi Carrier, FBMC) symbol.
  • FBMC boundary filter bank
  • the boundary subcarrier is a boundary FBMC subcarrier.
  • the N/2 first symbols may be composed of real numbers, or may be composed of imaginary numbers, or may be composed of complex numbers, or may be alternated with virtual and real numbers.
  • the invention is not limited thereto.
  • the precoding unit 103 may perform precoding processing on the N second symbols by using a precoding matrix to obtain N third symbols respectively.
  • the precoding unit 103 is specifically configured to multiply the precoding matrix and each of the N second symbols to obtain the N third symbols.
  • the device 100 in FIG. 3 can be used to process the symbols of the first pre-coded block and send the FBMC signal. Accordingly, the pre-coding matrix is the first pre-coding matrix P 1 .
  • the device 100 may also be configured to process the symbols of the second pre-coded block and transmit the FBMC signal. Accordingly, the pre-coding matrix is the second pre-coding matrix P 2 .
  • the FBMC symbols are jointly generated from the symbols of all precoded blocks.
  • the obtaining unit 101 is further configured to acquire N fourth symbols.
  • the precoding unit 103 is further configured to perform precoding processing on the N fourth symbols acquired by the obtaining unit 101 to obtain N fifth symbols respectively.
  • the mapping unit 104 is further configured to map the N fifth symbols obtained by the precoding unit 103 to N REs adjacent to the N boundary REs in the precoding block.
  • the second generating unit 105 is specifically configured to use the third symbol and the mapping after mapping according to the mapping unit 104.
  • the fifth symbol after mapping by the mapping unit 104 generates the FBMC signal.
  • the precoding unit 103 is configured to multiply the precoding matrix and each of the N fourth symbols to obtain the N fifth symbols respectively.
  • the spreading code satisfies a variety of orthogonality conditions, so the spreading code can be used to eliminate self-interference in the precoding block and mutual interference between precoding blocks, and achieve interference-free transmission of data.
  • the extension code group includes N/2 extension codes, and each of the N/2 extension codes has a length N.
  • the first generating unit 102 is configured to: perform an expansion operation on each of the N/2 first symbols by using each of the spreading codes to obtain N/2 first extensions of length N, respectively. a symbol string; each of the N/2 pieces of the first extended symbol string of length N is summed to obtain the N second symbols.
  • each spreading code includes N spreading code elements.
  • the N/2 first symbols are composed of complex numbers, and the N/2 first symbols are determined according to N real symbols.
  • the N real symbols may be N first OQAM symbols.
  • the N/2 first symbols can be expressed as:
  • the first symbol is a complex scalar. If the N real symbols are real vectors, the first symbol is a complex vector.
  • the first symbol is composed of a complex number including a real part and an imaginary part.
  • the N/2 first symbols include N/2 real parts and N/2 virtual parts.
  • N symbols consisting of a set of N/2 real parts and N/2 imaginary parts are N real symbols.
  • the N real symbols can be N symbols to be transmitted. Or, N real numbers
  • the symbol may be generated by adding N-M zero symbols to the M symbols to be transmitted. Where M ⁇ N.
  • N real symbols can be divided into N/2 groups, wherein each of the N/2 groups includes two real symbols, and then N/2 are generated one by one according to the N/2 groups.
  • the first symbol Specifically, two real symbols in each of the N/2 groups may be generated as the real symbol and the imaginary part, respectively, to generate the first symbol.
  • N real symbols are converted into N/2 first symbols, since the N real symbols are real numbers and the first symbols are complex numbers, there is no loss of spectral efficiency.
  • the precoding matrix is represented as P 1 ;
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block. That is, L 1 represents the number of layers of the transmission signal of the first pre-encoded block.
  • the N/2 first symbols can be expressed as:
  • the precoding matrix is represented as P 2 ;
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 2 represents the number of layers of the transmission signal of the precoding block. That is, L 2 represents the number of layers of the transmission signal of the second pre-encoded block.
  • the obtaining unit 101 can also be used to acquire N other real symbols.
  • the N other real symbols may be N second OQAM symbols.
  • the precoding unit 103 multiplies the precoding matrix and each of the other real symbols of the N other real symbols.
  • the mapping unit 104 further maps the N other real symbols after the precoding process to N REs having a distance of 3 units from the critical position. It can be understood that when the boundary RE is located on the boundary subcarrier, the critical position is the frequency domain critical position, and the 3 units are 3 subcarriers. When the boundary RE is located on the boundary symbol, the critical position is the time domain critical position, and the 3 units are 3 symbols.
  • the N second OQAM symbols can be expressed as:
  • the N second OQAM symbols can be expressed as:
  • the FBMC signal generated by the device 100 can be as shown in FIG.
  • the FBMC signal may be generated after the symbols mapped by the mapping unit 104 are comprehensively filtered, and then transmitted by the transmitting unit 106.
  • the code group by spreading the code group, it can be used to eliminate interference between precoding blocks. Specifically, mutual interference between symbols on the N borders RE in the second precoding block and symbols on the N borders RE in the first precoding block can be eliminated.
  • the obtaining unit 101 is further configured to acquire N fourth symbols.
  • the first generating unit 102 is configured to generate, by using the extended code group, the N second symbols according to the N/2 first symbols and the N/2 first interference pre-offsets.
  • the first generating unit 102 is further configured to generate the N sixth symbols according to the N fourth symbols and the N second interference pre-offsets.
  • the precoding unit 103 is further configured to perform precoding processing on the N sixth symbols to obtain N seventh symbols.
  • the mapping unit 104 is further configured to map the N seventh symbols obtained by the precoding unit 103 to the N REs adjacent to the N boundary REs in the precoding block.
  • the second generating unit 105 is specifically configured to generate the FBMC signal according to the third symbol after mapping by the mapping unit 104 and the seventh symbol after the mapping unit mapping.
  • the N/2 first interference pre-offsets and the N second interference pre-offsets are determined according to the N/2 first symbols and the N fourth symbols.
  • the precoding unit 103 is configured to multiply the precoding matrix and each of the N sixth symbols to obtain the N seventh symbols.
  • the extension code group includes N/2 extension codes, and each of the N/2 extension codes has a length N.
  • the first generating unit 102 is specifically configured to: use the N/2 first symbols Adding, to each first symbol, a corresponding first interference pre-cancellation amount of the N/2 first interference pre-cancellation amounts, generating N/2 eighth symbols; sequentially using the each spreading code for the N Each of the /2 eighth symbols performs an expanding operation to obtain N/2 second extended symbol strings of length N; and for the N/2 second extended symbol strings of length N Each component is separately summed to obtain the N second symbols.
  • each spreading code includes N spreading code elements.
  • the N/2 first symbols are composed of complex numbers, and the N/2 first symbols are determined according to N real symbols.
  • the N real symbols may be N first OQAM symbols.
  • the N/2 first symbols can be expressed as:
  • the first symbol is a complex scalar. If the N real symbols are real vectors, the first symbol is a complex vector.
  • the first symbol is composed of a complex number including a real part and an imaginary part.
  • the N/2 first symbols include N/2 real parts and N/2 virtual parts.
  • N symbols consisting of a set of N/2 real parts and N/2 imaginary parts are N real symbols.
  • the N real symbols can be N symbols to be transmitted.
  • the N real symbols may be generated by adding N-M zero symbols to the M symbols to be transmitted. Where M ⁇ N.
  • N real symbols can be divided into N/2 groups, wherein each of the N/2 groups includes two real symbols, and then N/2 are generated one by one according to the N/2 groups.
  • the first symbol Specifically, two real symbols in each of the N/2 groups may be generated as the real symbol and the imaginary part, respectively, to generate the first symbol.
  • N real symbols are converted into N/2 first symbols, since the N real symbols are real numbers and the first symbols are complex numbers, there is no loss of spectral efficiency.
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the precoding matrix is represented as P 1 ,
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block. That is, L 1 represents the number of layers of the transmission signal of the first pre-encoded block.
  • the N/2 first interference pre-cancellation amounts And the N second interference pre-cancellation amounts ⁇ S 1 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 1 and A 2 are multiplexes related to the setting of the filter.
  • C 1 represents a spreading code matrix
  • Re ⁇ X ⁇ is composed of real numbers
  • Im ⁇ X ⁇ is composed of real numbers.
  • X is a complex scalar
  • both Re ⁇ X ⁇ and Im ⁇ X ⁇ are real scalars.
  • X is a complex vector
  • both Re ⁇ X ⁇ and Im ⁇ X ⁇ are real vectors.
  • the N/2 first symbols are represented as:
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the precoding matrix is represented as P 2 ,
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 2 represents the number of layers of the transmission signal of the precoding block. That is, L 2 represents the number of layers of the transmission signal of the second pre-encoded block.
  • the N/2 first interference pre-cancellation amounts And the N second interference pre-cancellation amounts ⁇ S 2 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 3 and A 4 are the multiplexes related to the setting of the filter.
  • C 2 represents a spreading code matrix
  • the difference between the spreading code matrix C 1 and the spreading code matrix C 2 differs only in the dimensions of the blocking matrix. This dimension is related to the number of layers of the transmitted signal of the precoded block.
  • the obtaining unit 101 can also be used to acquire N other real symbols.
  • the N other real symbols may be N second OQAM symbols.
  • the precoding unit 103 multiplies the second OQAM symbol of the precoding matrix and the N second OQAM symbols.
  • the mapping unit 104 further maps the N pre-coded N second OQAM symbols onto N REs having a distance of 3 units from the critical position. It can be understood that when the boundary RE is located on the boundary subcarrier, the critical position is the frequency domain critical position, and the 3 units are 3 subcarriers. When the boundary RE is located on the boundary symbol, the critical position is the time domain critical position, and the 3 units are 3 symbols.
  • the N second OQAM symbols can be expressed as:
  • the N second OQAM symbols can be expressed as:
  • the FBMC signal generated by the device 100 can be as shown in FIG.
  • the FBMC signal may be generated after the symbol encoded by the encoding unit 104 is comprehensively filtered, and then transmitted by the transmitting unit 106.
  • the code group by spreading the code group, it can be used to eliminate interference between precoding blocks. Specifically, mutual interference between symbols on the N borders RE in the second precoding block and symbols on the N borders RE in the first precoding block can be eliminated.
  • the first interference pre-cancellation amount and the second interference pre-cancellation amount are also used to eliminate the symbol on the N REs adjacent to the N boundary REs and the symbols on the N boundary REs. Interfere with each other.
  • the device 100 shown in Figure 3 can be a transmitter.
  • FIG. 6 is a schematic structural diagram of an apparatus for processing signals according to an embodiment of the present invention.
  • the apparatus 200 shown in FIG. 6 includes a receiving unit 201, an equalizing unit 202, a processing unit 203, and a determining unit 204.
  • the receiving unit 201 is configured to receive N first signals on the N boundary resource elements RE of the precoding block, and receive N N of the N REs adjacent to the N border REs in the precoding block a second signal, wherein the N boundary REs are located on a boundary subcarrier of the precoding block or a boundary symbol of the precoding block, and N is an even number.
  • the equalizing unit 202 is configured to perform equalization processing on the N first signals received by the receiving unit 201 to obtain N third signals, and perform the second signal of the N received by the receiving unit 201.
  • the equalization process yields N fourth signals.
  • the processing unit 203 is configured to perform a despreading operation on the N third signals obtained by the equalization unit 202 by using the spreading code group to obtain N/2 fifth signals, and perform the N fourth signals obtained by the equalization unit 202. Take the effective part to get N sixth signals.
  • the determining unit 204 is configured to determine the decoded signal according to the N/2 fifth signals and the N sixth signals obtained by the processing unit 203.
  • the despreading operation is performed by using the spreading code group on the receiving side, and interference between the precoding blocks can be eliminated, thereby determining the decoded signal.
  • the boundary RE is a frequency domain boundary. If the N boundary REs are located on the boundary symbol, the boundary RE is a time domain boundary.
  • the boundary symbol may be a boundary filter bank (Filter Bank Multi Carrier, FBMC) symbol.
  • the boundary subcarriers can be boundary FBMC subcarriers.
  • the device 200 in FIG. 6 can be used to perform decoding processing on the signal of the first pre-encoded block.
  • the device 200 can also be used to decode the signals of the second pre-coded block.
  • the N first signals received by the receiving unit 201 may be represented as:
  • the N second signals can be expressed as:
  • T is transposed, Indicates a complex field, and L 1 represents the number of layers of the transmitted signal of the first pre-coded block.
  • the N first signals received by the receiving unit 201 can be expressed as:
  • the N second signals can be expressed as:
  • T is transposed, Indicates a complex field, and L 2 represents the number of layers of the transmitted signal of the second pre-coded block.
  • the equalization unit 202 may perform a minimum mean square error equalization operation on the N first signals to obtain N third signals, and perform minimum mean square error equalization on the second signal of the N received by the receiving unit 201. The operation obtains N fourth signals.
  • the equalizing unit 202 may perform a zero-forcing equalization operation on the N first signals to obtain N third signals, and perform a zero-forcing equalization operation on the second signal of the N received by the receiving unit 201 to obtain N The fourth signal.
  • the equalization unit 202 may be specifically configured to: multiply the first equalization matrix by each of the N first signals to obtain the N third signals; and the second equalization matrix and the N Each of the second signals is multiplied to obtain the N fourth signals.
  • the first equalization matrix may be a first zero-forcing equalization matrix
  • the second equalization matrix may be a second zero-forcing equalization matrix
  • the first equalization matrix may be expressed as:
  • the second equalization matrix can be expressed as: W 1 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • T is transposed, Indicates a complex field, and L 1 represents the number of layers of the transmitted signal of the first pre-coded block.
  • the first equalization matrix can be expressed as:
  • the second equalization matrix can be expressed as: W 2 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • T is transposed, Indicates a complex field, and L 2 represents the number of layers of the transmitted signal of the second pre-coded block.
  • the spreading code group includes N/2 spreading codes, and each of the N/2 spreading codes has a length of N.
  • the length of each spreading code is N, and it can be understood that each spreading code includes N spreading code elements.
  • the processing unit 203 is specifically configured to: multiply and sum the N third signals sequentially with the conjugates of the corresponding spreading code elements of each of the spreading codes to obtain the N/2 fifth signals.
  • the processing unit 203 is further configured to perform an effective part on the N fourth signals to obtain N sixth signals.
  • the processing unit 203 may perform a real part operation on the N fourth signals to obtain N sixth signals.
  • the processing unit 203 may perform an imaginary operation on the N fourth signals to obtain N sixth signals.
  • the processing unit 203 may perform a virtual and real alternate signal on the N fourth signals according to the position of the RE to obtain the N sixth signals.
  • the embodiment of the present invention is described by taking a real part operation as an example.
  • the ith fifth signal can be obtained by multiplying the N third signals with the conjugates of the N spreading code elements in the ith spreading code and then summing them.
  • i 1, 2,..., N/2
  • the N/2 fifth signals are represented as:
  • the N sixth signals are represented as:
  • the N/2 fifth signals are represented as:
  • the N sixth signals are represented as:
  • the determining unit 204 is configured to: determine, according to the N/2 fifth signals and the N sixth signals, a signal recovery matrix to determine the decoded signal.
  • the decoded signal is represented as: S 1 and Wherein S 1 is composed of real numbers, Composed of plurals, and
  • the determining unit 204 is specifically configured to:
  • the precoding block is a first precoding block.
  • the decoded signal is represented as: S 2 and Where S 2 is composed of real numbers, Composed of plurals, and
  • the determining unit 204 is specifically configured to:
  • S 2 is N decoded signals on N REs adjacent to N boundary REs in the precoding block, and determining with N decoded signals on N boundary REs of the precoding block; wherein the precoding block is a second precoding block.
  • the signal recovery matrix is related to the multiplexed response coefficient matrix and the spreading code matrix.
  • the signal recovery matrix can be expressed as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 1 and A 2 are multiplexed response coefficient matrices related to the setting of the filter
  • L 1 denotes transmission of the first pre-encoded block
  • the number of layers of the signal, C 1 represents the spreading code matrix
  • the signal recovery matrix can be expressed as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 3 and A 4 are multiplexed response coefficient matrices related to the setting of the filter
  • L 2 denotes transmission of the second pre-coded block
  • the number of layers of the signal, C 2 represents the spreading code matrix
  • the signal recovery matrix Q I. And is independent of the precoding block.
  • device 200 can be a receiver.
  • mutual interference between precoding blocks can be eliminated by spreading the symbols using the spreading code group on the transmitting side and despreading the symbols using the spreading code on the receiving side.
  • the signal recovery matrix can then be used to determine the decoded signal.
  • the precoding block can be eliminated by applying an interference pre-cancellation amount on the transmitting side, and spreading the symbol by using the spreading code group, and despreading the symbol by using the spreading code on the receiving side. Mutual interference between each other.
  • the decoded signal can be determined.
  • the distance obtained by the receiving end from the critical position in the frequency domain is the p-th RE on the two subcarriers (hereinafter referred to as the first one).
  • the received signal form on the target RE) is:
  • the distance from the critical position of the frequency domain is the channel coefficient matrix on the pth RE on the 2 subcarriers
  • R 1 is the number of receiving antennas of the target receiver of the first precoding block. Determining, in the first precoding block, a distance from a critical position of the frequency domain as a multiplexer response coefficient of the mth RE on the 1st subcarrier to the first target RE, Determining, in the first precoding block, a distance from a critical position of the frequency domain as a multiplexer response coefficient of the mth RE on the 2 subcarriers to the first target RE, Indicates that the distance from the critical position of the frequency domain in the first precoding block is the multiplexer response coefficient of the mth RE on the 3 subcarriers to the first target RE.
  • a set of indicators indicating that the distance from the critical position of the frequency domain in the first precoding block is an RE of the one subcarrier that interferes with the first target RE a set of indicators indicating that the distance from the critical position of the frequency domain in the first precoding block is an RE of the two subcarriers that interferes with the first target RE, Indicates that the distance from the critical position of the frequency domain in the first precoding block is a set of indicators of all REs that interfere with the first target RE on the three subcarriers.
  • the received signal form received by the receiving end on the p-th RE (hereinafter referred to as the second target RE) on the sub-carrier at a distance from the critical position of the frequency domain is:
  • the distance from the critical position of the frequency domain in the second precoding block is the multiplexer response coefficient of the mth RE on the 1 subcarrier to the second target RE.
  • indicating a distance from the critical position of the frequency domain in the second precoding block is a set of indicators of all REs that interfere with the second target RE on one subcarrier. Determining, in the first precoding block, a distance from a critical position of the frequency domain as a multiplexer response coefficient of the mth RE on the 1 subcarrier to the second target RE, The distance from the critical position of the frequency domain in the first precoding block is indicated as the multiplexer response coefficient of the mth RE on the 2 subcarriers to the second target RE.
  • the set of indicators indicating that the distance from the critical position of the frequency domain in the first precoding block is one of all REs that interfere with the second target RE on one subcarrier, The set of indicators indicating the distance from the critical position of the frequency domain in the first precoding block to all the REs that interfere with the second target RE on the two subcarriers.
  • a 1 and A 2 are multiplexed response coefficient matrices related to the setting of the filter.
  • the last item on the right side of the equal sign is the interference of the second pre-coded block on the first pre-coded block. In order to eliminate the influence of this, it is necessary to combine all the Perform despreading operations:
  • the decoded signal can be determined by the following formula:
  • the signal recovery matrix at the receiving end can be determined in this way.
  • the transmitting side introduces the first interference pre-offset amount and the second interference pre-offset amount. Similar to the above derivation, you can get the following formula:
  • FIG. 7 is a flow chart of a method of transmitting a signal in accordance with an embodiment of the present invention.
  • the method shown in Figure 7 includes:
  • the N third symbols are respectively mapped to N boundary resource elements RE of the precoding block, where the N boundary REs are located on a boundary subcarrier of the precoding block or the precoding block On the border symbol.
  • N/2 first symbols are converted into N second symbols by using a spreading code group, and then FBMC signals are generated by precoding processing, thereby eliminating interference in a critical position in the frequency domain.
  • the boundary RE is a frequency domain boundary. If the N boundary REs are located on the boundary symbol, the boundary RE is a time domain boundary.
  • the boundary symbol may be a boundary filter group multi-carrier (Filter Bank Multi Carrier, FBMC) symbol.
  • FBMC boundary filter group multi-carrier
  • the boundary subcarrier is a boundary FBMC subcarrier.
  • the N/2 first symbols may be composed of real numbers, or may be composed of imaginary numbers, or may be composed of complex numbers, or may be alternated with virtual and real numbers.
  • the invention is not limited thereto.
  • a precoding matrix may be adopted in 130, and N second symbols are precoded to obtain N third symbols.
  • the N second symbols are first mapped to N REs adjacent to the N border REs. Then, using the precoding matrix, the second symbol after the mapping is pre-coded to obtain N third symbols.
  • the invention is not limited thereto.
  • the precoding process refers to multiplying the precoding matrix and each of the N second symbols to obtain the N third symbols.
  • the method in FIG. 7 can be used to process the symbols of the first pre-coded block and send the FBMC signal.
  • the pre-coding matrix is the first pre-coding matrix P 1 . It can also be used to process the symbols of the second pre-coded block and send the FBMC signal.
  • the pre-coding matrix is the second pre-coding matrix P 2 .
  • the method shown in FIG. 7 may further include:
  • 150 includes: generating the FBMC signal according to the third symbol after the mapping and the fifth symbol after the mapping.
  • the extension code group includes N/2 extension codes, and each of the N/2 extension codes has a length N. Generating N second symbols according to the N/2 first symbols by using the extended code group, including:
  • Performing precoding processing on the N second symbols by using a precoding matrix to obtain N third symbols respectively including: secondizing each of the precoding matrix and the N second symbols The symbols are multiplied to obtain the N third symbols, respectively.
  • Performing precoding processing on the N fourth symbols by using the precoding matrix to obtain N fifth symbols respectively including: using each of the precoding matrix and the N fourth symbols The fourth symbols are multiplied to obtain the N fifth symbols, respectively.
  • the N/2 first symbols are composed of complex numbers, and the N/2 first symbols are determined according to N real symbols.
  • the precoding matrix is represented as P 1 ;
  • the N/2 first symbols are represented as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block. That is, L 1 represents the number of layers of the transmission signal of the first pre-encoded block.
  • the N/2 first symbols can be expressed as:
  • the precoding matrix is represented as P 2 ,
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 2 represents the number of layers of the transmission signal of the precoding block. That is, L 2 represents the number of layers of the transmission signal of the second pre-encoded block.
  • the method shown in FIG. 7 may further include:
  • 150 includes: generating the FBMC signal according to the third symbol after the mapping and the seventh symbol after the mapping;
  • the N/2 first interference pre-offsets and the N second interference pre-offsets are determined according to the N/2 first symbols and the N fourth symbols.
  • the extension code group includes N/2 extension codes, and each of the N/2 extension codes has a length N.
  • Generating the N sixth symbols according to the N fourth symbols and the N second interference pre-offsets including:
  • Performing precoding processing on the N second symbols to obtain N third symbols including: multiplying a precoding matrix and each of the N second symbols to obtain the N third symbols.
  • Performing precoding processing on the N sixth symbols to obtain N seventh symbols including: multiplying the precoding matrix and each of the N sixth symbols to obtain respectively The N seventh symbols.
  • the N/2 first symbols are composed of complex numbers, and the N/2 first symbols are determined according to N real symbols.
  • the N real symbols may be N first OQAM symbols.
  • the precoding matrix is represented as P 1 ,
  • the N/2 first symbols are represented as:
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block. That is, L 1 represents the number of layers of the transmission signal of the first pre-encoded block.
  • the N/2 first interference pre-offsets And the N second interference pre-cancellation amounts ⁇ S 1 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 1 and A 2 are multiplexes related to the setting of the filter.
  • C 1 represents a spreading code matrix
  • Re ⁇ X ⁇ is composed of real numbers
  • Im ⁇ X ⁇ is composed of real numbers.
  • X is a complex scalar
  • both Re ⁇ X ⁇ and Im ⁇ X ⁇ are real scalars.
  • X is a complex vector
  • both Re ⁇ X ⁇ and Im ⁇ X ⁇ are real vectors.
  • the N/2 first symbols are represented as:
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the precoding matrix is represented as P 2 ,
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 2 represents the number of layers of the transmission signal of the precoding block. That is, L 2 represents the number of layers of the transmission signal of the second pre-encoded block.
  • the N/2 first interference pre-cancellation amounts And the N second interference pre-cancellation amounts ⁇ S 2 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 3 and A 4 are the multiplexes related to the setting of the filter.
  • C 2 represents a spreading code matrix
  • the difference between the spreading code matrix C 1 and the spreading code matrix C 2 differs only in the dimensions of the blocking matrix. This dimension is related to the number of layers of the transmitted signal of the precoded block.
  • Figure 8 is a flow diagram of a method of processing a signal in accordance with one embodiment of the present invention.
  • the method method shown in Figure 8 includes:
  • N Receive N first signals on N boundary resource elements RE of the precoding block, and receive N second signals on the N REs adjacent to the N boundary REs in the precoding block,
  • the N boundary REs are located on a boundary subcarrier of the precoding block or a boundary symbol of the precoding block, and N is an even number.
  • 220 Perform equalization processing on the N first signals to obtain N third signals, and perform equalization processing on the second signals of the N to obtain N fourth signals.
  • the despreading operation is performed by using the spreading code group on the receiving side, and interference between the precoding blocks can be eliminated, thereby determining the decoded signal.
  • the boundary RE is a frequency domain boundary. If the N boundary REs are located on the boundary symbol, the boundary RE is a time domain boundary.
  • the boundary symbol may be a boundary filter bank (Filter Bank Multi Carrier, FBMC) symbol.
  • the boundary subcarriers can be boundary FBMC subcarriers.
  • the method of Figure 8 can be used to decode the signal of the first pre-coded block. It can also be used to decode the signal of the second pre-encoded block.
  • the taking the effective part includes: taking the real part, or taking the imaginary part, or taking the virtual and real alternately according to the position of the RE.
  • the embodiment of the present invention is described by taking a real part as an example.
  • the received N first signals may be represented as:
  • the N second signals can be expressed as:
  • T is transposed, Indicates a complex field, and L 1 represents the number of layers of the transmitted signal of the first pre-coded block.
  • the received N first signals can be expressed as:
  • the N second signals can be expressed as:
  • T is transposed, Indicates a complex field, and L 2 represents the number of layers of the transmitted signal of the second pre-coded block.
  • the N first signals are equalized to obtain N third signals
  • the second signals of the N are equalized to obtain N fourth signals, including:
  • the first equalization matrix may be a first zero-forcing equalization matrix
  • the second equalization matrix may be a first Two forced zero equilibrium matrix
  • the first equalization matrix may be expressed as:
  • the second equalization matrix can be expressed as: W 1 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • T is transposed, Indicates a complex field, and L 1 represents the number of layers of the transmitted signal of the first pre-coded block.
  • the first equalization matrix can be expressed as:
  • the second equalization matrix can be expressed as: W 2 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • T is transposed, Indicates a complex field, and L 2 represents the number of layers of the transmitted signal of the second pre-coded block.
  • the extension code group includes N/2 extension codes, and each of the N/2 extension codes has a length N.
  • the ith fifth signal can be obtained by multiplying the N third signals by the N spreading code elements in the ith spreading code and then summing them.
  • i 1, 2,..., N/2
  • the N/2 fifth signals are represented as:
  • the N sixth signals are represented as:
  • c ni represents the nth spreading code element of the ith spreading code.
  • the N/2 fifth signals are represented as:
  • the N sixth signals are represented as:
  • the determining, according to the N/2 fifth signals and the N sixth signals, the decoded signal according to: the N/2 fifth signals and the N sixth
  • the signal using a signal recovery matrix, determines the decoded signal.
  • the decoded signal is represented as: S 1 and Wherein S 1 is composed of real numbers, Composed of plurals, and
  • the precoding block is a first precoding block.
  • the decoded signal is represented as: S 2 and Where S 2 is composed of real numbers, Composed of plurals, and
  • S 2 is N decoded signals on N REs adjacent to N boundary REs in the precoding block, and determining with N decoded signals on N boundary REs of the precoding block;
  • the signal recovery matrix is related to the multiplexed response coefficient matrix and the spreading code matrix.
  • the signal recovery matrix can be expressed as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 1 and A 2 are multiplexed response coefficient matrices related to the setting of the filter
  • L 1 denotes transmission of the first pre-encoded block
  • the number of layers of the signal, C 1 represents the spreading code matrix
  • the signal recovery matrix can be expressed as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 3 and A 4 are multiplexed response coefficient matrices related to the setting of the filter
  • L 2 denotes transmission of the second pre-coded block
  • the number of layers of the signal, C 2 represents the spreading code matrix
  • the signal recovery matrix Q I. And is independent of the precoding block.
  • the interference between the precoding blocks can be eliminated by the spreading code group on the transmitting end side; the decoded signal can be determined by the signal recovery matrix after despreading on the receiving end side.
  • interference between precoding blocks can be eliminated by using a spreading code group on the transmitting end side, and pre-introduction due to the extended code group is eliminated by the first interference pre-cancellation amount and the second interference pre-offset amount. Interference within the coding block; the decoded signal can be determined after despreading on the receiving side.
  • FIG. 9 is a schematic structural diagram of an apparatus for transmitting a signal according to another embodiment of the present invention.
  • the device 400 shown in FIG. 9 includes a processor 401, a receiver 402, a transmitter 403, and a memory 404.
  • the receiver 402 is configured to acquire N/2 first symbols, where N is an even number.
  • the processor 401 is configured to generate N second symbols according to the N/2 first symbols acquired by the receiver 402 by using a spreading code group.
  • the processor 401 is further configured to perform precoding processing on the N second symbols to obtain N third symbols respectively.
  • the processor 401 is further configured to map the N third symbols to N boundary REs of the precoding block, where the N boundary REs are located on a boundary subcarrier of the precoding block or Pre-coded on the boundary symbol of the block.
  • the processor 401 is further configured to generate a filter bank multi-carrier FBMC signal according to the third symbol after the mapping.
  • the transmitter 403 is configured to send the FBMC signal generated by the processor 401.
  • N/2 first symbols are converted into N second symbols by using a spreading code group, and then FBMC signals are generated by precoding processing, thereby eliminating interference in a critical position in the frequency domain.
  • bus system 405 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 405 various buses are labeled as bus system 405 in FIG.
  • Processor 401 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 401 or an instruction in a form of software.
  • the above processor 401 can be a general purpose processor, a digital letter Digital Signal Processor (DSP), Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, Discrete hardware components.
  • DSP digital letter Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 404, and the processor 401 reads the information in the memory 404 and completes the steps of the above method in combination with its hardware.
  • the memory 404 in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 404 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, micro A controller, a microprocessor, other electronic units for performing the functions described herein, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • controller micro A controller
  • microprocessor other electronic units for performing the functions described herein, or a combination thereof.
  • a code segment can represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software group, a class, or any combination of instructions, data structures, or program statements.
  • a code segment can be combined into another code segment or hardware circuit by transmitting and/or receiving information, data, arguments, parameters or memory contents. Information, arguments, parameters, data, etc. can be communicated, forwarded, or transmitted using any suitable means including memory sharing, messaging, token passing, network transmission, and the like.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in a memory unit and executed by the processor.
  • the memory unit can be implemented in the processor or external to the processor, in the latter case the memory unit can be communicatively coupled to the processor via various means known in the art.
  • the boundary RE is a frequency domain boundary. If the N boundary REs are located on the boundary symbol, the boundary RE is a time domain boundary.
  • the boundary symbol may be a boundary filter bank (Filter Bank Multi Carrier, FBMC) symbol.
  • FBMC boundary filter bank
  • the boundary subcarrier is a boundary FBMC subcarrier.
  • the N/2 first symbols may be composed of real numbers, or may be composed of imaginary numbers, or may be composed of complex numbers, or may be alternated with virtual and real numbers.
  • the invention is not limited thereto.
  • the receiver 402 is further configured to acquire N fourth symbols
  • the processor 401 is further configured to perform precoding processing on the N fourth symbols to obtain N fifth symbols respectively, and is further configured to map the N fifth symbols to the precoding block and the corresponding
  • the N REs adjacent to the N boundary REs are further used to generate the FBMC signal according to the third symbol after the mapping and the fifth symbol after the mapping.
  • the spreading code group includes N/2 spreading codes, and each of the N/2 spreading codes has a length of N.
  • the processor 401 is specifically configured to: perform an expansion operation on each of the N/2 first symbols by using each of the spreading codes to obtain N/2 first extended symbol strings of length N; And summing each of the N/2 pieces of the first extended symbol string of length N to obtain the N second symbols.
  • the processor 401 is specifically configured to: use the precoding matrix and the N second symbols Multiplying each of the second symbols to obtain the N third symbols; and multiplying the precoding matrix and each of the N fourth symbols to obtain the N The fifth symbol.
  • the N/2 first symbols are composed of complex numbers, and the N/2 first symbols are determined according to N real symbols.
  • the N real symbols may be N first OQAM symbols.
  • the N/2 first symbols can be expressed as:
  • the precoding matrix is represented as P 1 ,
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block. That is, L 1 represents the number of layers of the transmission signal of the first pre-encoded block.
  • the N/2 first symbols can be expressed as:
  • the precoding matrix is represented as P 2 ,
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 2 represents the number of layers of the transmission signal of the precoding block. That is, L 2 represents the number of layers of the transmission signal of the second pre-encoded block.
  • the receiver 402 is further configured to acquire N fourth symbols
  • the processor 401 is further configured to generate, by using the extended code group, the N second symbols according to the N/2 first symbols and the N/2 first interference pre-offsets; Generating the N sixth symbols by using the N fourth symbols and the N second interference pre-cancellation amounts; and performing precoding processing on the N sixth symbols to obtain N seventh symbols; Mapping the N seventh symbols to the N REs adjacent to the N boundary REs in the precoding block; further serving to use the third symbol after the mapping and the seventh after the mapping The symbol generates the FBMC signal; wherein, the N/2 first interference pre-cancellation amount and the N second interference pre-offset amount are according to Determining N/2 first symbols and the N fourth symbols.
  • the spreading code group includes N/2 spreading codes, and each of the N/2 spreading codes has a length of N.
  • the processor 401 is specifically configured to: add a first interference pre-cancellation amount corresponding to the N/2 first interference pre-cancellation amounts to each first symbol of the N/2 first symbols, to generate N /2 eighth symbols; performing an expansion operation on each of the N/2 eighth symbols by using each of the spreading codes to obtain N/2 second extended symbol strings of length N; And summing each of the N/2 pieces of the second extended symbol string of length N to obtain the N second symbols; adding each of the N fourth symbols to the fourth symbol Generating the N sixth symbols according to the corresponding second interference pre-offset amount in the N second interference pre-cancellation amounts.
  • the processor 401 is specifically configured to: multiply each of the second symbols of the precoding matrix and the N second symbols to obtain the N third symbols respectively; The coding matrix and each of the N sixth symbols are multiplied to obtain the N seventh symbols, respectively.
  • the N/2 first symbols are composed of complex numbers, and the N/2 first symbols are determined according to N real symbols.
  • the N real symbols may be N first OQAM symbols.
  • the N/2 first symbols can be expressed as:
  • the first symbol is a complex scalar. If the N real symbols are real vectors, the first symbol is a complex vector.
  • the first symbol is composed of a complex number including a real part and an imaginary part.
  • the N/2 first symbols include N/2 real parts and N/2 virtual parts.
  • N symbols consisting of a set of N/2 real parts and N/2 imaginary parts are N real symbols.
  • N real symbols can be divided into N/2 groups, wherein each of the N/2 groups includes two real symbols, and then N/2 are generated one by one according to the N/2 groups.
  • the first symbol Specifically, two real symbols in each of the N/2 groups can be generated as real and imaginary parts, respectively. The first symbol.
  • N real symbols are converted into N/2 first symbols, since the N real symbols are real numbers and the first symbols are complex numbers, there is no loss of spectral efficiency.
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the precoding matrix is represented as P 1 ,
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 1 represents the number of layers of the transmission signal of the precoding block. That is, L 1 represents the number of layers of the transmission signal of the first pre-encoded block.
  • the N/2 first interference pre-cancellation amounts And the N second interference pre-cancellation amounts ⁇ S 1 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 1 and A 2 are multiplexes related to the setting of the filter.
  • C 1 represents a spreading code matrix
  • Re ⁇ X ⁇ is composed of real numbers
  • Im ⁇ X ⁇ is composed of real numbers.
  • X is a complex scalar
  • both Re ⁇ X ⁇ and Im ⁇ X ⁇ are real scalars.
  • X is a complex vector
  • both Re ⁇ X ⁇ and Im ⁇ X ⁇ are real vectors.
  • the N/2 first symbols are represented as:
  • the N/2 first interference pre-offset amounts are expressed as:
  • the N/2 eighth symbols are represented as:
  • the precoding matrix is represented as P 2 ,
  • the N second interference pre-offset amounts are expressed as:
  • T Represents the real number field
  • c ni represents the nth spreading code element of the i th spreading code
  • L 2 represents the number of layers of the transmission signal of the precoding block. That is, L 2 represents the number of layers of the transmission signal of the second pre-encoded block.
  • the N/2 first interference pre-cancellation amounts And the N second interference pre-cancellation amounts ⁇ S 2 are determined according to the following formula:
  • Re ⁇ means taking the real part
  • Im ⁇ means taking the imaginary part
  • I means the unit square matrix
  • O means the all-zero matrix
  • a 3 and A 4 are the multiplexes related to the setting of the filter.
  • C 2 represents a spreading code matrix
  • the difference between the spreading code matrix C 1 and the spreading code matrix C 2 differs only in the dimensions of the blocking matrix. This dimension is related to the number of layers of the transmitted signal of the precoded block.
  • device 400 can be a transmitter.
  • the device 400 shown in FIG. 9 can implement the method for transmitting signals shown in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • FIG. 10 is a schematic structural diagram of an apparatus for processing a signal according to another embodiment of the present invention.
  • the illustrated device 500 includes a processor 501, a receiver 502, a transmitter 503, and a memory 504.
  • the receiver 502 is configured to receive N first signals on the N boundary resource elements RE of the precoding block, and receive N of the N REs adjacent to the N border REs in the precoding block. a second signal, where the N boundary REs are located on a boundary subcarrier of the precoding block or a boundary symbol of the precoding block, and N is an even number;
  • the processor 501 is configured to perform equalization processing on the N first signals received by the receiver 502 to obtain N third signals, and perform equalization processing on the second signals of the N to obtain N fourth signals.
  • the processor 501 is further configured to perform a despreading operation on the N third signals by using a spreading code group to obtain N/2 fifth signals, and perform an effective part on the N fourth signals to obtain N sixth signals. ;
  • the processor 501 is further configured to determine the decoded signal according to the N/2 fifth signals and the N sixth signals.
  • the despreading operation is performed by using the spreading code group on the receiving side, and interference between the precoding blocks can be eliminated, thereby determining the decoded signal.
  • bus system 505 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 505 various buses are labeled as bus system 505 in FIG.
  • Processor 501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in a form of software.
  • the processor 501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read only memory, programmable read only memory or electrically erasable Program memory, registers, etc. are well-known storage media in the field.
  • the storage medium is located in the memory 504, and the processor 501 reads the information in the memory 504 and completes the steps of the above method in combination with its hardware.
  • the memory 504 in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • the memory 504 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • a code segment can represent a procedure, a function, a subprogram, a program, a routine, a subroutine, a module, a software group, a class, or any combination of instructions, data structures, or program statements.
  • a code segment can be combined into another code segment or hardware circuit by transmitting and/or receiving information, data, arguments, parameters or memory contents. Information, arguments, parameters, data, etc. can be communicated, forwarded, or transmitted using any suitable means including memory sharing, messaging, token passing, network transmission, and the like.
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in a memory unit and executed by the processor.
  • the memory unit can be implemented in the processor or external to the processor, in the latter case the memory unit can be communicatively coupled to the processor via various means known in the art.
  • the boundary RE is a frequency domain boundary. If the N boundary REs are located on the boundary symbol, the boundary RE is a time domain boundary.
  • the boundary symbol may be a boundary filter bank (Filter Bank Multi Carrier, FBMC) symbol.
  • FBMC boundary filter bank
  • the boundary subcarriers can be boundary FBMC symbols.
  • the taking the effective part includes: taking the real part, or taking the imaginary part, or taking the virtual and real alternately according to the position of the RE.
  • the embodiment of the present invention is described by taking a real part as an example.
  • the apparatus 500 of FIG. 10 can be used to decode the signals of the first pre-coded block. It can also be used to decode the signal of the second pre-encoded block.
  • the received N first signals may be represented as:
  • the N second signals can be expressed as:
  • T is transposed, Indicates a complex field, and L 1 represents the number of layers of the transmitted signal of the first pre-coded block.
  • the received N first signals can be expressed as:
  • the N second signals can be expressed as:
  • T is transposed, Indicates a complex field, and L 2 represents the number of layers of the transmitted signal of the second pre-coded block.
  • the processor 501 is specifically configured to: multiply the first equalization matrix by each of the N first signals to obtain the N third signals; and the second equalization matrix N Each of the second signals is multiplied to obtain the N fourth signals.
  • the first equalization matrix may be a first zero-forcing equalization matrix
  • the second equalization matrix may be a second zero-forcing equalization matrix
  • the first equalization matrix may be expressed as:
  • the second equalization matrix can be expressed as: W 1 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • T is transposed, Indicates a complex field, and L 1 represents the number of layers of the transmitted signal of the first pre-coded block.
  • the first equalization matrix can be expressed as:
  • the second equalization matrix can be expressed as: W 2 ;
  • the N third signals are represented as:
  • the N fourth signals are represented as:
  • T is transposed, Indicates a complex field, and L 2 represents the number of layers of the transmitted signal of the second pre-coded block.
  • the spreading code group includes N/2 spreading codes, and each of the N/2 spreading codes has a length of N.
  • the processor 501 is specifically configured to: multiply and sum the N third signals and the conjugates of the corresponding spreading code elements of each of the spreading codes to obtain the N/2 fifth signals. Further, performing the real part operation on the N fourth signals to obtain N sixth signals.
  • the ith fifth signal can be obtained by multiplying the N third signals by the N spreading code elements in the ith spreading code and then summing them.
  • i 1, 2,..., N/2
  • the N/2 fifth signals are represented as:
  • the N sixth signals are represented as:
  • the N/2 fifth signals are represented as:
  • the N sixth signals are represented as:
  • the processor 501 is specifically configured to: determine, according to the N/2 fifth signals and the N sixth signals, a signal recovery matrix to determine the decoded signal.
  • the decoded signal is represented as: S 1 and Wherein S 1 is composed of real numbers, Composed of plurals, and
  • the precoding block is a first precoding block.
  • the decoded signal is represented as: S 2 and Where S 2 is composed of real numbers, Composed of plurals, and
  • S 2 is N decoded signals on N REs adjacent to N boundary REs in the precoding block, and determining with N decoded signals on N boundary REs of the precoding block; wherein the precoding block is a second precoding block.
  • the signal recovery matrix is related to the multiplexed response coefficient matrix and the spreading code matrix.
  • the signal recovery matrix can be expressed as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 1 and A 2 are multiplexed response coefficient matrices related to the setting of the filter
  • L 1 denotes transmission of the first pre-encoded block
  • the number of layers of the signal, C 1 represents the spreading code matrix
  • the signal recovery matrix can be expressed as:
  • T denotes transpose
  • I denotes a unit square matrix
  • O denotes an all-zero matrix
  • a 3 and A 4 are multiplexed response coefficient matrices related to the setting of the filter
  • L 2 denotes transmission of the second pre-coded block
  • the number of layers of the signal, C 2 represents the spreading code matrix
  • the signal recovery matrix Q I. And is independent of the precoding block.
  • device 500 in Figure 10 can be a receiver.
  • the device 500 shown in FIG. 10 can implement the method for processing signals shown in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例提出了一种发送信号的方法,包括:获取N/2个第一符号,其中,N为偶数;利用扩展码组,根据所述N/2个第一符号生成N个第二符号;对所述N个第二符号进行预编码处理,分别得到N个第三符号;将所述N个第三符号分别映射到预编码块的N个边界RE上;根据所述映射之后的第三符号生成FBMC信号;并发送所述FBMC信号。本发明实施例中,利用扩展码组将N/2个第一符号转换成N个第二符号,再通过预编码矩阵进行预编码处理,这样映射到预编码块的边界RE上的符号能够消除相邻的预编码块之间的相互干扰。

Description

发送信号、处理信号的设备及方法 技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种发送信号、处理信号的设备及方法。
背景技术
未来的宽带无线通信系统,将在高稳定性和高数据传输速率的前提下,满足从语音到多媒体的多种综合业务需求。而要在有限的频谱资源上实现综合业务内容的快速传输,需要频谱效率极高的技术。正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)技术是多载波传输技术的一种,其子载波之间相互正交,可以高效地利用频谱资源。
正交频分复用/交错正交振幅调制(Orthogonal Frequency Division Multiplexing/Offset Quadrature Amplitude Modulation,OFDM/OQAM)方案相对于现在应用广泛的OFDM技术而言,具有更高的频谱效率,这是由于相对于OFDM的矩形成形滤波器,OFDM/OQAM采用了具有良好时频聚焦特性的成形滤波器。因此,OFDM/OQAM是第5代移动通信(the 5th Generation,5G)的一个重要的备选技术。
与OFDM满足复数域正交不同,OFDM/OQAM满足实数域的正交性,这种实数域的正交性会导致该技术与多入多出(Multi-Input Multi-Output,MIMO)结合时,出现严重的干扰问题。具体地,一个预编码块会受到相邻预编码块的干扰,从而导致性能下降。
一种方式是采用循环卷积滤波进行隔离,即将一个预编码块内的OFDM/OQAM符号序列的前后拖尾循环搬移到与该符号序列的主体相交,使得在时域上相邻的两个预编码块之间没有交叠,从而起到了隔离时域预编码块临界位置干扰的作用。但是此种方式只能消除时域预编码块间的干扰,而无法消除频域临界位置的干扰。
另一种方式是在频域临界位置留出保护子载波,起到隔离预编码块间频域临界位置干扰的作用;或者在时域临界位置留出保护符号,起到隔离预编码块间时域临界位置干扰的作用。虽然此种方式既能消除时域相邻的预编码 块间的干扰,又能消除频域相邻的预编码块间的干扰,但是这种方式会造成频谱资源的浪费。
发明内容
本发明实施例提供了一种发送信号、处理信号的方法,能够消除预编码块之间的干扰,并且不会造成频谱资源的浪费。
第一方面,提供了一种发送信号的设备,包括:
获取单元,用于获取N/2个第一符号,其中,N为偶数;
第一生成单元,用于利用扩展码组,根据所述获取单元获取的所述N/2个第一符号生成N个第二符号;
预编码单元,用于对所述第一生成单元生成的所述N个第二符号进行预编码处理,分别得到N个第三符号;
映射单元,用于将所述预编码单元得到的所述N个第三符号分别映射到预编码块的N个边界资源元素RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上;
第二生成单元,用于根据所述映射单元映射之后的第三符号生成滤波器组多载波FBMC信号;
发送单元,用于发送所述第二生成单元生成的所述FBMC信号。
结合第一方面,在第一方面的第一种可能的实现方式中,
所述获取单元,还用于获取N个第四符号;
所述预编码单元,还用于对所述获取单元获取的所述N个第四符号进行预编码处理,分别得到N个第五符号;
所述映射单元,还用于将所述预编码单元得到的所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
所述第二生成单元,具体用于根据所述映射单元映射之后的第三符号和所述映射单元映射之后的第五符号生成所述FBMC信号。
结合第一方面或者上述第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
所述第一生成单元,具体用于:
利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;
对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述预编码单元,具体用于:
将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
并将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
所述预编码矩阵表示为P1
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000001
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000002
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000003
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000004
所述N个第五符号表示为:
Figure PCTCN2014091923-appb-000005
并且满足:
Figure PCTCN2014091923-appb-000006
其中,T表示转置,
Figure PCTCN2014091923-appb-000007
表示实数域,
Figure PCTCN2014091923-appb-000008
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
结合第一方面,在第一方面的第五种可能的实现方式中,
所述获取单元,还用于获取N个第四符号;
所述第一生成单元,具体用于利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号;
所述第一生成单元,还用于根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号;
所述预编码单元,还用于对所述N个第六符号进行预编码处理,得到N个第七符号;
所述映射单元,还用于将所述预编码单元得到的所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
所述第二生成单元,具体用于根据所述映射单元映射之后的第三符号和所述映射单元映射之后的第七符号生成所述FBMC信号;
其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所述N/2个第一符号和所述N个第四符号确定的。
结合第一方面或者上述第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
所述第一生成单元,具体用于:
将所述N/2个第一符号的每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;
利用所述每个扩展码依次对所述N/2个第八符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;
对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号;
将所述N个第四符号中的每一个第四符号加上所述N个第二干扰预抵消量中对应的第二干扰预抵消量,生成所述N个第六符号。
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,所述预编码单元,具体用于:
将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
并将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面的第八种可能的实现方式中,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
所述预编码矩阵表示为P1
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000009
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000010
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000011
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000012
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000013
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000014
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000015
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000016
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000017
并且满足:
Figure PCTCN2014091923-appb-000018
其中,T表示转置,
Figure PCTCN2014091923-appb-000019
表示实数域,
Figure PCTCN2014091923-appb-000020
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面的第九种可能的实现方式中,
Figure PCTCN2014091923-appb-000021
所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000022
和所述N个第二干扰预抵消量ΔS1根据下式确定:
Figure PCTCN2014091923-appb-000023
其中,
Figure PCTCN2014091923-appb-000024
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000025
结合第一方面或者上述第一方面的任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述设备为发射机。
第二方面,提供了一种处理信号的设备,其特征在于,包括:
接收单元,用于接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数;
均衡单元,用于对所述接收单元接收的所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号;
处理单元,用于利用扩展码组对所述均衡单元得到的所述N个第三信号进行解扩操作得到N/2个第五信号;对所述均衡单元得到的所述N个第四信号进行取有效部分得到N个第六信号;
确定单元,用于根据所述处理单元得到的所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述均衡单元,具体用于:
将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述N个第三信号;
将第二均衡矩阵与所述N个第二信号中的每个第二信号相乘,得到所述N个第四信号。
结合第二方面或者第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
所述处理单元,具体用于:
将所述N个第三信号依次与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述确定单元,具体用于:
根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确 定解码后的信号。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,
所述N个第一信号表示为:
Figure PCTCN2014091923-appb-000026
所述N个第二信号表示为:
Figure PCTCN2014091923-appb-000027
所述第一均衡矩阵表示为:
Figure PCTCN2014091923-appb-000028
所述第二均衡矩阵表示为:W1
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000029
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000030
并且满足:
Figure PCTCN2014091923-appb-000031
Figure PCTCN2014091923-appb-000032
其中,T表示转置,
Figure PCTCN2014091923-appb-000033
表示复数域,L1表示所述预编码块的发送信号的层数。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述有效部分为实部,
所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000034
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000035
并且满足:
Figure PCTCN2014091923-appb-000036
其中,T表示转置,
Figure PCTCN2014091923-appb-000037
表示实数域,
Figure PCTCN2014091923-appb-000038
表示复数域,L1表示所述预编码块的发送信号的层数,Re{·}表示取实部,
Figure PCTCN2014091923-appb-000039
表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素,
Figure PCTCN2014091923-appb-000040
表示所述N个第三信号,
Figure PCTCN2014091923-appb-000041
表示所述N个第四信号。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,所述解码后的信号表示为:S1
Figure PCTCN2014091923-appb-000042
其中S1由实数构成,
Figure PCTCN2014091923-appb-000043
由复数构成,且
Figure PCTCN2014091923-appb-000044
所述确定单元,具体用于:
利用下式计算
Figure PCTCN2014091923-appb-000045
和S1
Figure PCTCN2014091923-appb-000046
确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000047
Figure PCTCN2014091923-appb-000048
为所述预编码块的N个边界RE上的N个解码后的信号;
其中,G1=Re{G1}+jIm{G1}表示所述第五信号,R1表示所述第六信号,
Figure PCTCN2014091923-appb-000049
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,Q表示信号恢复矩阵。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述信号恢复矩阵表示为:
Figure PCTCN2014091923-appb-000050
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示所述预编码块的发送信号的层数,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000051
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第八种可能的实现方式中,当编码过程中包括干扰预抵消量时,
所述信号恢复矩阵表示为:
Q=I;
其中,I表示单位方阵。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第九种可能的实现方式中,所述设备为接收机。
结合第二方面或者上述第二方面的任一种可能的实现方式,在第二方面的第十种可能的实现方式中,所述取有效部分包括:取实部,或,取虚部,或,按照RE的位置进行虚实交替地取。
第三方面,提供了一种发送信号的方法,包括:
获取N/2个第一符号,其中,N为偶数;
利用扩展码组,根据所述N/2个第一符号生成N个第二符号;
对所述N个第二符号进行预编码处理,分别得到N个第三符号;
将所述N个第三符号分别映射到预编码块的N个边界资源元素RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上;
根据所述映射之后的第三符号生成滤波器组多载波FBMC信号;
发送所述FBMC信号。
结合第三方面,在第三方面的第一种可能的实现方式中,还包括:
获取N个第四符号;
对所述N个第四符号进行预编码处理,分别得到N个第五符号;
将所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
所述根据所述映射之后的第三符号生成FBMC信号,包括:
根据所述映射之后的第三符号和所述映射之后的第五符号生成所述FBMC信号。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
所述利用扩展码组,根据所述N/2个第一符号生成N个第二符号,包括:
利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;
对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
结合第三方面的第一种可能的实现方式或者第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述对所述N个第二符号进行预编码处理,分别得到N个第三符号,包括:将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
所述对所述N个第四符号进行预编码处理,分别得到N个第五符号,包括:将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
结合第三方面或者上述第三方面的任一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
所述预编码矩阵表示为P1
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000052
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000053
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000054
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000055
所述N个第五符号表示为:
Figure PCTCN2014091923-appb-000056
并且满足:
Figure PCTCN2014091923-appb-000057
其中,T表示转置,
Figure PCTCN2014091923-appb-000058
表示实数域,
Figure PCTCN2014091923-appb-000059
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
结合第三方面,在第三方面的第五种可能的实现方式中,还包括:
获取N个第四符号;
利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号;
根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号;
对所述N个第六符号进行预编码处理,得到N个第七符号;
将所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
所述根据所述映射之后的第三符号生成FBMC信号,包括:
根据所述映射之后的第三符号和所述映射之后的第七符号生成所述FBMC信号;
其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所述N/2个第一符号和所述N个第四符号确定的。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
所述利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号,包括:
将所述N/2个第一符号的每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;
利用所述每个扩展码依次对所述N/2个第八符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;
对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号;
所述根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号,包括:
将所述N个第四符号中的每一个第四符号加上所述N个第二干扰预抵消量中对应的第二干扰预抵消量,生成所述N个第六符号。
结合第三方面或者上述第三方面的任一种可能的实现方式,在第三方面的第七种可能的实现方式中,所述对所述N个第二符号进行预编码处理,得到N个第三符号,包括:将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
所述对所述N个第六符号进行预编码处理,得到N个第七符号,包括:将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
结合第三方面或者上述第三方面的任一种可能的实现方式,在第三方面的第八种可能的实现方式中,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
所述预编码矩阵表示为P1
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000060
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000061
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000062
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000063
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000064
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000065
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000066
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000067
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000068
并且满足:
Figure PCTCN2014091923-appb-000069
其中,T表示转置,
Figure PCTCN2014091923-appb-000070
表示实数域,
Figure PCTCN2014091923-appb-000071
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
结合第三方面或者上述第三方面的任一种可能的实现方式,在第三方面的第九种可能的实现方式中,
Figure PCTCN2014091923-appb-000072
Figure PCTCN2014091923-appb-000073
所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000074
和所述N个第二干扰预抵消量ΔS1根据下式确定:
Figure PCTCN2014091923-appb-000075
其中,
Figure PCTCN2014091923-appb-000076
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000077
第四方面,提供了一种处理信号的方法,包括:
接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数;
对所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号;
利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号,对所述N个第四信号进行取有效部分得到N个第六信号;
根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
结合第四方面,在第四方面的第一种可能的实现方式中,所述对所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号,包括:
将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述 N个第三信号;
将第二均衡矩阵与所述N个第二信号中的每个第二信号相乘,得到所述N个第四信号。
结合第四方面或者第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
所述利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号,包括:
将所述N个第三信号依次与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号,包括:
根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号。
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第四种可能的实现方式中,
所述N个第一信号表示为:
Figure PCTCN2014091923-appb-000078
所述N个第二信号表示为:
Figure PCTCN2014091923-appb-000079
所述第一均衡矩阵表示为:
Figure PCTCN2014091923-appb-000080
所述第二均衡矩阵表示为:W1
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000081
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000082
并且满足:
Figure PCTCN2014091923-appb-000083
Figure PCTCN2014091923-appb-000084
其中,T表示转置,
Figure PCTCN2014091923-appb-000085
表示复数域,L1表示所述预编码块的发送信号的层数。
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第五种可能的实现方式中,所述有效部分为实部,
所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000086
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000087
并且满足:
Figure PCTCN2014091923-appb-000088
其中,T表示转置,
Figure PCTCN2014091923-appb-000089
表示实数域,
Figure PCTCN2014091923-appb-000090
表示复数域,L1表示所述预编码块的发送信号的层数,Re{·}表示取实部,
Figure PCTCN2014091923-appb-000091
表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素,
Figure PCTCN2014091923-appb-000092
表示所述N个第三信号,
Figure PCTCN2014091923-appb-000093
表示所述N个第四信号。
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第六种可能的实现方式中,
所述解码后的信号表示为:S1
Figure PCTCN2014091923-appb-000094
其中S1由实数构成,
Figure PCTCN2014091923-appb-000095
由复数构成,且
Figure PCTCN2014091923-appb-000096
所述根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号,包括:
利用下式计算
Figure PCTCN2014091923-appb-000097
和S1
Figure PCTCN2014091923-appb-000098
确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000099
Figure PCTCN2014091923-appb-000100
为所述预编码块的N个边界RE上的N个解码后的信号;
其中,G1=Re{G1}+jIm{G1}表示所述第五信号,R1表示所述第六信号,
Figure PCTCN2014091923-appb-000101
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,Q表示信号恢复矩阵。
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第七种可能的实现方式中,所述信号恢复矩阵表示为:
Figure PCTCN2014091923-appb-000102
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示所述预编码块的发送信号的层数,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000103
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第八种可能的实现方式中,当编码过程中包括干扰预抵消量时,
所述信号恢复矩阵表示为:
Q=I;
其中,I表示单位方阵。
结合第四方面或者上述第四方面的任一种可能的实现方式,在第四方面的第九种可能的实现方式中,所述取有效部分包括:取实部,或,取虚部,或,按照RE的位置进行虚实交替地取。
第五方面,提供了一种发送信号的设备,包括:
接收器,用于获取N/2个第一符号,其中,N为偶数。
处理器,用于利用扩展码组,根据所述接收器获取的所述N/2个第一符号生成N个第二符号。
所述处理器,还用于对所述N个第二符号进行预编码处理,分别得到N个第三符号。
所述处理器,还用于将所述N个第三符号分别映射到预编码块的N个边界RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上。
所述处理器,还用于根据所述映射之后的第三符号生成滤波器组多载波FBMC信号。
发送器,用于发送所述处理器生成的所述FBMC信号。
第六方面,提供了一种处理信号的设备,包括:
接收器,用于接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数;
处理器,用于对所述接收器接收的所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号;
所述处理器,还用于利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号;对所述N个第四信号进行取有效部分得到N个第六信号;
所述处理器,还用于根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
本发明实施例中,利用扩展码组将N/2个第一符号转换成N个第二符号,再通过预编码矩阵进行预编码处理,这样映射到预编码块的边界RE上的符号能够消除相邻的预编码块之间的相互干扰。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是相邻预编码块的示意图。
图2是多路复用转换器响应系数的一个示意图。
图3是本发明一个实施例的发送信号的设备的结构示意图。
图4是本发明一个实施例的发送信号的形式的示意图。
图5是本发明另一个实施例的发送信号的形式的示意图。
图6是本发明一个实施例的处理信号的设备的结构示意图。
图7是本发明一个实施例的发送信号的方法的流程图。
图8是本发明一个实施例的处理信号的方法的流程图。
图9是本发明另一个实施例的发送信号的设备的结构示意图。
图10是本发明另一个实施例的处理信号的设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是相邻预编码块的示意图。具体地,图1示出了4个预编码块,4个预编码块的预编码矩阵分别为Pn、Pn+1、Pn+2和Pn+3。并且示出了频域临界位置和时域临界位置。可理解,频域临界位置是在频率方向上相邻的预编码块之间的边界,时域临界位置是在时间方向上相邻的预编码块之间的边界。
具体地,如图1所示,预编码矩阵为Pn的预编码块与预编码矩阵为Pn+1的预编码块之间的临界位置为频域临界位置,预编码矩阵为Pn+2的预编码块与预编码矩阵为Pn+3的预编码块之间的临界位置为频域临界位置。预编码矩阵 为Pn的预编码块与预编码矩阵为Pn+2的预编码块之间的临界位置为时域临界位置,预编码矩阵为Pn+1的预编码块与预编码矩阵为Pn+3的预编码块之间的临界位置为时域临界位置。
相邻的预编码块之间会产生干扰。例如,考虑K+1个预编码块,记
Figure PCTCN2014091923-appb-000104
为第n(n∈{0,1,2,…,K-1})个预编码块的第(p,q)个资源元素(Resource Element,RE)上待发送的实数数据,设
Figure PCTCN2014091923-appb-000105
会受到其他K个相邻预编码块的干扰,从而导致其接收信号为:
Figure PCTCN2014091923-appb-000106
其中,p表示子载波编号,q表示符号编号,
Figure PCTCN2014091923-appb-000107
表示第k个预编码块中的发送的实数数据,
Figure PCTCN2014091923-appb-000108
表示第k个预编码块的多路复用转换器响应(Transmultiplexer Response)系数,所有的响应系数为纯虚数,Θk表示第k个预编码块中对
Figure PCTCN2014091923-appb-000109
有干扰的所有RE的编号,
Figure PCTCN2014091923-appb-000110
表示第n个预编码块中第(p,q)个RE处的信道系数。考虑利用迫零均衡消除信道的影响,迫零均衡矩阵为:
Figure PCTCN2014091923-appb-000111
那么,均衡以后得到的信号为:
Figure PCTCN2014091923-appb-000112
在上式的最后一个等式中,j表示虚数单位,其中第一项和第四项为纯实数,第二项和第三项为纯虚数,因此通过取实部,可以得到
Figure PCTCN2014091923-appb-000113
上式中的第二项
Figure PCTCN2014091923-appb-000114
为预编码块间的干扰,容易发现,若Pk≈Pn,则干扰较小,但当Pk和Pn的差距较大时,则干扰很大,会引起性能的严重下降。
应注意,本发明实施例中,预编码块中的待发送数据可以为纯实数,或者也可以为纯虚数,或者也可以是虚实交替的。本发明对此不作限定。具体地,本发明实施例以纯实数的情形为例进行阐述。
图2是多路复用转换器响应系数的示意图。其中,多路复用转换器响应系数也可以简称为多路复用响应系数。
具体地,多路复用响应系数与滤波器的设置有关。本发明实施例假设滤波器的设置使得OFDM/OQAM系统的多路复用响应系数在频域上仅向相邻的子载波的RE扩散。
这里,图2以频域的情况为例。图2(a)示出了发送方的数据,在一个RE的信号为1,其余的RE的信号均为0。为了方便描述,这里我们定义该信号为1的RE为第一RE。
图2(b)示出了接收方的数据。在对应的第一RE上接收到的信号为1。但是由于干扰的存在,在第一RE附近的RE上所接收到的信号不为0,为αml,且αml为纯虚数,αml是多路复用转换器响应系数,具体地如图2所示。由于本发明实施例对滤波器多路复用响应系数扩散的假设,因此图2在频域轴上只示出了3个子载波。
应注意,图2中在时间轴的方向上只示出了7个RE,但是该RE的个数只是示意性的,也可以是其他的长度,具体地该个数与滤波器的设置有关。
另外,本发明实施例也可假设滤波器的设置使得OFDM/OQAM系统的多路复用响应系数在时域上仅向相邻的FBMC符号的RE扩散。该时域的情形可以参照图2类似地得出,为避免重复,这里不再赘述。
具体地,本发明实施例中假设滤波器的设置使得OFDM/OQAM系统的多路复用响应系数在频域上仅向相邻的子载波的RE扩散,并且本发明实施 例以该假设为基础提供了一种信号发送和处理的方法。
应注意,本发明实施例中,假设位于临界位置两侧的预编码块分别为第一预编码块和第二预编码块,并且所述第一预编码块具有第一预编码矩阵P1,所述第二预编码块具有第二预编码矩阵P2,并且满足
Figure PCTCN2014091923-appb-000115
Figure PCTCN2014091923-appb-000116
其中,M、L1和L2分别表示发射天线数、第一预编码块的发送信号的层数和第二预编码块的发送信号的层数。
Figure PCTCN2014091923-appb-000117
表示复数域,
Figure PCTCN2014091923-appb-000118
表示M×L1的复数矩阵的集合,
Figure PCTCN2014091923-appb-000119
表示M×L2的复数矩阵的集合。
具体地,临界位置可以为频域临界位置。结合图1来说,第一预编码块可以为预编码矩阵为Pn的预编码块,第二预编码块可以为预编码矩阵为Pn+1的预编码块,即P1=Pn,P2=Pn+1。或者,第一预编码块可以为预编码矩阵为Pn+2的预编码块,第二预编码块可以为预编码矩阵为Pn+3的预编码块,即P1=Pn+2,P2=Pn+3
或者,具体地,临界位置可以为时域临界位置。结合图1来说,第一预编码块可以为预编码矩阵为Pn的预编码块,第二预编码块可以为预编码矩阵为Pn+2的预编码块,即P1=Pn,P2=Pn+2。或者,第一预编码块可以为预编码矩阵为Pn+1的预编码块,第二预编码块可以为预编码矩阵为Pn+3的预编码块,即P1=Pn+1,P2=Pn+3
可理解,本发明实施例主要考虑所述临界位置为频域临界位置的情形。并且,本领域普通技术人员在此基础上很容易确定所述临界位置为时域临界位置的情形,为避免重复,这里不再赘述。
另外,由于假设滤波器的设置使得OFDM/OQAM系统的多路复用响应系数在频域上仅向相邻的子载波的RE扩散,因此本发明实施例只考虑与频域临界位置的距离为3个子载波之内的RE上的符号的形式。
具体地,以
Figure PCTCN2014091923-appb-000120
表示第一预编码块中与频域临界位置的距离为3个子载波上的第p个RE上发送的OQAM符号,
Figure PCTCN2014091923-appb-000121
表示第一预编码块中与频域临界位置的距离为2个子载波上的第p个RE上发送的OQAM符号,
Figure PCTCN2014091923-appb-000122
表示第一预编码块中与频域临界位置的距离为1个子载波上的第p个RE上发送的OQAM符号。其中,p=1,2,…,N。
Figure PCTCN2014091923-appb-000123
表示实数域,
Figure PCTCN2014091923-appb-000124
表 示L1×1的实数向量的集合。可理解,若L1=1,则为实数标量。若L1>1,则为实数向量。
也可以理解为,
Figure PCTCN2014091923-appb-000125
Figure PCTCN2014091923-appb-000126
为现有技术中第一预编码块中映射到RE上的OQAM符号。
相应地,以
Figure PCTCN2014091923-appb-000127
表示第二预编码块中与频域临界位置的距离为3个子载波上的第p个RE上发送的OQAM符号,
Figure PCTCN2014091923-appb-000128
表示第二预编码块中与频域临界位置的距离为2个子载波上的第p个RE上发送的OQAM符号,
Figure PCTCN2014091923-appb-000129
表示第二预编码块中与频域临界位置的距离为1个子载波上的第p个RE上发送的OQAM符号。其中,p=1,2,…,N。
Figure PCTCN2014091923-appb-000130
表示实数域,
Figure PCTCN2014091923-appb-000131
表示L2×1的实数向量的集合。可理解,若L2=1,则为实数标量。若L2>1,则为实数向量。
也可以理解为,
Figure PCTCN2014091923-appb-000132
Figure PCTCN2014091923-appb-000133
为现有技术中第二预编码块中映射到RE上的OQAM符号。
应注意,这里假设
Figure PCTCN2014091923-appb-000134
Figure PCTCN2014091923-appb-000135
均为实数标量或实数向量。可理解,也可以为虚数标量或虚数向量,或者可以是虚实交替的。本发明以实数的情形为例进行阐述。
图3是本发明一个实施例的发送信号的设备的结构示意图。图3所示的设备100包括获取单元101、第一生成单元102、预编码单元103、映射单元104、第二生成单元105和发送单元106。
获取单元101,用于获取N/2个第一符号,其中,N为偶数。
第一生成单元102,用于利用扩展码组,根据获取单元101获取的所述N/2个第一符号生成N个第二符号。
预编码单元103,用于对第一生成单元102生成的N个第二符号进行预编码处理,分别得到N个第三符号。
映射单元104,用于将预编码单元103得到的所述N个第三符号分别映射到预编码块的N个边界RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上。
第二生成单元105,用于根据映射单元104映射之后的第三符号生成滤 波器组多载波FBMC信号。
发送单元106,用于发送第二生成单元105生成的所述FBMC信号。
这样,本发明实施例中,利用扩展码组将N/2个第一符号转换成N个第二符号,再通过预编码处理并生成FBMC信号,从而能够消除频域临界位置的干扰。
可理解,若N个边界RE位于边界子载波上,那么边界RE为频域边界。若N个边界RE位于边界符号上,那么边界RE为时域边界。
可选地,边界符号可以为边界滤波器组多载波(Filter Bank Multi Carrier,FBMC)符号。边界子载波为边界FBMC子载波。
可选地,本发明实施例中,N/2个第一符号可以由实数构成,或者也可以由虚数构成,或者也可以由复数构成,或者也可以是虚实交替的。本发明对此不作限定。
具体地,预编码单元103可以采用预编码矩阵,将N个第二符号进行预编码处理,分别得到N个第三符号。
其中,预编码单元103具体用于将所述预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号。
可理解,图3中的设备100可以用于对第一预编码块的符号进行处理后并发送FBMC信号,相应地,预编码矩阵为第一预编码矩阵P1。设备100也可以用于对第二预编码块的符号进行处理后并发送FBMC信号,相应地,预编码矩阵为第二预编码矩阵P2。应注意,FBMC符号是根据所有的预编码块的符号共同产生的。
可选地,作为一个实施例,
获取单元101,还用于获取N个第四符号。
预编码单元103,还用于对获取单元101获取的N个第四符号进行预编码处理,分别得到N个第五符号。
映射单元104,还用于将预编码单元103得到的所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上。
第二生成单元105,具体用于根据映射单元104映射之后的第三符号和 映射单元104映射之后的第五符号生成所述FBMC信号。
其中,预编码单元103用于将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
扩展码满足多种正交性条件,因此可以利用扩展码来消除预编码块内的自干扰以及预编码块间的互干扰,实现数据的无干扰传输。其中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。第一生成单元102,具体用于:利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
或者,换个角度,也可以理解为:每个扩展码包括N个扩展码元素。第一生成单元102,具体用于:获取所述N/2个扩展码中的每个扩展码的第n个扩展码元素;将所述N/2个第一符号与对应的扩展码的第n个扩展码元素相乘并求和,得到所述N个第二符号中的第n个第二符号;其中,n=1,2,...,N。
可选地,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的。可选地,N个实数符号可以是N个第一OQAM符号。
相应地,对于第一预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000136
所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000137
应理解,若N个实数符号为实数标量,则第一符号为复数标量。若N个实数符号为实数向量,则第一符号为复数向量。
具体地,第一符号由复数构成,包括实部和虚部。那么,N/2个第一符号包括N/2个实部和N/2个虚部。并且由N/2个实部和N/2个虚部的集合所组成的N个符号即为N个实数符号。
可理解,这里,N个实数符号可以为N个待发送符号。或者,N个实数 符号可以是由M个待发送符号添加N-M个零符号后生成的。其中M<N。
也就是说,可以是将N个实数符号分成N/2组,其中所述N/2组中每组包括两个实数符号,然后再根据这N/2组一一对应地生成N/2个第一符号。具体地,可以将N/2组中的每组中的两个实数符号分别作为实部和虚部生成第一符号。
这样,本发明实施例中,虽然将N个实数符号转换成了N/2个第一符号,但是,由于N个实数符号为实数,第一符号为复数,因此并没有造成频谱效率的损失。
所述N个第二符号可表示为:
Figure PCTCN2014091923-appb-000138
所述预编码矩阵表示为P1
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000139
所述N个第四符号可表示为:
Figure PCTCN2014091923-appb-000140
所述N个第五符号表示为:
Figure PCTCN2014091923-appb-000141
并且满足:
Figure PCTCN2014091923-appb-000142
其中,T表示转置,
Figure PCTCN2014091923-appb-000143
表示实数域,
Figure PCTCN2014091923-appb-000144
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。即L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,
所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000145
所述N个第二符号可表示为:
Figure PCTCN2014091923-appb-000146
所述预编码矩阵表示为P2
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000147
所述N个第四符号可表示为:
Figure PCTCN2014091923-appb-000148
所述N个第五符号可表示为:
Figure PCTCN2014091923-appb-000149
并且满足:
Figure PCTCN2014091923-appb-000150
其中,T表示转置,
Figure PCTCN2014091923-appb-000151
表示实数域,
Figure PCTCN2014091923-appb-000152
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L2表示所述预编码块的发送信号的层数。即L2表示第二预编码块的发送信号的层数。
可理解,获取单元101还可以用于获取N个另一实数符号。可选地,N个另一实数符号可以是N个第二OQAM符号。
进一步地,预编码单元103将所述预编码矩阵和所述N个另一实数符号中的每个另一实数符号相乘。映射单元104再将所述预编码处理后的N个另一实数符号分别映射到与所述临界位置的距离为3个单位的N个RE上。可理解,当边界RE位于边界子载波上时,临界位置为频域临界位置,该3个单位为3个子载波。当边界RE位于边界符号上时,临界位置为时域临界位置,该3个单位为3个符号。
对于第一预编码块来说,N个第二OQAM符号可以表示为:
Figure PCTCN2014091923-appb-000153
对于第二预编码块来说,N个第二OQAM符号可以表示为:
Figure PCTCN2014091923-appb-000154
这样,本实施例中,设备100所生成的FBMC信号可以如图4所示。
可选地,可以将映射单元104映射之后的符号进行综合滤波后生成FBMC信号,再由发送单元106进行发送。
这样,本实施例中,通过扩展码组,能够用于消除预编码块之间的干扰。具体地,能够消除第二预编码块中的N个边界RE上的符号与第一预编码块中的N个边界RE上的符号之间的相互干扰。
可选地,作为另一个实施例,
获取单元101,还用于获取N个第四符号。
第一生成单元102,具体用于利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号。
第一生成单元102,还用于根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号。
预编码单元103,还用于对所述N个第六符号进行预编码处理,得到N个第七符号。
映射单元104,还用于将预编码单元103得到的所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上。
第二生成单元105,具体用于根据映射单元104映射之后的第三符号和所述映射单元映射之后的第七符号生成所述FBMC信号。
其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所述N/2个第一符号和所述N个第四符号确定的。
其中,预编码单元103,用于将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
其中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。第一生成单元102,具体用于:将所述N/2个第一符号的 每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;利用所述每个扩展码依次对所述N/2个第八符号中的每个第八符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
或者,换个角度,也可以理解为:每个扩展码包括N个扩展码元素。第一生成单元102,具体用于:获取所述N/2个扩展码中的每个扩展码的第n个扩展码元素;将所述N/2个第八符号与对应的扩展码的第n个扩展码元素相乘并求和,得到所述N个第二符号中的第n个第二符号;其中,n=1,2,...,N。
可选地,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的。可选地,N个实数符号可以是N个第一OQAM符号。
相应地,对于第一预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000155
所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000156
应理解,若N个实数符号为实数标量,则第一符号为复数标量。若N个实数符号为实数向量,则第一符号为复数向量。
具体地,第一符号由复数构成,包括实部和虚部。那么,N/2个第一符号包括N/2个实部和N/2个虚部。并且由N/2个实部和N/2个虚部的集合所组成的N个符号即为N个实数符号。
可理解,这里,N个实数符号可以为N个待发送符号。或者,N个实数符号可以是由M个待发送符号添加N-M个零符号后生成的。其中M<N。
也就是说,可以是将N个实数符号分成N/2组,其中所述N/2组中每组包括两个实数符号,然后在根据这N/2组一一对应地生成N/2个第一符号。具体地,可以将N/2组中的每组中的两个实数符号分别作为实部和虚部生成第一符号。
这样,本发明实施例中,虽然将N个实数符号转换成了N/2个第一符号,但是,由于N个实数符号为实数,第一符号为复数,因此并没有造成频谱效率的损失。
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000157
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000158
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000159
所述预编码矩阵表示为P1
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000160
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000161
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000162
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000163
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000164
并且满足:
Figure PCTCN2014091923-appb-000165
其中,T表示转置,
Figure PCTCN2014091923-appb-000166
表示实数域,
Figure PCTCN2014091923-appb-000167
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。即L1表示第一预编码块的发送信号的层数。
具体地,所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000168
和所述N个第二干扰预抵消量ΔS1根据下式确定:
Figure PCTCN2014091923-appb-000169
其中,
Figure PCTCN2014091923-appb-000170
Figure PCTCN2014091923-appb-000171
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000172
其中,以图2所示的情形为例,上述多路复用响应系数矩阵A1和A2具有如下形式:
Figure PCTCN2014091923-appb-000173
Figure PCTCN2014091923-appb-000174
Figure PCTCN2014091923-appb-000175
αkl(k=1,2,3;l=1,2,...)为纯虚数。
可以理解,对于任意一个由复数构成的
Figure PCTCN2014091923-appb-000176
来说,Re{X}由实数构成,且Im{X}由实数构成。具体地,若X为复数标量,则Re{X}和Im{X}均为实数标量。若X为复数向量,则Re{X}和Im{X}均为实数向量。
类似地,对于第二预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000177
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000178
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000179
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000180
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000181
所述预编码矩阵表示为P2
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000182
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000183
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000184
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000185
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000186
并且满足:
Figure PCTCN2014091923-appb-000187
其中,T表示转置,
Figure PCTCN2014091923-appb-000188
表示实数域,
Figure PCTCN2014091923-appb-000189
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L2表示所述预编码块的发送信号的层数。即L2表示第二预编码块的发送信号的层数。
具体地,所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000190
和所述N个第二干扰预抵消量ΔS2根据下式确定:
Figure PCTCN2014091923-appb-000191
其中,
Figure PCTCN2014091923-appb-000192
Figure PCTCN2014091923-appb-000193
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A3和A4为与滤波器的设置有关的多路复用响应系数矩阵,C2表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000194
其中,以图2所示的情形为例,上述多路复用响应系数矩阵A3和A4具有如下形式:
Figure PCTCN2014091923-appb-000195
Figure PCTCN2014091923-appb-000196
Figure PCTCN2014091923-appb-000197
αkl(k=1,2,3;l=1,2,...)为纯虚数。
另外,还可以看出,对于不同的预编码块来说,扩展码矩阵C1和扩展码矩阵C2的区别只在于分块矩阵的维度不同。该维度与预编码块的发送信号的层数有关。
可理解,获取单元101还可以用于获取N个另一实数符号。可选地,N个另一实数符号可以是N个第二OQAM符号。
进一步地,预编码单元103将所述预编码矩阵和所述N个第二OQAM符号中的每个第二OQAM符号相乘。映射单元104再将所述预编码处理后的N个第二OQAM符号映射到与所述临界位置的距离为3个单位的N个RE上。可理解,当边界RE位于边界子载波上时,临界位置为频域临界位置,该3个单位为3个子载波。当边界RE位于边界符号上时,临界位置为时域临界位置,该3个单位为3个符号。
对于第一预编码块来说,N个第二OQAM符号可以表示为:
Figure PCTCN2014091923-appb-000198
对于第二预编码块来说,N个第二OQAM符号可以表示为:
Figure PCTCN2014091923-appb-000199
这样,本实施例中,设备100所生成的FBMC信号可以如图5所示。
可选地,可以是对编码单元104编码后的符号进行综合滤波之后生成FBMC信号,再由发送单元106进行发送。
这样,本实施例中,通过扩展码组,能够用于消除预编码块之间的干扰。具体地,能够消除第二预编码块中的N个边界RE上的符号与第一预编码块中的N个边界RE上的符号之间的相互干扰。同时,本实施例中,也通过第一干扰预抵消量和第二干扰预抵消量,能够消除与N个边界RE相邻的N个RE上的符号和N个边界RE上的符号之间的相互干扰。
应注意,本发明实施例中,不考虑噪声的影响。
可选地,图3所示的设备100可以为发射机。
图6是本发明一个实施例的处理信号的设备的结构示意图。图6所示的设备200包括接收单元201、均衡单元202、处理单元203和确定单元204。
接收单元201,用于接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数。
均衡单元202,用于对接收单元201接收的所述N个第一信号进行均衡处理得到N个第三信号,并对接收单元201接收的所述N的第二信号进行 均衡处理得到N个第四信号。
处理单元203,用于利用扩展码组对均衡单元202得到的所述N个第三信号进行解扩操作得到N/2个第五信号;对均衡单元202得到的所述N个第四信号进行取有效部分得到N个第六信号。
确定单元204,用于根据处理单元203得到的所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
本发明实施例中,在接收侧利用扩展码组进行解扩操作,能够消除预编码块之间的干扰,从而确定解码后的信号。
可理解,若N个边界RE位于边界子载波上,那么边界RE为频域边界。若N个边界RE位于边界符号上,那么边界RE为时域边界。
可选地,边界符号可以为边界滤波器组多载波(Filter Bank Multi Carrier,FBMC)符号。边界子载波可以为边界FBMC子载波。
可理解,图6中的设备200可以用于对第一预编码块的信号进行解码处理。设备200也可以用于对第二预编码块的信号进行解码处理。
具体地,对于第一预编码块来说,接收单元201所接收的所述N个第一信号可表示为:
Figure PCTCN2014091923-appb-000200
所述N个第二信号可表示为:
Figure PCTCN2014091923-appb-000201
其中,T表示转置,
Figure PCTCN2014091923-appb-000202
表示复数域,L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,接收单元201所接收的所述N个第一信号可表示为:
Figure PCTCN2014091923-appb-000203
所述N个第二信号可表示为:
Figure PCTCN2014091923-appb-000204
其中,T表示转置,
Figure PCTCN2014091923-appb-000205
表示复数域,L2表示第二预编码块的发送信号的层数。
可选地,均衡单元202可以对所述N个第一信号进行最小均方误差均衡操作得到N个第三信号,并对接收单元201接收的所述N的第二信号进行最小均方误差均衡操作得到N个第四信号。
可选地,均衡单元202可以对所述N个第一信号进行迫零均衡操作得到N个第三信号,并对接收单元201接收的所述N的第二信号进行迫零均衡操作得到N个第四信号。
均衡单元202,可以具体用于:将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述N个第三信号;将第二均衡矩阵与所述N个第二信号中的每个第二信号相乘,得到所述N个第四信号。
例如,第一均衡矩阵可以为第一迫零均衡矩阵,第二均衡矩阵可以为第二迫零均衡矩阵。
具体地,对于第一预编码块来说,所述第一均衡矩阵可表示为:
Figure PCTCN2014091923-appb-000206
所述第二均衡矩阵可表示为:W1
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000207
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000208
并且满足:
Figure PCTCN2014091923-appb-000209
Figure PCTCN2014091923-appb-000210
其中,T表示转置,
Figure PCTCN2014091923-appb-000211
表示复数域,L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所述第一均衡矩阵可表示为:
Figure PCTCN2014091923-appb-000212
所述第二均衡矩阵可表示为:W2
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000213
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000214
并且满足:
Figure PCTCN2014091923-appb-000215
Figure PCTCN2014091923-appb-000216
其中,T表示转置,
Figure PCTCN2014091923-appb-000217
表示复数域,L2表示第二预编码块的发送信号的层数。
所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。其中,每个扩展码的长度为N也可理解为每个扩展码包括N个扩展码元素。
处理单元203,具体用于:将所述N个第三信号依次与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。处理单元203还用于对所述N个第四信号进行取有效部分得到N个第六信号。
其中,处理单元203可以对所述N个第四信号进行取实部操作得到N个第六信号。或者,处理单元203可以对所述N个第四信号进行取虚部操作得到N个第六信号。或者,处理单元203可以对所述N个第四信号按照RE的位置进行虚实交替地取信号得到所N个第六信号。具体地,本发明实施例以取实部操作为例进行说明。
可以理解,将所述N个第三信号与第i个扩展码中的N个扩展码元素的共轭对应相乘以后再求和,便可以得到第i个第五信号。这里,i=1,2,...,N/2
具体地,对于第一预编码块来说,所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000218
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000219
并且满足:
Figure PCTCN2014091923-appb-000220
其中,
Figure PCTCN2014091923-appb-000221
表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素。
类似地,对于第二预编码块来说,所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000222
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000223
并且满足:
Figure PCTCN2014091923-appb-000224
进一步地,确定单元204,具体用于:根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号。
具体地,对于第一预编码块来说,所述解码后的信号表示为:S1
Figure PCTCN2014091923-appb-000225
其中,S1由实数构成,
Figure PCTCN2014091923-appb-000226
由复数构成,且
Figure PCTCN2014091923-appb-000227
那么,确定单元204具体用于:
利用下式计算
Figure PCTCN2014091923-appb-000228
和S1
Figure PCTCN2014091923-appb-000229
确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000230
Figure PCTCN2014091923-appb-000231
为所述预编码块的N个边界RE上的N个解码后的信号;这里,预编码块为第一预编码块。
其中,所述第五信号为G1=Re{G1}+jIm{G1},Q表示信号恢复矩阵。
类似地,对于第二预编码块来说,所述解码后的信号表示为:S2
Figure PCTCN2014091923-appb-000232
其中,S2由实数构成,
Figure PCTCN2014091923-appb-000233
由复数构成,且
Figure PCTCN2014091923-appb-000234
那么,确定单元204具体用于:
利用下式计算
Figure PCTCN2014091923-appb-000235
和S2
Figure PCTCN2014091923-appb-000236
确定S2为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000237
Figure PCTCN2014091923-appb-000238
为所述预编码块的N个边界RE上的N个解码后的信号;其中,所述预编码块为第二预编码块。
其中,所述第五信号为G2=Re{G2}+jIm{G2},Q表示信号恢复矩阵。
可选地,作为一个实施例,信号恢复矩阵与多路复用响应系数矩阵和扩展码矩阵有关。
具体地,对于第一预编码块来说,信号恢复矩阵可以表示为:
Figure PCTCN2014091923-appb-000239
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示第一预编码块的发送信号的层数,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000240
类似地,对于第二预编码块来说,信号恢复矩阵可以表示为:
Figure PCTCN2014091923-appb-000241
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A3和A4为与滤波器的设置有关的多路复用响应系数矩阵,L2表示第二预编码块的发送信号的层数,C2表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000242
可选地,作为另一个实施例,当编码过程中包括干扰预抵消量时,信号恢复矩阵可以表示为:Q=I。其中,I表示单位方阵。
可理解,当与图5所对应的发送端在预编码过程中引入了第一干扰预抵消量和第二干扰预抵消量时,信号恢复矩阵Q=I。并且与预编码块无关。
可选地,设备200可以为接收机。
这样,本发明一个实施例中,通过在发送端一侧利用扩展码组对符号进行扩展和在接收端一侧利用扩展码对符号进行解扩,能够消除预编码块之间的相互干扰。进而可以利用信号恢复矩阵确定解码后的信号。
本发明另一个实施例中,通过在发送端一侧应用干扰预抵消量,并利用扩展码组对符号进行扩展,以及在接收端一侧利用扩展码对符号进行解扩,能够消除预编码块之间的相互干扰。进而可以确定解码后的信号。
具体地,下面给出的理论推导以便更准确详细地理解本发明实施例所描述的设备100和设备200。
为节省篇幅,避免重复,这里只给出针对于第一预编码块的理论分析过程。针对于第二预编码块的分析可类似地得出。
在图4所示的预编码处理后的信号的基础上,由于干扰,接收端所获取的在与频域临界位置的距离为2个子载波上的第p个RE(以下简称为第一 目标RE)上的接收信号形式为:
Figure PCTCN2014091923-appb-000243
其中
Figure PCTCN2014091923-appb-000244
为第一预编码块中,与频域临界位置的距离为2个子载波上的第p个RE上的信道系数矩阵,R1为第一预编码块的目标接收机的接收天线数。
Figure PCTCN2014091923-appb-000245
表示第一预编码块中与频域临界位置的距离为1个子载波上的第m个RE对第一目标RE的多路复用转换器响应系数,
Figure PCTCN2014091923-appb-000246
表示第一预编码块中与频域临界位置的距离为2个子载波上的第m个RE对第一目标RE的多路复用转换器响应系数,
Figure PCTCN2014091923-appb-000247
表示第一预编码块中与频域临界位置的距离为3个子载波上的第m个RE对第一目标RE的多路复用转换器响应系数。
Figure PCTCN2014091923-appb-000248
表示第一预编码块中与频域临界位置的距离为1个子载波上对第一目标RE有干扰的RE的指标的集合,
Figure PCTCN2014091923-appb-000249
表示第一预编码块中与频域临界位置的距离为2个子载波上对第一目标RE有干扰的RE的指标的集合,
Figure PCTCN2014091923-appb-000250
表示第一预编码块中与频域临界位置的距离为3个子载波上对第一目标RE有干扰的所有RE的指标的集合。
接收端所获取的在与频域临界位置的距离为1个子载波上的第p个RE(以下简称为第二目标RE)上的接收信号形式为:
Figure PCTCN2014091923-appb-000251
其中,
Figure PCTCN2014091923-appb-000252
表示第二预编码块中与频域临界位置的距离为1个子载波上的第m个RE对第二目标RE的多路复用转换器响应系数。
Figure PCTCN2014091923-appb-000253
表示第二预编码块中与频域临界位置的距离为1个子载波上对第二目标RE有干扰的所有RE的指标的集合。
Figure PCTCN2014091923-appb-000254
表示第一预编码块中与频域临界位置的距离为1个子载波上的第m个RE对第二目标RE的多路复用转换器响应系数,
Figure PCTCN2014091923-appb-000255
表示第一预编码块中 与频域临界位置的距离为2个子载波上的第m个RE对第二目标RE的多路复用转换器响应系数。
Figure PCTCN2014091923-appb-000256
表示第一预编码块中与频域临界位置的距离为1个子载波上的对第二目标RE有干扰的所有RE的指标的集合、
Figure PCTCN2014091923-appb-000257
表示第一预编码块中与频域临界位置的距离为2个子载波上的对第二目标RE有干扰的所有RE的指标的集合。
对接收信号
Figure PCTCN2014091923-appb-000258
进行迫零均衡得到
Figure PCTCN2014091923-appb-000259
其中,
Figure PCTCN2014091923-appb-000260
表示迫零均衡矩阵。
Figure PCTCN2014091923-appb-000261
取实部可以得到
Figure PCTCN2014091923-appb-000262
如果令
Figure PCTCN2014091923-appb-000263
Figure PCTCN2014091923-appb-000264
Figure PCTCN2014091923-appb-000265
Figure PCTCN2014091923-appb-000266
那么,可以得出:
Figure PCTCN2014091923-appb-000267
其中,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵。
类似地,对接收信号
Figure PCTCN2014091923-appb-000268
进行迫零均衡可以得到
Figure PCTCN2014091923-appb-000269
其中,
Figure PCTCN2014091923-appb-000270
表示迫零均衡矩阵。
Figure PCTCN2014091923-appb-000271
的表达式中,等号右边最后一项即为第二预编码块对第一预编码块的干扰,为了消除此项的影响,需要联合所有的
Figure PCTCN2014091923-appb-000272
进行解扩操作:
Figure PCTCN2014091923-appb-000273
其中*表示对复数取共轭的操作。由与扩展码间的正交性,这里的解扩操作能够将
Figure PCTCN2014091923-appb-000274
表达式的等号右侧的第二项和第四项置零。于是有
Figure PCTCN2014091923-appb-000275
Figure PCTCN2014091923-appb-000276
分别取实部和虚部得到
Figure PCTCN2014091923-appb-000277
Figure PCTCN2014091923-appb-000278
如果令
Figure PCTCN2014091923-appb-000279
则可以得出:
Figure PCTCN2014091923-appb-000280
Figure PCTCN2014091923-appb-000281
通过联立R1、Re{G1}和Im{G1}三式,可以得到:
Figure PCTCN2014091923-appb-000282
这样,便通过下式能够确定解码后的信号:
Figure PCTCN2014091923-appb-000283
类似地,针对第二预编码块,也可以采用同样的方法得到下式:
Figure PCTCN2014091923-appb-000284
换句话说,也可以理解为,在图4所示的发送方式下,可通过此方式确定在接收端的信号恢复矩阵。
这样,上述的理论推导过程可以用于确定本发明的一个实施例的信号发送和信号处理的方式。
在另一种情形下,假设发送侧引入了第一干扰预抵消量和第二干扰预抵消量。类似于上面的推导,可以得到下式:
Figure PCTCN2014091923-appb-000285
在该另一种情形下,期望可能简化接收端的操作,即期望满足下式:
Figure PCTCN2014091923-appb-000286
这样,接收端不需要信号恢复矩阵便可以确定解码后的信号。那么,结 合上面的两式,能够确定
Figure PCTCN2014091923-appb-000287
类似地,针对第二预编码块,也可以采用同样的方法得到下式:
Figure PCTCN2014091923-appb-000288
这样,便可以得到本发明的另一个实施例的信号发送和处理的方式,如图5所示。
应注意,上述的理论推导过程仅以第一预编码块为例进行分析,对第二预编码块的分析类似,为避免重复,这里不再赘述。
图7是本发明一个实施例的发送信号的方法的流程图。图7所示的方法包括:
110,获取N/2个第一符号,其中,N为偶数。
120,利用扩展码组,根据所述N/2个第一符号生成N个第二符号。
130,对所述N个第二符号进行预编码处理,分别得到N个第三符号。
140,将所述N个第三符号分别映射到预编码块的N个边界资源元素RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上。
150,根据所述映射之后的第三符号生成FBMC信号。
160,发送所述FBMC信号。
这样,本发明实施例中,利用扩展码组将N/2个第一符号转换成N个第二符号,再通过预编码处理并生成FBMC信号,从而能够消除频域临界位置的干扰。
可理解,若N个边界RE位于边界子载波上,那么边界RE为频域边界。若N个边界RE位于边界符号上,那么边界RE为时域边界。
可选地,边界符号可以为边界滤波器组多载波(Filter Bank Multi Carrier, FBMC)符号。边界子载波为边界FBMC子载波。
可选地,本发明实施例中,N/2个第一符号可以由实数构成,或者也可以由虚数构成,或者也可以由复数构成,或者也可以是虚实交替的。本发明对此不作限定。
具体地,130中可以采用预编码矩阵,将N个第二符号进行预编码处理,分别得到N个第三符号。
可理解,本发明实施例中,也可以是先由将所述N个第二符号分别映射到与N个边界RE相邻的N个RE上。然后再采用预编码矩阵,对映射之后的第二符号进行预编码处理,分别得到N个第三符号。本发明对此不作限定。
其中,预编码处理是指:将所述预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号。
可理解,图7中的方法可以用于对第一预编码块的符号进行处理后并发送FBMC信号,相应地,预编码矩阵为第一预编码矩阵P1。也可以用于对第二预编码块的符号进行处理后并发送FBMC信号,相应地,预编码矩阵为第二预编码矩阵P2
可选地,作为一个实施例,
图7所示的方法还可以包括:
获取N个第四符号;
对所述N个第四符号进行预编码处理,分别得到N个第五符号;
将所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
进一步地,150包括:根据所述映射之后的第三符号和所述映射之后的第五符号生成所述FBMC信号。
其中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。所述利用扩展码组,根据所述N/2个第一符号生成N个第二符号,包括:
利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;
对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
所述采用预编码矩阵,对所述N个第二符号进行预编码处理,分别得到N个第三符号,包括:将所述预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号。
所述采用所述预编码矩阵,对所述N个第四符号进行预编码处理,分别得到N个第五符号,包括:将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的。
相应地,对于第一预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000289
所述预编码矩阵表示为P1
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000290
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000291
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000292
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000293
所述N个第五符号表示为:
Figure PCTCN2014091923-appb-000294
并且满足:
Figure PCTCN2014091923-appb-000295
其中,T表示转置,
Figure PCTCN2014091923-appb-000296
表示实数域,
Figure PCTCN2014091923-appb-000297
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。即L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000298
所述N个第二符号可表示为:
Figure PCTCN2014091923-appb-000299
所述预编码矩阵表示为P2
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000300
所述N个第四符号可表示为:
Figure PCTCN2014091923-appb-000301
所述N个第五符号可表示为:
Figure PCTCN2014091923-appb-000302
并且满足:
Figure PCTCN2014091923-appb-000303
其中,T表示转置,
Figure PCTCN2014091923-appb-000304
表示实数域,
Figure PCTCN2014091923-appb-000305
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L2表示所述预编码块的发送信号的层数。即L2表示第二预编码块的发送信号的层数。
可选地,作为另一个实施例,
图7所示的方法还可以包括:
获取N个第四符号;
利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号;
根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号;
采用所述预编码矩阵对所述N个第六符号进行预编码处理,得到N个第七符号;
将所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
进一步地,150包括:根据所述映射之后的第三符号和所述映射之后的第七符号生成所述FBMC信号;
其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所述N/2个第一符号和所述N个第四符号确定的。
其中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。
所述利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号,包括:
将所述N/2个第一符号的每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;
利用所述每个扩展码依次对所述N/2个第八符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;
对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号;
所述根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号,包括:
将所述N个第四符号中的每一个第四符号加上所述N个第二干扰预抵消量中对应的第二干扰预抵消量,生成所述N个第六符号。
所述对所述N个第二符号进行预编码处理,得到N个第三符号,包括:将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号。
所述对所述N个第六符号进行预编码处理,得到N个第七符号,包括:将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
可选地,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的。可选地,N个实数符号可以是N个第一OQAM符号。
相应地,对于第一预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000306
所述预编码矩阵表示为P1
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000307
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000308
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000309
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000310
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000311
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000312
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000313
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000314
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000315
并且满足:
Figure PCTCN2014091923-appb-000316
其中,T表示转置,
Figure PCTCN2014091923-appb-000317
表示实数域,
Figure PCTCN2014091923-appb-000318
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。即L1表示第一预编码块的发送信号的层数。
具体地,
Figure PCTCN2014091923-appb-000319
所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000320
和所述N个第二干扰预抵消量ΔS1根据下式确定:
Figure PCTCN2014091923-appb-000321
其中,
Figure PCTCN2014091923-appb-000322
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000323
其中,以图2所示的情形为例,上述多路复用响应系数矩阵A1和A2具有如下形式:
Figure PCTCN2014091923-appb-000324
Figure PCTCN2014091923-appb-000325
Figure PCTCN2014091923-appb-000326
αkl(k=1,2,3;l=1,2,...)为纯虚数。
可以理解,对于任意一个由复数构成的
Figure PCTCN2014091923-appb-000327
来说,Re{X}由实数构成,且Im{X}由实数构成。具体地,若X为复数标量,则Re{X}和Im{X}均为实数标量。若X为复数向量,则Re{X}和Im{X}均为实数向量。
类似地,对于第二预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000328
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000329
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000330
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000331
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000332
所述预编码矩阵表示为P2
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000333
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000334
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000335
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000336
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000337
并且满足:
Figure PCTCN2014091923-appb-000338
其中,T表示转置,
Figure PCTCN2014091923-appb-000339
表示实数域,
Figure PCTCN2014091923-appb-000340
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L2表示所述预编码块的发送信号的层数。即L2表示第二预编码块的发送信号的层数。
具体地,所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000341
和所述N个第二干扰预抵消 量ΔS2根据下式确定:
Figure PCTCN2014091923-appb-000342
其中,
Figure PCTCN2014091923-appb-000343
Figure PCTCN2014091923-appb-000344
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A3和A4为与滤波器的设置有关的多路复用响应系数矩阵,C2表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000345
其中,以图2所示的情形为例,上述多路复用响应系数矩阵A3和A4具有如下形式:
Figure PCTCN2014091923-appb-000346
Figure PCTCN2014091923-appb-000347
Figure PCTCN2014091923-appb-000348
αkl(k=1,2,3;l=1,2,...)为纯虚数。
另外,还可以看出,对于不同的预编码块来说,扩展码矩阵C1和扩展码矩阵C2的区别只在于分块矩阵的维度不同。该维度与预编码块的发送信号的层数有关。
应注意,本发明实施例中,不考虑噪声的影响。
可理解,图7所示的方法可以由前述的设备100执行。
图8是本发明一个实施例的处理信号的方法的流程图。图8所示的方法方法包括:
210,接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数。
220,对所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号。
230,利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号,对所述N个第四信号进行取有效部分得到N个第六信号。
240,根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
本发明实施例中,在接收侧利用扩展码组进行解扩操作,能够消除预编码块之间的干扰,从而确定解码后的信号。
可理解,若N个边界RE位于边界子载波上,那么边界RE为频域边界。若N个边界RE位于边界符号上,那么边界RE为时域边界。
可选地,边界符号可以为边界滤波器组多载波(Filter Bank Multi Carrier,FBMC)符号。边界子载波可以为边界FBMC子载波。
可理解,图8的方法可以用于对第一预编码块的信号进行解码处理。也可以用于对第二预编码块的信号进行解码处理。
这里,所述取有效部分包括:取实部,或,取虚部,或,按照RE的位置进行虚实交替地取。
本发明实施例以取实部为例进行阐述。
具体地,对于第一预编码块来说,所接收的所述N个第一信号可表示为:
Figure PCTCN2014091923-appb-000349
所述N个第二信号可表示为:
Figure PCTCN2014091923-appb-000350
其中,T表示转置,
Figure PCTCN2014091923-appb-000351
表示复数域,L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所接收的所述N个第一信号可表示为:
Figure PCTCN2014091923-appb-000352
所述N个第二信号可表示为:
Figure PCTCN2014091923-appb-000353
其中,T表示转置,
Figure PCTCN2014091923-appb-000354
表示复数域,L2表示第二预编码块的发送信号的层数。
可选地,作为一个实施例,所述对所述N个第一信号进行均衡得到N个第三信号,并对所述N的第二信号进行均衡得到N个第四信号,包括:
将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述N个第三信号;
将第二均衡矩阵与所述N个第二信号中的每个第二信号相乘,得到所述N个第四信号。
例如,第一均衡矩阵可以为第一迫零均衡矩阵,第二均衡矩阵可以为第 二迫零均衡矩阵。
具体地,对于第一预编码块来说,所述第一均衡矩阵可表示为:
Figure PCTCN2014091923-appb-000355
所述第二均衡矩阵可表示为:W1
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000356
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000357
并且满足:
Figure PCTCN2014091923-appb-000358
Figure PCTCN2014091923-appb-000359
其中,T表示转置,
Figure PCTCN2014091923-appb-000360
表示复数域,L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所述第一均衡矩阵可表示为:
Figure PCTCN2014091923-appb-000361
所述第二均衡矩阵可表示为:W2
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000362
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000363
并且满足:
Figure PCTCN2014091923-appb-000364
Figure PCTCN2014091923-appb-000365
其中,T表示转置,
Figure PCTCN2014091923-appb-000366
表示复数域,L2表示第二预编码块的发送信号的层数。
其中,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。
所述利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号,包括:将所述N个第三信号依次与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。
进一步地,对所述N个第四信号进行取实部操作得到N个第六信号。
可以理解,将所述N个第三信号与第i个扩展码中的N个扩展码元素对应相乘以后再求和,便可以得到第i个第五信号。这里,i=1,2,...,N/2
具体地,对于第一预编码块来说,所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000367
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000368
并且满足:
Figure PCTCN2014091923-appb-000369
其中,
Figure PCTCN2014091923-appb-000370
表示实数域,
Figure PCTCN2014091923-appb-000371
表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素。
类似地,对于第二预编码块来说,所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000372
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000373
并且满足:
Figure PCTCN2014091923-appb-000374
可选地,所述根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号,包括:根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号。
具体地,对于第一预编码块来说,所述解码后的信号表示为:S1
Figure PCTCN2014091923-appb-000375
其中,S1由实数构成,
Figure PCTCN2014091923-appb-000376
由复数构成,且
Figure PCTCN2014091923-appb-000377
那么,可以利用下式计算
Figure PCTCN2014091923-appb-000378
和S1
Figure PCTCN2014091923-appb-000379
确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000380
Figure PCTCN2014091923-appb-000381
为所述预编码块的N个边界RE上的N个解码后的信号;这里,预编码块为第一预编码块。
其中,所述第五信号为G1=Re{G1}+jIm{G1},Q表示信号恢复矩阵。
类似地,对于第二预编码块来说,所述解码后的信号表示为:S2
Figure PCTCN2014091923-appb-000382
其中,S2由实数构成,
Figure PCTCN2014091923-appb-000383
由复数构成,且
Figure PCTCN2014091923-appb-000384
那么,可以利用下式计算
Figure PCTCN2014091923-appb-000385
和S2
Figure PCTCN2014091923-appb-000386
确定S2为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000387
Figure PCTCN2014091923-appb-000388
为所述预编码块的N个边界RE上的N个解码后的信号;
其中,所述第五信号为G2=Re{G2}+jIm{G2},Q表示信号恢复矩阵。
可选地,作为一个实施例,信号恢复矩阵与多路复用响应系数矩阵和扩展码矩阵有关。
具体地,对于第一预编码块来说,信号恢复矩阵可以表示为:
Figure PCTCN2014091923-appb-000389
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示第一预编码块的发送信号的层数,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000390
类似地,对于第二预编码块来说,信号恢复矩阵可以表示为:
Figure PCTCN2014091923-appb-000391
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A3和A4为与滤波器的设置有关的多路复用响应系数矩阵,L2表示第二预编码块的发送信号的层数,C2表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000392
可选地,作为另一个实施例,当编码过程中包括干扰预抵消量时,信号恢复矩阵可以表示为:Q=I。其中,I表示单位方阵。
可理解,当对应的发送端在预编码过程中引入了第一干扰预抵消量和第二干扰预抵消量时,信号恢复矩阵Q=I。并且与预编码块无关。
这样,本发明一个实施例中,在发送端一侧通过扩展码组能够消除预编码块之间的干扰;在接收端一侧解扩之后可以通过信号恢复矩阵确定解码后的信号。本发明另一个实施例中,在发送端一侧通过扩展码组能够消除预编码块之间的干扰,通过第一干扰预抵消量和第二干扰预抵消量消除由于扩展码组而引入的预编码块内部的干扰;在接收端一侧解扩之后可以确定解码后的信号。
可理解,图8所示的方法可以由前述的设备200执行。
图9是本发明另一个实施例的发送信号的设备的结构示意图。图9所示的设备400包括:处理器401、接收器402、发送器403和存储器404。
接收器402,用于获取N/2个第一符号,其中,N为偶数。
处理器401,用于利用扩展码组,根据接收器402获取的所述N/2个第一符号生成N个第二符号。
处理器401,还用于对N个第二符号进行预编码处理,分别得到N个第三符号。
处理器401,还用于将所述N个第三符号分别映射到预编码块的N个边界RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上。
处理器401,还用于根据映射之后的第三符号生成滤波器组多载波FBMC信号。
发送器403,用于发送处理器401生成的所述FBMC信号。
这样,本发明实施例中,利用扩展码组将N/2个第一符号转换成N个第二符号,再通过预编码处理并生成FBMC信号,从而能够消除频域临界位置的干扰。
设备400中的各个组件通过总线系统405耦合在一起,其中总线系统405除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统405。
上述本发明实施例揭示的方法可以应用于处理器401中,或者由处理器401实现。处理器401可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器401中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器401可以是通用处理器、数字信 号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器404,处理器401读取存储器404中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器404可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本文描述的系统和方法的存储器404旨在包括但不限于这些和任意其它适合类型的存储器。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微 控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
当在软件、固件、中间件或微码、程序代码或代码段中实现实施例时,它们可存储在例如存储部件的机器可读介质中。代码段可表示过程、函数、子程序、程序、例程、子例程、模块、软件分组、类、或指令、数据结构或程序语句的任意组合。代码段可通过传送和/或接收信息、数据、自变量、参数或存储器内容来稿合至另一代码段或硬件电路。可使用包括存储器共享、消息传递、令牌传递、网络传输等任意适合方式来传递、转发或发送信息、自变量、参数、数据等。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器单元中并通过处理器执行。存储器单元可以在处理器中或在处理器外部实现,在后一种情况下存储器单元可经由本领域己知的各种手段以通信方式耦合至处理器。
可理解,若N个边界RE位于边界子载波上,那么边界RE为频域边界。若N个边界RE位于边界符号上,那么边界RE为时域边界。
可选地,边界符号可以为边界滤波器组多载波(Filter Bank Multi Carrier,FBMC)符号。边界子载波为边界FBMC子载波。
可选地,本发明实施例中,N/2个第一符号可以由实数构成,或者也可以由虚数构成,或者也可以由复数构成,或者也可以是虚实交替的。本发明对此不作限定。
可选地,作为一个实施例,
接收器402,还用于获取N个第四符号;
处理器401,还用于对所述N个第四符号进行预编码处理,分别得到N个第五符号;还用于将所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上;还用于根据映射之后的第三符号和所述映射之后的第五符号生成所述FBMC信号。
可选地,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。处理器401具体用于:利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
可选地,处理器401具体用于:将所述预编码矩阵和所述N个第二符号 中的每个第二符号相乘,分别得到所述N个第三符号;并将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
可选地,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的。可选地,N个实数符号可以是N个第一OQAM符号。
相应地,对于第一预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000393
所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000394
所述N个第二符号可表示为:
Figure PCTCN2014091923-appb-000395
所述预编码矩阵表示为P1
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000396
所述N个第四符号可表示为:
Figure PCTCN2014091923-appb-000397
所述N个第五符号表示为:
Figure PCTCN2014091923-appb-000398
并且满足:
Figure PCTCN2014091923-appb-000399
其中,T表示转置,
Figure PCTCN2014091923-appb-000400
表示实数域,
Figure PCTCN2014091923-appb-000401
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。即L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000402
所述N个第二符号可表示为:
Figure PCTCN2014091923-appb-000403
所述预编码矩阵表示为P2
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000404
所述N个第四符号可表示为:
Figure PCTCN2014091923-appb-000405
所述N个第五符号可表示为:
Figure PCTCN2014091923-appb-000406
并且满足:
Figure PCTCN2014091923-appb-000407
其中,T表示转置,
Figure PCTCN2014091923-appb-000408
表示实数域,
Figure PCTCN2014091923-appb-000409
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L2表示所述预编码块的发送信号的层数。即L2表示第二预编码块的发送信号的层数。
可选地,作为另一个实施例,
接收器402,还用于获取N个第四符号;
处理器401,还用于利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号;还用于根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号;还用于对所述N个第六符号进行预编码处理,得到N个第七符号;还用于将所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上;还用于根据所述映射之后的第三符号和所述映射之后的第七符号生成所述FBMC信号;其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所 述N/2个第一符号和所述N个第四符号确定的。
可选地,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。处理器401,具体用于:将所述N/2个第一符号的每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;利用所述每个扩展码依次对所述N/2个第八符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号;将所述N个第四符号中的每一个第四符号加上所述N个第二干扰预抵消量中对应的第二干扰预抵消量,生成所述N个第六符号。
可选地,处理器401具体用于:将所述预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;并将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
可选地,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的。可选地,N个实数符号可以是N个第一OQAM符号。
相应地,对于第一预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000410
所述N/2个第一符号可表示为:
Figure PCTCN2014091923-appb-000411
应理解,若N个实数符号为实数标量,则第一符号为复数标量。若N个实数符号为实数向量,则第一符号为复数向量。
具体地,第一符号由复数构成,包括实部和虚部。那么,N/2个第一符号包括N/2个实部和N/2个虚部。并且由N/2个实部和N/2个虚部的集合所组成的N个符号即为N个实数符号。
也就是说,可以是将N个实数符号分成N/2组,其中所述N/2组中每组包括两个实数符号,然后再根据这N/2组一一对应地生成N/2个第一符号。具体地,可以将N/2组中的每组中的两个实数符号分别作为实部和虚部生成 第一符号。
这样,本发明实施例中,虽然将N个实数符号转换成了N/2个第一符号,但是,由于N个实数符号为实数,第一符号为复数,因此并没有造成频谱效率的损失。
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000412
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000413
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000414
所述预编码矩阵表示为P1
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000415
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000416
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000417
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000418
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000419
并且满足:
Figure PCTCN2014091923-appb-000420
其中,T表示转置,
Figure PCTCN2014091923-appb-000421
表示实数域,
Figure PCTCN2014091923-appb-000422
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。即L1表示第一预编码块的发送信号的层数。
具体地,所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000423
和所述N个第二干扰预抵消量ΔS1根据下式确定:
Figure PCTCN2014091923-appb-000424
其中,
Figure PCTCN2014091923-appb-000425
Figure PCTCN2014091923-appb-000426
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000427
其中,以图2所示的情形为例,上述多路复用响应系数矩阵A1和A2具有如下形式:
Figure PCTCN2014091923-appb-000428
Figure PCTCN2014091923-appb-000429
Figure PCTCN2014091923-appb-000430
αkl(k=1,2,3;l=1,2,...)为纯虚数。
可以理解,对于任意一个由复数构成的
Figure PCTCN2014091923-appb-000431
来说,Re{X}由实数构成,且Im{X}由实数构成。具体地,若X为复数标量,则Re{X}和Im{X}均为实数标量。若X为复数向量,则Re{X}和Im{X}均为实数向量。
类似地,对于第二预编码块来说,
所述N个实数符号可表示为:
Figure PCTCN2014091923-appb-000432
所述N/2个第一符号表示为:
Figure PCTCN2014091923-appb-000433
所述N/2个第一干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000434
所述N/2个第八符号表示为:
Figure PCTCN2014091923-appb-000435
所述N个第二符号表示为:
Figure PCTCN2014091923-appb-000436
所述预编码矩阵表示为P2
所述N个第三符号表示为:
Figure PCTCN2014091923-appb-000437
所述N个第四符号表示为:
Figure PCTCN2014091923-appb-000438
所述N个第二干扰预抵消量表示为:
Figure PCTCN2014091923-appb-000439
所述N个第六符号表示为:
Figure PCTCN2014091923-appb-000440
所述N个第七符号表示为:
Figure PCTCN2014091923-appb-000441
并且满足:
Figure PCTCN2014091923-appb-000442
其中,T表示转置,
Figure PCTCN2014091923-appb-000443
表示实数域,
Figure PCTCN2014091923-appb-000444
表示复数域,cni表示第i个扩展码的第n个扩展码元素,L2表示所述预编码块的发送信号的层数。即L2表示第二预编码块的发送信号的层数。
具体地,所述N/2个第一干扰预抵消量
Figure PCTCN2014091923-appb-000445
和所述N个第二干扰预抵消量ΔS2根据下式确定:
Figure PCTCN2014091923-appb-000446
其中,
Figure PCTCN2014091923-appb-000447
Figure PCTCN2014091923-appb-000448
为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A3和A4为与滤波器的设置有关的多路复用响应系数矩阵,C2表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000449
其中,以图2所示的情形为例,上述多路复用响应系数矩阵A3和A4具有如下形式:
Figure PCTCN2014091923-appb-000450
Figure PCTCN2014091923-appb-000451
Figure PCTCN2014091923-appb-000452
αkl(k=1,2,3;l=1,2,...)为纯虚数。
另外,还可以看出,对于不同的预编码块来说,扩展码矩阵C1和扩展码矩阵C2的区别只在于分块矩阵的维度不同。该维度与预编码块的发送信号的层数有关。
可选地,设备400可以为发射机。
图9所示的设备400能够实现前述的实施例所示的发送信号的方法,为避免重复,这里不再赘述。
图10是本发明另一个实施例的处理信号的设备的结构示意图。图10所 示的设备500包括:处理器501、接收器502、发送器503和存储器504。
接收器502,用于接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数;
处理器501,用于对接收器502接收的所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号;
处理器501,还用于利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号;对所述N个第四信号进行取有效部分得到N个第六信号;
处理器501,还用于根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
本发明实施例中,在接收侧利用扩展码组进行解扩操作,能够消除预编码块之间的干扰,从而确定解码后的信号。
设备500中的各个组件通过总线系统505耦合在一起,其中总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统505。
上述本发明实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编 程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器504,处理器501读取存储器504中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器504可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。本文描述的系统和方法的存储器504旨在包括但不限于这些和任意其它适合类型的存储器。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
当在软件、固件、中间件或微码、程序代码或代码段中实现实施例时,它们可存储在例如存储部件的机器可读介质中。代码段可表示过程、函数、子程序、程序、例程、子例程、模块、软件分组、类、或指令、数据结构或程序语句的任意组合。代码段可通过传送和/或接收信息、数据、自变量、参数或存储器内容来稿合至另一代码段或硬件电路。可使用包括存储器共享、消息传递、令牌传递、网络传输等任意适合方式来传递、转发或发送信息、自变量、参数、数据等。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器单元中并通过处理器执行。存储器单元可以在处理器中或在处理器外部实现,在后一种情况下存储器单元可经由本领域己知的各种手段以通信方式耦合至处理器。
可理解,若N个边界RE位于边界子载波上,那么边界RE为频域边界。若N个边界RE位于边界符号上,那么边界RE为时域边界。
可选地,边界符号可以为边界滤波器组多载波(Filter Bank Multi Carrier,FBMC)符号。边界子载波可以为边界FBMC符号。
可理解,所述取有效部分包括:取实部,或,取虚部,或,按照RE的位置进行虚实交替地取。
本发明实施例以取实部为例进行阐述。
可理解,图10的设备500可以用于对第一预编码块的信号进行解码处理。也可以用于对第二预编码块的信号进行解码处理。
具体地,对于第一预编码块来说,所接收的所述N个第一信号可表示为:
Figure PCTCN2014091923-appb-000453
所述N个第二信号可表示为:
Figure PCTCN2014091923-appb-000454
其中,T表示转置,
Figure PCTCN2014091923-appb-000455
表示复数域,L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所接收的所述N个第一信号可表示为:
Figure PCTCN2014091923-appb-000456
所述N个第二信号可表示为:
Figure PCTCN2014091923-appb-000457
其中,T表示转置,
Figure PCTCN2014091923-appb-000458
表示复数域,L2表示第二预编码块的发送信号的层数。
可选地,处理器501具体用于:将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述N个第三信号;将第二均衡矩阵与所述N 个第二信号中的每个第二信号相乘,得到所述N个第四信号。
例如,第一均衡矩阵可以为第一迫零均衡矩阵,第二均衡矩阵可以为第二迫零均衡矩阵。
具体地,对于第一预编码块来说,所述第一均衡矩阵可表示为:
Figure PCTCN2014091923-appb-000459
所述第二均衡矩阵可表示为:W1
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000460
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000461
并且满足:
Figure PCTCN2014091923-appb-000462
Figure PCTCN2014091923-appb-000463
其中,T表示转置,
Figure PCTCN2014091923-appb-000464
表示复数域,L1表示第一预编码块的发送信号的层数。
类似地,对于第二预编码块来说,所述第一均衡矩阵可表示为:
Figure PCTCN2014091923-appb-000465
所述第二均衡矩阵可表示为:W2
所述N个第三信号表示为:
Figure PCTCN2014091923-appb-000466
所述N个第四信号表示为:
Figure PCTCN2014091923-appb-000467
并且满足:
Figure PCTCN2014091923-appb-000468
Figure PCTCN2014091923-appb-000469
其中,T表示转置,
Figure PCTCN2014091923-appb-000470
表示复数域,L2表示第二预编码块的发送信号的层数。
可选地,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N。处理器501,具体用于:将所述N个第三信号与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。进一步地,对所述N个第四信号进行取实部操作得到N个第六信号。
可以理解,将所述N个第三信号与第i个扩展码中的N个扩展码元素对应相乘以后再求和,便可以得到第i个第五信号。这里,i=1,2,...,N/2
具体地,对于第一预编码块来说,所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000471
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000472
并且满足:
Figure PCTCN2014091923-appb-000473
其中,
Figure PCTCN2014091923-appb-000474
表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素。
类似地,对于第二预编码块来说,所述N/2个第五信号表示为:
Figure PCTCN2014091923-appb-000475
所述N个第六信号表示为:
Figure PCTCN2014091923-appb-000476
并且满足:
Figure PCTCN2014091923-appb-000477
可选地,所述处理器501具体用于:根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号。
具体地,对于第一预编码块来说,所述解码后的信号表示为:S1
Figure PCTCN2014091923-appb-000478
其中,S1由实数构成,
Figure PCTCN2014091923-appb-000479
由复数构成,且
Figure PCTCN2014091923-appb-000480
那么,可以利用下式计算
Figure PCTCN2014091923-appb-000481
和S1
Figure PCTCN2014091923-appb-000482
确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000483
Figure PCTCN2014091923-appb-000484
为所述预编码块的N个边界RE上的N个解码后的信号;这里,预编码块为第一预编码块。
其中,所述第五信号为G1=Re{G1}+jIm{G1},Q表示信号恢复矩阵。
类似地,对于第二预编码块来说,所述解码后的信号表示为:S2
Figure PCTCN2014091923-appb-000485
其中,S2由实数构成,
Figure PCTCN2014091923-appb-000486
由复数构成,且
Figure PCTCN2014091923-appb-000487
那么,可以利用下式计算
Figure PCTCN2014091923-appb-000488
和S2
Figure PCTCN2014091923-appb-000489
确定S2为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
Figure PCTCN2014091923-appb-000490
Figure PCTCN2014091923-appb-000491
为所述预编码块的N个边界RE上的N个解码后的信号;其中,所述预编码块为第二预编码块。
其中,所述第五信号为G2=Re{G2}+jIm{G2},Q表示信号恢复矩阵。
可选地,作为一个实施例,信号恢复矩阵与多路复用响应系数矩阵和扩展码矩阵有关。
具体地,对于第一预编码块来说,信号恢复矩阵可以表示为:
Figure PCTCN2014091923-appb-000492
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示第一预编码块的发送信号的层数,C1表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000493
类似地,对于第二预编码块来说,信号恢复矩阵可以表示为:
Figure PCTCN2014091923-appb-000494
其中,T表示转置,I表示单位方阵,O表示全零矩阵,A3和A4为与滤波器的设置有关的多路复用响应系数矩阵,L2表示第二预编码块的发送信号的层数,C2表示扩展码矩阵,并且
Figure PCTCN2014091923-appb-000495
可选地,作为另一个实施例,当编码过程中包括干扰预抵消量时,信号恢复矩阵可以表示为:Q=I。其中,I表示单位方阵。
可理解,当对应的发送端在预编码过程中引入了第一干扰预抵消量和第二干扰预抵消量时,信号恢复矩阵Q=I。并且与预编码块无关。
可选地,图10中的设备500可以为接收机。
图10所示的设备500能够实现前述的实施例所示的处理信号的方法,为避免重复,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各 示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (42)

  1. 一种发送信号的设备,其特征在于,包括:
    获取单元,用于获取N/2个第一符号,其中,N为偶数;
    第一生成单元,用于利用扩展码组,根据所述获取单元获取的所述N/2个第一符号生成N个第二符号;
    预编码单元,用于对所述第一生成单元生成的所述N个第二符号进行预编码处理,分别得到N个第三符号;
    映射单元,用于将所述预编码单元得到的所述N个第三符号分别映射到预编码块的N个边界资源元素RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上;
    第二生成单元,用于根据所述映射单元映射之后的第三符号生成滤波器组多载波FBMC信号;
    发送单元,用于发送所述第二生成单元生成的所述FBMC信号。
  2. 根据权利要求1所述的设备,其特征在于,
    所述获取单元,还用于获取N个第四符号;
    所述预编码单元,还用于对所述获取单元获取的所述N个第四符号进行预编码处理,分别得到N个第五符号;
    所述映射单元,还用于将所述预编码单元得到的所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
    所述第二生成单元,具体用于根据所述映射单元映射之后的第三符号和所述映射单元映射之后的第五符号生成所述FBMC信号。
  3. 根据权利要求2所述的设备,其特征在于,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
    所述第一生成单元,具体用于:
    利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;
    对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
  4. 根据权利要求2或3所述的设备,其特征在于,所述预编码单元, 具体用于:
    将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
    并将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
  5. 根据权利要求3或4所述的设备,其特征在于,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
    所述预编码矩阵表示为P1
    所述N/2个第一符号表示为:
    Figure PCTCN2014091923-appb-100001
    所述N个第二符号表示为:
    Figure PCTCN2014091923-appb-100002
    所述N个第三符号表示为:
    Figure PCTCN2014091923-appb-100003
    所述N个第四符号表示为:
    Figure PCTCN2014091923-appb-100004
    所述N个第五符号表示为:
    Figure PCTCN2014091923-appb-100005
    并且满足:
    Figure PCTCN2014091923-appb-100006
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100007
    表示实数域,
    Figure PCTCN2014091923-appb-100008
    表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
  6. 根据权利要求1所述的设备,其特征在于,
    所述获取单元,还用于获取N个第四符号;
    所述第一生成单元,具体用于利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号;
    所述第一生成单元,还用于根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号;
    所述预编码单元,还用于对所述N个第六符号进行预编码处理,得到N个第七符号;
    所述映射单元,还用于将所述预编码单元得到的所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
    所述第二生成单元,具体用于根据所述映射单元映射之后的第三符号和所述映射单元映射之后的第七符号生成所述FBMC信号;
    其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所述N/2个第一符号和所述N个第四符号确定的。
  7. 根据权利要求6所述的设备,其特征在于,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
    所述第一生成单元,具体用于:
    将所述N/2个第一符号的每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;
    利用所述每个扩展码依次对所述N/2个第八符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;
    对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号;
    将所述N个第四符号中的每一个第四符号加上所述N个第二干扰预抵消量中对应的第二干扰预抵消量,生成所述N个第六符号。
  8. 根据权利要求6或7所述的设备,其特征在于,所述预编码单元,具体用于:
    将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
    并将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
  9. 根据权利要求7或8所述的设备,其特征在于,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
    所述预编码矩阵表示为P1
    所述N/2个第一符号表示为:
    Figure PCTCN2014091923-appb-100009
    所述N/2个第一干扰预抵消量表示为:
    Figure PCTCN2014091923-appb-100010
    所述N/2个第八符号表示为:
    Figure PCTCN2014091923-appb-100011
    所述N个第二符号表示为:
    Figure PCTCN2014091923-appb-100012
    所述N个第三符号表示为:
    Figure PCTCN2014091923-appb-100013
    所述N个第四符号表示为:
    Figure PCTCN2014091923-appb-100014
    所述N个第二干扰预抵消量表示为:
    Figure PCTCN2014091923-appb-100015
    所述N个第六符号表示为:
    Figure PCTCN2014091923-appb-100016
    所述N个第七符号表示为:
    Figure PCTCN2014091923-appb-100017
    并且满足:
    Figure PCTCN2014091923-appb-100018
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100019
    表示实数域,
    Figure PCTCN2014091923-appb-100020
    表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
  10. 根据权利要求9所述的设备,其特征在于,
    Figure PCTCN2014091923-appb-100021
    所述N/2个第一干扰预抵消量
    Figure PCTCN2014091923-appb-100022
    和所述N个第二干扰预抵消量ΔS1根据下式确定:
    Figure PCTCN2014091923-appb-100023
    其中,
    Figure PCTCN2014091923-appb-100024
    为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
    Figure PCTCN2014091923-appb-100025
  11. 根据权利要求1至10所述的设备,其特征在于,所述设备为发射机。
  12. 一种处理信号的设备,其特征在于,包括:
    接收单元,用于接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数;
    均衡单元,用于对所述接收单元接收的所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信 号;
    处理单元,用于利用扩展码组对所述均衡单元得到的所述N个第三信号进行解扩操作得到N/2个第五信号;对所述均衡单元得到的所述N个第四信号进行取有效部分得到N个第六信号;
    确定单元,用于根据所述处理单元得到的所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
  13. 根据权利要求12所述的设备,其特征在于,所述均衡单元,具体用于:
    将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述N个第三信号;
    将第二均衡矩阵与所述N个第二信号中的每个第二信号相乘,得到所述N个第四信号。
  14. 根据权利要求12或13所述的设备,其特征在于,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
    所述处理单元,具体用于:
    将所述N个第三信号依次与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。
  15. 根据权利要求12至14任一项所述的设备,其特征在于,所述确定单元,具体用于:
    根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号。
  16. 根据权利要求12至15任一项所述的设备,其特征在于,所述取有效部分包括:
    取实部,或,取虚部,或,按照RE的位置进行虚实交替地取。
  17. 根据权利要求13所述的设备,其特征在于,
    所述N个第一信号表示为:
    Figure PCTCN2014091923-appb-100026
    所述N个第二信号表示为:
    Figure PCTCN2014091923-appb-100027
    所述第一均衡矩阵表示为:
    Figure PCTCN2014091923-appb-100028
    所述第二均衡矩阵表示为:W1
    所述N个第三信号表示为:
    Figure PCTCN2014091923-appb-100029
    所述N个第四信号表示为:
    Figure PCTCN2014091923-appb-100030
    并且满足:
    Figure PCTCN2014091923-appb-100031
    Figure PCTCN2014091923-appb-100032
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100033
    表示复数域,L1表示所述预编码块的发送信号的层数。
  18. 根据权利要求14所述的设备,其特征在于,所述有效部分为实部,所述N/2个第五信号表示为:
    Figure PCTCN2014091923-appb-100034
    所述N个第六信号表示为:
    Figure PCTCN2014091923-appb-100035
    并且满足:
    Figure PCTCN2014091923-appb-100036
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100037
    表示实数域,
    Figure PCTCN2014091923-appb-100038
    表示复数域,L1表示所述预编码块的发送信号的层数,Re{·}表示取实部,
    Figure PCTCN2014091923-appb-100039
    表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素,
    Figure PCTCN2014091923-appb-100040
    表示所述N个第三信号,
    Figure PCTCN2014091923-appb-100041
    表示所述N个第四信号。
  19. 根据权利要求15所述的设备,其特征在于,
    所述解码后的信号表示为:S1
    Figure PCTCN2014091923-appb-100042
    其中S1由实数构成,
    Figure PCTCN2014091923-appb-100043
    由复数构成,且
    Figure PCTCN2014091923-appb-100044
    所述确定单元,具体用于:
    利用下式计算
    Figure PCTCN2014091923-appb-100045
    和S1
    Figure PCTCN2014091923-appb-100046
    确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
    Figure PCTCN2014091923-appb-100047
    Figure PCTCN2014091923-appb-100048
    为所述预编码块的N个边界RE上的N个解码后的信号;
    其中,G1=Re{G1}+jIm{G1}表示所述第五信号,R1表示所述第六信号,
    Figure PCTCN2014091923-appb-100049
    为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,Q表示信号恢复矩阵。
  20. 根据权利要求19所述的设备,其特征在于,所述信号恢复矩阵表示为:
    Figure PCTCN2014091923-appb-100050
    其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示所述预编码块的发送信号的层数,C1表示扩展码矩阵,并且
    Figure PCTCN2014091923-appb-100051
  21. 根据权利要求19所述的设备,其特征在于,当编码过程中包括干扰预抵消量时,
    所述信号恢复矩阵表示为:
    Q=I;
    其中,I表示单位方阵。
  22. 根据权利要求12至21任一项所述的设备,其特征在于,所述设备为接收机。
  23. 一种发送信号的方法,其特征在于,包括:
    获取N/2个第一符号,其中,N为偶数;
    利用扩展码组,根据所述N/2个第一符号生成N个第二符号;
    对所述N个第二符号进行预编码处理,分别得到N个第三符号;
    将所述N个第三符号分别映射到预编码块的N个边界资源元素RE上,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上;
    根据所述映射之后的第三符号生成滤波器组多载波FBMC信号;
    发送所述FBMC信号。
  24. 根据权利要求23所述的方法,其特征在于,还包括:
    获取N个第四符号;
    对所述N个第四符号进行预编码处理,分别得到N个第五符号;
    将所述N个第五符号分别映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
    所述根据所述映射之后的第三符号生成FBMC信号,包括:
    根据所述映射之后的第三符号和所述映射之后的第五符号生成所述FBMC信号。
  25. 根据权利要求24所述的方法,其特征在于,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
    所述利用扩展码组,根据所述N/2个第一符号生成N个第二符号,包括:
    利用所述每个扩展码依次对所述N/2个第一符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第一扩展符号串;
    对所述N/2个长度为N的第一扩展符号串的每个分量分别进行求和,得到所述N个第二符号。
  26. 根据权利要求24或26所述的方法,其特征在于,
    所述对所述N个第二符号进行预编码处理,分别得到N个第三符号,包括:将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
    所述对所述N个第四符号进行预编码处理,分别得到N个第五符号,包括:将所述预编码矩阵和所述N个第四符号中的每个第四符号相乘,分别得到所述N个第五符号。
  27. 根据权利要求25或26所述的方法,其特征在于,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
    所述预编码矩阵表示为P1
    所述N/2个第一符号表示为:
    Figure PCTCN2014091923-appb-100052
    所述N个第二符号表示为:
    Figure PCTCN2014091923-appb-100053
    所述N个第三符号表示为:
    Figure PCTCN2014091923-appb-100054
    所述N个第四符号表示为:
    Figure PCTCN2014091923-appb-100055
    所述N个第五符号表示为:
    Figure PCTCN2014091923-appb-100056
    并且满足:
    Figure PCTCN2014091923-appb-100057
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100058
    表示实数域,
    Figure PCTCN2014091923-appb-100059
    表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
  28. 根据权利要求23所述的方法,其特征在于,还包括:
    获取N个第四符号;
    利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号;
    根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号;
    对所述N个第六符号进行预编码处理,得到N个第七符号;
    将所述N个第七符号映射到所述预编码块内与所述N个边界RE相邻的N个RE上;
    所述根据所述映射之后的第三符号生成FBMC信号,包括:
    根据所述映射之后的第三符号和所述映射之后的第七符号生成所述FBMC信号;
    其中,所述N/2个第一干扰预抵消量和所述N个第二干扰预抵消量是根据所述N/2个第一符号和所述N个第四符号确定的。
  29. 根据权利要求28所述的方法,其特征在于,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
    所述利用所述扩展码组,根据所述N/2个第一符号和N/2个第一干扰预抵消量生成所述N个第二符号,包括:
    将所述N/2个第一符号的每个第一符号加上所述N/2个第一干扰预抵消量中对应的第一干扰预抵消量,生成N/2个第八符号;
    利用所述每个扩展码依次对所述N/2个第八符号中的每个符号进行扩展操作,分别得到N/2个长度为N的第二扩展符号串;
    对所述N/2个长度为N的第二扩展符号串的每个分量分别进行求和,得到所述N个第二符号;
    所述根据所述N个第四符号和N个第二干扰预抵消量生成所述N个第六符号,包括:
    将所述N个第四符号中的每一个第四符号加上所述N个第二干扰预抵 消量中对应的第二干扰预抵消量,生成所述N个第六符号。
  30. 根据权利要求28或29所述的方法,其特征在于,
    所述对所述N个第二符号进行预编码处理,得到N个第三符号,包括:将预编码矩阵和所述N个第二符号中的每个第二符号相乘,分别得到所述N个第三符号;
    所述对所述N个第六符号进行预编码处理,得到N个第七符号,包括:将所述预编码矩阵和所述N个第六符号中的每个第六符号相乘,分别得到所述N个第七符号。
  31. 根据权利要求29或30所述的方法,其特征在于,所述N/2个第一符号是由复数构成的,并且所述N/2个第一符号是根据N个实数符号所确定的,
    所述预编码矩阵表示为P1
    所述N/2个第一符号表示为:
    Figure PCTCN2014091923-appb-100060
    所述N/2个第一干扰预抵消量表示为:
    Figure PCTCN2014091923-appb-100061
    所述N/2个第八符号表示为:
    Figure PCTCN2014091923-appb-100062
    所述N个第二符号表示为:
    Figure PCTCN2014091923-appb-100063
    所述N个第三符号表示为:
    Figure PCTCN2014091923-appb-100064
    所述N个第四符号表示为:
    Figure PCTCN2014091923-appb-100065
    所述N个第二干扰预抵消量表示为:
    Figure PCTCN2014091923-appb-100066
    所述N个第六符号表示为:
    Figure PCTCN2014091923-appb-100067
    所述N个第七符号表示为:
    Figure PCTCN2014091923-appb-100068
    并且满足:
    Figure PCTCN2014091923-appb-100069
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100070
    表示实数域,
    Figure PCTCN2014091923-appb-100071
    表示复数域,cni表示第i个扩展码的第n个扩展码元素,L1表示所述预编码块的发送信号的层数。
  32. 根据权利要求31所述的方法,其特征在于,
    Figure PCTCN2014091923-appb-100072
    所述N/2个第一干扰预抵消量
    Figure PCTCN2014091923-appb-100073
    和所述N个第二干扰预抵消量ΔS1根据下式确定:
    Figure PCTCN2014091923-appb-100074
    其中,
    Figure PCTCN2014091923-appb-100075
    为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,C1表示扩展码矩阵,并且
    Figure PCTCN2014091923-appb-100076
  33. 一种处理信号的方法,其特征在于,包括:
    接收预编码块的N个边界资源元素RE上的N个第一信号,并接收所述预编码块内与所述N个边界RE相邻的N个RE上的N个第二信号,其中,所述N个边界RE位于所述预编码块的边界子载波上或所述预编码块的边界符号上,N为偶数;
    对所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号;
    利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号,对所述N个第四信号进行取有效部分得到N个第六信号;
    根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号。
  34. 根据权利要求33所述的方法,其特征在于,所述对所述N个第一信号进行均衡处理得到N个第三信号,并对所述N的第二信号进行均衡处理得到N个第四信号,包括:
    将第一均衡矩阵与所述N个第一信号中的每个第一信号相乘,得到所述N个第三信号;
    将第二均衡矩阵与所述N个第二信号中的每个第二信号相乘,得到所述N个第四信号。
  35. 根据权利要求33或34所述的方法,其特征在于,所述扩展码组包括N/2个扩展码,所述N/2个扩展码中的每个扩展码的长度为N,
    所述利用扩展码组对所述N个第三信号进行解扩操作得到N/2个第五信号,包括:
    将所述N个第三信号依次与所述每个扩展码的对应的扩展码元素的共轭相乘并求和,得到所述N/2个第五信号。
  36. 根据权利要求33至35任一项所述的方法,其特征在于,所述根据所述N/2个第五信号和所述N个第六信号,确定解码后的信号,包括:
    根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号。
  37. 根据权利要求33至36任一项所述的方法,其特征在于,所述取有效部分包括:
    取实部,或,取虚部,或,按照RE的位置进行虚实交替地取。
  38. 根据权利要求34所述的方法,其特征在于,
    所述N个第一信号表示为:
    Figure PCTCN2014091923-appb-100077
    所述N个第二信号表示为:
    Figure PCTCN2014091923-appb-100078
    所述第一均衡矩阵表示为:
    Figure PCTCN2014091923-appb-100079
    所述第二均衡矩阵表示为:W1
    所述N个第三信号表示为:
    Figure PCTCN2014091923-appb-100080
    所述N个第四信号表示为:
    Figure PCTCN2014091923-appb-100081
    并且满足:
    Figure PCTCN2014091923-appb-100082
    Figure PCTCN2014091923-appb-100083
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100084
    表示复数域,L1表示所述预编码块的发送信号的层数。
  39. 根据权利要求35所述的方法,其特征在于,所述有效部分为实部,所述N/2个第五信号表示为:
    Figure PCTCN2014091923-appb-100085
    所述N个第六信号表示为:
    Figure PCTCN2014091923-appb-100086
    并且满足:
    Figure PCTCN2014091923-appb-100087
    其中,T表示转置,
    Figure PCTCN2014091923-appb-100088
    表示实数域,
    Figure PCTCN2014091923-appb-100089
    表示复数域,L1表示所述预编码 块的发送信号的层数,Re{·}表示取实部,
    Figure PCTCN2014091923-appb-100090
    表示cnk的共轭,cni表示第i个扩展码的第n个扩展码元素,
    Figure PCTCN2014091923-appb-100091
    表示所述N个第三信号,
    Figure PCTCN2014091923-appb-100092
    表示所述N个第四信号。
  40. 根据权利要求36所述的方法,其特征在于,
    所述解码后的信号表示为:S1
    Figure PCTCN2014091923-appb-100093
    其中S1由实数构成,
    Figure PCTCN2014091923-appb-100094
    由复数构成,且
    Figure PCTCN2014091923-appb-100095
    所述根据所述N/2个第五信号和所述N个第六信号,采用信号恢复矩阵,确定解码后的信号,包括:
    利用下式计算
    Figure PCTCN2014091923-appb-100096
    和S1
    Figure PCTCN2014091923-appb-100097
    确定S1为所述预编码块内与N个边界RE相邻的N个RE上的N个解码后的信号,确定
    Figure PCTCN2014091923-appb-100098
    Figure PCTCN2014091923-appb-100099
    为所述预编码块的N个边界RE上的N个解码后的信号;
    其中,G1=Re{G1}+jIm{G1}表示所述第五信号,R1表示所述第六信号,
    Figure PCTCN2014091923-appb-100100
    为虚数单位,Re{·}表示取实部,Im{·}表示取虚部,Q表示信号恢复矩阵。
  41. 根据权利要求40所述的方法,其特征在于,所述信号恢复矩阵表示为:
    Figure PCTCN2014091923-appb-100101
    其中,T表示转置,I表示单位方阵,O表示全零矩阵,A1和A2为与滤波器的设置有关的多路复用响应系数矩阵,L1表示所述预编码块的发送信号的层数,C1表示扩展码矩阵,并且
    Figure PCTCN2014091923-appb-100102
  42. 根据权利要求40所述的方法,其特征在于,当编码过程中包括干扰预抵消量时,
    所述信号恢复矩阵表示为:
    Q=I;
    其中,I表示单位方阵。
PCT/CN2014/091923 2014-11-21 2014-11-21 发送信号、处理信号的设备及方法 WO2016078089A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/091923 WO2016078089A1 (zh) 2014-11-21 2014-11-21 发送信号、处理信号的设备及方法
CN201480082734.7A CN107078994B (zh) 2014-11-21 2014-11-21 发送信号、处理信号的设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/091923 WO2016078089A1 (zh) 2014-11-21 2014-11-21 发送信号、处理信号的设备及方法

Publications (1)

Publication Number Publication Date
WO2016078089A1 true WO2016078089A1 (zh) 2016-05-26

Family

ID=56013104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091923 WO2016078089A1 (zh) 2014-11-21 2014-11-21 发送信号、处理信号的设备及方法

Country Status (2)

Country Link
CN (1) CN107078994B (zh)
WO (1) WO2016078089A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825862A (zh) * 2014-03-07 2014-05-28 华中科技大学 一种基于偏移正交幅度调制的滤波器组多载波方法
CN103888406A (zh) * 2014-03-28 2014-06-25 华中科技大学 一种滤波器组多载波系统的数据传输方法
CN104065461A (zh) * 2013-03-22 2014-09-24 华为技术有限公司 信号发送方法和信号发送设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2526667B1 (en) * 2010-01-22 2014-04-30 Sony Corporation OFDM generation and reception
TWI536778B (zh) * 2010-01-22 2016-06-01 新力股份有限公司 多載波資料傳輸系統中之正交分頻多工(ofdm)產生設備

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065461A (zh) * 2013-03-22 2014-09-24 华为技术有限公司 信号发送方法和信号发送设备
CN103825862A (zh) * 2014-03-07 2014-05-28 华中科技大学 一种基于偏移正交幅度调制的滤波器组多载波方法
CN103888406A (zh) * 2014-03-28 2014-06-25 华中科技大学 一种滤波器组多载波系统的数据传输方法

Also Published As

Publication number Publication date
CN107078994B (zh) 2020-07-24
CN107078994A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6294484B2 (ja) マルチキャリア信号の受信機および受信機方法
JP5635183B2 (ja) シンボル間の電力の配分を最適化するための方法および装置
WO2011116651A1 (zh) 一种导频序列的产生方法和装置
CN104823402A (zh) 减小ofdm系统中的频谱泄露
CN106411486B (zh) 一种上行解调导频的发送接收方法及装置
CN109391403B (zh) 用于无线信号的发送和接收的方法和装置
WO2014146456A1 (zh) 信号发送方法和信号发送设备
CN107113265B (zh) 用于多址接入通信系统的有效的fbmc传输和接收
Cheng et al. Widely linear processing in MIMO FBMC/OQAM systems
JP2013516858A (ja) 符号生成装置、参照信号生成装置、及びそれらの方法
US11438110B2 (en) Wireless communication device and corresponding apparatus, method and computer program
WO2012071721A1 (en) Method for transmitting reference signals, base station and mobile terminal
CN114600431B (zh) 符号处理的方法与装置
WO2021099362A1 (en) Access node, user equipment, and corresponding apparatuses, methods and computer programs
WO2013183581A1 (ja) 送信装置、受信装置、送信方法及び受信方法
JP2020031251A (ja) 基地局装置、端末装置及び通信方法
CN110011948B (zh) 数据传输方法及装置、存储介质、电子装置
CN104079306A (zh) 一种接收机的操作方法和信号接收设备
WO2012002382A1 (ja) 無線通信システム、受信装置、受信制御方法、受信制御プログラム、及びプロセッサ
WO2017035807A1 (en) Methods and apparatuses for transmitting and receiving dmrs
CN112187690A (zh) 符号处理的方法与装置
WO2016078089A1 (zh) 发送信号、处理信号的设备及方法
WO2016082735A1 (zh) Fbmc的发射分集传输方法、发送端装置及接收端装置
CN111817995B (zh) 数据的非相干传输方法
JP6673496B2 (ja) 無線通信装置、方法、プログラム、及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906426

Country of ref document: EP

Kind code of ref document: A1