WO2014146456A1 - 信号发送方法和信号发送设备 - Google Patents

信号发送方法和信号发送设备 Download PDF

Info

Publication number
WO2014146456A1
WO2014146456A1 PCT/CN2013/088402 CN2013088402W WO2014146456A1 WO 2014146456 A1 WO2014146456 A1 WO 2014146456A1 CN 2013088402 W CN2013088402 W CN 2013088402W WO 2014146456 A1 WO2014146456 A1 WO 2014146456A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding
interference
symbols
matrix
blocks
Prior art date
Application number
PCT/CN2013/088402
Other languages
English (en)
French (fr)
Inventor
陈磊
闵雷
吴丹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13878714.8A priority Critical patent/EP2950478B1/en
Publication of WO2014146456A1 publication Critical patent/WO2014146456A1/zh
Priority to US14/831,652 priority patent/US9935745B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal transmitting method and a signal transmitting device.
  • BACKGROUND OF THE INVENTION Filter Bank Multi-carrier (hereinafter referred to as FBMC) is a multi-carrier modulation technology, and FBMC has Orthogonal Frequency Division Multiplexing (OFDM). Lower out-of-band radiation and higher spectral efficiency have good application prospects.
  • a typical implementation of FBMC is to use Orthogonal Frequency Division Multiplexing (OFDM)/Offset Quadrature Amplitude Modulation (hereinafter referred to as 0QAM) technology.
  • 0FDM/0QAM uses a filter bank to achieve Inter-Symbol Interference (hereinafter referred to as ISI) transmission without adding a cyclic prefix (Cyclicic Fix: hereinafter referred to as CP).
  • ISI Inter-Symbol Interference
  • CP cyclic prefix
  • FBMC FBMC symbols
  • the transmitted symbols on any one of the time-frequency resources will generate additional received signals at adjacent time-frequency resource locations, causing interference to the useful received signals.
  • the coefficients of these additional received signals are called multiplexed adapter responses (Transmult). Iplexer Response), or the corresponding impulse of the transceiving transmission system, can also be called the filter bank interference coefficient.
  • the extent and extent of mutual interference is typically represented by a list of filter bank interference coefficients. Table 1 gives an example of a typical filter bank interference coefficient table. The rows in Table 1 represent the subcarrier numbers and the columns represent the numbers of the FBMC symbols.
  • the interference coefficients in the table represent the coefficients of the received symbols generated by the symbols transmitted by the center position (i.e., subcarrier 0 and symbol 0) at the corresponding subcarriers and symbol positions. For example, suppose the transmission symbol of the center position is s. The interference coefficient of the subcarrier i and the symbol J' position is s. A received symbol _/X s will be generated at the subcarrier, symbol J' position. . If left unprocessed, this symbol will interfere with the reception of the useful symbols sent at that location. -4 -3 -2 - 1 0 1 2 3 4 Sub-load ⁇ ,
  • the transmitted symbols are pure real numbers or pure imaginary numbers, and are mapped on time-frequency resource elements in a real virtual alternating pattern.
  • the interference coefficient table it can be found that the interference always appears on the imaginary part or the real part opposite to the transmitted symbol. Therefore, if the channel is flat, the interference can be eliminated by a simple real imaginary separation operation after channel equalization.
  • MIMO Multiple Input Multiple Output
  • Precoding technology is a commonly used method in the MIM0-0FDM system.
  • the precoding process can be seen as a process of mapping the transmitted data onto the transmitting antenna in a manner that is such that the terminal can obtain better received signal quality.
  • FBMC can also be combined with MIM0.
  • the precoding scheme is similar to MIM0-0FDM.
  • the combination of MIM0 and FBMC technology also faces some problems.
  • One of the important problems is the interference between subcarriers and FBMC symbols mentioned above.
  • the premise that the intersymbol interference between adjacent symbols can be perfectly eliminated in the receiver is that the channel is flat.
  • the above channel becomes the equivalent channel, that is, the product of channel and precoding. Near the time-frequency boundary of different precoding code blocks, the equivalent channel may not be flat, and the interference cannot be eliminated simply by the above-described equalization and real virtual separation.
  • the present invention provides a signal transmitting method and a signal transmitting device to implement a precoded code block at a time Mutual interference at the critical position of the frequency is completely eliminated.
  • a first aspect of the present invention provides a signaling method, including:
  • a boundary symbol between the at least two precoding code blocks is determined by a diffusion range of a filter group in a time domain and a frequency domain And a range of boundary symbols between the at least two precoding code blocks is less than or equal to a diffusion range of the interference coefficient table in a time domain and a frequency domain.
  • the time-frequency resource element that uses the same pre-coding includes a processing by a transmitting end, and a time-frequency resource element having the same coefficient matrix before transmitting the symbol .
  • the interference on a boundary symbol between at least two precoding code blocks in the multi-carrier MIM0-FBMC system of the multiple input multiple output filter group is eliminated.
  • the determining the interference cancellation amount includes:
  • the eliminating multiple input multiple output filter The interference on the boundary symbols between at least two precoding code blocks in the multi-carrier MIM0-FBMC system includes:
  • the precoding matrix is constructed to eliminate interference with precoding code blocks of the constructed precoding matrix on other precoded code blocks.
  • the precoding matrix is configured to eliminate precoding code blocks using the precoding matrix of the construct
  • the interference generated by the code block includes:
  • P is a precoding matrix of the structure; an equalization matrix used by a receiver of the first precoding block that does not use the precoding matrix of the constructed structure; ⁇ ,. indicates a first pre-use that does not use the construct
  • the channel matrix of the precoding code block of the coding matrix; Im ( ⁇ ) represents the operation of taking the imaginary part of the complex number of ( ⁇ ).
  • the pre-coding of the to-be-transmitted symbol in the pre-coded code block is pre-coded
  • the encoded symbols include:
  • Precoding the symbols to be transmitted in the precoded code block by using the constructed precoding matrix to obtain precoded symbols.
  • the interference on the boundary symbols between at least two precoding code blocks in the multi-carrier MIM0-FBMC system of the multiple-input multiple-output filter bank is as follows:
  • At least one subcarrier and at least one symbol are reserved as guard bands between adjacent precoding code blocks, and valid data is not transmitted on the guard band.
  • a second aspect of the present invention provides a signal transmitting apparatus, including:
  • An interference cancellation module configured to cancel interference on a boundary symbol between at least two precoding code blocks in a multi-carrier MIM0-FBMC system of the multiple input multiple output filter group, where the precoding code block is used by at least one The same pre-coded time-frequency resource element is composed;
  • a signal processing module configured to perform precoding on the to-be-transmitted symbols in the pre-coded code block after the interference cancellation module cancels interference on boundary symbols between at least two pre-coded code blocks in the MIM0-FBMC system Precoded symbol;
  • a sending module configured to send the pre-encoded symbol obtained by the signal processing module.
  • the boundary symbol between the at least two precoding code blocks is determined by a diffusion range of the filter group interference coefficient table in the time domain and the frequency domain And a range of boundary symbols between the at least two precoding code blocks is less than or equal to a diffusion range of the interference coefficient table in a time domain and a frequency domain.
  • the time-frequency resource element that uses the same pre-coding includes a processing by a transmitting end, and a time-frequency resource element having the same coefficient matrix before transmitting the symbol .
  • the interference cancellation module is specifically configured to determine an interference cancellation amount, and add the interference cancellation amount to at least the precoding code block. On one of the boundary symbols, the symbol to be transmitted is obtained.
  • the interference cancellation module includes:
  • a calculating submodule configured to calculate the at least two according to the obtained channel matrix, the precoding matrix used by the determining precoding module, the precoding matrix used by the precoding code block, the interference coefficient table of the filter group, and the interference generating symbol The amount of interference cancellation corresponding to the boundary symbol between the precoded code blocks.
  • the interference cancellation module is specifically used to The precoding matrix is constructed to eliminate interference with precoding code blocks of the constructed precoding matrix on other precoded code blocks.
  • the interference cancellation module is specifically configured to construct a precoding matrix, and the precoding for the first non-using structure a pre-coded block of the matrix such that Im(W, .H, .P) is a zero matrix;
  • P is the precoding matrix of the construct; is the first pre-editing that does not use the construct
  • represents the channel matrix of the first precoded block that does not use the constructed precoding matrix
  • Im ( ⁇ ) represents the fetch of ( ⁇ ) The operation of the imaginary part of the plural.
  • the signal processing module is configured to: send a symbol to be sent in the precoded code block Precoding to obtain precoded symbols includes:
  • the signal processing module is specifically configured to pre-code the to-be-transmitted symbols in the pre-coded block by using the pre-coding matrix that is configured to obtain a pre-coded symbol.
  • the interference cancellation module is specifically configured to reserve at least one subcarrier between adjacent precoding code blocks as a guard band, where no valid data is transmitted on the guard band; or, reserved between adjacent precoding code blocks At least one symbol is used as a guard band, and valid data is not transmitted on the guard band; or, at least one subcarrier and at least one symbol are reserved between adjacent precoding code blocks as a guard band, and the guard band is not transmitted effectively. data.
  • the technical effect of the present invention is: The present invention first eliminates interference on boundary symbols between at least two precoding code blocks in the MIM0-FBMC system, and then precodes the to-be-transmitted symbols in the pre-coded code blocks to obtain pre-coded signals. And pre-coded symbols are transmitted; thus, the mutual interference of the pre-coded code blocks at the critical position of the time-frequency can be completely or partially eliminated.
  • BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, a brief description of the drawings used in the embodiments or the prior art description will be briefly described below. The drawings are some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any inventive labor.
  • FIG. 1 is a flow chart of an embodiment of a signal transmitting method according to the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of precoding frequency domain critical interference in a MIM0-FBMC system according to the present invention
  • 3 is a schematic diagram of an embodiment of precoding time domain critical interference in a MIM0-FBMC system according to the present invention
  • 4 is a schematic diagram of an embodiment of precoding frequency domain critical interference in a MIMO-FBMC system according to the present invention
  • FIG. 5 is a schematic diagram of an embodiment of a frequency domain protection band according to the present invention.
  • FIG. 6 is a schematic diagram of an embodiment of a time domain protection band of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a time-frequency domain protection band according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a signal transmitting apparatus according to the present invention.
  • FIG. 9 is a schematic structural diagram of another embodiment of a signal transmitting apparatus according to the present invention.
  • FIG. 10 is a schematic structural diagram of still another embodiment of a signal transmitting apparatus according to the present invention. detailed description
  • time-frequency resource blocks For multi-user systems, physical resources are typically divided into smaller granularity time-frequency resource blocks. Different time-frequency resource blocks are allocated to different users according to certain scheduling rules, which means that different time-frequency resource blocks allocated to different users will adopt different pre-coding matrices. At the same time, in order to achieve a good compromise between complexity and performance, precoding is usually performed according to a certain frequency domain granularity, so even within the time-frequency resources of the same user, there may be different precoding matrices. These resource blocks with different precodings must have a critical point of precoding variation in time and frequency. At these critical points, precoding inter-block interference will occur, which may include the following three possibilities:
  • the time-frequency two-dimensional may be interfered by other pre-coded data blocks at the same time.
  • the signal transmitting method provided by the present invention can eliminate at least one of the above-mentioned interferences, and the mutual interference of the pre-coded blocks at the critical position of the time-frequency is eliminated.
  • FIG. 1 is a flowchart of an embodiment of a signal sending method according to the present invention. As shown in FIG. 1, the signal sending method may include:
  • Step 101 Eliminate interference on boundary symbols between at least two precoding code blocks in the MIM0-FBMC system, where the precoding code blocks are composed of at least one time-frequency resource element using the same precoding.
  • the interference is caused by the non-orthogonality of the filter and the change of the precoding on the time-frequency resource element.
  • the boundary symbol between the at least two precoding code blocks is determined by the interference range of the filter group interference coefficient table in the time domain and the frequency domain, and the boundary symbol of the at least two precoding code blocks is The mean is less than or equal to the diffusion range of the interference coefficient table in the time domain and the frequency domain; wherein the boundary symbol is a symbol near a boundary between the at least two precoding code blocks.
  • the above-mentioned time-frequency resource elements using the same pre-coding include the processing of the transmitting end, and the time-frequency resource elements having the same coefficient matrix before the transmission symbol.
  • Step 102 Perform precoding on the to-be-transmitted symbols in the pre-coded block to obtain pre-coded symbols.
  • Step 103 Send the pre-coded symbol.
  • the interference on the boundary symbol between at least two precoding code blocks in the MIM0-FBMC system is eliminated, and then the to-be-transmitted symbols in the pre-coded code block are pre-coded to obtain pre-coded symbols, and sent.
  • the pre-coded symbols described above thus, the mutual interference of the pre-coded code blocks at the critical position of the time-frequency can be completely or partially eliminated.
  • FIG. 2 is a schematic diagram of an embodiment of precoding frequency domain critical interference in a MIM0-FBMC system according to the present invention
  • FIG. 3 is a schematic diagram of an embodiment of precoding time domain critical interference in a MIM0-FBMC system according to the present invention
  • 4 is a schematic diagram of an embodiment of precoding time-frequency domain critical interference in the MIM0-FBMC system of the present invention.
  • Each of the small squares in Figures 2, 3, and 4 represents a time-frequency resource element (Resource E ment; hereinafter referred to as RE).
  • RE time-frequency resource element
  • the pre-coded code blocks that interfere with each other may exceed four in addition to the above-mentioned several schematic diagrams.
  • Equation (1) it is a vector of LX 1 and L represents the number of streams of data.
  • H 7 and " /m are the coefficients in the channel matrix and the interference coefficient table of the filter bank obtained by the base station, respectively.
  • the precoding matrix P is used except for ⁇ .
  • the position of the data symbol, e f (il, 2,..., indicates the position of the data symbol using the precoding matrix in the interference coefficient table.
  • m represents ⁇ or the interference-causing symbol numbered ⁇ in the range; indicates that the filter bank is s, beforehand the interference coefficient at the location.
  • the equalization matrix is ⁇ .: H y P 0 H y P 0 H
  • the received signal after equalization processing is:
  • denotes an imaginary unit
  • Re ( ⁇ ) and Im ( ⁇ ) respectively denote the operation of taking the real part and the imaginary part of the complex number of ( ⁇ ), and the following are the same.
  • ⁇ ⁇ is opposite to the real virtual relationship of s, so all the products of ⁇ and real numbers in equation (2) can be eliminated after the real or imaginary operation, and will not interfere with the transmitted symbols.
  • an item multiplied by imaginary imaginary will interfere with s,.,..
  • step 101 may be: determining an interference cancellation amount, adding the interference cancellation amount to at least one of the boundary symbols in the precoding code block to obtain a to-be-transmitted symbol; The interference on the symbol near the boundary between the at least two precoded code blocks is zero or close to zero.
  • determining the interference cancellation amount may be: determining a pre-coded code block with interference; according to the acquired channel matrix, the precoding matrix used by the foregoing pre-coded pre-coded code block, the interference coefficient table of the filter group, and the interference generation
  • the symbol calculates an interference cancellation amount corresponding to a boundary symbol between the at least two precoding code blocks, wherein the interference cancellation amount is such that the interference on the symbol near the boundary between the at least two precoding code blocks in the received signal is 0 or close 0.
  • denotes a set of precoding blocks that generate interference
  • a precoding matrix used for the second precoding code block with interference
  • denotes a set of numbers of symbols within the second precoding code block with interference
  • the real imaginary law of the interference pre-cancellation amount is consistent with the interference amount, that is, consistent with the interfered transmission symbol, the real imaginary law of the symbol to be transmitted does not change, and therefore the signal in the pre-coded block is not extra. Interference.
  • V ⁇ .Im(WHP t ) in equation (5) can be recorded as 13 ⁇ 4, and the interference pre-cancellation equation of s is obtained: l,mee k (7)
  • AS + V +AS" 0 ( , in equation (8), represents the matrix of the coefficients of the S3 ⁇ 4 + A S3 ⁇ 4 J in the precoding code block. Each element in the matrix is the product of 13 ⁇ 4 and 6 ⁇ , ⁇ means pre a set of symbols that generate interference within a coded block.
  • the resulting vectors, AS and AS represent ⁇ 8 , . and 4 8 , respectively.
  • the vector formed by equation (8) can be solved by simultaneous or iterative methods. The above implementations are used.
  • the downlink channel state information may be measured by the uplink channel estimation according to the reciprocity of the uplink and downlink channels, or obtained by user equipment (User Equipment; hereinafter referred to as UE). Another embodiment of the embodiment shown in FIG.
  • the precoding matrix is constructed; W y is the equalization matrix used by the receiver corresponding to the transmission symbol in the precoding block of the 0th precoding matrix not using the above construction; H y represents the 0th The symbol ( Si) is transmitted in the precoding code block of the precoding matrix constructed as above.
  • the corresponding channel matrix; Im ( ⁇ ) represents the operation of taking the imaginary part of the complex number of ( ⁇ ).
  • step 102 may be: precoding the to-be-transmitted symbols in the pre-coded block by using the precoding matrix constructed as above to obtain pre-coded symbols.
  • 0,1,2, ⁇ , )
  • step 101 may be: reserving at least one subcarrier between adjacent precoding code blocks as a guard band, where no valid data is transmitted on the guard band; or, reserved between adjacent precoding code blocks At least one symbol is used as a guard band, and valid data is not transmitted on the guard band; or, at least one subcarrier and at least one symbol are reserved between adjacent precoding code blocks as a guard band, and valid data is not transmitted on the guard band.
  • a possible method for setting a guard band includes but is not limited to the following three types:
  • FIG. 5 is the present invention.
  • a schematic diagram of one embodiment of a frequency domain protection band In Figure 5, each square represents a resource element, the horizontal axis t represents the time axis, and the vertical axis f represents the frequency axis. As can be seen from Figure 5, occupy a certain frequency band and use P.
  • the precoded code block does not transmit valid data on a number of subcarriers occupying another frequency band and is precoded, but transmits data 0 as a guard band.
  • FIG. 6 A schematic diagram of an embodiment of the invention of the time domain protection band. In Figure 6, occupy a certain period of time and use P.
  • the precoded code block does not transmit valid data on a number of symbols occupying another time period and is precoded, but transmits data 0 as a guard band.
  • FIG. 7 is a schematic diagram of an embodiment of a time-frequency domain protection band according to the present invention.
  • the shaded squares indicate that a certain time-frequency resource segment is occupied and P is used.
  • the blank square around the shaded square indicates the guard band.
  • the guard band does not transmit valid data, but sends the data 0, so that the shadow block is isolated from other pre-coded blocks around, so the shadow block
  • the transmitted data symbols do not interfere with the transmitted data symbols of the surrounding precoded blocks.
  • a guard band may be reserved in the frequency domain to eliminate mutual interference of adjacent precoding blocks in the frequency domain, and then constructed.
  • the precoding matrix method eliminates partial interference between adjacent precoding blocks in the time domain. If the time domain interference cannot be completely eliminated, the residual interference can be eliminated by the method of interference pre-cancellation.
  • the invention completely or partially eliminates the interference pre-cancellation of the transmission symbols of the MIM0-FBMC system, or realizes the coefficient matrix of the interference quantity by designing the precoding matrix to be a zero matrix, or by preserving the guard band around the precoding block. Precoding inter-block interference of the received signal.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as ROM, RAM, disk or optical disk.
  • FIG. 8 is a schematic structural diagram of an embodiment of a signal transmitting apparatus according to the present invention.
  • the signal sending apparatus 8 in this embodiment can implement the method provided by the embodiment shown in FIG. 1 of the present invention.
  • the signal sending apparatus 8 can The method includes: an interference cancellation module 81, a signal processing module 82, and a sending module 83.
  • the interference cancellation module 81 is configured to cancel interference on a boundary symbol between at least two precoding code blocks in the MIM0-FBMC system, where the precoding code is used.
  • the block consists of at least one time-frequency resource element using the same precoding; wherein the interference is caused by the non-orthogonality of the filter and the variation of the precoding on the time-frequency resource element.
  • the boundary symbol between the at least two precoding code blocks is determined by the interference range of the filter group in the time domain and the frequency domain, and the range of the boundary symbols between the at least two precoding code blocks is less than or equal to
  • the interference coefficient table has a diffusion range in the time domain and the frequency domain; wherein the boundary symbol is a symbol near a boundary between the at least two precoding code blocks.
  • the above-mentioned time-frequency resource elements using the same pre-coding include the processing of the transmitting end, and the time-frequency resource elements having the same coefficient matrix before the symbols are transmitted.
  • the signal processing module 82 is configured to: after the interference cancellation module 81 cancels interference on boundary symbols between at least two precoding code blocks in the MIM0-FBMC system, precoding the to-be-transmitted symbols in the pre-coded code block to obtain a pre-coding The encoded symbol.
  • the sending module 83 is configured to send the pre-coded symbols obtained by the signal processing module 82.
  • the signal sending device 8 may be a base station, a relay station, an access point (Access Point; hereinafter referred to as AP), or a device having a signal transmitting function, such as a UE.
  • AP Access Point
  • UE User Equipment
  • the interference cancellation module 81 first removes interference on boundary symbols between at least two precoding code blocks in the MIM0-FBMC system, and then the signal processing module 82 precodes the to-be-transmitted symbols in the precoding code block. The precoded symbols are obtained, and then the transmitting module 83 transmits and transmits the precoded symbols; thus, mutual interference of the precoded code blocks at the time-frequency critical positions can be completely or partially eliminated.
  • FIG. 9 is a schematic structural diagram of another embodiment of a signal transmitting apparatus according to the present invention. Compared with the signal transmitting apparatus 8 shown in FIG. 8, the difference is that, in an implementation manner of the signal transmitting apparatus 9 shown in FIG.
  • the interference cancellation module 81 is specifically configured to determine an interference cancellation amount, and add the interference cancellation amount to at least one of the foregoing boundary symbols in the precoding code block to obtain a to-be-transmitted symbol; the interference cancellation amount is such that at least two of the received signals are received.
  • the interference on the symbol near the boundary between the precoding code blocks is 0 or close to zero.
  • the interference cancellation module 81 may include: a determining submodule 811 and a computing submodule 812;
  • the determining submodule 811 is configured to determine a precoding code block in which interference exists
  • the calculation sub-module 812 is configured to calculate at least two pre-codings according to the acquired channel matrix, the precoding matrix used by the pre-coded pre-coded block determined by the determining sub-module 811, the interference coefficient table of the filter bank, and the interference-generating symbol.
  • calculation sub-module 812 is specifically used to determine all possible "according to the following formula Value simultaneous equations are solved: ⁇ ij G ⁇ ;
  • represents the set of the numbers of all the symbols near the boundary that are disturbed
  • the number of interfered symbols ⁇ corresponding interference cancellation amount; ⁇ indicates the corresponding channel matrix; ⁇ indicates the set of precoding blocks that generate interference; indicates the second pre-coded block with interference Precoding matrix; ⁇ denotes the equalization matrix used by the receiver corresponding to ⁇ ; ⁇ denotes the set of the number of symbols in the A pre-coded code block with interference; s 3 ⁇ 4 denotes the interference-causing symbol numbered within the range ⁇ ; represents the interference filter coefficients set at a position located on s3 ⁇ 4; ⁇ 83 ⁇ 4 amount of interference cancellation is located at a position s 3 ⁇ 4; Im (*) expressed ( ⁇ ) operating the imaginary part of a complex number.
  • the interference cancellation module 81 is specifically configured to construct a precoding matrix to eliminate interference generated by precoding code blocks of the constructed precoding matrix on other precoded code blocks. Specifically, the interference cancellation module 81 is specifically configured to construct a precoding matrix, and for the i th precoding block that does not use the constructed precoding matrix, so that Im(W, .H, .P) is a zero matrix;
  • P is the precoding matrix constructed as above; an equalization matrix used by the receiver of the first precoding block that does not use the precoding matrix of the constructed structure; ⁇ ,. indicates the first precoding that does not use the construct
  • the channel matrix of the precoded code block of the matrix; Im ( ⁇ ) represents the operation of taking the imaginary part of the complex number of ( ⁇ ).
  • the signal processing module 82 is configured to perform precoding on the to-be-transmitted symbols in the pre-coded block to obtain a pre-coded symbol.
  • the signal processing module 82 is specifically configured to use the precoding matrix pair configured by the foregoing.
  • the to-be-transmitted symbols in the pre-coded block are pre-coded to obtain pre-coded symbols.
  • the interference cancellation module 81 is specifically configured to reserve at least one subcarrier between the adjacent precoding code blocks as a protection band, and the effective data is not transmitted on the protection band; or Retaining at least one symbol between adjacent precoding code blocks as a guard band, the valid data is not transmitted on the guard band; or, at least one subcarrier is reserved between adjacent precoding code blocks and At least one symbol is used as a guard band, and valid data is not transmitted on the above guard band.
  • the signal transmitting device 9 may be a device having a signal transmitting function, such as a base station, a relay station, an access point (AP), or a UE.
  • the state of the signal transmitting device 9 is not limited in this embodiment.
  • the above signal transmitting device performs interference pre-cancellation by transmitting symbols of the MIM0-FBMC system, or by designing a precoding matrix to realize a coefficient matrix of interference amount of zero matrix, or by preserving a guard band around the precoding block, The precoding block inter-block interference of the received signal is partially eliminated.
  • the signal transmitting apparatus 10 includes a transmitting circuit 1002, a receiving circuit 1003, a power controller 1004, a decoding processor 1005, a processing unit 1006, and a memory. 1007 and antenna 1001.
  • the processing unit 1006 controls the operation of the signal transmitting device 10.
  • the processing unit 1006 may also be referred to as a central processing unit (hereinafter referred to as "CPU").
  • Memory 1007 can include read only memory and random access memory and provides instructions and data to processing unit 1006. A portion of the memory 1007 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the signal transmitting device 10 may be embedded or may itself be a wireless communication device such as a mobile phone, and may further include a carrier accommodating the transmitting circuit 1002 and the receiving circuit 1003 to allow the signal transmitting device 10 to transmit data and receive.
  • Transmitting circuit 1002 and receiving circuit 1003 can be coupled to antenna 1001.
  • the various components of the signal transmitting device 10 are coupled together by a bus system 1008, wherein the bus system 1008 includes, in addition to the data bus, a power bus, a control bus, and a status signal bus.
  • various buses are labeled as bus system 1008 in FIG.
  • the signal transmitting device 10 may further include a processing unit 1006 for processing signals, and further includes a power controller 1004 and a decoding processor 1005.
  • the decoding processor 1005 can be integrated with the processing unit 1006 in a specific different product.
  • the processing unit 1006 can implement or execute various steps and logic blocks disclosed in the method embodiments of the present invention.
  • the processing unit 1006 can be a microprocessor or any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention can be directly implemented as hardware processor execution, or hardware and software in the processor.
  • the module combination execution is completed.
  • the software module can be located in random access memory, flash memory, read only memory, programmable read only memory or electrically erasable Programmable memory, registers, etc. are well-known in the storage medium.
  • the storage medium is located in the memory 1007, and the processing unit 1006 reads the information in the memory 1007, and combines the hardware to complete the steps disclosed in the method embodiment of the present invention.
  • the signal sending device may be a device having a signal transmitting function, such as a base station, a relay station, an access point (AP), or a user equipment (UE).
  • a signal transmitting function such as a base station, a relay station, an access point (AP), or a user equipment (UE).
  • the embodiment of the signal transmitting device is not limited. .
  • the signal transmitting device in this embodiment performs interference pre-cancellation on the transmitted symbols of the MIM0-FBMC system, or implements a precoding matrix to realize a coefficient matrix of interference amount of zero matrix, or reserves a guard band around the precoding block.
  • the method completely or partially eliminates precoding inter-block interference of the received signal.
  • modules in the apparatus in the embodiments may be distributed in the apparatus according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further divided into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供一种信号发送方法和信号发送设备,所述信号发送方法包括:消除多入多出滤波器组多载波MIMO-FBMC系统中至少两个预编码码块间的边界符号上的干扰,所述预编码码块由至少一个使用相同预编码的时频资源元素组成;对所述预编码码块中的待发送符号进行预编码获得预编码后的符号;发送所述预编码后的符号。本发明可以完全或部分消除预编码码块在时频临界位置的相互干扰。

Description

信号发送方法和信号发送设备 本申请要求于 2013 年 3 月 22 日提交中国专利局、 申请号为 201310096328. 3、发明名称为 "一种信号发送方法和信号发送设备" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种信号发送方法和信号发送设备。 背景技术 滤波器组多载波 (Fi lter Bank Multi-carrier ; 以下简称: FBMC ) 是 一种多载波调制技术, 相对于正交频分复用 (Orthogonal Frequency Division Multiplexing; 以下简称: OFDM) , FBMC具有更低的带外辐射和更 高的频谱效率,具有良好的应用前景。 FBMC典型的实现方案是使用正交频分 复用(0FDM)/偏置正交幅度调制(Off set Quadrature Ampl itude Modulat ion; 以下简称: 0QAM) 技术。 0FDM/0QAM使用滤波器组, 在不需要添加循环前缀 ( Cycl ic Prefix ; 以下简称: CP ) 的情况下即可达到无符号间干扰 ( Inter-Symbol Interference ; 以下简称: ISI ) 传输。
FBMC的一个重要特征是相邻子载波以及相邻 FBMC符号间会有不同程度 的相互干扰。任意一个时频资源上的发送符号会在相邻的时频资源位置上产 生附加的接收信号, 从而引起对有用接收信号的干扰, 这些附加接收信号的 系数称为复用转接器响应 (Transmult iplexer Response ) , 或者称为收发传 输系统的脉冲相应, 还可称为滤波器组干扰系数。 一般通过对滤波器组干扰 系数进行列表来表示相互干扰的范围和程度。表 1给出了一种典型的滤波器 组干扰系数表的示例, 表 1中的行代表了子载波编号, 列则代表了 FBMC符 号的编号。 表中的干扰系数表示中心位置 (即子载波 0和符号 0 ) 所发送的 符号在周围对应的子载波和符号位置上所产生的接收符号的系数。 举例来 讲,假设中心位置的发送符号为 s。,子载波 i、符号 J'位置的干扰系数为 , 则 s。在子载波 、符号 J'位置上将产生一个接收符号 _/X s。。如果不加处理, 这个符号将对该位置发送的有用符号的接收产生干扰。 -4 -3 -2 - 1 0 1 2 3 4 子载^、
- 1 0. 0054 j0. 0429 -0. 1250 -j0. 2058 0. 2393 jO. 2058 -0. 1250 -jO. 0429 0. 0054
0 0 - 0. 0668 0. 0002 0. 5644 1 0. 5644 0. 0002 - 0. 0668 0
1 0. 0054 -j0. 0429 -0. 1250 jO. 2058 0. 2393 -jO. 2058 -0. 1250 jO. 0429 0. 0054
在 OFDM/OQAM系统中, 发送符号为纯实数或纯虚数, 并且以实虚交替的 规律在时频资源元素上进行映射。 在这个前提下, 根据干扰系数表的特点可 以发现, 干扰总是出现在与发送符号相对的虚部或实部上。 因此如果信道是 平坦的, 在进行信道均衡之后, 通过一个简单的实虚部分离的操作就可以把 干扰消除。
在目前的长期演进 (Long Term Evolution; 以下简称: LTE) 等无线通 信系统中, 多入多出 (Multiple Input Multiple Output; 以下简称: MIMO) 技术被广泛地应用。 MIM0和 0FDM技术可以比较自然的进行结合, 从而较大 程度地提高系统性能。 预编码技术是 MIM0-0FDM系统常用的一种方法。 预编 码的过程可以看做是将发送数据按照某种方式映射到发射天线上的过程, 其 目的是通过这种处理使得终端能获取更好的接收信号质量。
和 0FDM —样, FBMC 也可以和 MIM0 进行结合, 预编码技术方案和 MIM0-0FDM类似。 但 MIM0和 FBMC技术的结合也面临着一些问题, 其中一个 重要的问题就是上面所说的子载波间以及 FBMC 符号间的干扰。 0FDM/0QAM 系统中, 相邻符号间干扰能在接收机完美消除的前提条件是信道是平坦的。 而对于 MIM0-FBMC来说, 由于引入预编码, 上述信道就变成等效信道, 即信 道和预编码的乘积。 在不同预编码码块的时频边界附近, 等效信道可能不再 平坦, 无法简单地通过上述均衡后实虚分离的方法消除干扰。 发明内容 本发明提供一种信号发送方法和信号发送设备, 以实现预编码码块在时 频临界位置的相互干扰被完全消除。
本发明第一方面提供一种信号发送方法, 包括:
消除多入多出滤波器组多载波 MIM0-FBMC系统中至少两个预编码码块间 的边界符号上的干扰,所述预编码码块由至少一个使用相同预编码的时频资 源元素组成;
对所述预编码码块中的待发送符号进行预编码获得预编码后的符号; 发送所述预编码后的符号。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述至少两个 预编码码块间的边界符号由滤波器组的干扰系数表在时域和频域的扩散范 围决定, 并且所述至少两个预编码码块间的边界符号的范围均小于或等于所 述干扰系数表在时域和频域的扩散范围。
结合第一方面, 在第一方面的第二种可能的实现方式中, 所述使用相同 预编码的时频资源元素包括经过发射端的处理,在发送符号前具有相同的系 数矩阵的时频资源元素。
结合第一方面, 在第一方面的第三种可能的实现方式中, 所述消除多入 多出滤波器组多载波 MIM0-FBMC系统中至少两个预编码码块间的边界符号上 的干扰包括:
确定干扰抵消量,将所述干扰抵消量加在所述预编码码块中的至少一个 所述边界符号上, 获得所述待发送符号。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实 现方式中, 所述确定干扰抵消量包括:
确定存在干扰的预编码码块;
根据获取的信道矩阵、 所述存在干扰的预编码码块使用的预编码矩阵、 滤波器组的干扰系数表和产生干扰的符号计算所述至少两个预编码码块间 的边界符号对应的干扰抵消量。
结合第一方面, 或者第一方面的第一种〜第四种可能的实现方式中的任 意一种, 在第一方面的第五种可能的实现方式中, 所述消除多入多出滤波器 组多载波 MIM0-FBMC系统中至少两个预编码码块间的边界符号上的干扰包 括: 构造预编码矩阵以消除使用构造的预编码矩阵的预编码码块对其他预 编码码块产生的干扰。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实 现方式中,所述构造预编码矩阵以消除使用构造的预编码矩阵的预编码码块 对其他预编码码块产生的干扰包括:
构造预编码矩阵, 对于第 i个不使用构造的预编码矩阵的预编码码块, 使得 Im(W,.H,.P)为零矩阵;
其中, P为所述构造的预编码矩阵; 为第 个不使用所述构造的预编 码矩阵的预编码码块的接收机采用的均衡矩阵; Η,.表示第 个不使用所述构 造的预编码矩阵的预编码码块的信道矩阵; Im ( · ) 表示对 (·) 进行取复数 的虚部的操作。
结合第一方面的第五种或者第六种可能的实现方式, 在第一方面的第七 种可能的实现方式中,所述对所述预编码码块中的待发送符号进行预编码获 得预编码后的符号包括:
通过所述构造的预编码矩阵对所述预编码码块中的待发送符号进行预 编码, 获得预编码后的符号。
结合第一方面, 或者结合第一方面的第一种、 第二种、 第三种、 第四种 或第六种可能的实现方式, 在第一方面的第八种可能的实现方式中, 所述消 除多入多出滤波器组多载波 MIM0-FBMC系统中至少两个预编码码块间的边界 符号上的干扰包括:
在相邻预编码码块之间预留至少一个子载波作为保护带,所述保护带上 不传输有效数据; 或者,
在相邻预编码码块之间预留至少一个符号作为保护带,所述保护带上不 传输有效数据; 或者,
在相邻预编码码块之间预留至少一个子载波和至少一个符号作为保护 带, 所述保护带上不传输有效数据。
本发明第二方面提供一种信号发送设备, 包括:
干扰消除模块, 用于消除多入多出滤波器组多载波 MIM0-FBMC系统中至 少两个预编码码块间的边界符号上的干扰,所述预编码码块由至少一个使用 相同预编码的时频资源元素组成;
信号处理模块, 用于在所述干扰消除模块消除 MIM0-FBMC系统中至少两 个预编码码块间的边界符号上的干扰之后,对所述预编码码块中的待发送符 号进行预编码获得预编码后的符号;
发送模块, 用于发送所述信号处理模块获得的预编码后的符号。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述至少两个 预编码码块间的边界符号由滤波器组的干扰系数表在时域和频域的扩散范 围决定, 并且所述至少两个预编码码块间的边界符号的范围均小于或等于所 述干扰系数表在时域和频域的扩散范围。
结合第二方面, 在第二方面的第二种可能的实现方式中, 所述使用相同 预编码的时频资源元素包括经过发射端的处理,在发送符号前具有相同的系 数矩阵的时频资源元素。
结合第二方面, 在第二方面的第三种可能的实现方式中, 所述干扰消除 模块, 具体用于确定干扰抵消量, 将所述干扰抵消量加在所述预编码码块中 的至少一个所述边界符号上, 获得所述待发送符号。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实 现方式中, 所述干扰消除模块包括:
确定子模块, 用于确定存在干扰的预编码码块;
计算子模块, 用于根据获取的信道矩阵、 所述确定子模块确定的存在干 扰的预编码码块使用的预编码矩阵、滤波器组的干扰系数表和产生干扰的符 号计算所述至少两个预编码码块间的边界符号对应的干扰抵消量。
结合第二方面, 或者第二方面的第一种〜第四种可能的实现方式中的任 意一种, 在第二方面的第五种可能的实现方式中, 所述干扰消除模块, 具体 用于构造预编码矩阵以消除使用构造的预编码矩阵的预编码码块对其他预 编码码块产生的干扰。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实 现方式中, 所述干扰消除模块, 具体用于构造预编码矩阵, 对于第 个不使 用构造的预编码矩阵的预编码码块, 使得 Im(W,.H,.P)为零矩阵;
其中, P为所述构造的预编码矩阵; 为第 个不使用所述构造的预编 码矩阵的预编码码块的接收机采用的均衡矩阵; Η,.表示第 个不使用所述构 造的预编码矩阵的预编码码块的信道矩阵; Im ( · ) 表示对 (·) 进行取复数 的虚部的操作。
结合第二方面的第五种或第六种可能的实现方式,在第二方面的第七种 可能的实现方式中, 所述信号处理模块用于对所述预编码码块中的待发送符 号进行预编码获得预编码后的符号包括:
所述信号处理模块, 具体用于通过所述构造的预编码矩阵对所述预编码 码块中的待发送符号进行预编码, 获得预编码后的符号。
结合第二方面, 或者结合第二方面的第一种、 第二种、 第三种、 第四种 或第六种可能的实现方式, 在第二方面的第八种可能的实现方式中, 所述干 扰消除模块, 具体用于在相邻预编码码块之间预留至少一个子载波作为保护 带, 所述保护带上不传输有效数据; 或者, 在相邻预编码码块之间预留至少 一个符号作为保护带, 所述保护带上不传输有效数据; 或者, 在相邻预编码 码块之间预留至少一个子载波和至少一个符号作为保护带, 所述保护带上不 传输有效数据。
本发明的技术效果是: 本发明首先消除 MIM0-FBMC系统中至少两个预编 码码块间的边界符号上的干扰, 然后对上述预编码码块中的待发送符号进行 预编码获得预编码后的符号, 并发送上述预编码后的符号; 从而可以完全或 部分消除预编码码块在时频临界位置的相互干扰。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明信号发送方法一个实施例的流程图;
图 2为本发明 MIM0-FBMC系统中预编码频域临界干扰一个实施例的示意 图;
图 3为本发明 MIM0-FBMC系统中预编码时域临界干扰一个实施例的示意 图; 图 4为本发明 MIMO-FBMC系统中预编码时频域临界干扰一个实施例的示 意图;
图 5为本发明频域保护带一个实施例的示意图;
图 6为本发明时域保护带一个实施例的示意图;
图 7为本发明时频域保护带一个实施例的示意图;
图 8为本发明信号发送设备一个实施例的结构示意图;
图 9为本发明信号发送设备另一个实施例的结构示意图;
图 10为本发明信号发送设备再一个实施例的结构示意图。 具体实施方式
对于多用户系统, 物理资源通常被划分为较小粒度的时频资源块。 不同 的时频资源块按照一定的调度规则被分配给不同的用户使用, 这意味着这些 分配给不同用户的时频资源块上将采用不同的预编码矩阵。 同时, 为了在复 杂度和性能之间取得较好的折中, 预编码通常按照一定的频域粒度进行, 因 此即使在同一个用户的时频资源内, 同样可能存在不同的预编码矩阵。 这些 采用不同预编码的资源块必然在时间和频率上存在预编码变化的临界点, 在 这些临界点的位置, 将产生预编码码块间干扰, 可能包含以下三种可能性:
1、 频域上的临界位置, 将受到另外一个预编码子带的信号干扰;
2、 时域上的临界位置, 将受到另外一个时隙的干扰;
3、 时频二维上可能同时受到其他预编码数据块上的干扰。
本发明提供的信号发送方法可以消除至少一种上述干扰, 实现预编码码 块在时频临界位置的相互干扰被消除。
图 1为本发明信号发送方法一个实施例的流程图, 如图 1所示, 该信号发 送方法可以包括:
歩骤 101, 消除 MIM0-FBMC系统中至少两个预编码码块间的边界符号上的 干扰, 上述预编码码块由至少一个使用相同预编码的时频资源元素组成。
其中, 上述干扰由滤波器的非正交性和预编码在时频资源元素上的变化 产生。
上述至少两个预编码码块间的边界符号由滤波器组的干扰系数表在时 域和频域的扩散范围决定, 并且上述至少两个预编码码块间的边界符号的范 围均小于或等于上述干扰系数表在时域和频域的扩散范围; 其中, 上述边界 符号是上述至少两个预编码码块间的边界附近的符号。
上述使用相同预编码的时频资源元素包括经过发射端的处理,在发送符 号前具有相同的系数矩阵的时频资源元素。
歩骤 102, 对上述预编码码块中的待发送符号进行预编码获得预编码后 的符号。
歩骤 103, 发送上述预编码后的符号。
上述实施例中, 消除 MIM0-FBMC系统中至少两个预编码码块间的边界符 号上的干扰, 然后对上述预编码码块中的待发送符号进行预编码获得预编码 后的符号, 并发送上述预编码后的符号; 从而可以完全或部分消除预编码码 块在时频临界位置的相互干扰。
本发明实施例中, 图 2为本发明 MIM0-FBMC系统中预编码频域临界干扰 一个实施例的示意图, 图 3为本发明 MIM0-FBMC系统中预编码时域临界干扰 一个实施例的示意图, 图 4为本发明 MIM0-FBMC系统中预编码时频域临界干 扰一个实施例的示意图。 图 2、 图 3和图 4中每一个小方块代表一个时频资 源元素 (Resource E l ement ; 以下简称: RE)。 在实际系统中, 相互干扰的 预编码码块除了上述几种示意图之外, 还可能超过 4个。 一般地, 这里假设 总共有 个相邻的预编码码块, 其预编码矩阵分别为 P。, Pl 5 …, Ρ 是 位于 Ρ。预编码码块内的一个待发送符号,其中 i表示子载波编号, J'表示 FBMC 符号编号, 将受到其它 个预编码码块间的干扰。 那么接收信号模型可以 为:
( 1 ) 式 (1 ) 中, 是一个 L X 1 的向量, L表示数据的流数。 H 7和" /m分别 是基站所获取的信道矩阵和滤波器组的干扰系数表中的系数。 简单起见, 这 里假设在干扰系数表范围内不同资源位置上的信道是相同的,均为 Η 。 Θ。表 示干扰系数表中, 除 ^之外的其他使用预编码矩阵 P。数据符号的位置, ef (i-l, 2,…, 则表示干扰系数表中使用预编码矩阵 的数据符号的位置; m 表示 Θ。或 范围内编号为 ^的产生干扰的符号; 表示所述滤波器组在 s,„所在位置上的干扰系数。
假设接收机采用迫零均衡, 则均衡矩阵为^.: HyP0 HyP0 H 经过均衡处理后的接收信号为:
,mSlm lmslm
Figure imgf000010_0001
式 (2) 中, ^表示虚数单位, Re (·) 和 Im (·) 分别表示对 (·) 进 行取复数的实部和虚部的操作, 以下均同。 根据 FBMC 的特点, αίΑ与 s 的实虚关系相反, 因此式 (2) 中所有^^和实数的乘积的项都可以在取实 部或虚部操作之后消除, 不会对发送符号 产生干扰。 反之, ¾Α„和虚数相 乘的项则会对 s,.,.产生干扰。 对式 (2) 取实部或者虚部后可以得到: s,=s.. +^-111(^.^)5; «Λ+··· + ^· Η..Ρ )∑ alms
(3) 式 (3) 中, 后面的几项为预编码码块间的干扰。 本发明图 1所示实施例的一种实现方式中, 针对式(3) , 通过对预编码 临界位置的待发送符号进行干扰预抵消, 来消除预编码码块在时频临界位置 的相互干扰。 这时, 歩骤 101可以为: 确定干扰抵消量, 将上述干扰抵消量 加在上述预编码码块中的至少一个所述边界符号上, 获得待发送符号; 上述 干扰抵消量使得接收信号中上述至少两个预编码码块间的边界附近的符号 上的干扰为 0或接近 0。 具体地, 确定干扰抵消量可以为: 确定存在干扰的预 编码码块; 根据获取的信道矩阵、 上述存在干扰的预编码码块使用的预编码 矩阵、滤波器组的干扰系数表和产生干扰的符号计算上述至少两个预编码码 块间的边界符号对应的干扰抵消量, 上述干扰抵消量使得接收信号中所述至 少两个预编码码块间的边界附近的符号上的干扰为 0或接近 0。
可以看出, 干扰预抵消的基本思想是给相互干扰的区域内的每个待发送 符号 s,.,.都加上一个干扰抵消量 Δ8,, 使得相互干扰变为 0。给相互干扰的区域 内的每个待发送符号 si;.都加上干扰抵消量 Δ8后, 式 (3) 将变为: ' = «,)■+ . + 1^ · ImiW^H. P, )∑ alm (s!m + Aslm )
Figure imgf000011_0001
其中, As,„为 s,„所在位置上的干扰抵消量。 要使接收信号中不含有预编 码干扰, 那么式 (4) 中除 si;.之外的其他项之和必须为零。 即:
Figure imgf000011_0002
其中, Ψ表示对 产生干扰的预编码块的集合; 表示第 Α个存在干扰的预 编码码块使用的预编码矩阵; ^表示第 ^个存在干扰的预编码码块内的符号 的编号的集合。 可以看到, 干扰预抵消量 Δ8^ΠΔ之间相互关联, 因此必须 对相互关联的 Δ8,^ 方程进行联立求解, 联立求解的范围根据干扰表的形式、 预编码码块相互干扰的范围、预抵消的精度等来确定。得到干扰预抵消量后, 与待发送符号相加, 然后进行预编码操作。 此外, 由于干扰预抵消量的实虚 规律与干扰量一致, 即与被干扰的发送符号一致, 因此待发送符号的实虚规 律不会发生变化, 因此对本预编码码块内的信号不会额外产生干扰。
另外, 为了简化, 可以把式 (5) 中的 V^.Im(W H Pt)记为 1¾, 得到 s 的干扰预抵消方程: l,meek (7)
写成矩阵形式为
AS + V +AS" = 0 ( , 式 (8) 中, 表示 预编码码块内 (S¾ +AJ的系数组成的矩阵, 矩阵 中每个元素为 1¾与6^的乘积, ^表示 预编码码块内产生干扰的符号所组 成的向量, AS和 AS分别表示 Δ8,.和 48,„所组成的向量。 式 (8 ) 所示的方程 '王 组可以通过联立或者迭代方法求解。上述实现方式中用到的下行信道状态 ΐ 息可以根据上下行信道的互易性, 通过上行信道估计进行测量, 或者通过用 户设备 (User Equipment ; 以下简称: UE) 反馈获得。 本发明图 1所示实施例的另一种实现方式中, 由于式(3 )干扰项中包含 系数矩阵 MWy.Hy. = l, 2,..., , 因此歩骤 101也可以为: 构造预编码矩阵以 消除使用构造的预编码矩阵的预编码码块对其他预编码码块产生的干扰。 也就是说, 构造预编码矩阵, 对于不使用构造的预编码矩阵的预编码码 块, 使得 Im(W H = l, 2,..., 为零矩阵; 即
Im(WyHyPJ = 0 ( 10 ) 其中 0 χ 表示 x 维的零矩阵, 分别表示第 0个和第 Α个预编码码 块的预编码的流数。
式 (10 ) 中, 为构造的预编码矩阵; Wy为第 0个不使用上述构造的预 编码矩阵的预编码码块中发送符号 对应的接收机采用的均衡矩阵; Hy表示 第 0个不使用上述构造的预编码矩阵的预编码码块中发送符号 Si).对应的信道 矩阵; Im ( · ) 表示对 (·) 进行取复数的虚部的操作。
这时, 歩骤 102可以为: 通过上述构造的预编码矩阵对上述预编码码块 中的待发送符号进行预编码, 获得预编码后的符号。
假设接收机采用迫零均衡, 则均衡矩阵为
Figure imgf000012_0001
若 ν,.是一个矩阵的右奇异向量, 则 ν^1^是对应于同一个奇异值的右奇 异向量。 因此一种可能的构造 ^ = 0,1, 2,···,^ 的方法如下, 设 =[ ··· ]是按照传统方法构造的预编码矩阵, 则构造的预编码矩阵
Ρ^Α = 0,1,2,···, )可以为:
Figure imgf000013_0001
将式 (12) (10) 可以得到
Im = l,2,-, (13)
Figure imgf000013_0002
HyF0 H!}.F0 H,F0) H>F,=A,, 其第 行, 第"列的元素为" m„, 则
+
(13) 等价于
Figure imgf000013_0003
(14) 记 的辐角为^ ^ 则式 (14) 等价于线性方程组 - d
Figure imgf000013_0004
= 0LoXLt,k = \,2, 、K
≠― + θ^-Θ +φ,
(15) 显然式(15)是关于一组未知数 { ,/ = l,...,J = ( .., } (共 | t个未知 数) 的线性方程组。 该线性方程组是考虑消除预编码矩阵为 P。的预编码块上 的干扰量得到的, 实际中还需要同时考虑消除其他码块上的干扰, 这样每个 码块都对应了一个形如式(15 ) 的线性方程组, 将所有这些线性方程组联立 得到待求解的线性方程组, 利用通常求解线性方程组的方法可以得到该方程 组的解。 从而完全或在一定程度上消除不同预编码码块之间的干扰。
以上构造 ^ = 0, 1, 2,—,^:)的方式仅仅是可能方案中的一种, 本发明并不 仅限于此, 本发明对 的构造方式不作限定。
由于 FBMC采用了时频局域化效果很好的原型滤波器, 因此干扰量的 扩散范围是有限的, 本发明图 1所示实施例的再一种实现方式中, 采用在 每个预编码块的周围留出一个保护带的方法来消除预编码块间的干扰。 这时, 歩骤 101可以为: 在相邻预编码码块之间预留至少一个子载波作为保 护带, 该保护带上不传输有效数据; 或者, 在相邻预编码码块之间预留至少 一个符号作为保护带, 该保护带上不传输有效数据; 或者, 在相邻预编码码 块之间预留至少一个子载波和至少一个符号作为保护带, 该保护带上不传输 有效数据。
具体地, 本实现方式中, 可能的保护带的设置方法包括但不限于如下三 种:
( 1 ) 消除频域上的干扰一在不同预编码块间预留若干个子载波作为 保护带, 保护带上不传输有效数据, 而是发送数据 0, 如图 5所示, 图 5为 本发明频域保护带一个实施例的示意图。 图 5中, 每个方格表示一个资源元 素, 横轴 t表示时间轴, 纵轴 f表示频率轴。 从图 5中可以看出, 占据某个 频段且用 P。进行预编码的码块与占据另一频段且用 进行预编码的码块中 间有若干个子载波上不传输有效数据, 而是发送数据 0, 作为保护带使用。
( 2 ) 消除时域上的干扰——在不同预编码块间预留若干个符号作为保 护带, 保护带上不传输有效数据, 而是发送数据 0, 如图 6所示, 图 6为本 发明时域保护带一个实施例的示意图。 图 6中, 占据某个时间段且用 P。进行 预编码的码块与占据另一时间段且用 进行预编码的码块中间有若干个符 号上不传输有效数据, 而是发送数据 0, 作为保护带使用。
( 3 ) 消除时频域上的干扰——在一个预编码块周围预留若干个符号以 及若干个子载波作为保护带, 保护带上不传输有效数据, 而是发送数据 0, 如图 7所示, 图 7为本发明时频域保护带一个实施例的示意图。 图 7中, 阴 影方块表示占据某个时频资源段且用 P。进行预编码的码块,阴影方块周围的 空白方块表示保护带, 保护带上不传输有效数据, 而是发送数据 0, 从而使 得阴影方块与周围其他的预编码块隔离开, 因此阴影方块上的发送数据符号 与周围的预编码块的发送数据符号不会相互干扰。
本发明图 1所示实施例的上述 3种实现方式可以单独使用, 也可以联合 使用, 如可以先在频域上预留保护带以消除频域相邻预编码块的相互干扰, 再通过构造预编码矩阵的方法消除时域相邻的预编码块间的部分相互干扰, 如果时域干扰无法完全消除, 可以进一歩通过干扰预抵消的方法消除残余干 扰。
本发明通过对 MIM0-FBMC系统的发送符号进行干扰预抵消, 或者通过设 计预编码矩阵实现干扰量的系数矩阵为零矩阵, 或者通过在预编码块周围预 留保护带的方法, 完全或部分消除了接收信号的预编码码块间干扰。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分歩 骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的歩骤; 而 前述的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的 介质。
图 8为本发明信号发送设备一个实施例的结构示意图, 本实施例中的信 号发送设备 8可以实现本发明图 1所示实施例提供的方法, 如图 8所示, 该信 号发送设备 8可以包括: 干扰消除模块 81、 信号处理模块 82和发送模块 83; 其中, 干扰消除模块 81, 用于消除 MIM0-FBMC系统中至少两个预编码码 块间的边界符号上的干扰, 上述预编码码块由至少一个使用相同预编码的时 频资源元素组成; 其中, 上述干扰由滤波器的非正交性和预编码在时频资源 元素上的变化产生。
上述至少两个预编码码块间的边界符号由滤波器组的干扰系数表在时 域和频域的扩散范围决定, 并且上述至少两个预编码码块间的边界符号的范 围均小于或等于上述干扰系数表在时域和频域的扩散范围; 其中, 上述边界 符号是上述至少两个预编码码块间的边界附近的符号。 上述使用相同预编码的时频资源元素包括经过发射端的处理,在发送符 号前具有相同的系数矩阵的时频资源元素。
信号处理模块 82, 用于在干扰消除模块 81消除 MIM0-FBMC系统中至少两 个预编码码块间的边界符号上的干扰之后,对上述预编码码块中的待发送符 号进行预编码获得预编码后的符号。
发送模块 83, 用于发送信号处理模块 82获得的预编码后的符号。
本实施例中, 上述信号发送设备 8可以为基站、 中转站 (Relay) 、 接入 点 (Access Point ; 以下简称: AP ) 或 UE等具有信号发送功能的设备, 本实 施例对信号发送设备 8的形态不作限定。
上述实施例中, 首先干扰消除模块 81消除 MIM0-FBMC系统中至少两个预 编码码块间的边界符号上的干扰, 然后信号处理模块 82对上述预编码码块中 的待发送符号进行预编码获得预编码后的符号, 然后发送模块 83发送发送上 述预编码后的符号; 从而可以完全或部分消除预编码码块在时频临界位置的 相互干扰。
图 9为本发明信号发送设备另一个实施例的结构示意图, 与图 8所示的信 号发送设备 8相比, 不同之处在于, 图 9所示的信号发送设备 9的一种实现方 式中, 干扰消除模块 81, 具体用于确定干扰抵消量, 将上述干扰抵消量加在 上述预编码码块中的至少一个上述边界符号上, 获得待发送符号; 上述干扰 抵消量使得接收信号中上述至少两个预编码码块间的边界附近的符号上的 干扰为 0或接近 0。
本实现方式中, 干扰消除模块 81可以包括: 确定子模块 811和计算子模 块 812 ;
其中, 确定子模块 811, 用于确定存在干扰的预编码码块;
计算子模块 812, 用于根据获取的信道矩阵、 确定子模块 811确定的存在 干扰的预编码码块使用的预编码矩阵、滤波器组的干扰系数表和产生干扰的 符号计算至少两个预编码码块间的边界符号对应的干扰抵消量, 上述干扰抵 消量使得接收信号中上述至少两个预编码码块间的边界附近的符号上的干 扰为 0或接近 0。
具体地, 计算子模块 812, 具体用于根据下述公式, 对所有 "的可能取 值联立方程组进行求解: ϋ ij G Ω;
Figure imgf000017_0001
其中, Ω表示所有被干扰的所述边界附近的符号的编号的集合; 八 表
/」、编号为 的被干扰的符号 ■对应的干扰抵消量; ϋ表示 所对应的信道矩 阵; Ψ表示对 产生干扰的预编码块的集合; 表示第 ^个存在干扰的预编 码码块使用的预编码矩阵; ^表示 ^所对应的接收机采用的均衡矩阵; ^表 示第 A个存在干扰的预编码码块内的符号的编号的集合; s¾表示 范围内编 号为 ^的产生干扰的符号; 表示所述滤波器组在 所在位置上的干扰系 数; Δ为 s¾所在位置上的干扰抵消量; Im ( · ) 表示对 (·) 进行取复数的 虚部的操作。
本实施例的另一种实现方式中, 干扰消除模块 81, 具体用于构造预编码 矩阵以消除使用构造的预编码矩阵的预编码码块对其他预编码码块产生的 干扰。 具体地, 干扰消除模块 81, 具体用于构造预编码矩阵, 对于第 i个不 使用构造的预编码矩阵的预编码码块, 使得 Im(W,.H,.P)为零矩阵;
其中, P为上述构造的预编码矩阵; 为第 个不使用所述构造的预编 码矩阵的预编码码块的接收机采用的均衡矩阵; Η,.表示第 个不使用所述构 造的预编码矩阵的预编码码块的信道矩阵; Im ( · ) 表示对 (·) 进行取复数 的虚部的操作。
本实现方式中,信号处理模块 82用于对上述预编码码块中的待发送符号 进行预编码获得预编码后的符号可以为: 信号处理模块 82, 具体用于通过上 述构造的预编码矩阵对上述预编码码块中的待发送符号进行预编码, 获得预 编码后的符号。
本实施例的再一种实现方式中, 干扰消除模块 81, 具体用于在相邻预编 码码块之间预留至少一个子载波作为保护带, 上述保护带上不传输有效数 据; 或者, 在相邻预编码码块之间预留至少一个符号作为保护带, 上述保护 带上不传输有效数据; 或者, 在相邻预编码码块之间预留至少一个子载波和 至少一个符号作为保护带, 上述保护带上不传输有效数据。
本实施例中, 上述信号发送设备 9可以为基站、 中转站 (Relay) 、 接入 点 (AP ) 或 UE等具有信号发送功能的设备, 本实施例对信号发送设备 9的形 态不作限定。
上述信号发送设备通过对 MIM0-FBMC系统的发送符号进行干扰预抵消, 或者通过设计预编码矩阵实现干扰量的系数矩阵为零矩阵, 或者通过在预编 码块周围预留保护带的方法, 完全或部分消除了接收信号的预编码码块间干 扰。
图 10为本发明信号发送设备再一个实施例的结构示意图, 如图 10所示, 信号发送设备 10包括发射电路 1002、 接收电路 1003、 功率控制器 1004、 解码 处理器 1005、 处理单元 1006, 存储器 1007及天线 1001。 处理单元 1006控制信 号发送设备 10的操作, 处理单元 1006还可以称为中央处理单元 (Central Processing Unit ; 以下简称: CPU) 。 存储器 1007可以包括只读存储器和随 机存取存储器, 并向处理单元 1006提供指令和数据。 存储器 1007的一部分还 可以包括非易失性随机存取存储器 (NVRAM) 。 具体的应用中, 信号发送设 备 10可以嵌入或者本身可以就是例如移动电话之类的无线通信设备, 还可以 包括容纳发射电路 1002和接收电路 1003的载体, 以允许信号发送设备 10进行 数据的发射和接收。 发射电路 1002和接收电路 1003可以耦合到天线 1001。 信 号发送设备 10的各个组件通过总线系统 1008耦合在一起, 其中, 总线系统 1008除包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但 是为了清楚明起见, 图 10中将各种总线都标为总线系统 1008。 信号发送设备 10还可以包括用于处理信号的处理单元 1006、 此外还包括功率控制器 1004、 解码处理器 1005。具体的不同产品中解码处理器 1005可以与处理单元 1006集 成为一体。
本实施例中, 处理单元 1006可以实现或者执行本发明方法实施例中公开 的各歩骤及逻辑框图。处理单元 1006可以是微处理器或者也可以是任何常规 的处理器等, 结合本发明实施例所公开的方法的歩骤可以直接体现为硬件处 理器执行完成, 或者用处理器中的硬件及软件模块组合执行完成。 软件模块 可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写 可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 1007, 处理单元 1006读取存储器 1007中的信息, 结合其硬件完成本发明方法 实施例中公开的各歩骤。
本实施例中, 上述信号发送设备可以为基站、 中转站 (Relay) 、 接入 点 (AP) 或用户设备 (UE) 等具有信号发送功能的设备, 本实施例对信号发 送设备的形态不作限定。
本实施例中的信号发送设备通过对 MIM0-FBMC系统的发送符号进行干扰 预抵消, 或者通过设计预编码矩阵实现干扰量的系数矩阵为零矩阵, 或者通 过在预编码块周围预留保护带的方法, 完全或部分消除了接收信号的预编码 码块间干扰。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中的 模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描 述进行分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的 一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一歩 拆分成多个子模块。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求
1、 一种信号发送方法, 其特征在于, 包括:
消除多入多出滤波器组多载波 MIM0-FBMC系统中至少两个预编码码块间 的边界符号上的干扰,所述预编码码块由至少一个使用相同预编码的时频资 源元素组成;
对所述预编码码块中的待发送符号进行预编码获得预编码后的符号; 发送所述预编码后的符号。
2、 根据权利要求 1所述的方法, 其特征在于,
所述至少两个预编码码块间的边界符号由滤波器组的干扰系数表在时 域和频域的扩散范围决定, 并且所述至少两个预编码码块间的边界符号的范 围均小于或等于所述干扰系数表在时域和频域的扩散范围。
3、 根据权利要求 1所述的方法, 其特征在于, 所述使用相同预编码的时 频资源元素包括经过发射端的处理,在发送符号前具有相同的系数矩阵的时 频资源元素。
4、 根据权利要求 1所述的方法, 其特征在于, 所述消除多入多出滤波器 组多载波 MIM0-FBMC系统中至少两个预编码码块间的边界符号上的干扰包 括:
确定干扰抵消量,将所述干扰抵消量加在所述预编码码块中的至少一个 所述边界符号上, 获得所述待发送符号。
5、根据权利要求 4所述的方法,其特征在于,所述确定干扰抵消量包括: 确定存在干扰的预编码码块;
根据获取的信道矩阵、 所述存在干扰的预编码码块使用的预编码矩阵、 滤波器组的干扰系数表和产生干扰的符号计算所述至少两个预编码码块间 的边界符号对应的干扰抵消量。
6、 根据权利要求 1-5任意一项所述的方法, 其特征在于, 所述消除多入 多出滤波器组多载波 MIM0-FBMC系统中至少两个预编码码块间的边界符号上 的干扰包括:
构造预编码矩阵以消除使用构造的预编码矩阵的预编码码块对其他预 编码码块产生的干扰。
7、 根据权利要求 6所述的方法, 其特征在于, 所述构造预编码矩阵以消 除使用构造的预编码矩阵的预编码码块对其他预编码码块产生的干扰包括: 构造预编码矩阵, 对于第 i个不使用构造的预编码矩阵的预编码码块, 使得 Im(W,.H,.P)为零矩阵;
其中, P为所述构造的预编码矩阵; 为第 个不使用所述构造的预编 码矩阵的预编码码块的接收机采用的均衡矩阵; Η,.表示第 个不使用所述构 造的预编码矩阵的预编码码块的信道矩阵; Im ( · ) 表示对 (·) 进行取复数 的虚部的操作。
8、 根据权利要求 6或 7所述的方法, 其特征在于, 所述对所述预编码码 块中的待发送符号进行预编码获得预编码后的符号包括:
通过所述构造的预编码矩阵对所述预编码码块中的待发送符号进行预 编码, 获得预编码后的符号。
9、 根据权利要求 1、 2、 3、 4、 5或 7所述的方法, 其特征在于, 所述消 除多入多出滤波器组多载波 MIM0-FBMC系统中至少两个预编码码块间的边界 符号上的干扰包括:
在相邻预编码码块之间预留至少一个子载波作为保护带,所述保护带上 不传输有效数据; 或者,
在相邻预编码码块之间预留至少一个符号作为保护带,所述保护带上不 传输有效数据; 或者,
在相邻预编码码块之间预留至少一个子载波和至少一个符号作为保护 带, 所述保护带上不传输有效数据。
10、 一种信号发送设备, 其特征在于, 包括:
干扰消除模块, 用于消除多入多出滤波器组多载波 MIM0-FBMC系统中至 少两个预编码码块间的边界符号上的干扰,所述预编码码块由至少一个使用 相同预编码的时频资源元素组成;
信号处理模块, 用于在所述干扰消除模块消除 MIM0-FBMC系统中至少两 个预编码码块间的边界符号上的干扰之后,对所述预编码码块中的待发送符 号进行预编码获得预编码后的符号; 发送模块, 用于发送所述信号处理模块获得的预编码后的符号。
11、 根据权利要求 10所述的设备, 其特征在于, 所述至少两个预编码码 块间的边界符号由滤波器组的干扰系数表在时域和频域的扩散范围决定, 并 且所述至少两个预编码码块间的边界符号的范围均小于或等于所述干扰系 数表在时域和频域的扩散范围。
12、 根据权利要求 10所述的设备, 其特征在于, 所述使用相同预编码的 时频资源元素包括经过发射端的处理, 在发送符号前具有相同的系数矩阵的 时频资源元素。
13、 根据权利要求 10所述的设备, 其特征在于,
所述干扰消除模块, 具体用于确定干扰抵消量, 将所述干扰抵消量加在 所述预编码码块中的至少一个所述边界符号上, 获得所述待发送符号。
14、根据权利要求 13所述的设备,其特征在于,所述干扰消除模块包括: 确定子模块, 用于确定存在干扰的预编码码块;
计算子模块, 用于根据获取的信道矩阵、 所述确定子模块确定的存在干 扰的预编码码块使用的预编码矩阵、滤波器组的干扰系数表和产生干扰的符 号计算所述至少两个预编码码块间的边界符号对应的干扰抵消量。
15、 根据权利要求 10-14任意一项所述的设备, 其特征在于,
所述干扰消除模块, 具体用于构造预编码矩阵以消除使用构造的预编码 矩阵的预编码码块对其他预编码码块产生的干扰。
16、 根据权利要求 15所述的设备, 其特征在于,
所述干扰消除模块, 具体用于构造预编码矩阵, 对于第 个不使用构造 的预编码矩阵的预编码码块, 使得 Im(W,.H,.P)为零矩阵;
其中, P为所述构造的预编码矩阵; 为第 个不使用所述构造的预编 码矩阵的预编码码块的接收机采用的均衡矩阵; Η,.表示第 个不使用所述构 造的预编码矩阵的预编码码块的信道矩阵; Im ( · ) 表示对 (·) 进行取复数 的虚部的操作。
17、 根据权利要求 15或 16所述的设备, 其特征在于, 所述信号处理模块 用于对所述预编码码块中的待发送符号进行预编码获得预编码后的符号包 括: 所述信号处理模块, 具体用于通过所述构造的预编码矩阵对所述预编码 码块中的待发送符号进行预编码, 获得预编码后的符号。
18、 根据权利要求 10、 11、 12、 13、 14或 16所述的设备, 其特征在于, 所述干扰消除模块, 具体用于在相邻预编码码块之间预留至少一个子载波作 为保护带, 所述保护带上不传输有效数据; 或者, 在相邻预编码码块之间预 留至少一个符号作为保护带, 所述保护带上不传输有效数据; 或者, 在相邻 预编码码块之间预留至少一个子载波和至少一个符号作为保护带, 所述保护 带上不传输有效数据。
PCT/CN2013/088402 2013-03-22 2013-12-03 信号发送方法和信号发送设备 WO2014146456A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13878714.8A EP2950478B1 (en) 2013-03-22 2013-12-03 Signal sending method and signal sending device
US14/831,652 US9935745B2 (en) 2013-03-22 2015-08-20 Signal sending method and signal sending device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310096328.3A CN104065461B (zh) 2013-03-22 2013-03-22 信号发送方法和信号发送设备
CN201310096328.3 2013-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/831,652 Continuation US9935745B2 (en) 2013-03-22 2015-08-20 Signal sending method and signal sending device

Publications (1)

Publication Number Publication Date
WO2014146456A1 true WO2014146456A1 (zh) 2014-09-25

Family

ID=51553010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088402 WO2014146456A1 (zh) 2013-03-22 2013-12-03 信号发送方法和信号发送设备

Country Status (4)

Country Link
US (1) US9935745B2 (zh)
EP (1) EP2950478B1 (zh)
CN (1) CN104065461B (zh)
WO (1) WO2014146456A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078994A (zh) * 2014-11-21 2017-08-18 华为技术有限公司 发送信号、处理信号的设备及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065461B (zh) 2013-03-22 2017-08-25 华为技术有限公司 信号发送方法和信号发送设备
KR102380179B1 (ko) * 2015-05-26 2022-03-29 삼성전자주식회사 무선 통신 시스템에서 필터 뱅크 다중 반송파 기법을 위한 필터 제어 장치 및 방법
CN106302277B (zh) * 2015-06-10 2020-07-03 上海无线通信研究中心 一种超奈奎斯特调制系统及方法
CN106302301A (zh) * 2015-06-24 2017-01-04 北京三星通信技术研究有限公司 基于复数调制的fbmc信号发送和接收的方法及其装置
CN106302300B (zh) * 2015-06-24 2020-07-31 北京三星通信技术研究有限公司 一种基于滤波器组多载波系统的信号发送和接收的方法及装置
CN107046456B (zh) * 2016-02-05 2021-01-26 中兴通讯股份有限公司 信息的发送、接收方法及装置
CN106101033A (zh) * 2016-07-01 2016-11-09 华中科技大学 一种适用于mimo‑fbmc系统的iam信道估计方法
CN106230757A (zh) * 2016-08-04 2016-12-14 成都极比特通信技术有限公司 基于预编码的fbmc系统实数域均衡方法
CN108631974A (zh) * 2017-03-23 2018-10-09 展讯通信(上海)有限公司 数据传输调度方法、装置及基站
CN110086577B (zh) * 2017-03-24 2020-06-16 华为技术有限公司 用于进行数据传输的方法、装置、终端设备及计算机存储介质
CN108809592B (zh) * 2017-05-05 2021-06-15 华为技术有限公司 数据传输方法和设备
CN109525290B (zh) * 2019-01-11 2021-06-08 电子科技大学 基于mimo-fbmc系统的实数化反馈迭代信道估计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436881B2 (en) * 2001-09-28 2008-10-14 Nec Corporation Per-bin DFE for advanced OQAM-based multi-carrier wireless data transmission systems
CN101507167A (zh) * 2006-08-24 2009-08-12 交互数字技术公司 用于支持单信道码字的下行链路通信的mimo发射机和接收机
CN102497348A (zh) * 2011-12-18 2012-06-13 浙江大学 一种提高滤波器组多载波系统抗时域干扰能力的方法
US20120243625A1 (en) * 2011-03-25 2012-09-27 Vincent Berg Treatment process of a multicarrier signal with filter banks for synchronisation by preamble

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1941547B1 (fr) * 2005-10-26 2009-09-30 France Telecom Procédé de transmission d'un signal multiporteuse conçu pour limiter l'interférence, signal, dispositif d'émission, procédé et dispositif de réception, et programmes d'ordinateur correspondants
CN104065461B (zh) 2013-03-22 2017-08-25 华为技术有限公司 信号发送方法和信号发送设备
EP3151498B1 (en) * 2014-06-26 2019-11-20 Huawei Technologies Co. Ltd. Fbmc-based pilot sending method, channel estimating method and related devices
KR102370119B1 (ko) * 2015-11-17 2022-03-04 삼성전자주식회사 무선 통신 시스템에서 부분 후보 기반의 신호 검출 장치 및 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436881B2 (en) * 2001-09-28 2008-10-14 Nec Corporation Per-bin DFE for advanced OQAM-based multi-carrier wireless data transmission systems
CN101507167A (zh) * 2006-08-24 2009-08-12 交互数字技术公司 用于支持单信道码字的下行链路通信的mimo发射机和接收机
US20120243625A1 (en) * 2011-03-25 2012-09-27 Vincent Berg Treatment process of a multicarrier signal with filter banks for synchronisation by preamble
CN102497348A (zh) * 2011-12-18 2012-06-13 浙江大学 一种提高滤波器组多载波系统抗时域干扰能力的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078994A (zh) * 2014-11-21 2017-08-18 华为技术有限公司 发送信号、处理信号的设备及方法
CN107078994B (zh) * 2014-11-21 2020-07-24 华为技术有限公司 发送信号、处理信号的设备及方法

Also Published As

Publication number Publication date
EP2950478A4 (en) 2015-12-30
CN104065461A (zh) 2014-09-24
US9935745B2 (en) 2018-04-03
EP2950478B1 (en) 2023-09-20
US20150358130A1 (en) 2015-12-10
CN104065461B (zh) 2017-08-25
EP2950478A1 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2014146456A1 (zh) 信号发送方法和信号发送设备
CA3053864C (en) Dmrs indicating and receiving methods, transmit end, and receive end
KR102511458B1 (ko) 진보된 무선 통신 시스템에서 다중 안테나 패널을 사용한 csi 보고 방법 및 장치
CN105900387B (zh) 一种资源分配方法及装置
EP2837123B1 (en) Transmit diversity on a control channel without additional reference signals
US9008166B2 (en) Filter calculating device, transmitting device, receiving device, processor, and filter calculating method
JP6316205B2 (ja) 基地局装置、端末装置、無線通信システムおよび集積回路
CN104702543B (zh) 预编码方法及装置
JP5501034B2 (ja) 通信システム、送信装置、受信装置
CN103999418B (zh) 一种发射和接收数据符号的方法
WO2015186531A1 (ja) 端末装置、フィードバック情報生成方法、及び基地局装置
JP6112257B2 (ja) ユーザ固有の参照信号送信方法および装置
WO2020198168A1 (en) Receiver combining for hybrid analog-digital beamforming
Taheri et al. Evaluation of preamble based channel estimation for MIMO-FBMC systems
CN109565364B (zh) 空间复用mimo通信中的信号处理
JP5859913B2 (ja) 無線受信装置、無線送信装置、無線通信システム、プログラムおよび集積回路
JP2020098942A (ja) 基地局装置、端末装置及び通信方法
TW201216655A (en) Method of handling antipodal parauitary precoding for MIMO OFDM and related communication device
JP5704555B2 (ja) 無線通信システム、及び受信装置
WO2013183581A1 (ja) 送信装置、受信装置、送信方法及び受信方法
WO2016078591A1 (en) System and method for multiple-input multiple-output (mimo) orthogonal frequency division multiplexing (ofdm) offset quadrature amplitude modulation (oqam)
WO2015109448A1 (zh) 信息处理装置、网络节点和信息处理方法
JP6159839B1 (ja) 基地局装置
WO2020019336A1 (en) Method and apparatus for transmiting demodulation reference signal
Yüzgeçcioğlu et al. Uplink and downlink transceiver design for OFDM with index modulation in multi-user networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013878714

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE