WO2016076394A1 - 画像処理装置、画像処理方法、画像処理プログラム - Google Patents
画像処理装置、画像処理方法、画像処理プログラム Download PDFInfo
- Publication number
- WO2016076394A1 WO2016076394A1 PCT/JP2015/081857 JP2015081857W WO2016076394A1 WO 2016076394 A1 WO2016076394 A1 WO 2016076394A1 JP 2015081857 W JP2015081857 W JP 2015081857W WO 2016076394 A1 WO2016076394 A1 WO 2016076394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cloud
- data
- image processing
- image
- color
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T13/00—Animation
- G06T13/20—3D [Three Dimensional] animation
- G06T13/60—3D [Three Dimensional] animation of natural phenomena, e.g. rain, snow, water or plants
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
- G06T2207/30192—Weather; Meteorology
Definitions
- the present invention relates to an image processing apparatus, an image processing method, and an image processing program.
- JP 2001-202527 A Japanese Patent Application Laid-Open No. 8-190639 JP2013-54005A JP-A-6-231277 Japanese Patent Laid-Open No. 11-53576
- the disclosed technology employs the following means in order to solve the above-described problems. That is, the first aspect is A storage device that stores meteorological data indicating an atmospheric state of at least one of a plurality of regions within a predetermined range; A controller for calculating a cloud color for the at least one region using the weather data; An image processing apparatus comprising: According to the first aspect, the control device calculates a cloud color calculated for the at least one region using the weather data. By calculating the color of the cloud based on the weather data, it is possible to generate an image including a color cloud corresponding to the weather condition. In the first aspect, the storage device may store meteorological data indicating the atmospheric conditions of two or more areas of the plurality of areas. In this case, the cloud color of each area may be calculated based on the weather data of the corresponding area, or may be calculated based on the weather data of two or more areas including the corresponding area. .
- the second aspect is an image processing apparatus that further calculates a cloud color of at least one of the remaining areas based on the cloud color calculated for the at least one area.
- region can be calculated based on the weather data of one area
- the third aspect is an image processing apparatus that further calculates a cloud color using the region to which the viewpoint position of the image belongs when generating an image including a cloud as the at least one region.
- the fourth aspect is an image processing apparatus that further calculates a cloud shadow color and opacity in the at least one region using the weather data.
- the fifth aspect is an image processing apparatus in which the weather data is a downward shortwave radiation amount.
- control device further creates an image obtained by synthesizing a photographic image including a ground surface within the predetermined range or a structure on the ground surface and a cloud image having the calculated color.
- An image processing apparatus is assumed.
- the disclosed aspect may be realized by a program being executed by an information processing apparatus. That is, the disclosed configuration can be specified as a program for causing the information processing apparatus to execute the processing executed by each unit in the above-described aspect, or a computer-readable recording medium on which the program is recorded. Further, the disclosed configuration may be specified by a method in which the information processing apparatus executes the process executed by each of the above-described units. The configuration of the disclosure may be specified as a system including an information processing apparatus that performs the processing executed by each of the above-described units.
- an image processing apparatus capable of generating an image including a cloud of a color according to the atmospheric state.
- FIG. 1 is a diagram illustrating a hardware configuration example of the information processing apparatus.
- FIG. 2 is a diagram illustrating an example of a spatial range and a grid to be subjected to weather simulation.
- FIG. 3 is a diagram illustrating an example of an operation flow of the image processing apparatus.
- FIG. 4 is a diagram illustrating an example of the viewpoint position and the target range of the weather simulation.
- FIG. 5 is a diagram showing a specific example 1-1 of visualization of a weather simulation.
- FIG. 6 is a diagram illustrating a specific example 1-2 of visualization of a weather simulation.
- FIG. 7 is a diagram illustrating a specific example 2-1 of visualization of a weather simulation.
- FIG. 8 is a diagram illustrating a specific example 2-2 of visualization of a weather simulation.
- FIG. 9 is a diagram illustrating an example of an image processing system.
- Embodiment In general, the color of the cloud when the sky is covered with a thick cloud is gray near black, and the color of the cloud when clear is close to white. This is because, in addition to the reflection (scattering) of sunlight, transmission of sunlight affects the color of the cloud when looking up at the sky from the ground. Therefore, the color of the clouds is not always white, but varies depending on the sky.
- the image processing apparatus calculates meteorological data at a certain time by a weather simulation based on meteorological data and terrain data as an initial condition, and based on the calculated meteorological data, a cloud sought from the ground at the time Is a device that generates an image of the sky including
- the terrain data is data representing the shape of the surface of the earth.
- the meteorological data is data representing the state of the atmosphere or the like.
- FIG. 1 is a diagram illustrating a configuration example of an image processing apparatus according to the present embodiment.
- An image processing apparatus 100 illustrated in FIG. 1 has a configuration of a general computer (information processing apparatus).
- the image processing apparatus 100 of FIG. 1 includes a processor 102, a memory 104, a storage device 106, an input device 108, an output device 110, and a communication interface 112. These are connected to each other by a bus.
- the memory 104 and the storage device 106 are computer-readable recording media.
- the hardware configuration of the information processing apparatus is not limited to the example illustrated in FIG. 1, and omissions, replacements, and additions of components may be appropriately performed.
- the image processing apparatus 100 can be realized using a dedicated or general-purpose computer such as a PC (Personal Computer), a workstation (WS, Work Station), a mobile phone, a car navigation system, or an electronic device equipped with the computer. is there.
- a dedicated or general-purpose computer such as a PC (Personal Computer), a workstation (WS, Work Station), a mobile phone, a car navigation system, or an electronic device equipped with the computer. is there.
- the processor 102 loads a program stored in a recording medium into the work area of the memory 104 and executes the program, and each component is controlled through the execution of the program, thereby meeting a predetermined purpose. Function can be realized.
- the processor 102 is, for example, a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
- the processor 102 may include a GPU (Graphical Processing Unit).
- the processor 102 executes a weather simulation for calculating an atmospheric state or the like from topographic data and weather data.
- the weather simulation will be described later.
- the processor 102 calculates image data to be displayed on the output device 110 from the result of the weather simulation.
- the processor 102 is an example of a control device.
- the memory 104 includes, for example, a RAM (Random Access Memory) and a ROM (Read Only Memory).
- the memory 104 is also called a main storage device.
- the storage device 106 is, for example, an EPROM (Erasable Programmable ROM), a hard disk drive (HDD, Hard Disk Drive), or a solid state drive (SSD, Solid tate Drive).
- the storage device 106 can include a removable medium, that is, a portable recording medium.
- the removable medium is, for example, a USB (Universal Serial Bus) memory or a disc recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
- the storage device 106 is also called a secondary storage device.
- the storage device 106 stores at least various programs, various data, and various tables for executing weather simulation and image processing.
- the storage device 106 stores an operating system (Operating System: OS), various programs, various tables, and the like.
- OS Operating System
- Information stored in the storage device 106 may be stored in the memory 104.
- information stored in the memory 104 may be stored in the storage device 106.
- Various data and the like may be received from an external device or the like by the communication interface 112.
- the storage device 106 stores time data and viewpoint data input by a user or the like, topographic data and weather data as initial conditions, and weather data as a result of weather simulation.
- the storage device 106 includes a color created based on weather data and the like, opacity data, a ground surface used for drawing, a structure such as a building, image data such as a background, and a ground surface. Stores dimensional coordinates, etc.
- the image data of the ground surface, structures such as buildings, etc. is, for example, photographic image data obtained by photographing an actual ground surface or the like.
- the ground surface and structures such as buildings are not distinguished, and these may be combined to form the ground surface.
- a structure such as a building is a structure existing on the ground surface.
- the storage device 106 stores image data including polygon data, texture data, and the like created based on color, opacity, and the like.
- the input device 108 includes a keyboard, a pointing device, a wireless remote controller, a touch panel, and the like.
- the input device 108 may include a video / image input device such as a camera, and an audio input device such as a microphone.
- the input device 108 receives input from the user such as the position of the visualization target and the topographic data and weather data.
- the output device 110 includes a display device such as a CRT (Cathode Ray Tube) display, an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an EL (Electroluminescence) panel, and an output device such as a printer.
- the output device 110 may include an audio output device such as a speaker.
- the output device 110 displays an image based on the image data calculated by the processor 102.
- the output device 110 may display an image on a display device external to the image processing device 100. Further, the output device 110 may transmit the image data to an information processing device outside the image processing device 100 and cause the display device of the external information processing device to display an image based on the image data.
- the communication interface 112 is connected to another device and controls communication between the information processing apparatus 100 and the other device.
- the communication interface 112 is, for example, a LAN (Local Area Network) interface board, a wireless communication circuit for wireless communication, or a communication circuit for telephone communication.
- the LAN interface board and the wireless communication circuit are connected to a network such as the Internet.
- the processor 102 loads each program stored in the storage device 106 to the memory 104 and executes the program, thereby realizing each operation described later.
- the step of describing the program includes processes that are executed in parallel or individually even if they are not necessarily processed in time series, as well as processes that are executed in time series in the described order. Some of the steps describing the program may be omitted.
- the series of processing can be executed by hardware or software.
- the hardware component is a hardware circuit, for example, an FPGA (Field Programmable Gate Array), an application specific integrated circuit (ASIC), a gate array, a combination of logic gates, an analog circuit, or the like.
- the hardware is an example of a control device.
- the cloud simulation includes the amount of cloud water, the amount of rain water, the amount of cloud ice, the amount of snow, and the amount of hail.
- the terrain data includes, for example, the position of the ground surface, geology, etc. within the spatial range subject to weather simulation.
- the geology represents the attributes of the ground surface (ground characteristics such as bare ground, lawn, and pavement).
- Geology affects the emissivity of the ground surface.
- Emissivity is one of the attributes of the ground surface.
- the emissivity of the ground surface differs depending on the difference in geology.
- the meteorological data includes, for example, the position, wind (wind direction, wind speed, etc.), temperature, atmospheric pressure, humidity, water vapor amount, solar radiation from the sun, etc. at all or some points within the range subject to weather simulation. included.
- the position within the range subject to the weather simulation may be given by any coordinate system such as an orthogonal coordinate system or a polar coordinate system.
- the spatial range to be subjected to the meteorological simulation is divided into a plurality of grids (regions) of a predetermined size.
- the shape of the grid is, for example, a rectangular parallelepiped.
- Each grid has, for example, a bottom surface parallel to the horizontal plane and a side surface parallel to the north-south direction and the east-west direction.
- the size of one grid is, for example, 500 m in the north-south direction, 500 m in the east-west direction, and 200 m in the height direction.
- the size of the grid used in the weather model may vary with position.
- the size of the grid is determined in consideration of, for example, calculation load.
- FIG. 2 is a diagram showing an example of a spatial range and a grid to be subjected to weather simulation.
- a rectangular parallelepiped grid exists within a spatial range to be subjected to a rectangular parallelepiped weather simulation.
- the spatial range and the grid shape to be subjected to the weather simulation may be shapes other than a rectangular parallelepiped.
- a non-hydrostatic / atmospheric general circulation model (MSSG-A, Atmospheric-component-of-the-Multi-Scale-Simulator-for-the-Geoenvironment) is used as a meteorological model in meteorological simulation.
- the weather model is not limited to this, and any weather model may be used.
- non-hydrostatic / atmospheric general circulation model when topographic data, weather data such as wind, temperature, humidity, pressure, etc. at a certain time are given as initial conditions, the wind of the entire calculation area at that time based on the topographic data, Weather data such as temperature, humidity, pressure, etc. is calculated for each grid.
- meteorological data such as the amount of cloud water, rain water, cloud ice, snow, dredging, downward shortwave radiation, etc. Is calculated.
- meteorological data are data representing the state of the atmosphere.
- the downward shortwave radiation amount is energy of shortwaves radiated downward on the lower surface of the grid.
- a short wave is an electromagnetic wave having a wavelength of 4 ⁇ m or less.
- the downward shortwave radiation amount may be calculated as a sum of the downward radiation amounts calculated for a plurality of non-overlapping wavelength bands having a wavelength of 4 ⁇ m or less.
- a downward radiation amount only in the visible light region may be used as the downward shortwave radiation amount.
- the amount of cloud water, the amount of cloud ice and the amount of downward shortwave radiation in the weather data are examples of weather data used when drawing a cloud.
- the processor 102 of the image processing apparatus 100 calculates meteorological data of a predetermined range and period by weather simulation through execution of the program. From the weather data, the processor 102 of the range and period to be visualized is the sky as viewed from the ground. An image including a cloud, a cloud in the sky viewed from between the ground and the cloud, and a cloud shadow on the ground surface is generated.
- FIG. 3 is a diagram illustrating an example of an operation flow of the image processing apparatus.
- step S101 the processor 102 of the image processing apparatus 100 determines a spatial range and a period to be subjected to weather simulation.
- Time data and viewpoint data for visualizing the results of the weather simulation are input from the user or the like to the image processing apparatus 100 by the input device 108.
- the time data is time data simulated in the weather simulation.
- the time may be a period having a time width.
- the viewpoint data includes, for example, the coordinates of the viewpoint (viewpoint position), the direction of the line of sight (visual axis), the display range, the size of the image, the viewing angle, and the like of the image that visualizes the weather simulation.
- the viewing angle is, for example, a horizontal angle and a vertical angle of the spatial range represented in the image.
- the coordinates of the viewpoint are, for example, the ground surface, the sky between the ground and the cloud, the sky above the cloud, and the like.
- the viewpoint data determines the spatial range represented in the image that visualizes the weather simulation.
- the time of the time data and the viewpoint position of the line-of-sight data are input in association with each other. In other words, the user or the like inputs to visualize the specified viewpoint position at the specified time.
- the time data and the viewpoint data may be specified such that the viewpoint position and the like change according to successive times.
- a plurality of viewpoint positions may be designated for one time.
- the input time data and line-of-sight data are stored in the storage device 106.
- the spatial range represented in the image to be visualized is determined by the viewpoint position, the line-of-sight direction, the display range, the size of the image, the viewing angle, and the like.
- the spatial range is an example of a predetermined range.
- the processor 102 determines, for example, a range of 10 km and a height of 20 km from the viewpoint position specified by the line-of-sight data to the east, west, south, and north as the spatial range of the target of the weather simulation. In addition, the processor 102 determines a period up to the time specified by the time data corresponding to the line-of-sight data as a target period of the weather simulation. If there are multiple viewpoint positions, for each, the processor 102 determines the spatial range and duration of the weather simulation target.
- a wider range may be the target of the weather simulation.
- the height of the target range of the weather simulation is determined based on the range where the atmosphere exists, the range where the clouds exist, and the like. Further, the spatial range of the target of the weather simulation may be determined in consideration of the viewpoint position and the direction of the line of sight. The range of the target of the weather simulation may be determined based on a distance at which the cloud can be visually recognized from the viewpoint position.
- FIG. 4 is a diagram showing an example of the viewpoint position and the target range of the weather simulation.
- only the direction of the line of sight is the target range of the weather simulation. That is, here, as shown in FIG. 4, when the direction of the line of sight is eastward, the range of 20 km in the north-south direction, 10 km east from the viewpoint, and 20 km in height is defined as the range of the target of the weather simulation.
- the processor 102 sets a range including a spatial range represented in the image to be visualized as a spatial range to be subjected to the weather simulation.
- step S102 the processor 102 of the image processing apparatus 100 acquires terrain data and weather data at a predetermined time (set to ts) in a spatial range (area) to be subjected to weather simulation.
- the acquired topographic data and weather data are stored in the memory 104 or the storage device 106.
- the topographic data and weather data acquired here are input data (initial conditions) used when performing a weather simulation.
- the target period of the weather simulation is a period from the predetermined time (ts) to the time specified by the time data.
- the terrain data and weather data may be input from the input device 108 and stored in the storage device 106 or the like, or may be received from an external device via the communication interface 112 and stored in the storage device 106 or the like.
- terrain data and weather data at a predetermined time (ts) in the spatial range of the weather simulation target are acquired for each.
- the processor 102 substitutes ts at time t.
- Time t is used in the weather simulation.
- step S103 the processor 102 of the image processing apparatus 100 performs a weather simulation based on the weather model, using the topographic data acquired in step S102, the weather data at time t, and the like.
- meteorological simulation meteorological data in the spatial range of the target of the meteorological simulation after the lapse of a minute time ⁇ t from the time t (t + ⁇ t) is calculated.
- the processor 102 calculates weather data for each grid.
- the calculated weather data is stored in the storage device 106 as weather data at time t + ⁇ t.
- step S104 the processor 102 determines whether or not the weather simulation has ended for the period targeted for the weather simulation.
- the image processing apparatus 100 is given in advance a period for a weather simulation target.
- the processor 102 determines whether or not the weather simulation has ended for the period of the weather simulation target. If completed (S104; YES), the process proceeds to step S105. If not completed (S104; NO), the calculation unit 104 substitutes t + ⁇ t for time t. Thereafter, the process returns to step S103.
- steps S103 and S104 are executed for the spatial range and the period of the weather simulation target for each.
- step S105 the processor 102 calculates the color and opacity for each grid in the atmosphere and the ground from the weather data for each grid calculated by the weather simulation.
- the calculated color and opacity for each grid are stored in the storage device 106.
- the processor 102 calculates the color and opacity for each grid for the target period of the weather simulation.
- the color and opacity for each grid may be calculated together with meteorological data such as the amount of cloud water when the meteorological data is calculated in the weather simulation in step S103. Atmospheric color and opacity correspond to atmospheric clouds.
- the opacity P is expressed as follows as a function of the cloud water amount rqc [kg / m 3 ] and the cloud ice amount rqi [kg / m 3 ] for each grid of weather data.
- the opacity P indicates the degree of opacity. When the opacity is 1, it is opaque, and when it is 0, it is transparent.
- x is an effective scattering cloud amount (kg / m 3 ).
- the effective scattered cloud amount x indicates the degree of influence on cloud opacity.
- the degree of scattering of shortwave radiation (irradiation) differs between cloud water and cloud ice.
- the coefficient a indicates the degree of scattering by cloud ice based on the scattering by cloud water.
- the coefficient a is 0.1, for example.
- the P MAX 0.666
- x min 0kg / m 3
- x MAX 0.0002kg / m 3.
- the amount of rain water, the amount of snow, and the amount of dredging may be reflected in the effective scattered cloud amount.
- the colors are expressed as follows as a function of the downward shortwave radiation amount S [W / m 2 ] for each grid of weather data. This color corresponds to the color of the cloud.
- the color of the cloud in each grid depends on the downward shortwave radiation amount of each grid. A small amount of downward shortwave radiation of a grid means that the amount of solar radiation of the grid is small. The color of the cloud becomes closer to black as the amount of downward shortwave radiation decreases. Further, the color of the cloud becomes close to white as the amount of downward shortwave radiation increases.
- the color is expressed in RGB, but may be expressed in other formats such as CMY and YUV.
- R, G, and B are given by 8 bits (0 to 255), but the values of R, G, and B are not limited to 8 bits.
- the color may be expressed as a function of the downward shortwave radiation quantity S for each grid as either:
- the processor 102 calculates the color and opacity corresponding to the shadow of the cloud on the ground surface from the weather data calculated by the weather simulation.
- the cloud shadow color and opacity on the ground surface are expressed as a function of the downward shortwave radiation amount S at each point on the ground surface of the weather data as follows: The shadow of the cloud on the ground surface becomes dark as the downward shortwave radiation becomes smaller.
- P MAX can take a value between 0 and 1.
- P MAX is, for example, 155/255.
- a cloud shadow is drawn on the ground surface by superimposing a color and opacity corresponding to the cloud shadow on the ground surface on an image of the ground surface at the time of drawing.
- the opacity and color corresponding to the shadows of clouds in the atmosphere and clouds on the ground may be expressed by other expressions.
- step S106 the processor 102 creates polygon data and texture data from the color for each grid, the opacity, the three-dimensional coordinates such as the ground surface, and the image of the ground surface.
- Polygon data and texture data are data used when creating image data for displaying an image on the output device 110.
- the processor 102 creates image data from the color, opacity, etc. for each grid calculated in step S105 for the time to be visualized.
- image of the ground surface or the like is a photographic image obtained by photographing the ground surface or the like
- image data of an image obtained by combining the photographic image and the cloud is created.
- the processor 102 creates polygon data and texture data based on information such as color, opacity, and ground surface created from weather data.
- the polygon data is created as slice plane data.
- the polygon data includes the three-dimensional coordinates, normal vectors, and texture coordinates of the vertices of the slice plane.
- the processor 102 creates a plurality of slice plane data based on the color and opacity created from the weather data.
- the slice planes of each slice plane data are parallel to each other.
- a group of slice plane data is also referred to as slice plane group data.
- a plurality of slice plane group data may be created.
- Texture data is data for mapping a texture to a polygon.
- the texture data includes information such as color and transparency (opacity) for each coordinate.
- On the ground surface the color and opacity corresponding to the cloud shadow calculated in step S105 are superimposed on the image of the ground surface or the like.
- step S107 the image processing apparatus 100 determines slice plane group data to be used when creating image data based on the viewpoint data stored in the storage device. For example, the image processing apparatus 100 determines slice plane group data in which the normal direction of the slice plane and the direction of the visual axis are nearly parallel as slice plane group data to be used.
- the processor 102 converts each slice plane data of the determined slice plane group data into slice plane data in a two-dimensional coordinate space based on the viewpoint data.
- the coordinates of each vertex of each slice plane are converted into two-dimensional screen coordinates indicating the position in the display screen and Z values indicating the depth in the display screen.
- the converted data is stored in the storage device 106.
- the processor 102 for all coordinate points within the range surrounded by each vertex in each slice plane of the slice plane data in the transformed two-dimensional coordinate space, based on the screen coordinates and the Z value of the vertex of each slice plane, Calculate the Z value. Further, the processor 102 calculates color data and transparency data for each pixel of each slice plane based on the texture coordinates and texture data of the vertices of each slice plane, and stores them in the storage device 106 together with the Z value.
- the processor 102 performs rendering processing for generating image data for screen display based on the texture coordinates of each vertex, the texture data, the Z value for each screen coordinate for each slice plane, and the image data is stored in the storage device 106. Store. In the rendering processing, the color of each slice in the screen direction and the opacity are stacked to express the color of each coordinate in the screen.
- the processor 102 of the image processing apparatus 100 creates image data by a drawing method based on a slice diagram as in steps S106 and S107.
- the processor 102 uses the color and opacity information calculated in step S105 to generate image data by other drawing methods such as a ray marching drawing method as well as a slice diagram-based drawing method, You may store in the memory
- the processor 102 When the viewpoint data to be visualized in the weather simulation is set for each successive time, the processor 102 creates image data based on the specified viewpoint data for each time based on the weather simulation result.
- the processor 102 may connect these images in order of time to generate image data as a moving image.
- the viewpoint data to be visualized in the weather simulation may be fixed.
- a plurality of viewpoint data to be visualized in the weather simulation may be designated for one time.
- the processor 102 creates an image at each specified viewpoint data for the specified time based on the weather simulation result.
- the processor 102 may connect these images and generate a moving image in which the viewpoint position, the viewpoint direction, the display range, and the like change as specified by the viewpoint data.
- the image processing apparatus 100 creates, for example, a moving image of a landscape including a sky view seen from a window on the left side of a train vehicle from departure from A station by train at a predetermined date and time until arrival at B station. Can do.
- step S108 the output device 110 of the image processing apparatus 100 displays an image based on the image data stored in the storage device 106.
- the output device 110 may display an image on an external display device.
- the output device 110 may transmit image data to another information processing apparatus via a communication network or the like, and display an image based on the image data on a display unit of the other information processing apparatus.
- the weather simulation is performed by a device other than the image processing device 100.
- the image processing device 100 receives weather data that is received from the other device and is a result of the weather simulation, and is based on the weather data.
- An image may be created.
- FIGS. 5 and 6 are diagrams showing a specific example 1 of visualization of a weather simulation.
- the examples in FIGS. 5 and 6 are examples in which the sky is looked up from the ground, and the ground surface and buildings (structures) near the viewpoint are displayed on the lower side of the image, and clouds in the sky are displayed on the upper side of the image.
- the cloud is drawn based on the amount of cloud ice and the amount of cloud water. Even when the cloud is thick and the amount of shortwave radiation is small, the color of the cloud becomes bright.
- the color of each grid is determined based on the above formula (2) in consideration of the downward shortwave radiation amount when drawing the cloud. That is, the cloud is drawn based on the downward shortwave radiation amount, the cloud ice amount, and the cloud water amount.
- the color of the cloud is darker than the example of FIG. 5 because the amount of downward shortwave radiation is reflected.
- the example of FIG. 6 is based on the actual cloud color when the downward shortwave radiation amount is small.
- FIGS. 7 and 8 are diagrams showing a specific example 2 of visualization of a weather simulation.
- the examples of FIGS. 7 and 8 are examples in which the ground surface and clouds are viewed from the height between the ground and the cloud, and the ground surface and the like are displayed on the lower side of the image and the clouds above the image are displayed.
- the example of FIG. 7 is an example in which the downward shortwave radiation amount is not taken into consideration when the ground surface is drawn. Cloud shadows are not drawn on the ground surface. Therefore, on the quality surface, the brightness of the ground surface does not change regardless of whether the amount of downward shortwave radiation is large or small.
- FIG. 7 is an example in which the downward shortwave radiation amount is not taken into consideration when the ground surface is drawn. Cloud shadows are not drawn on the ground surface. Therefore, on the quality surface, the brightness of the ground surface does not change regardless of whether the amount of downward shortwave radiation is large or small.
- FIG. 7 is an example in which the downward shortwave radiation amount is not taken into consideration when the ground surface is drawn. Cloud shadow
- the shadow color and opacity of the cloud are calculated based on the above equations (5) and (6) in consideration of the downward shortwave radiation amount of the ground surface. This is an example of the decision.
- the ground near the center of the image in FIG. 8 is dark due to the shadow of the cloud because the downward shortwave radiation amount on the ground surface is small.
- the images in FIGS. 5 to 8 are images of the ground surface and the like using the Google software earth (trademark) of Google, and using the cloud and cloud shadow color and opacity calculated above. It is drawn by combining.
- the image creation by the image processing apparatus 100 according to the present embodiment may be an image creation by software other than the software.
- the color is determined for each grid from the downward shortwave radiation amount for each grid, but the colors of all grids are determined by the above relational expression based on the downward shortwave radiation amount for the viewpoint position of the image to be created. May be.
- the image processing apparatus 100 since the image processing apparatus 100 does not have to determine the color of the cloud for each grid, the amount of calculation is reduced compared to the above example. Further, the image processing apparatus 100 can determine the color of the cloud as long as the downward shortwave radiation amount of the viewpoint position is obtained even if the downward shortwave radiation amount of all grids is not obtained.
- the downward shortwave radiation amount of the viewpoint position may be a downward shortwave radiation amount of the grid including the viewpoint position.
- the processing in the image processing apparatus 100 may be performed by being divided into a server apparatus and a client apparatus.
- the server device and the client device have the same functions as the image processing device 100 described above. Description of parts common to the above example is omitted.
- FIG. 9 is a diagram illustrating an example of an image processing system according to this modification.
- the image processing system 10 in FIG. 8 includes a server device 200 and a client device 300. Server device 200 and client device 300 are connected to each other via a network.
- the server device 200 includes a processor 202, a memory 204, a storage device 206, an input device 208, an output device 210, and a communication interface 212.
- the client device 300 includes a processor 202, a memory 204, a storage device 206, an input device 208, an output device 210, and a communication interface 212.
- the client device 300 receives input of time data and viewpoint data from the input device 308 by a user of the client device 300 or the like.
- the communication interface 212 of the server device 200 receives time data and viewpoint data from the communication interface 312 of the client device 300.
- the server device 200 performs weather simulation based on the data received from the client device 300, calculates the color of the cloud from the weather data, and creates image data.
- the server device 200 transmits the created image data to the client device 300.
- the client device 300 displays an image based on the image data on the output device 310.
- the creation of image data by the server device 200 reduces the calculation load on the client device 300. Therefore, the weather simulation result can be displayed even if the client device 300 is hardware with few resources.
- the server apparatus 200 and the client apparatus 300 use a dedicated or general-purpose computer such as a PC (Personal Computer), a workstation (WS, Work Station), a mobile phone, a car navigation, or an electronic device equipped with the computer. It is feasible.
- weather simulation is performed for a predetermined spatial range and period, and weather data is calculated.
- the image processing apparatus 100 calculates the cloud opacity for each grid based on the cloud water amount and the cloud ice amount for each grid of the weather data calculated by the weather simulation.
- the image processing apparatus 100 calculates the color of the cloud based on the downward shortwave radiation amount calculated by the weather simulation. Further, the image processing apparatus 100 determines the color and opacity of the cloud shadow on the ground surface based on the downward shortwave radiation amount of the ground surface of the weather data calculated by the weather simulation.
- the image processing apparatus 100 it is possible to draw clouds and the ground surface reflecting the downward shortwave radiation amount. Furthermore, according to the image processing apparatus 100, by using the downward shortwave radiation amount, the calculation of the color of the cloud based on the physical law such as the three-dimensional scattering theory of light can be realized with less calculation cost. It is possible to calculate the color of the cloud close to.
- the image processing apparatus 100 can create an image including a cloud when looking up at the sky so as to match an actual cloud color based on weather data obtained by weather simulation or the like.
- the above embodiments and modifications can be implemented by combining them as much as possible.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Computer Graphics (AREA)
- Processing Or Creating Images (AREA)
Abstract
大気の状態に応じた色の雲を含む空を含む画像を生成することができる画像処理装置を提供する。所定範囲内にある複数の領域の少なくとも1つの領域の大気の状態を示す気象データを記憶する記憶装置と、前記気象データを用いて前記少なくとも1つの領域についての雲の色を算出する制御装置と、を備える画像処理装置とする。
Description
本発明は、画像処理装置、画像処理方法、画像処理プログラムに関する。
スーパーコンピュータ等のコンピュータの性能向上に伴い、気象シミュレーションによって得られる気象データの量は、以前と比べて桁違いに大きくなっている。しかし、気象シミュレーションの結果の可視化は大きく進化していない。例えば、テレビ等における天気予報では、依然として、上空から地表を見下ろした2次元的な画像しか作成されてない。
従来の雲の可視化は、気象衛星写真のように、上空から地表を見下ろすものであり、雲による太陽光(短波)の反射(散乱)光を対象に行われていた。そのため雲の色は、白色とすることで問題がなかった。
新しい雲の可視化として、地上から上空を見た雲の描画を行うことがある。しかし、上空から見た場合と同じように雲の色を白色とすると、雲の可視化画像として、違和感が生じることがある。また、上空から地表を見下ろした場合であっても、例えば雲を斜め上方から見たとき等には、雲の色を白色とすると、雲の可視化画像として、違和感が生じることがある。よって、上空を見上げた際等の気象データの可視化において、気象状況に応じて雲の色を決定することが求められる。
本件開示の技術は、大気の状態に応じた色の雲を含む画像を生成することができる画像処理装置を提供することを課題とする。
開示の技術は、上記課題を解決するために、以下の手段を採用する。
即ち、第1の態様は、
所定範囲内にある複数の領域の少なくとも1つの領域の大気の状態を示す気象データを記憶する記憶装置と、
前記気象データを用いて前記少なくとも1つの領域についての雲の色を算出する制御装置と、
を備える画像処理装置とする。
第1の態様によると、制御装置は、前記気象データを用いて前記少なくとも1つの領域について算出した雲の色を算出する。気象データに基づいて雲の色が算出されることによって、気象状況に応じた色の雲を含む画像を生成することができる。
第1の態様では、記憶装置は、複数の領域についての2以上の領域の大気の状態を示す気象データを記憶するようにしてもよい。この場合、各領域の雲の色は、対応する領域の気象データに基づいて算出されるようにしてもよく、対応する領域を含んだ2以上の領域の気象データに基づいて算出されてもよい。
即ち、第1の態様は、
所定範囲内にある複数の領域の少なくとも1つの領域の大気の状態を示す気象データを記憶する記憶装置と、
前記気象データを用いて前記少なくとも1つの領域についての雲の色を算出する制御装置と、
を備える画像処理装置とする。
第1の態様によると、制御装置は、前記気象データを用いて前記少なくとも1つの領域について算出した雲の色を算出する。気象データに基づいて雲の色が算出されることによって、気象状況に応じた色の雲を含む画像を生成することができる。
第1の態様では、記憶装置は、複数の領域についての2以上の領域の大気の状態を示す気象データを記憶するようにしてもよい。この場合、各領域の雲の色は、対応する領域の気象データに基づいて算出されるようにしてもよく、対応する領域を含んだ2以上の領域の気象データに基づいて算出されてもよい。
第2の態様は、さらに、前記少なくとも1つの領域について算出した雲の色に基づいて、残りの領域の少なくとも1つの領域の雲の色を算出する画像処理装置である。
第2の態様によると、1つの領域の気象データに基づいて、複数の領域の雲の色を算出することができる。これによって、計算量の削減、記憶容量の削減を図ることができる。
第2の態様によると、1つの領域の気象データに基づいて、複数の領域の雲の色を算出することができる。これによって、計算量の削減、記憶容量の削減を図ることができる。
第3の態様は、さらに、雲を含む画像を生成する場合における当該画像の視点位置が属する領域を前記少なくとも1つの領域とした雲の色の算出を行う画像処理装置である。
第4の態様は、さらに、前記気象データを用いて前記少なくとも1つの領域における雲の影の色および不透明度を算出する画像処理装置とする。
第5の態様は、さらに、前記気象データは下向き短波放射量である画像処理装置とする。
第6の態様は、さらに、前記制御装置が、前記所定範囲内の地表面又は前記地表面上の構造物を含む写真画像と前記算出した色を有する雲の画像とを合成した画像を作成する画像処理装置とする。
開示の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、開示の構成は、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、開示の構成は、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。開示の構成は、上記した各手段が実行する処理を行う情報処理装置を含むシステムとして特定されてもよい。
開示の技術によれば、大気の状態に応じた色の雲を含む画像を生成することができる画像処理装置を提供することができる。
以下、図面を参照して実施形態について説明する。実施形態の構成は例示であり、開示の構成は、開示の実施形態の具体的構成に限定されない。開示の構成の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
〔実施形態〕
一般に、上空が厚い雲で覆われている時の雲の色は、黒色に近い灰色であり、晴れの時の雲の色は、白色に近い。地上から上空を見上げた場合の雲の色には、太陽光の反射(散乱)の他に、太陽光の透過が影響するからである。よって、雲の色は、常に白色ではなく、上空の状態によって異なる。
一般に、上空が厚い雲で覆われている時の雲の色は、黒色に近い灰色であり、晴れの時の雲の色は、白色に近い。地上から上空を見上げた場合の雲の色には、太陽光の反射(散乱)の他に、太陽光の透過が影響するからである。よって、雲の色は、常に白色ではなく、上空の状態によって異なる。
太陽光の反射と透過に関する物理法則に忠実に従って雲の色を計算して決定することは可能ではあるが、この場合、計算量が膨大になり、このようにして雲の色を決定することは非現実的である。
本実施形態の画像処理装置は、初期条件としての気象データ及び地形データに基づく気象シミュレーションにより、ある時刻における気象データを算出し、算出された気象データに基づいて当該時刻の地上等から仰望した雲を含む上空の画像を生成する装置である。ここで、地形データは、地球の表面の形状等を表すデータである。気象データは、大気等の状態を表すデータである。
(構成例)
図1は、本実施形態の画像処理装置の構成例を示す図である。図1に示す画像処理装置100は、一般的なコンピュータ(情報処理装置)の構成を有している。図1の画像処理装置100は、プロセッサ102、メモリ104、記憶装置106、入力装置108、出力装置110、通信インタフェース112を有する。これらは、互いにバスによって接続される。メモリ104及び記憶装置106は、コンピュータ読み取り可能な記録媒体である。情報処理装置のハードウェア構成は、図1に示される例に限らず、適宜構成要素の省略、置換、追加が行われてもよい。
図1は、本実施形態の画像処理装置の構成例を示す図である。図1に示す画像処理装置100は、一般的なコンピュータ(情報処理装置)の構成を有している。図1の画像処理装置100は、プロセッサ102、メモリ104、記憶装置106、入力装置108、出力装置110、通信インタフェース112を有する。これらは、互いにバスによって接続される。メモリ104及び記憶装置106は、コンピュータ読み取り可能な記録媒体である。情報処理装置のハードウェア構成は、図1に示される例に限らず、適宜構成要素の省略、置換、追加が行われてもよい。
画像処理装置100は、PC(Personal Computer)、ワークステーション(WS、Work Station)、携帯電話、カーナビゲーションのような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。
情報処理装置100は、プロセッサ102が記録媒体に記憶されたプログラムをメモリ104の作業領域にロードして実行し、プログラムの実行を通じて各構成部等が制御されることによって、所定の目的に合致した機能を実現することができる。
プロセッサ102は、例えば、CPU(Central Processing Unit)やDSP(Digital Signal Processor)である。プロセッサ102は、GPU(Graphical Processing Unit)を含んでもよい。
プロセッサ102は、地形データ及び気象データ等から大気の状態等を算出する気象シミュレーションを実行する。気象シミュレーションについては、後に説明する。
また、プロセッサ102は、気象シミュレーションの結果などから、出力装置110で表示する画像データを算出する。プロセッサ102は、制御装置の一例である。
また、プロセッサ102は、気象シミュレーションの結果などから、出力装置110で表示する画像データを算出する。プロセッサ102は、制御装置の一例である。
メモリ104は、例えば、RAM(Random Access Memory)及びROM(Read Only Memory)を含む。メモリ104は、主記憶装置とも呼ばれる。
記憶装置106は、例えば、EPROM(Erasable Programmable ROM)、ハードディスクドライブ(HDD、Hard Disk Drive)、ソリッドステートドライブ(SSD、Solid tate Drive)である。また、記憶装置106は、リムーバブルメディア、即ち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、あるいは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。記憶装置106は、二次記憶装置とも呼ばれる。
記憶装置106は、少なくとも気象シミュレーションおよび画像処理を実施するための各種のプログラム、各種のデータ及び各種のテーブルを格納する。記憶装置106には、オペレーティングシステム(Operating System :OS)、各種プログラム、各種テーブル等が格納される。記憶装置106に格納される情報は、メモリ104に格納されてもよい。また、メモリ104に格納される情報は、記憶装置106に格納されてもよい。各種のデータ等は、通信インタフェース112によって外部の装置等から受信されてもよい。
記憶装置106は、利用者等によって入力される時刻データ及び視点データ、初期条件としての地形データ及び気象データ、気象シミュレーションの結果である気象データを格納する。また、記憶装置106は、気象データ等に基づいて作成される色、不透明度のデータ、描画の際に使用される地表面、建物等の構造物、背景等の画像データ、地表面などの3次元座標等を格納する。地表面、建物等の構造物等の画像データは、例えば、現実の地表面等を撮影した写真画像のデータである。地表面と建物等の構造物等とが区別されずに、これらを合わせて地表面としてもよい。建物等の構造物は、地表面上に存在する構造物である。記憶装置106は、色、不透明度等に基づいて作成される、ポリゴンデータ、テクスチャデータ等を含む画像データを格納する。
入力装置108は、キーボード、ポインティングデバイス、ワイヤレスリモコン、タッチパネル等を含む。また、入力装置108は、カメラのような映像や画像の入力装置や、マイクロフォンのような音声の入力装置を含むことができる。
入力装置108は、利用者からの可視化対象の位置等、地形データ及び気象データ等の入力を受け付ける。
入力装置108は、利用者からの可視化対象の位置等、地形データ及び気象データ等の入力を受け付ける。
出力装置110は、CRT(Cathode Ray Tube)ディスプレイ、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、EL(Electroluminescence)パネル等の表示装置、プリンタ等の出力装置を含む。また、出力装置110は、スピーカのような音声の出力装置を含むことができる。
出力装置110は、プロセッサ102で算出された画像データに基づいて、画像を表示する。出力装置110は、画像処理装置100の外部の表示装置に画像を表示させてもよい。また、出力装置110は、は、画像処理装置100の外部の情報処理装置に当該画像データを送信し、当該外部の情報処理装置の表示装置に当該画像データによる画像を表示させてもよい。
通信インタフェース112は、他の装置と接続し、情報処理装置100と他の装置との間の通信を制御する。通信インタフェース112は、例えば、LAN(Local Area Network)インタフェースボード、無線通信のための無線通信回路、電話通信のための通信回路である。LANインタフェースボードや無線通信回路は、インターネット等のネットワークに接続される。
画像処理装置100は、プロセッサ102が記憶装置106に記憶されているプログラムをメモリ104にロードして実行することによって、後に説明する各動作を実現する。
プログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくても、並列的または個別に実行される処理を含む。プログラムを記述するステップの一部が省略されてもよい。
一連の処理は、ハードウェアにより実行させることも、ソフトウェアにより実行させることもできる。ハードウェアの構成要素は、ハードウェア回路であり、例えば、FPGA(Field Programmable Gate Array)、特定用途向け集積回路(ASIC)、ゲートアレイ、論理ゲートの組み合わせ、アナログ回路等がある。ハードウェアは制御装置の一例である。
一連の処理は、ハードウェアにより実行させることも、ソフトウェアにより実行させることもできる。ハードウェアの構成要素は、ハードウェア回路であり、例えば、FPGA(Field Programmable Gate Array)、特定用途向け集積回路(ASIC)、ゲートアレイ、論理ゲートの組み合わせ、アナログ回路等がある。ハードウェアは制御装置の一例である。
(気象シミュレーション)
気象シミュレーションでは、気象モデルにしたがって、地形データ、気象データ等から、所定の空間的範囲の、所定の期間の、大気の風速、密度、圧力、熱放射、雲分布、下向き短波放射量等の気象データが算出される。雲分布は、雲水量、雨水量、雲氷量、雪量、霰量を含む。
気象シミュレーションでは、気象モデルにしたがって、地形データ、気象データ等から、所定の空間的範囲の、所定の期間の、大気の風速、密度、圧力、熱放射、雲分布、下向き短波放射量等の気象データが算出される。雲分布は、雲水量、雨水量、雲氷量、雪量、霰量を含む。
地形データには、例えば、気象シミュレーションの対象となる空間的範囲内の、地表面の位置、地質等が含まれる。地質は、地表面の属性(裸地、芝生、舗装面等の地面の特性)等を表す。地質は、地表面の放射率に影響を与える。放射率は、地表面の属性の1つである。地質の相違によって、地表面の放射率が相違する。
気象データには、例えば、気象シミュレーションの対象となる範囲内の全部又は一部の地点の、位置、風(風向、風速等)、気温、気圧、湿度、水蒸気量、太陽からの日射量等が含まれる。
気象シミュレーションの対象となる範囲内の位置は、直交座標系、極座標系等、どのような座標系によって与えられてもよい。
気象シミュレーションでは、気象シミュレーションの対象となる空間的範囲を、所定の大きさの複数のグリッド(領域)に分割する。グリッドの形状は、例えば、直方体である。各グリッドは、例えば、底面が水平面に平行であり、側面が南北方向及び東西方向に平行である。1つのグリッドの大きさは、例えば、南北方向に500m、東西方向に500m、高さ方向に200mである。気象モデルで使用されるグリッドの大きさは、位置により変化してもよい。グリッドの大きさは、例えば、計算負荷等を考慮して決定される。
図2は、気象シミュレーションの対象となる空間的範囲およびグリッドの例を示す図である。図2の例では、直方体の気象シミュレーションの対象となる空間的範囲内に、直方体のグリッドが存在している。気象シミュレーションの対象となる空間的範囲及びグリッドの形状は、直方体以外の形状であってもよい。
気象シミュレーションにおける気象モデルとして、例えば、非静力学・大気大循環モデル(MSSG-A、Atmospheric component of the Multi-Scale Simulator for the Geoenvironment)が使用される。気象モデルは、これに限定されず、どのような気象モデルが使用されてもよい。
非静力学・大気大循環モデルでは、初期条件として地形データ、ある時刻の、風、気温、湿度、圧力等の気象データを与えると、地形データに基づいた、当該時刻の計算領域全体の風、気温、湿度、圧力等の気象データがグリッド毎に算出される。非静力学・大気大循環モデルでは、これらの気象データに基づいて、大気中の、雲水量、雨水量、雲氷量、雪量、霰量、下向き短波放射量等の気象データが、グリッド毎に算出される。これらの気象データは、大気の状態を表すデータである。さらに、非静力学・大気大循環モデルでは、これらの気象データに基づいて、微小時間経過後の気象データが、グリッド毎に算出される。ここで、下向き短波放射量は、グリッドの下面において下向きに放射される短波のエネルギーである。短波は波長4μm以下の波長の電磁波である。下向き短波放射量は、波長4μm以下の重複しない複数の波長帯の下向き放射量について算出されたものを足し合わせたものとして算出されてもよい。下向き短波放射量として、可視光領域のみの下向きの放射量が使用されてもよい。気象データの雲水量、雲氷量、下向き短波放射量は、雲を描画する際に使用される気象データの例である。
(動作例)
画像処理装置100の動作例について説明する。画像処理装置100のプロセッサ102は、プログラムの実行を通じて、気象シミュレーションにより所定の範囲、期間の気象データを算出し、気象データ等から、可視化の対象となる範囲、期間の、地面から見た上空の雲や、地面と雲との間から見た上空の雲や地表面の雲の影等を含む画像を生成する。
図3は、画像処理装置の動作フローの例を示す図である。
画像処理装置100の動作例について説明する。画像処理装置100のプロセッサ102は、プログラムの実行を通じて、気象シミュレーションにより所定の範囲、期間の気象データを算出し、気象データ等から、可視化の対象となる範囲、期間の、地面から見た上空の雲や、地面と雲との間から見た上空の雲や地表面の雲の影等を含む画像を生成する。
図3は、画像処理装置の動作フローの例を示す図である。
ステップS101では、画像処理装置100のプロセッサ102は、気象シミュレーションの対象となる空間的範囲、期間を決定する。画像処理装置100に対し、利用者等から入力装置108により、気象シミュレーションの結果を可視化する際の時刻データ、視点データが入力される。時刻データは、気象シミュレーションにおいて模擬する時刻のデータである。当該時刻は、時間幅を有する期間であってもよい。視点データには、例えば、気象シミュレーションを可視化する画像の、視点の座標(視点位置)、視線の方向(視軸)、表示する範囲、画像の大きさ、視野角等が含まれる。視野角は、例えば、画像に表される空間的範囲の水平方向の角度及び鉛直方向の角度である。視点の座標は、例えば、地表面上、地面と雲との間の上空、雲の上の上空などである。視点データによって、気象シミュレーションを可視化する画像に表される空間的範囲が決定される。時刻データの時刻と視線データの視点位置等とは対応付けられて入力される。即ち、利用者等によって、指定の時刻における指定の視点位置等の可視化を行うことが入力される。時刻データ及び視点データは、連続する時刻に応じて視点位置等が変化するように指定されてもよい。また、1つの時刻について、複数の視点位置が、指定されてもよい。入力された時刻データ、視線データは、記憶装置106に格納される。可視化される画像に表される空間的範囲は、視点位置、視線方向、表示する範囲、画像の大きさ、視野角等によって決定される。空間的範囲は、所定範囲の一例である。
プロセッサ102は、例えば、視線データで指定される視点位置から東西南北にそれぞれ10km、高さ20kmの範囲を気象シミュレーションの対象の空間的範囲として決定する。また、プロセッサ102は、当該視線データに対応する時刻データで指定される時刻までを、気象シミュレーションの対象の期間として決定する。複数の視点位置が存在する場合には、それぞれについて、プロセッサ102は、気象シミュレーションの対象の空間的範囲及び期間を決定する。
気象シミュレーションの対象の空間的範囲として、さらに広い範囲が、気象シミュレーションの対象とされてもよい。気象シミュレーションの対象の範囲の高さは、大気が存在する範囲、雲が存在する範囲等を基準に決められる。また、気象シミュレーションの対象の空間的範囲は、視点位置と視線の方向等が考慮されて、決定されてもよい。気象シミュレーションの対象の範囲は、視点位置から雲を視認できる距離を基準として決定されてもよい。
図4は、視点位置と気象シミュレーションの対象の範囲との例を示す図である。図4の例では、視線の方向の側のみを気象シミュレーションの対象の範囲としている。即ち、ここでは、図4のように、視線の方向が東向きである場合、視点を中心として南北方向に20km、視点から東に10km、高さ20kmの範囲を、気象シミュレーションの対象の範囲とする。プロセッサ102は、可視化される画像に表される空間的範囲を包含する範囲を、気象シミュレーションの対象の空間的範囲とする。
ステップS102では、画像処理装置100のプロセッサ102は、気象シミュレーションの対象となる空間的範囲(エリア)の、所定時刻(tsとする)の、地形データ及び気象データを取得する。取得された地形データ及び気象データは、メモリ104又は記憶装置106に格納される。ここで取得される地形データ及び気象データは、気象シミュレーションを行う際に使用される入力データ(初期条件)である。気象シミュレーションの対象の期間は、所定時刻(ts)から時刻データで指定される時刻までの期間となる。地形データ及び気象データは、入力装置108から入力されて、記憶装置106等に格納されてもよく、通信インタフェース112で外部の装置から受信されて、記憶装置106等に格納されてもよい。複数の可視化対象の視点位置が、存在する場合には、それぞれについて、気象シミュレーションの対象の空間的範囲の、所定時刻(ts)の、地形データ及び気象データが取得される。
プロセッサ102は、時刻tに、tsを代入する。時刻tは、気象シミュレーションで使用される。気象シミュレーションでは、時刻t=tsの気象データ及び地形データを初期条件として、気象シミュレーション対象の空間的範囲、期間の気象データが算出される。
ステップS103では、画像処理装置100のプロセッサ102は、気象モデルに基づいて、ステップS102で取得された地形データ、及び、時刻tの気象データ等を用いて、気象シミュレーションを行う。気象シミュレーションでは、時刻tから微小時間Δt経過後(t+Δt)の、気象シミュレーションの対象の空間的範囲の気象データが算出される。プロセッサ102は、グリッド毎に気象データを算出する。算出された気象データは、時刻t+Δtにおける気象データとして、記憶装置106に格納される。
ステップS104では、プロセッサ102は、気象シミュレーション対象の期間についての、気象シミュレーションが終了したか否かを判定する。画像処理装置100には、気象シミュレーション対象の期間が、あらかじめ与えられている。プロセッサ102は、気象シミュレーション対象の期間についての、気象シミュレーションが終了したか否かを判定する。終了した場合(S104;YES)、処理がステップS105に進む。終了していない場合(S104;NO)、算出部104は時刻tにt+Δtを代入する。その後、処理がステップS103に戻る。
ステップS103、ステップS104の処理は、複数の可視化対象の視点位置が存在する場合には、それぞれについての気象シミュレーションの対象の空間的範囲及び期間に対して、実行される。
ステップS105では、プロセッサ102は、気象シミュレーションによって算出されたグリッド毎の気象データから、大気中及び地面についての、グリッド毎の色及び不透明度を算出する。算出されたグリッド毎の色、不透明度は、記憶装置106に格納される。プロセッサ102は、気象シミュレーションの対象の期間についてのグリッド毎の色及び不透明度を算出する。グリッド毎の色及び不透明度は、ステップS103の気象シミュレーションにおける気象データの算出の際に、雲水量等の気象データとともに算出されてもよい。大気中の色や不透明度は、大気中の雲に対応する。
ここで、不透明度Pは、気象データのグリッド毎の雲水量rqc[kg/m3]、雲氷量rqi[kg/m3]の関数として、次のように表される。不透明度Pは、透明度Tと、P=1-Tの関係にある。不透明度Pは、不透明度の度合いを示し、1のとき不透明であり、0のとき透明であることを意味する。
ここで、xは、有効散乱雲量(kg/m3)である。有効散乱雲量xは、雲の不透明度に影響する度合を示す。雲水と雲氷とでは、短波放射(日射)を散乱する度合いが異なる。係数aは、雲水による散乱を基準とした雲氷による散乱の度合いを示す。係数aは、例えば、0.1である。また、例えば、PMAX=0.666、xmin=0kg/m3、xMAX=0.0002kg/m3とする。有効散乱雲量には、雲水量、雲氷量の他に、雨水量、雪量、霰量が反映されてもよい。
また、色(R(赤)、G(緑)、B(青))は、気象データのグリッド毎の下向き短波放射量S[W/m2]の関数として、次のように表される。この色は、雲の色に相当する。各グリッドの雲の色は、各グリッドの下向き短波放射量に依存する。あるグリッドの下向き短波放射量が小さいことは、当該グリッドの日射量が小さいことを意味する。雲の色は、下向き短波放射量が小さくなるのにともなって黒色に近くなる。また、雲の色は、下向き短波放射量が大きくなるのにともなって白色に近くなる。ここでは、色がRGBで表されているが、CMY、YUVなどの他の形式で表されてもよい。
さらに、色は、グリッド毎の下向き短波放射量Sの関数として、次のいずれかのように表されてもよい。
さらに、プロセッサ102は、気象シミュレーションによって算出された気象データから、地表面における雲の影に相当する色及び不透明度を算出する。地表面における雲の影の色及び不透明度は、気象データの地表面の各地点の下向き短波放射量Sの関数として、次のように表される。地表面における雲の影は、下向き短波放射量が小さくなるのにともなって暗くなる。
PMAXは、0以上1以下の値をとりうる。PMAXは、例えば、155/255とする。地表面における雲の影に相当する色及び不透明度が描画の際に地表面の画像等に重ねられることによって、地表面に雲の影が描画される。
大気中の雲や地面の雲の影に相当する不透明度及び色は、他の式によって表されてもよい。
大気中の雲や地面の雲の影に相当する不透明度及び色は、他の式によって表されてもよい。
ステップS106では、プロセッサ102は、グリッド毎の色、不透明度、地表面等の3次元座標及び地表面等の画像等から、ポリゴンデータ、テクスチャデータを作成する。ポリゴンデータ、テクスチャデータは、出力装置110に画像を表示するための画像データを作成する際に使用されるデータである。プロセッサ102は、可視化の対象の時刻について、ステップS105で算出されたグリッド毎の色、不透明度等から画像データを作成する。地表面等の画像が地表面等を撮影した写真画像である場合、写真画像と雲とを合成した画像の画像データが作成される。
プロセッサ102は、気象データから作成された色、不透明度、地表面等の情報に基づいてポリゴンデータ、テクスチャデータを作成する。ここでは、ポリゴンデータは、スライス面データとして作成される。ポリゴンデータは、スライス面の頂点の3次元座標、法線ベクトル、テクスチャ座標を含む。プロセッサ102は、気象データから作成された色、不透明度に基づいて、複数のスライス面データを作成する。各スライス面データのスライス面は、互いに平行である。1群の複数のスライス面データは、スライス面群データともいう。複数のスライス面群データが作成されてもよい。テクスチャデータは、ポリゴンにテクスチャをマッピングするためのデータである。テクスチャデータは、座標毎に、色および透明度(不透明度)等の情報を含む。地表面においては、地表面等の画像に、ステップS105で算出された雲の影に相当する色および不透明度が重ねられる。
ステップS107では、画像処理装置100は、記憶装置106に格納される視点データに基づいて、画像データを作成する際に使用するスライス面群データを決定する。画像処理装置100は、例えば、スライス面の法線方向と視軸の方向とが平行に近いスライス面群データを、使用するスライス面群データとして決定する。
プロセッサ102は、視点データに基づいて、決定したスライス面群データの各スライス面データを、2次元座標空間のスライス面データに変換する。ここでは、各スライス面の各頂点の座標が、表示画面内の位置を示す2次元のスクリーン座標と、表示画面内の奥行きを示すZ値とに変換される。変換されたデータは、記憶装置106に格納される。プロセッサ102は、変換された2次元座標空間のスライス面データの各スライス面内の各頂点に囲まれる範囲内のすべての座標点について、各スライス面の頂点のスクリーン座標及びZ値に基づいて、Z値を算出する。また、プロセッサ102は、各スライス面の頂点のテクスチャ座標及びテクスチャデータに基づいて、各スライス面のピクセル毎の色データ及び透明度データを算出し、Z値とともに記憶装置106に格納する。
プロセッサ102は、各頂点のテクスチャ座標、テクスチャデータ、各スライス面についてのスクリーン座標毎のZ値などに基づいて、画面表示用の画像データを生成するレンダリング処理を行い、画像データを記憶装置106に格納する。レンダリング処理では、各視線方向に存在するスライス面の色や不透明度を積層して、画面内の各座標の色が表現される。
ここでは、画像処理装置100のプロセッサ102は、ステップS106及びステップS107のように、スライス図ベースの描画法により画像データを作成している。プロセッサ102は、ステップS105で算出された色および不透明度の情報を用いて、スライス図ベースの描画法に限らず、レイマーチングによる描画法等の他の描画法で、画像データを生成して、記憶装置106に格納してもよい。
気象シミュレーションの可視化対象の視点データが、連続する時刻ごとにされている場合、プロセッサ102は、気象シミュレーション結果に基づいて、各時刻について、指定された視点データに基づく画像データを作成する。プロセッサ102は、これらの画像を時刻順につなげて、画像データを動画像として生成してもよい。このとき、気象シミュレーションの可視化対象の視点データが、固定されていてもよい。また、1つの時刻について、気象シミュレーションの可視化対象の複数の視点データが、指定されてもよい。このとき、プロセッサ102は、気象シミュレーション結果に基づいて、指定された時刻について、指定されたそれぞれの視点データにおける画像を作成する。プロセッサ102は、これらの画像をつなげて、視点データで指定されるように、視点位置、視点方向、表示する範囲等が変化する動画像として生成してもよい。画像処理装置100は、例えば、所定の日時にA駅を列車で出発してからB駅に到着するまでの列車の車両の左側の窓から見える上空の様子を含む景色の動画像を作成することができる。
ステップS108では、画像処理装置100の出力装置110は、記憶装置106に格納される画像データに基づいて、画像を表示する。出力装置110は、外部の表示装置に画像を表示させてもよい。また、出力装置110は、他の情報処理装置に画像データを通信ネットワーク等を介して送信し、当該他の情報処理装置の表示部に当該画像データによる画像を表示させてもよい。
気象シミュレーションが画像処理装置100以外の他の装置によって行われて、画像処理装置100は、当該他の装置から受信して気象シミュレーションの結果である気象データを受信して、当該気象データに基づいて画像を作成してもよい。
(具体例1)
図5、図6は、気象シミュレーションの可視化の具体例1を示す図である。図5、図6の例は、地上から上空を見上げた例であり、画像下側に視点付近の地表面及び建物(構造物)等と画像上側に上空の雲とが表示されている。図5の例は、雲の描画の際に、下向き短波放射量を考慮せずに、各グリッドの色を白(R=G=B=255)とした例である。雲は、雲氷量、雲水量に基づいて描画されている。雲が厚く下向き短波放射量が小さい場合であっても、雲の色は明るくなる。一方、図6の例は、雲の描画の際に、各グリッドの色を、下向き短波放射量を考慮して、上記の式(2)に基づいて、雲の色を決定した例である。即ち、雲は、下向き短波放射量、雲氷量、雲水量に基づいて描画されている。雲の色は、下向き短波放射量が反映されて、図5の例に比べて暗くなっている。図6の例は、下向き短波放射量が小さい時の現実の雲の色に則している。
図5、図6は、気象シミュレーションの可視化の具体例1を示す図である。図5、図6の例は、地上から上空を見上げた例であり、画像下側に視点付近の地表面及び建物(構造物)等と画像上側に上空の雲とが表示されている。図5の例は、雲の描画の際に、下向き短波放射量を考慮せずに、各グリッドの色を白(R=G=B=255)とした例である。雲は、雲氷量、雲水量に基づいて描画されている。雲が厚く下向き短波放射量が小さい場合であっても、雲の色は明るくなる。一方、図6の例は、雲の描画の際に、各グリッドの色を、下向き短波放射量を考慮して、上記の式(2)に基づいて、雲の色を決定した例である。即ち、雲は、下向き短波放射量、雲氷量、雲水量に基づいて描画されている。雲の色は、下向き短波放射量が反映されて、図5の例に比べて暗くなっている。図6の例は、下向き短波放射量が小さい時の現実の雲の色に則している。
(具体例2)
図7、図8は、気象シミュレーションの可視化の具体例2を示す図である。図7、図8の例は、地面と雲との間の高さから地表面及び雲を見た例であり、画像下側に地表面等と画像上側に上空の雲とが表示されている。図7の例は、地表面の描画の際に、下向き短波放射量を考慮していない例である。地表面には、雲の影が描画されていない。よって、質表面において、下向き短波放射量が大きくても小さくても地表面の明るさは変わらない。一方、図8の例は、地表面の描画の際に、地表面の下向き短波放射量を考慮して、上記の式(5)(6)に基づいて、雲の影の色及び不透明度を決定した例である。例えば、図8の画像の中央付近の地面は、地表面の下向き短波放射量が小さいため、雲の影により暗くなっている。
図7、図8は、気象シミュレーションの可視化の具体例2を示す図である。図7、図8の例は、地面と雲との間の高さから地表面及び雲を見た例であり、画像下側に地表面等と画像上側に上空の雲とが表示されている。図7の例は、地表面の描画の際に、下向き短波放射量を考慮していない例である。地表面には、雲の影が描画されていない。よって、質表面において、下向き短波放射量が大きくても小さくても地表面の明るさは変わらない。一方、図8の例は、地表面の描画の際に、地表面の下向き短波放射量を考慮して、上記の式(5)(6)に基づいて、雲の影の色及び不透明度を決定した例である。例えば、図8の画像の中央付近の地面は、地表面の下向き短波放射量が小さいため、雲の影により暗くなっている。
なお、図5から図8の画像は、Google社のソフトウェアGoogle earth(商標)を利用して、上記で計算された雲及び雲の影の色、不透明度等を用いて、地表面等の画像と合成することによって、描画されたものである。本実施形態の画像処理装置100による画像の作成は、当該ソフトウェア以外のソフトウェアによる画像の作成であってもよい。
(変形例1)
上記の例では、グリッド毎の下向き短波放射量からグリッド毎に色を決定したが、作成する画像の視点位置の下向き短波放射量に基づいて、上記の関係式により、すべてのグリッドの色を決定してもよい。このとき、画像処理装置100は、グリッド毎に雲の色を決定しなくてもよいので、上記の例に比べて、計算量が削減される。また、画像処理装置100は、すべてのグリッドの下向き短波放射量が得られなくても、視点位置の下向き短波放射量が得られれば、雲の色を決定することができる。視点位置の下向き短波放射量は、視点位置を含むグリッドの下向き短波放射量であってもよい。
上記の例では、グリッド毎の下向き短波放射量からグリッド毎に色を決定したが、作成する画像の視点位置の下向き短波放射量に基づいて、上記の関係式により、すべてのグリッドの色を決定してもよい。このとき、画像処理装置100は、グリッド毎に雲の色を決定しなくてもよいので、上記の例に比べて、計算量が削減される。また、画像処理装置100は、すべてのグリッドの下向き短波放射量が得られなくても、視点位置の下向き短波放射量が得られれば、雲の色を決定することができる。視点位置の下向き短波放射量は、視点位置を含むグリッドの下向き短波放射量であってもよい。
(変形例2)
画像処理装置100における処理は、サーバ装置及びクライアント装置に分割して行われてもよい。サーバ装置およびクライアント装置は、上記の画像処理装置100と同様の機能を有する。上記の例と共通する部分については、説明を省略する。
画像処理装置100における処理は、サーバ装置及びクライアント装置に分割して行われてもよい。サーバ装置およびクライアント装置は、上記の画像処理装置100と同様の機能を有する。上記の例と共通する部分については、説明を省略する。
図9は、本変形例の画像処理システムの例を示す図である。図8の画像処理システム10は、サーバ装置200およびクライアント装置300を含む。サーバ装置200およびクライアント装置300は、互いに、ネットワークを介して接続される。
サーバ装置200は、プロセッサ202、メモリ204、記憶装置206、入力装置208、出力装置210、通信インタフェース212を備える。クライアント装置300は、プロセッサ202、メモリ204、記憶装置206、入力装置208、出力装置210、通信インタフェース212を備える。
また、クライアント装置300は、クライアント装置300の利用者などにより、入力装置308により、時刻データ及び視点データの入力を受け付ける。サーバ装置200の通信インタフェース212は、クライアント装置300の通信インタフェース312から時刻データ及び視点データを受信する。サーバ装置200は、クライアント装置300から受信したデータに基づいて、上記の画像処理装置100と同様に、気象シミュレーションを行い、気象データから雲の色等を算出し、画像データを作成する。サーバ装置200は、クライアント装置300に、作成した画像データを送信する。クライアント装置300は、サーバ装置200から画像データを受信すると、画像データに基づく画像を出力装置310に表示する。
画像データの作成をサーバ装置200で行うことにより、クライアント装置300における計算負荷が軽減する。従って、クライアント装置300がリソースの少ないハードウェアであっても、気象シミュレーションの結果を表示することができる。
サーバ装置200およびクライアント装置300は、PC(Personal Computer)、ワークステーション(WS、Work Station)、携帯電話、カーナビゲーションのような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。
(実施形態の作用、効果)
画像処理装置100、地形データや気象データ等に基づいて、所定の空間的範囲、期間について、気象シミュレーションを行い、気象データの算出を行う。画像処理装置100は、気象シミュレーションで算出された気象データのグリッド毎の雲水量、雲氷量に基づいて、グリッド毎の雲の不透明度を算出する。画像処理装置100は、気象シミュレーションで算出された気象データの下向き短波放射量に基づいて、雲の色を算出する。また、画像処理装置100は、気象シミュレーションで算出された気象データの地表面の下向き短波放射量に基づいて、地表面の雲の影の色及び不透明度を決定する。
画像処理装置100、地形データや気象データ等に基づいて、所定の空間的範囲、期間について、気象シミュレーションを行い、気象データの算出を行う。画像処理装置100は、気象シミュレーションで算出された気象データのグリッド毎の雲水量、雲氷量に基づいて、グリッド毎の雲の不透明度を算出する。画像処理装置100は、気象シミュレーションで算出された気象データの下向き短波放射量に基づいて、雲の色を算出する。また、画像処理装置100は、気象シミュレーションで算出された気象データの地表面の下向き短波放射量に基づいて、地表面の雲の影の色及び不透明度を決定する。
画像処理装置100によれば、下向き短波放射量を反映して、雲や地表面を描画することができる。さらに、画像処理装置100によれば、下向き短波放射量を使用することで、光の3次元散乱理論等の物理法則に基づいて雲の色等を計算するのに比べ、少ない計算コストで、現実に近い雲の色等を算出することができる。
画像処理装置100は、気象シミュレーション等による気象データに基づいて、空を見上げた際の雲を含む画像を、実際の雲の色と合うように、作成することができる。
以上の実施形態、変形例は、可能な限りこれらを組み合わせて実施され得る。
以上の実施形態、変形例は、可能な限りこれらを組み合わせて実施され得る。
100 画像処理装置
102 プロセッサ
104 メモリ
106 記憶装置
108 入力装置
110 出力装置
112 通信インタフェース
102 プロセッサ
104 メモリ
106 記憶装置
108 入力装置
110 出力装置
112 通信インタフェース
Claims (8)
- 所定範囲内にある複数の領域の少なくとも1つの領域の大気の状態を示す気象データを記憶する記憶装置と、
前記気象データを用いて前記少なくとも1つの領域についての雲の色を算出する制御装置と、
を備える画像処理装置。 - 前記制御装置は、前記少なくとも1つの領域について算出した雲の色に基づいて、残りの領域の少なくとも1つの領域の雲の色を算出する
請求項1に記載の画像処理装置。 - 前記制御装置は、雲を含む画像を生成する場合における当該画像の視点位置が属する領域を前記少なくとも1つの領域とした雲の色の算出を行う
請求項1または2に記載の画像処理装置。 - 前記制御装置は、前記気象データを用いて前記少なくとも1つの領域における雲の影の色および不透明度を算出する
請求項1から3のいずれか1項に記載の画像処理装置。 - 前記気象データは、下向き短波放射量を含む、
請求項1から4のいずれか1項に記載の画像処理装置。 - 前記制御装置は、前記所定範囲内の地表面又は前記地表面上の構造物を含む写真画像と前記算出した色を有する雲の画像とを合成した画像を作成する
請求項1から5のいずれか1項に記載の画像処理装置。 - コンピュータが、
所定範囲内にある複数の領域の少なくとも1つの領域の大気の状態を示す気象データを記憶し、
前記気象データを用いて前記少なくとも1つの領域についての雲の色を算出する
ことを含む画像処理方法。 - コンピュータに、
所定範囲内にある複数の領域の少なくとも1つの領域の大気の状態を示す気象データを記憶させ、
前記気象データを用いて前記少なくとも1つの領域についての雲の色を算出させることを実行させる画像処理プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/526,354 US10410375B2 (en) | 2014-11-14 | 2015-11-12 | Image processing apparatus, image processing method, and a non-transitory computer readable medium |
EP15858505.9A EP3220355A4 (en) | 2014-11-14 | 2015-11-12 | Image processing apparatus, image processing method, and image processing program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-232222 | 2014-11-14 | ||
JP2014232222A JP6452087B2 (ja) | 2014-11-14 | 2014-11-14 | 画像処理装置、画像処理方法、画像処理プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076394A1 true WO2016076394A1 (ja) | 2016-05-19 |
Family
ID=55954471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081857 WO2016076394A1 (ja) | 2014-11-14 | 2015-11-12 | 画像処理装置、画像処理方法、画像処理プログラム |
Country Status (4)
Country | Link |
---|---|
US (1) | US10410375B2 (ja) |
EP (1) | EP3220355A4 (ja) |
JP (1) | JP6452087B2 (ja) |
WO (1) | WO2016076394A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109344865A (zh) * | 2018-08-24 | 2019-02-15 | 山东省环境规划研究院 | 一种多数据源的数据融合方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10535180B2 (en) * | 2018-03-28 | 2020-01-14 | Robert Bosch Gmbh | Method and system for efficient rendering of cloud weather effect graphics in three-dimensional maps |
CN108564608A (zh) * | 2018-04-23 | 2018-09-21 | 中南大学 | 一种基于h8/ahi的白天雾快速提取的方法 |
JP7302862B2 (ja) * | 2019-08-30 | 2023-07-04 | 学校法人早稲田大学 | 画像レンダリング方法、画像レンダリングシステム及びプログラム |
CN117555978B (zh) * | 2024-01-10 | 2024-03-19 | 中国科学院地理科学与资源研究所 | 一种地理模型输入数据空间范围的智能化确定方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057190A1 (ja) * | 2007-10-29 | 2009-05-07 | Japan Agency For Marine-Earth Science And Technology | 気象シミュレーション装置、及び、方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3047339B2 (ja) | 1993-02-03 | 2000-05-29 | 日本電気株式会社 | 数値データ可視化装置 |
JP3483967B2 (ja) | 1995-01-05 | 2004-01-06 | 株式会社東芝 | 雲状現象可視化装置 |
WO1998026306A1 (en) * | 1996-12-09 | 1998-06-18 | Miller Richard L | 3-d weather display and weathercast system |
JPH1153576A (ja) | 1997-08-07 | 1999-02-26 | Oki Electric Ind Co Ltd | 天空画像作成装置 |
JP2001202527A (ja) | 2000-01-19 | 2001-07-27 | Hitachi Ltd | 3次元図形表示方法および3次元描画装置 |
JP2003021687A (ja) * | 2001-07-06 | 2003-01-24 | Digital Weather Platform Kk | 狭域天気予報方法、狭域天気予報配信方法、商品販売促進方法、天気予報装置及び天気予報情報提供システム |
US7077749B1 (en) * | 2003-11-20 | 2006-07-18 | Microsoft Corporation | Dynamic weather simulation |
US7710418B2 (en) * | 2005-02-04 | 2010-05-04 | Linden Acquisition Corporation | Systems and methods for the real-time and realistic simulation of natural atmospheric lighting phenomenon |
US8481943B2 (en) * | 2010-09-04 | 2013-07-09 | Accuflux Inc. | Net solar radiometer |
JP2013054005A (ja) | 2011-09-06 | 2013-03-21 | Seiko Epson Corp | 気象変動情報提供システム、気象変動情報提供方法、気象変動情報提供プログラム及び記録媒体 |
-
2014
- 2014-11-14 JP JP2014232222A patent/JP6452087B2/ja active Active
-
2015
- 2015-11-12 US US15/526,354 patent/US10410375B2/en not_active Expired - Fee Related
- 2015-11-12 WO PCT/JP2015/081857 patent/WO2016076394A1/ja active Application Filing
- 2015-11-12 EP EP15858505.9A patent/EP3220355A4/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009057190A1 (ja) * | 2007-10-29 | 2009-05-07 | Japan Agency For Marine-Earth Science And Technology | 気象シミュレーション装置、及び、方法 |
Non-Patent Citations (5)
Title |
---|
HIRONOBU IWABUCHI ET AL.: "Photorealistic visualization of clouds simulated by using cloud-resolving meteorological model", JOURNAL OF THE VISUALIZATION SOCIETY OF JAPAN, vol. 28, no. 110, 1 July 2008 (2008-07-01), pages 2 - 7, XP009502810 * |
RYO MIYAZAKI ET AL.: "Visual Simulation of Cumulus Clouds Using Fluid Dynamics and Adaptive Texture Synthesis", VISUAL COMPUTING/ GRAPHICS AND CAD JOINT SYMPOSIUM 2006 YOKOSHU, 22 June 2006 (2006-06-22), pages 65 - 70, XP009502818 * |
See also references of EP3220355A4 * |
SHINTARO KAWAHARA: "Visualization of Geoenvironmental Data using Google Earth", JOURNAL OF THE VISUALIZATION SOCIETY OF JAPAN, vol. 34, no. 135, 1 October 2014 (2014-10-01), pages 22 - 27, XP055440756 * |
YOSHI YAMADA: "Basics of numerical weather prediction and outline of operational numerical weather prediction models at the Japan Meteorological Agency", SMART GRID, vol. 4, no. 3, 15 July 2014 (2014-07-15), pages 19 - 23, XP009502807 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109344865A (zh) * | 2018-08-24 | 2019-02-15 | 山东省环境规划研究院 | 一种多数据源的数据融合方法 |
CN109344865B (zh) * | 2018-08-24 | 2022-03-04 | 山东省环境规划研究院 | 一种多数据源的数据融合方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3220355A1 (en) | 2017-09-20 |
JP6452087B2 (ja) | 2019-01-16 |
US10410375B2 (en) | 2019-09-10 |
EP3220355A4 (en) | 2018-07-04 |
US20170316583A1 (en) | 2017-11-02 |
JP2016095250A (ja) | 2016-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016076394A1 (ja) | 画像処理装置、画像処理方法、画像処理プログラム | |
US9530244B2 (en) | Method and apparatus for shadow estimation and spreading | |
US9430862B2 (en) | Raster image three-dimensionalization processing device, raster image three-dimensionalization method, and raster image three-dimensionalization program | |
CN104867181B (zh) | 气象元素在三维地球模型的显示和绘制方法 | |
US9165397B2 (en) | Texture blending between view-dependent texture and base texture in a geographic information system | |
US9965893B2 (en) | Curvature-driven normal interpolation for shading applications | |
CN112365572B (zh) | 一种基于曲面细分的渲染方法及其相关产品 | |
CN111223191A (zh) | 面向机载增强合成视景系统的大规模场景红外成像实时仿真方法 | |
Hillaire | A scalable and production ready sky and atmosphere rendering technique | |
EP3034999B1 (en) | Method and apparatus for generating a composite image based on an ambient occlusion | |
Siddiqui | A novel method for determining sky view factor for isotropic diffuse radiations for a collector in obstacles-free or urban sites | |
EP2831846B1 (en) | Method for representing a participating media in a scene and corresponding device | |
CN118135081A (zh) | 模型生成方法、装置、计算机设备和计算机可读存储介质 | |
JP6223916B2 (ja) | 情報処理装置、方法及びプログラム | |
CN116596985B (zh) | 一种自适应光照模型建模方法与系统 | |
CN116030179B (zh) | 一种数据处理方法、装置、计算机设备及存储介质 | |
CN109829962B (zh) | 一种利用opengl的物体空间消隐线计算加速方法 | |
US10275939B2 (en) | Determining two-dimensional images using three-dimensional models | |
KR102237382B1 (ko) | 증강현실 환경에서의 하모닉 렌더링 방법, 이를 실행하는 증강현실 시스템 및 기록매체 | |
CN115035231A (zh) | 阴影烘焙方法、装置、电子设备和存储介质 | |
CN113223110B (zh) | 画面渲染方法、装置、设备及介质 | |
JP2005235015A (ja) | 3次元画像生成装置及び3次元画像生成方法 | |
CN117830530B (zh) | 用于红外仿真模拟的数据处理方法和装置 | |
JP7530102B2 (ja) | プログラム、情報処理装置及び方法 | |
CN111530078B (zh) | 游戏中显示插片植被的方法及装置、存储介质及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15858505 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15526354 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015858505 Country of ref document: EP |