WO2016076106A1 - Hydrogen generating electrode - Google Patents

Hydrogen generating electrode Download PDF

Info

Publication number
WO2016076106A1
WO2016076106A1 PCT/JP2015/080226 JP2015080226W WO2016076106A1 WO 2016076106 A1 WO2016076106 A1 WO 2016076106A1 JP 2015080226 W JP2015080226 W JP 2015080226W WO 2016076106 A1 WO2016076106 A1 WO 2016076106A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydrogen
hydrogen generating
generating electrode
semiconductor layer
Prior art date
Application number
PCT/JP2015/080226
Other languages
French (fr)
Japanese (ja)
Inventor
一成 堂免
尚俊 佐藤
耕 嶺岸
啓 熊谷
Original Assignee
富士フイルム株式会社
国立大学法人東京大学
人工光合成化学プロセス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東京大学, 人工光合成化学プロセス技術研究組合 filed Critical 富士フイルム株式会社
Priority to JP2016558960A priority Critical patent/JP6388665B2/en
Publication of WO2016076106A1 publication Critical patent/WO2016076106A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generating electrode that generates hydrogen from an electrolytic aqueous solution by light, and in particular, a hydrogen generating electrode that has a high photocurrent value corresponding to the amount of hydrogen generated and can stably generate hydrogen over a long period of time.
  • a hydrogen generating electrode that has a high photocurrent value corresponding to the amount of hydrogen generated and can stably generate hydrogen over a long period of time.
  • Patent Document 1 describes a photo-water splitting electrode having a structure in which a p-type semiconductor, an n-type semiconductor, and a reaction promoter are stacked in this order on a collecting electrode. By holding the electrode for water splitting in water and irradiating light such as sunlight, hydrogen can be decomposed to produce hydrogen.
  • the photo-water splitting electrode of Patent Document 1 can produce hydrogen by decomposing water upon receiving light such as sunlight, but at present, further increase in the amount of hydrogen generated is desired. . That is, further improvement in the photocurrent value corresponding to the amount of hydrogen generated is required. In addition, when hydrogen is continuously generated, the amount of hydrogen generated may decrease, and it is also required to generate hydrogen stably over a long period of time.
  • An object of the present invention is to provide a hydrogen generating electrode that solves the problems based on the above-described conventional technology, has a high photocurrent value corresponding to the amount of hydrogen generated, and can stably generate hydrogen over a long period of time. There is to do.
  • the present invention provides a hydrogen generating electrode for generating hydrogen from an electrolytic aqueous solution using light, a conductive layer, an inorganic semiconductor layer having a pn junction provided on the conductive layer,
  • the present invention provides a hydrogen generating electrode comprising a metal layer formed on an inorganic semiconductor layer and a promoter supported on the surface of the metal layer, and light is incident from the promoter side. .
  • the metal layer is preferably composed of a transition metal of group 4 or higher.
  • the metal layer preferably has a single layer structure or a multilayer structure.
  • the metal layer preferably has a thickness of 8 nm or less.
  • the inorganic semiconductor layer includes a CIGS (Copper indium gallium selenide) compound semiconductor.
  • the inorganic semiconductor layer includes a CZTS (Copper zinc tin sulfide) compound semiconductor.
  • the inorganic semiconductor layer includes a CGSe compound semiconductor.
  • the transition metals of Group 4 or higher are Ti, Zr, Mo, Ta, and W.
  • the photocurrent value corresponding to the amount of hydrogen generated is high, and hydrogen can be generated stably over a long period of time.
  • (A) is typical sectional drawing which shows the structure of the hydrogen generating electrode of embodiment of this invention
  • (b) is typical sectional drawing which shows the other structure of the hydrogen generating electrode of embodiment of this invention. is there.
  • (A)-(e) is typical sectional drawing which shows the manufacturing method of the hydrogen generating electrode of embodiment of this invention in order of a process.
  • the hydrogen generating electrode of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
  • the present invention is not limited to the embodiments of the hydrogen generating electrode described below.
  • “to” indicating a numerical range includes numerical values written on both sides.
  • is a numerical value ⁇ to a numerical value ⁇
  • the range of ⁇ is a range including the numerical value ⁇ and the numerical value ⁇ , and expressed by mathematical symbols, ⁇ ⁇ ⁇ ⁇ ⁇ .
  • FIG. 1A is a schematic cross-sectional view showing a configuration of a hydrogen generation electrode according to an embodiment of the present invention
  • FIG. 1B is a schematic cross-section showing another configuration of the hydrogen generation electrode according to an embodiment of the present invention.
  • FIG. The hydrogen generation electrode 10 shown in FIG. 1A is for generating hydrogen from the electrolytic aqueous solution AQ using light L.
  • a conductive layer 14 In the hydrogen generating electrode 10, a conductive layer 14, a p-type semiconductor layer 16, an n-type semiconductor layer 18, a metal layer 20, and a promoter 22 are stacked in this order on the surface 12 a of the insulating substrate 12. ing.
  • the p-type semiconductor layer 16 and the n-type semiconductor layer 18 constitute an inorganic semiconductor layer 19.
  • Light L is incident from the cocatalyst 22 side.
  • the hydrogen generating electrode 10 is disposed, for example, in a container 30 that is configured to transmit light L.
  • An electrolytic aqueous solution AQ is placed in the container 30 so that the hydrogen generating electrode 10 is completely immersed.
  • the electrolytic aqueous solution AQ is decomposed to generate hydrogen.
  • a system for generating hydrogen using the hydrogen generating electrode 10 is not particularly limited.
  • it may be connected to an oxygen generating electrode, soaked together in the electrolytic aqueous solution AQ, and irradiated with light L from the cocatalyst 22 side to generate hydrogen.
  • the electrolytic aqueous solution AQ is, for example, a liquid mainly composed of H 2 O, and may be distilled water, or an aqueous solution containing water as a solvent and containing a solute.
  • water for example, it may be an electrolytic solution that is an aqueous solution containing an electrolyte, or may be cooling water used in a cooling tower or the like.
  • an aqueous solution containing an electrolyte such as a strong alkali (KOH), a polymer electrolyte (Nafion (registered trademark)), an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1 M sodium sulfate.
  • Electrolytic solution 0.1M potassium phosphate buffer, etc.
  • the insulating substrate 12 supports the hydrogen generating electrode 10 and is configured to have electrical insulation.
  • the insulating substrate 12 is not particularly limited, and for example, a soda lime glass substrate (hereinafter referred to as an SLG substrate) or a ceramic substrate can be used.
  • the insulating substrate 12 may be a substrate in which an insulating layer is formed on a metal substrate.
  • a metal substrate such as an Al substrate or a SUS (Steel Use Stainless) substrate, or a composite made of a composite material of Al and another metal such as SUS, or a composite metal substrate such as an Al substrate. Is available.
  • the composite metal substrate is also a kind of metal substrate, and the metal substrate and the composite metal substrate are collectively referred to simply as a metal substrate.
  • a metal substrate with an insulating film having an insulating layer formed by anodizing the surface of an Al substrate or the like can also be used.
  • the insulating substrate 12 may or may not be flexible.
  • a glass plate such as high strain point glass and non-alkali glass, or a polyimide material can be used as the insulating substrate 12.
  • the thickness of the insulating substrate 12 is not particularly limited, and may be, for example, about 20 to 20000 ⁇ m, preferably 100 to 10,000 ⁇ m, and more preferably 1000 to 5000 ⁇ m.
  • an alkali ion for example, sodium (Na) ion: Na ⁇ +>
  • photoelectric Since conversion efficiency improves, it is preferable to provide an alkali supply layer for supplying alkali ions to the surface 12a of the insulating substrate 12. In the case of the SLG substrate, the alkali supply layer is not necessary.
  • the conductive layer 14 is formed on the surface 12 a of the insulating substrate 12 and applies a voltage to the inorganic semiconductor layer 19.
  • the conductive layer 14 has electroconductivity,
  • it is comprised with metals, such as Mo, Cr, and W, or what combined these.
  • the conductive layer 14 may have a single layer structure or a laminated structure such as a two-layer structure. Among these, the conductive layer 14 is preferably composed of Mo.
  • the thickness of the conductive layer 14 is generally about 800 nm, but the thickness of the conductive layer 14 is preferably 400 nm to 1 ⁇ m.
  • the inorganic semiconductor layer 19 generates an electromotive force.
  • a pn junction is formed at the interface between the p-type semiconductor layer 16 and the n-type semiconductor layer 18.
  • a p-type semiconductor layer 16 is formed on the conductive layer 14.
  • the inorganic semiconductor layer 19 is a layer that absorbs the light L that has passed through the n-type semiconductor layer 18 and generates holes on the p side and electrons on the n side.
  • the p-type semiconductor layer 16 has a photoelectric conversion function.
  • the film thickness of the p-type semiconductor layer 16 is preferably 0.5 to 3.0 ⁇ m, particularly preferably 1.0 to 2.0 ⁇ m.
  • the p-type semiconductor layer 16 is preferably composed of, for example, a CIGS compound semiconductor having a chalcopyrite crystal structure or a CZTS compound semiconductor such as Cu 2 ZnSnS 4 .
  • the CIGS compound semiconductor layer may be composed of not only Cu (In, Ga) Se 2 (CIGS) but also CuInSe 2 (CIS), CuGaSe 2 (CGS), or the like.
  • CIGS layer forming methods 1) multi-source vapor deposition, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process are known.
  • Examples of other CIGS layer forming methods include screen printing, proximity sublimation, MOCVD (Metal Organic Chemical Vapor Deposition), and spray (wet film formation).
  • a fine particle film containing a group 11 element, a group 13 element, and a group 16 element is formed on a substrate by a screen printing method (wet film forming method) or a spray method (wet film forming method), and a thermal decomposition treatment ( At this time, a crystal having a desired composition can be obtained by performing a thermal decomposition treatment in a group 16 element atmosphere) (JP-A-9-74065, JP-A-9-74213, etc.).
  • the n-type semiconductor layer 18 forms a pn junction at the interface with the p-type semiconductor layer 16 as described above.
  • the n-type semiconductor layer 18 allows the light L to pass therethrough so that the incident light L reaches the p-type semiconductor layer 16.
  • the n-type semiconductor layer 18 includes, for example, CdS, ZnS, Zn (S, O), and / or Zn (S, O, OH), SnS, Sn (S, O), and / or Sn (S, O, OH), InS, In (S, O), and / or In (S, O, OH), and other metal sulfides containing at least one metal element selected from the group consisting of Cd, Zn, Sn, and In Is formed.
  • the film thickness of the n-type semiconductor layer 18 is preferably 10 nm to 2 ⁇ m, more preferably 15 to 200 nm.
  • a chemical bath deposition method hereinafter referred to as CBD method
  • a window layer may be provided on the n-type semiconductor layer 18. This window layer is composed of, for example, a ZnO layer having a thickness of about 10 nm.
  • the metal layer 20 is formed on the inorganic semiconductor layer 19, that is, on the surface 18 a of the n-type semiconductor layer 18.
  • the metal layer 20 is preferably composed of a transition metal of group 4 or higher. Examples of the group 4 or higher transition metal include Ti, Zr, Mo, Ta, and W. Note that if the thickness t of the metal layer 20 is too thick, the amount of light incident on the inorganic semiconductor layer 19 becomes small, which is not preferable. Therefore, the metal layer 20 preferably has a thickness t of 8 nm or less, more preferably 6 nm or less.
  • the lower limit of the metal layer 20 is a thickness that can exhibit the above-described function and can be manufactured.
  • the metal layer 20 can be formed by, for example, a sputtering method, a vacuum evaporation method, an electron beam evaporation method, or the like.
  • a promoter 22 is formed on the surface 20 a of the metal layer 20.
  • the co-catalyst 22 may be formed on one surface, or may be formed in an island shape so as to be scattered, for example.
  • the co-catalyst 22 is composed of, for example, a simple substance composed of Pt, Pd, Ni, Au, Ag, Ru, Cu, Co, Rh, Ir, Mn, etc., and an alloy thereof, and an oxide thereof, for example, NiOx. And RuO 2 .
  • the size of the co-catalyst 22 is not particularly limited and is preferably 0.5 nm to 1 ⁇ m and the height is preferably about several nm.
  • the method for forming the co-catalyst 22 is not particularly limited, and can be formed by a coating and baking method, a photo-deposition method, a vacuum deposition method, a sputtering method, an impregnation method, or the like.
  • the metal layer 20 imparts conductivity to the surface layer of the n-type semiconductor layer 18 formed of, for example, CdS while allowing the light L to enter the inorganic semiconductor layer 19. Carriers generated in the inorganic semiconductor layer 19 and electrons in the hydrogen generating electrode 10 in FIG. 1A can easily move to the promoter 22 side by the metal layer 20.
  • the generated carriers in the surface layer portion of the n-type semiconductor layer 18 that is not in contact with the cocatalyst 22 are difficult to move in a direction parallel to the surface 18a (hereinafter simply referred to as a lateral direction), and are close in the lateral direction It is difficult for carriers (electrons) to move to the co-catalyst 22 that performs.
  • the metal layer 20 carriers (electrons) that have flowed into the metal layer 20 can easily move to the close promoter 22. Thereby, among the generated electrons, the amount of electrons moving to the promoter 22 can be increased, and the photocurrent value corresponding to the amount of hydrogen generated can be increased.
  • the cocatalyst 22 is made of metal or the like, and the metal layer 20 can be more stably bonded to the cocatalyst 22 than the n-type semiconductor layer 18, and adhesion can be improved. As a result, the hydrogen generating electrode 10 can generate stable hydrogen, and as a result, hydrogen can be stably generated over a long period of time.
  • the metal layer 20 has a single layer structure, but is not limited to this, and may have a multilayer structure. Specifically, a metal layer 24 having a two-layer structure may be used as shown in the hydrogen generating electrode 10a shown in FIG.
  • the metal layer 24 includes a first metal layer 26 provided on the n-type semiconductor layer 18 side, and a second metal layer 28 provided thereon.
  • the metal layer 24 has the same function as the metal layer 20 described above.
  • the hydrogen generation electrode 10a shown in FIG. 1B the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the total thickness t of the first metal layer 26 and the second metal layer 28 is preferably 8 nm or less in consideration of the amount of incident light L, more preferably 6 nm or less. If the total thickness t of the metal layer 24 is too thick, the amount of incident light on the inorganic semiconductor layer 19 becomes small like the metal layer 20 described above, which is not preferable.
  • the metal layer 24 can also be formed by, for example, a sputtering method, a vacuum evaporation method, an electron beam evaporation method, or the like.
  • the first metal layer 26 and the second metal layer 28 are also preferably composed of a transition metal of group 4 or more, like the metal layer 20 described above.
  • the transition metal of Group 4 or higher is, for example, Ti, Zr, Mo, Ta, or W.
  • FIG. 2 (a) to 2 (e) are schematic cross-sectional views showing a method of manufacturing a hydrogen generating electrode according to an embodiment of the present invention in the order of steps.
  • a soda lime glass substrate to be the insulating substrate 12 is prepared.
  • a Mo film or the like to be the conductive layer 14 is formed on the surface 12a of the insulating substrate 12 by sputtering.
  • a CIGS film is formed as the p-type semiconductor layer 16 on the conductive layer 14.
  • This CIGS film is formed by any of the film forming methods described above.
  • a CdS layer that becomes the n-type semiconductor layer 18 is formed on the surface 16 a of the p-type semiconductor layer 16 by the CBD method.
  • the inorganic semiconductor layer 19 is formed.
  • a single-layer metal layer 20 is formed on the surface 18a of the n-type semiconductor layer 18 by using, for example, a sputtering method.
  • a Pt promoter is supported on the surface 20a of the metal layer 20 as a hydrogen generating promoter 22 using, for example, a photo-deposition method. Thereby, the hydrogen generating electrode 10 is formed.
  • the method for manufacturing the hydrogen generating electrode 10a shown in FIG. 1B with the metal layer 24 having a multilayer structure differs from the method for forming the hydrogen generating electrode 10 shown in FIG. Except for this point, the steps are the same as those in the method for manufacturing the hydrogen generating electrode 10 shown in FIGS. 2A to 2C and 2E, and thus detailed description thereof is omitted.
  • the metal layer 24 when the metal layer 24 is formed, first, the first metal layer 26 is formed on the surface 18a of the n-type semiconductor layer 18 by using, for example, sputtering. Form. Next, the second metal layer 28 is formed on the first metal layer 26 by using, for example, a sputtering method.
  • the promoter 22 is formed on the surface 28a of the second metal layer 28 of the metal layer 24 as described above.
  • the hydrogen generation electrode 10a shown in FIG. 1B also uses, for example, the hydrogen generation electrode 10a as a working electrode, an Ag / AgCl electrode as a reference electrode (not shown), and a platinum wire as a counter electrode (not shown).
  • hydrogen can be generated in the same manner as the hydrogen generation electrode 10 shown in FIG.
  • it can be connected to an oxygen generating electrode, immersed in the electrolytic aqueous solution AQ together with the hydrogen generating electrode 10a, and irradiated with light L from the cocatalyst 22 side to generate hydrogen.
  • the metal layer 20 is provided in the hydrogen generation electrode 10 shown in FIG. 1A, and the metal layer 24 is provided in the hydrogen generation electrode 10a shown in FIG.
  • Electrons generated in the semiconductor layer 19 can be easily moved to the cocatalyst 22 side. Thereby, among the electrons generated as carriers, the amount of electrons moving to the promoter 22 can be increased, and the photocurrent value corresponding to the amount of hydrogen generated can be increased. Furthermore, since the metal layers 20 and 24 can improve the adhesion to the co-catalyst 22 as described above, stable hydrogen generation is possible, and hydrogen can be stably generated over a long period of time. Further, both the hydrogen generating electrode 10 shown in FIG. 1A and the hydrogen generating electrode 10a shown in FIG. 1B can be used in an artificial photosynthesis module that decomposes the electrolytic aqueous solution AQ into hydrogen and oxygen by light L. .
  • the present invention is basically configured as described above.
  • the hydrogen generating electrode of the present invention has been described in detail above.
  • the present invention is not limited to the above embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. is there.
  • Light source Solar simulator (AM1.5G) XES-70S1 manufactured by Mitsunaga Electric Mfg. Co., Ltd.
  • Electrolyte 0.5M Na 2 SO 4 + 0.25M Na 2 HPO 4 + 0.25M NaH 2 PO 4 pH 7.0
  • Electrochemical measuring device Potentiostat Hokuto Denko HZ-7000 Reference electrode: Ag / AgCl electrode
  • Counter electrode Platinum wire Working electrode: Hydrogen generation electrode
  • Stability was determined for the hydrogen generating electrodes of Examples 1 to 3 and Comparative Examples 1 and 2. The results are shown in Table 1 below. Stability is a value represented by the ratio between the photocurrent value at the start of driving and the photocurrent value after one hour of driving, assuming that the holding potential is 0.3 V RHE . The ratio is obtained by the photocurrent value after 1 hour of driving / the photocurrent value at the start of driving. In addition, hydrogen can be generated more stably as the ratio value is larger.
  • the hydrogen generation electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 were further evaluated comprehensively according to the following judgment criteria in consideration of ABPE (%) and stability. The results are shown in Table 1 below.
  • the evaluation criteria were “A” when the ABPE (%) value was not less than Comparative Example 1 and the above-mentioned ratio was not less than 0.5, and “B” otherwise. That is, a value of ABPE (%) less than Comparative Example 1 or a ratio of less than 0.5 is determined as “B”.
  • the hydrogen generating electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 will be described.
  • Example 1 The hydrogen generation electrode of Example 1 has the same configuration as the hydrogen generation electrode 10a shown in FIG.
  • the configuration of each part is as follows.
  • the hydrogen generating electrode of Example 1 was insulated by connecting the conductive wire to the conductive layer and then covering the exposed portion with an epoxy resin.
  • ⁇ Configuration of hydrogen generating electrode> Insulating substrate: soda lime glass, 1 mm thick conductive layer: Mo, 500 nm thick inorganic semiconductor layer p type semiconductor layer: CIGS, 1500 nm thick n type semiconductor layer: CdS, 50 nm thick metal layer Mo film, 3 nm thick (promoter side) Ti film, 3nm thickness (n-type semiconductor layer side)
  • Cocatalyst Pt (photodeposition method)
  • Example 2 The hydrogen generating electrode of Example 2 has the same configuration as the hydrogen generating electrode 10 shown in FIG. Since the hydrogen generating electrode of Example 2 has the same configuration as that of Example 1 except that the metal layer is a single-layer film of Mo film having a thickness of 3 nm as compared with Example 1, the detailed description thereof is as follows. Omitted.
  • Example 3 The hydrogen generating electrode of Example 3 has the same configuration as the hydrogen generating electrode 10 shown in FIG. Since the hydrogen generating electrode of Example 3 has the same configuration as that of Example 1 except that the metal layer is a single-layer Ti film having a thickness of 3 nm as compared with Example 1, the detailed description thereof is as follows. Omitted.
  • Comparative Example 1 Compared to Example 1, Comparative Example 1 has the same configuration as that of Example 1 except that the metal layer is not formed, and thus detailed description thereof is omitted. In Comparative Example 1, since there is no metal layer, “-” is written in the column “Configuration of metal layer” and the column “Metal layer thickness” in Table 1 below.
  • Comparative Example 2 Since Comparative Example 2 has the same configuration as that of Example 1 except that a crystalline ITO film having a thickness of 5 nm is formed instead of the metal layer as compared with Example 1, detailed description thereof is omitted. .
  • Comparative Example 2 since a crystalline ITO film was formed, “Crystal ITO” was described in the column “Metal Layer Configuration” in Table 1 below.
  • the method for producing the hydrogen generating electrode, the method for measuring ABPE (%), and the method for calculating the stability are the same as those in Example 1, and therefore detailed description thereof will be given. Is omitted.
  • Example 4 Pt / Mo / Ti / CdS / ZnSe: Cu (In, Ga) Preparation and Evaluation of Se 2 electrode
  • soda lime glass Float glass, manufactured by Koshi Optical Co., Ltd.
  • Mo by sputtering
  • ii) CdS layer formation by chemical bath deposition hereinafter abbreviated as CBD) method
  • iii) Mo / Ti layer formation by sputtering method iv) Pt loading by vacuum deposition method.
  • a Pt / Mo / Ti / CdS / ZnSe Cu (In, Ga) Se 2 electrode was produced.
  • each process will be described in detail.
  • the deposition rate of each raw material was Cu: 0.042 nm / s, Ga: 0.014 nm / s, In: 0.048 nm / s, Zn: 0.35 to 0.40 nm / s, Se: 1 nm / s.
  • Cd source cadmium acetate dihydrate (Kanto Chemical Co., 98.0%) and S source thiourea (Kanto Chemical Co., 98.0%) were used.
  • S source thiourea (Kanto Chemical Co., 98.0%) were used.
  • 50 ml of distilled water 50 ml of ammonia water (special grade, 28% by mass, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.666 g of cadmium acetate dihydrate were placed in a glass beaker to obtain a CBD solution.
  • the ZnSe: Cu (In, Ga) Se 2 thin film prepared by the multi-source vapor deposition method is immersed, and then 2.855 g of thiourea is quickly added.
  • a CdS layer (n-type semiconductor layer, 50 nm thick) was formed by placing in a water bath and treating for 14 minutes.
  • Example 1 Using the electrode prepared above, the ABPE (%) was measured and the stability was evaluated in the same manner as in Example 1. The result was equal to or higher than that in Example 1.

Abstract

This hydrogen generating electrode generates hydrogen from an aqueous electrolyte solution with use of light. This hydrogen generating electrode comprises: a conductive layer; an inorganic semiconductor layer that is provided on the conductive layer and has a pn junction; a metal layer that is formed on the surface of the inorganic semiconductor layer; and a promoter that is supported by the surface of the metal layer. Light is incident thereon from the promoter side.

Description

水素発生電極Hydrogen generation electrode
 本発明は、光により電解水溶液から水素を発生させる水素発生電極に関し、特に、水素の発生量に相当する光電流値が高く、かつ長時間にわたり安定して水素を発生させることができる水素発生電極に関する。 The present invention relates to a hydrogen generating electrode that generates hydrogen from an electrolytic aqueous solution by light, and in particular, a hydrogen generating electrode that has a high photocurrent value corresponding to the amount of hydrogen generated and can stably generate hydrogen over a long period of time. About.
 従来、再生可能なエネルギーである太陽光エネルギーを利用する形態の1つとして、太陽電池に使用される光電変換材料を用いて、この光電変換材料で得られる起電力を利用して、電解水溶液を分解して酸素と水素を製造する装置が提案されている(例えば、特許文献1参照)。 Conventionally, as one form of utilizing solar energy, which is renewable energy, an electrolysis aqueous solution is obtained by using an electromotive force obtained from this photoelectric conversion material using a photoelectric conversion material used in a solar cell. An apparatus that decomposes and produces oxygen and hydrogen has been proposed (see, for example, Patent Document 1).
 特許文献1には、集電極上に、p型半導体、n型半導体、反応助触媒が、この順で積層された構造の光水分解用電極が記載されている。この光水分解用電極を水中に保持し、太陽光等の光を照射することにより、水を分解して水素を製造することができる。 Patent Document 1 describes a photo-water splitting electrode having a structure in which a p-type semiconductor, an n-type semiconductor, and a reaction promoter are stacked in this order on a collecting electrode. By holding the electrode for water splitting in water and irradiating light such as sunlight, hydrogen can be decomposed to produce hydrogen.
特開2012-46385号公報JP 2012-46385 A
 特許文献1の光水分解用電極は、太陽光等の光を受けて、水を分解して水素を製造することができるが、現状では、更なる水素の発生量の増加が望まれている。すなわち、水素の発生量に相当する光電流値の更なる向上が求められている。また、連続して水素を発生させた場合、水素の発生量が低下することがあり、長時間にわたり安定して水素を発生させることも要求されている。 The photo-water splitting electrode of Patent Document 1 can produce hydrogen by decomposing water upon receiving light such as sunlight, but at present, further increase in the amount of hydrogen generated is desired. . That is, further improvement in the photocurrent value corresponding to the amount of hydrogen generated is required. In addition, when hydrogen is continuously generated, the amount of hydrogen generated may decrease, and it is also required to generate hydrogen stably over a long period of time.
 本発明の目的は、前述の従来技術に基づく問題点を解消し、水素の発生量に相当する光電流値が高く、かつ長時間にわたり安定して水素を発生させることができる水素発生電極を提供することにある。 An object of the present invention is to provide a hydrogen generating electrode that solves the problems based on the above-described conventional technology, has a high photocurrent value corresponding to the amount of hydrogen generated, and can stably generate hydrogen over a long period of time. There is to do.
 上記目的を達成するために、本発明は、光を用いて電解水溶液から水素を発生させる水素発生電極であって、導電層と、導電層上に設けられたpn接合を有する無機半導体層と、無機半導体層上に形成された金属層と、金属層の表面に担持された助触媒とを有し、助触媒側から光が入射されることを特徴とする水素発生電極を提供するものである。 In order to achieve the above object, the present invention provides a hydrogen generating electrode for generating hydrogen from an electrolytic aqueous solution using light, a conductive layer, an inorganic semiconductor layer having a pn junction provided on the conductive layer, The present invention provides a hydrogen generating electrode comprising a metal layer formed on an inorganic semiconductor layer and a promoter supported on the surface of the metal layer, and light is incident from the promoter side. .
 金属層は4族以上の遷移金属で構成されることが好ましい。また、金属層は単層構造または多層構造であることが好ましい。金属層は厚みが8nm以下であることが好ましい。
 また、例えば、無機半導体層はCIGS(Copper indium gallium selenide)化合物半導体を含む。また、例えば、無機半導体層はCZTS(Copper zinc tin sulfide)化合物半導体を含む。また、例えば、無機半導体層はCGSe化合物半導体を含む。例えば、4族以上の遷移金属は、Ti、Zr、Mo、TaおよびWである。
The metal layer is preferably composed of a transition metal of group 4 or higher. The metal layer preferably has a single layer structure or a multilayer structure. The metal layer preferably has a thickness of 8 nm or less.
For example, the inorganic semiconductor layer includes a CIGS (Copper indium gallium selenide) compound semiconductor. For example, the inorganic semiconductor layer includes a CZTS (Copper zinc tin sulfide) compound semiconductor. For example, the inorganic semiconductor layer includes a CGSe compound semiconductor. For example, the transition metals of Group 4 or higher are Ti, Zr, Mo, Ta, and W.
 本発明によれば、水素の発生量に相当する光電流値が高く、かつ長時間にわたり安定して水素を発生させることができる。 According to the present invention, the photocurrent value corresponding to the amount of hydrogen generated is high, and hydrogen can be generated stably over a long period of time.
(a)は、本発明の実施形態の水素発生電極の構成を示す模式的断面図であり、(b)は、本発明の実施形態の水素発生電極の他の構成を示す模式的断面図である。(A) is typical sectional drawing which shows the structure of the hydrogen generating electrode of embodiment of this invention, (b) is typical sectional drawing which shows the other structure of the hydrogen generating electrode of embodiment of this invention. is there. (a)~(e)は、本発明の実施形態の水素発生電極の製造方法を工程順に示す模式的断面図である。(A)-(e) is typical sectional drawing which shows the manufacturing method of the hydrogen generating electrode of embodiment of this invention in order of a process.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の水素発生電極を詳細に説明する。本発明は、以下に説明する水素発生電極の実施形態に限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
Hereinafter, the hydrogen generating electrode of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings. The present invention is not limited to the embodiments of the hydrogen generating electrode described below.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
 図1(a)は、本発明の実施形態の水素発生電極の構成を示す模式的断面図であり、(b)は、本発明の実施形態の水素発生電極の他の構成を示す模式的断面図である。
 図1(a)に示す水素発生電極10は、光Lを用いて電解水溶液AQから水素を発生させるものである。
 水素発生電極10は、絶縁基板12の表面12a上に、導電層14と、p型半導体層16と、n型半導体層18と、金属層20と、助触媒22とが、この順で積層されている。p型半導体層16とn型半導体層18とで無機半導体層19が構成される。助触媒22側から光Lが入射される。
FIG. 1A is a schematic cross-sectional view showing a configuration of a hydrogen generation electrode according to an embodiment of the present invention, and FIG. 1B is a schematic cross-section showing another configuration of the hydrogen generation electrode according to an embodiment of the present invention. FIG.
The hydrogen generation electrode 10 shown in FIG. 1A is for generating hydrogen from the electrolytic aqueous solution AQ using light L.
In the hydrogen generating electrode 10, a conductive layer 14, a p-type semiconductor layer 16, an n-type semiconductor layer 18, a metal layer 20, and a promoter 22 are stacked in this order on the surface 12 a of the insulating substrate 12. ing. The p-type semiconductor layer 16 and the n-type semiconductor layer 18 constitute an inorganic semiconductor layer 19. Light L is incident from the cocatalyst 22 side.
 水素発生電極10は、例えば、光Lが透過可能な構成の容器30内に配置される。容器30内には、水素発生電極10が完全に浸漬するように電解水溶液AQが入れられる。例えば、水素発生電極10を作用極とし、参照電極(図示せず)にAg/AgCl電極を用い、対極(図示せず)に白金ワイヤーを用い、これらをポテンショスタットに接続した3電極系の構成とする。この状態で、水素発生電極10の電位を参照電極に対して制御し、かつ助触媒22側から光Lを照射することにより、電解水溶液AQが分解されて水素が発生する。なお、水素発生電極10を用いた水素を発生させるシステムは、特に限定されるものではない。例えば、酸素発生電極と接続して、共に電解水溶液AQ内に浸漬して、助触媒22側から光Lを照射して、水素を発生させるようにしてもよい。 The hydrogen generating electrode 10 is disposed, for example, in a container 30 that is configured to transmit light L. An electrolytic aqueous solution AQ is placed in the container 30 so that the hydrogen generating electrode 10 is completely immersed. For example, a configuration of a three-electrode system in which the hydrogen generation electrode 10 is a working electrode, an Ag / AgCl electrode is used as a reference electrode (not shown), a platinum wire is used as a counter electrode (not shown), and these are connected to a potentiostat. And In this state, by controlling the potential of the hydrogen generating electrode 10 with respect to the reference electrode and irradiating light L from the cocatalyst 22 side, the electrolytic aqueous solution AQ is decomposed to generate hydrogen. Note that a system for generating hydrogen using the hydrogen generating electrode 10 is not particularly limited. For example, it may be connected to an oxygen generating electrode, soaked together in the electrolytic aqueous solution AQ, and irradiated with light L from the cocatalyst 22 side to generate hydrogen.
 ここで、電解水溶液AQとは、例えば、HOを主成分とする液体であり、蒸留水であってもよく、水を溶媒とし溶質を含む水溶液であってもよい。水の場合、例えば、電解質を含む水溶液である電解液であってもよく、冷却塔等で用いられる冷却水であってもよい。電解液の場合、例えば、電解質を含む水溶液であり、例えば、強アルカリ(KOH)、ポリマー電解質(ナフィオン(登録商標))、0.1MのHSOを含む電解液、0.1M硫酸ナトリウム電解液、0.1Mリン酸カリウム緩衝液等である。 Here, the electrolytic aqueous solution AQ is, for example, a liquid mainly composed of H 2 O, and may be distilled water, or an aqueous solution containing water as a solvent and containing a solute. In the case of water, for example, it may be an electrolytic solution that is an aqueous solution containing an electrolyte, or may be cooling water used in a cooling tower or the like. In the case of the electrolytic solution, for example, an aqueous solution containing an electrolyte, such as a strong alkali (KOH), a polymer electrolyte (Nafion (registered trademark)), an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1 M sodium sulfate. Electrolytic solution, 0.1M potassium phosphate buffer, etc.
 次に、水素発生電極10の各部について説明する。
 絶縁基板12は、水素発生電極10を支持するものであり、電気絶縁性を有するもので構成される。絶縁基板12は、特に限定されるものではないが、例えば、ソーダライムガラス基板(以下、SLG基板という)またはセラミックス基板を用いることができる。また、絶縁基板12には、金属基板上に絶縁層が形成されたものを用いることができる。ここで、金属基板としては、Al基板またはSUS(Steel Use Stainless)基板等の金属基板、またはAlと、例えば、SUS等の他の金属との複合材料からなる複合、Al基板等の複合金属基板が利用可能である。なお、複合金属基板も金属基板の一種であり、金属基板および複合金属基板をまとめて、単に金属基板ともいう。さらには、絶縁基板12としては、Al基板等の表面を陽極酸化して形成された絶縁層を有する絶縁膜付金属基板を用いることもできる。絶縁基板12は、フレキシブルなものであっても、そうでなくてもよい。なお、上述のもの以外に、絶縁基板12として、例えば、高歪点ガラスおよび無アルカリガラス等のガラス板、またはポリイミド材を用いることもできる。
Next, each part of the hydrogen generating electrode 10 will be described.
The insulating substrate 12 supports the hydrogen generating electrode 10 and is configured to have electrical insulation. The insulating substrate 12 is not particularly limited, and for example, a soda lime glass substrate (hereinafter referred to as an SLG substrate) or a ceramic substrate can be used. In addition, the insulating substrate 12 may be a substrate in which an insulating layer is formed on a metal substrate. Here, as the metal substrate, a metal substrate such as an Al substrate or a SUS (Steel Use Stainless) substrate, or a composite made of a composite material of Al and another metal such as SUS, or a composite metal substrate such as an Al substrate. Is available. The composite metal substrate is also a kind of metal substrate, and the metal substrate and the composite metal substrate are collectively referred to simply as a metal substrate. Furthermore, as the insulating substrate 12, a metal substrate with an insulating film having an insulating layer formed by anodizing the surface of an Al substrate or the like can also be used. The insulating substrate 12 may or may not be flexible. In addition to the above, for example, a glass plate such as high strain point glass and non-alkali glass, or a polyimide material can be used as the insulating substrate 12.
 絶縁基板12の厚みは、特に限定されるものではなく、例えば、20~20000μm程度あればよく、100~10000μmが好ましく、1000~5000μmがより好ましい。なお、p型半導体層16に、CIGS化合物半導体を含むものを用いる場合には、絶縁基板12側に、アルカリイオン(例えば、ナトリウム(Na)イオン:Na)を供給するものがあると、光電変換効率が向上するので、絶縁基板12の表面12aにアルカリイオンを供給するアルカリ供給層を設けておくことが好ましい。なお、SLG基板の場合には、アルカリ供給層は不要である。 The thickness of the insulating substrate 12 is not particularly limited, and may be, for example, about 20 to 20000 μm, preferably 100 to 10,000 μm, and more preferably 1000 to 5000 μm. In addition, when using the thing containing a CIGS compound semiconductor for the p-type semiconductor layer 16, when there exists what supplies an alkali ion (for example, sodium (Na) ion: Na <+> ) to the insulated substrate 12 side, photoelectric Since conversion efficiency improves, it is preferable to provide an alkali supply layer for supplying alkali ions to the surface 12a of the insulating substrate 12. In the case of the SLG substrate, the alkali supply layer is not necessary.
 導電層14は、絶縁基板12の表面12aに形成され、無機半導体層19に電圧を印加するものである。導電層14は、導電性を有していれば、特に限定されるものではないが、例えば、Mo、CrおよびW等の金属、またはこれらを組み合わせたものにより構成される。この導電層14は、単層構造でもよいし、2層構造等の積層構造でもよい。この中で、導電層14は、Moで構成することが好ましい。導電層14の膜厚は、一般的に、その厚みが800nm程度であるが、導電層14は厚みが400nm~1μmであることが好ましい。 The conductive layer 14 is formed on the surface 12 a of the insulating substrate 12 and applies a voltage to the inorganic semiconductor layer 19. Although it will not specifically limit if the conductive layer 14 has electroconductivity, For example, it is comprised with metals, such as Mo, Cr, and W, or what combined these. The conductive layer 14 may have a single layer structure or a laminated structure such as a two-layer structure. Among these, the conductive layer 14 is preferably composed of Mo. The thickness of the conductive layer 14 is generally about 800 nm, but the thickness of the conductive layer 14 is preferably 400 nm to 1 μm.
 無機半導体層19は、起電力を発生するものである。無機半導体層19では、p型半導体層16とn型半導体層18との界面でpn接合が形成される。p型半導体層16が導電層14上に形成されている。
 無機半導体層19は、n型半導体層18を透過して到達した光Lを吸収して、p側に正孔を、n側に電子を生じさせる層である。p型半導体層16は光電変換機能を有する。p型半導体層16では、pn接合でキャリアとして生じた正孔をp型半導体層16から導電層14側に移動させ、pn接合でキャリアとして生じた電子をn型半導体層18から金属層20側に移動させる。p型半導体層16の膜厚は、好ましくは0.5~3.0μmであり、1.0~2.0μmが特に好ましい。
The inorganic semiconductor layer 19 generates an electromotive force. In the inorganic semiconductor layer 19, a pn junction is formed at the interface between the p-type semiconductor layer 16 and the n-type semiconductor layer 18. A p-type semiconductor layer 16 is formed on the conductive layer 14.
The inorganic semiconductor layer 19 is a layer that absorbs the light L that has passed through the n-type semiconductor layer 18 and generates holes on the p side and electrons on the n side. The p-type semiconductor layer 16 has a photoelectric conversion function. In the p-type semiconductor layer 16, holes generated as carriers at the pn junction are moved from the p-type semiconductor layer 16 to the conductive layer 14 side, and electrons generated as carriers at the pn junction are transferred from the n-type semiconductor layer 18 to the metal layer 20 side. Move to. The film thickness of the p-type semiconductor layer 16 is preferably 0.5 to 3.0 μm, particularly preferably 1.0 to 2.0 μm.
 p型半導体層16は、例えば、カルコパイライト結晶構造を有するCIGS化合物半導体またはCuZnSnS等のCZTS化合物半導体で構成されるのが好ましい。CIGS化合物半導体層は、Cu(In,Ga)Se(CIGS)のみならず、CuInSe(CIS)、CuGaSe(CGS)等で構成してもよい。
 なお、CIGS層の形成方法としては、1)多源蒸着法、2)セレン化法、3)スパッタ法、4)ハイブリッドスパッタ法、および5)メカノケミカルプロセス法等が知られている。
 その他のCIGS層の形成方法としては、スクリーン印刷法、近接昇華法、MOCVD(Metal Organic Chemical Vapor Deposition)法、およびスプレー法(ウェット成膜法)等が挙げられる。例えば、スクリーン印刷法(ウェット成膜法)またはスプレー法(ウェット成膜法)等で、11族元素、13族元素、および16族元素を含む微粒子膜を基板上に形成し、熱分解処理(この際、16族元素雰囲気での熱分解処理でもよい)を実施する等により、所望の組成の結晶を得ることができる(特開平9-74065号公報、特開平9-74213号公報等)。
The p-type semiconductor layer 16 is preferably composed of, for example, a CIGS compound semiconductor having a chalcopyrite crystal structure or a CZTS compound semiconductor such as Cu 2 ZnSnS 4 . The CIGS compound semiconductor layer may be composed of not only Cu (In, Ga) Se 2 (CIGS) but also CuInSe 2 (CIS), CuGaSe 2 (CGS), or the like.
As CIGS layer forming methods, 1) multi-source vapor deposition, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process are known.
Examples of other CIGS layer forming methods include screen printing, proximity sublimation, MOCVD (Metal Organic Chemical Vapor Deposition), and spray (wet film formation). For example, a fine particle film containing a group 11 element, a group 13 element, and a group 16 element is formed on a substrate by a screen printing method (wet film forming method) or a spray method (wet film forming method), and a thermal decomposition treatment ( At this time, a crystal having a desired composition can be obtained by performing a thermal decomposition treatment in a group 16 element atmosphere) (JP-A-9-74065, JP-A-9-74213, etc.).
 n型半導体層18は、上述のようにp型半導体層16との界面でpn接合を形成するものである。また、n型半導体層18は、入射した光Lをp型半導体層16に到達させるため、光Lが透過するものである。
 n型半導体層18は、例えば、CdS、ZnS,Zn(S,O)、および/またはZn(S,O,OH)、SnS,Sn(S,O)、および/またはSn(S,O,OH)、InS,In(S,O)、および/またはIn(S,O,OH)等の、Cd,Zn,Sn,Inからなる群より選ばれる少なくとも1種の金属元素を含む金属硫化物を含むもので形成される。n型半導体層18の膜厚は、10nm~2μmが好ましく、15~200nmがより好ましい。n型半導体層18の形成には、例えば、化学浴析出法(以下、CBD法という)が用いられる。
 なお、n型半導体層18上に、例えば、窓層を設けてもよい。この窓層は、例えば、厚み10nm程度のZnO層で構成される。
The n-type semiconductor layer 18 forms a pn junction at the interface with the p-type semiconductor layer 16 as described above. The n-type semiconductor layer 18 allows the light L to pass therethrough so that the incident light L reaches the p-type semiconductor layer 16.
The n-type semiconductor layer 18 includes, for example, CdS, ZnS, Zn (S, O), and / or Zn (S, O, OH), SnS, Sn (S, O), and / or Sn (S, O, OH), InS, In (S, O), and / or In (S, O, OH), and other metal sulfides containing at least one metal element selected from the group consisting of Cd, Zn, Sn, and In Is formed. The film thickness of the n-type semiconductor layer 18 is preferably 10 nm to 2 μm, more preferably 15 to 200 nm. For the formation of the n-type semiconductor layer 18, for example, a chemical bath deposition method (hereinafter referred to as CBD method) is used.
For example, a window layer may be provided on the n-type semiconductor layer 18. This window layer is composed of, for example, a ZnO layer having a thickness of about 10 nm.
 金属層20は、無機半導体層19上、すなわち、n型半導体層18の表面18aに形成されている。
 金属層20は、4族以上の遷移金属で構成することが好ましい。4族以上の遷移金属としては、例えば、Ti、Zr、Mo、TaおよびWが挙げられる。
 なお、金属層20は、厚みtが厚すぎると、無機半導体層19への入射光量が小さくなるため、好ましくない。そこで、金属層20は、厚みtが8nm以下であることが好ましく、より好ましくは6nm以下である。金属層20の下限は、上述の機能を発揮することができ、かつ製造上可能な厚みである。
 金属層20は、例えば、スパッタ法、真空蒸着法、および電子ビーム蒸着法等で形成することができる。
The metal layer 20 is formed on the inorganic semiconductor layer 19, that is, on the surface 18 a of the n-type semiconductor layer 18.
The metal layer 20 is preferably composed of a transition metal of group 4 or higher. Examples of the group 4 or higher transition metal include Ti, Zr, Mo, Ta, and W.
Note that if the thickness t of the metal layer 20 is too thick, the amount of light incident on the inorganic semiconductor layer 19 becomes small, which is not preferable. Therefore, the metal layer 20 preferably has a thickness t of 8 nm or less, more preferably 6 nm or less. The lower limit of the metal layer 20 is a thickness that can exhibit the above-described function and can be manufactured.
The metal layer 20 can be formed by, for example, a sputtering method, a vacuum evaporation method, an electron beam evaporation method, or the like.
 金属層20の表面20aに助触媒22が形成されている。助触媒22は、一面に形成されるものであっても、例えば、点在するように、島状に形成されたものであってもよい。
 助触媒22は、例えば、Pt、Pd、Ni、Au、Ag、Ru、Cu、Co、Rh、Ir、Mn等により構成される単体、およびそれらを組み合わせた合金、ならびにその酸化物、例えば、NiOxおよびRuOで形成することができる。また、助触媒22のサイズは、特に限定されるものではなく、0.5nm~1μmであり、高さが数nm程度であることが好ましい。なお、助触媒22の形成方法は、特に限定されるものではなく、塗布焼成法、光電着法、真空蒸着法、スパッタ法、含浸法等により形成することができる。
A promoter 22 is formed on the surface 20 a of the metal layer 20. The co-catalyst 22 may be formed on one surface, or may be formed in an island shape so as to be scattered, for example.
The co-catalyst 22 is composed of, for example, a simple substance composed of Pt, Pd, Ni, Au, Ag, Ru, Cu, Co, Rh, Ir, Mn, etc., and an alloy thereof, and an oxide thereof, for example, NiOx. And RuO 2 . The size of the co-catalyst 22 is not particularly limited and is preferably 0.5 nm to 1 μm and the height is preferably about several nm. The method for forming the co-catalyst 22 is not particularly limited, and can be formed by a coating and baking method, a photo-deposition method, a vacuum deposition method, a sputtering method, an impregnation method, or the like.
 金属層20は、無機半導体層19へ光Lを入射させつつ、例えば、CdS等で形成されるn型半導体層18の表層に導電性を付与するものである。無機半導体層19で生成したキャリア、図1(a)の水素発生電極10では電子が、金属層20により助触媒22側に容易に移動できる。
 金属層20がない場合、助触媒22と接していないn型半導体層18の表層部分では生成キャリアが表面18aに平行な方向(以下、単に横方向という)に移動がしづらく、横方向で近接する助触媒22へキャリア(電子)が移動しづらい。これに対して、金属層20を設けることで、金属層20に流れ込んだキャリア(電子)が近接する助触媒22に容易に移動することができる。これにより、生成された電子のうち、助触媒22に移動する電子の量を多くすることができ、水素の発生量に相当する光電流値を高くすることができる。
 また、助触媒22は金属等で構成されるものであり、n型半導体層18よりも金属層20の方が助触媒22と安定して接合することができ、密着性を高めることができる。これにより、水素発生電極10では、安定した水素の発生が可能となり、結果として、長時間にわたり安定して水素を発生させることができる。
The metal layer 20 imparts conductivity to the surface layer of the n-type semiconductor layer 18 formed of, for example, CdS while allowing the light L to enter the inorganic semiconductor layer 19. Carriers generated in the inorganic semiconductor layer 19 and electrons in the hydrogen generating electrode 10 in FIG. 1A can easily move to the promoter 22 side by the metal layer 20.
When the metal layer 20 is not present, the generated carriers in the surface layer portion of the n-type semiconductor layer 18 that is not in contact with the cocatalyst 22 are difficult to move in a direction parallel to the surface 18a (hereinafter simply referred to as a lateral direction), and are close in the lateral direction It is difficult for carriers (electrons) to move to the co-catalyst 22 that performs. On the other hand, by providing the metal layer 20, carriers (electrons) that have flowed into the metal layer 20 can easily move to the close promoter 22. Thereby, among the generated electrons, the amount of electrons moving to the promoter 22 can be increased, and the photocurrent value corresponding to the amount of hydrogen generated can be increased.
In addition, the cocatalyst 22 is made of metal or the like, and the metal layer 20 can be more stably bonded to the cocatalyst 22 than the n-type semiconductor layer 18, and adhesion can be improved. As a result, the hydrogen generating electrode 10 can generate stable hydrogen, and as a result, hydrogen can be stably generated over a long period of time.
 図1(a)に示す水素発生電極10では金属層20は、単層構造であるが、これに限定されるものではなく、多層構造であってもよい。具体的には、図1(b)に示す水素発生電極10aに示すように2層構造の金属層24であってもよい。金属層24は、n型半導体層18側に設けられた第1の金属層26と、その上に設けられた第2の金属層28とを有する。金属層24は上述の金属層20と同じ機能を有する。
 なお、図1(b)に示す水素発生電極10aにおいて、図1(a)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。
In the hydrogen generating electrode 10 shown in FIG. 1A, the metal layer 20 has a single layer structure, but is not limited to this, and may have a multilayer structure. Specifically, a metal layer 24 having a two-layer structure may be used as shown in the hydrogen generating electrode 10a shown in FIG. The metal layer 24 includes a first metal layer 26 provided on the n-type semiconductor layer 18 side, and a second metal layer 28 provided thereon. The metal layer 24 has the same function as the metal layer 20 described above.
In the hydrogen generation electrode 10a shown in FIG. 1B, the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
 金属層の24が多層構造である場合、光Lの入射光量を考慮すると、第1の金属層26と第2の金属層28の合計の厚みtが8nm以下であることが好ましく、より好ましくは6nm以下である。金属層24の合計の厚みtが厚すぎると、上述の金属層20と同じく無機半導体層19への入射光量が小さくなるため、好ましくない。金属層24も、例えば、スパッタ法、真空蒸着法、および電子ビーム蒸着法等で形成することができる。
 第1の金属層26と第2の金属層28も、上述の金属層20と同じく、4族以上の遷移金属で構成することが好ましい。4族以上の遷移金属は、例えば、Ti、Zr、Mo、TaまたはWである。
 n型半導体層18の表面18a上の第1の金属層26をTiで構成し、第2の金属層28をMoで構成することで、水素の発生量と水素発生の長期安定性が得られるため好ましい。
When the metal layer 24 has a multilayer structure, the total thickness t of the first metal layer 26 and the second metal layer 28 is preferably 8 nm or less in consideration of the amount of incident light L, more preferably 6 nm or less. If the total thickness t of the metal layer 24 is too thick, the amount of incident light on the inorganic semiconductor layer 19 becomes small like the metal layer 20 described above, which is not preferable. The metal layer 24 can also be formed by, for example, a sputtering method, a vacuum evaporation method, an electron beam evaporation method, or the like.
The first metal layer 26 and the second metal layer 28 are also preferably composed of a transition metal of group 4 or more, like the metal layer 20 described above. The transition metal of Group 4 or higher is, for example, Ti, Zr, Mo, Ta, or W.
By forming the first metal layer 26 on the surface 18a of the n-type semiconductor layer 18 with Ti and the second metal layer 28 with Mo, the amount of hydrogen generation and long-term stability of hydrogen generation can be obtained. Therefore, it is preferable.
 次に、水素発生電極10の製造方法について説明する。
 図2(a)~(e)は本発明の実施形態の水素発生電極の製造方法を工程順に示す模式的断面図である。
 まず、例えば、絶縁基板12となるソーダライムガラス基板を用意する。
 次に、図2(a)に示すように、絶縁基板12の表面12aに導電層14となる、例えば、Mo膜等をスパッタ法により形成する。
Next, a method for manufacturing the hydrogen generating electrode 10 will be described.
2 (a) to 2 (e) are schematic cross-sectional views showing a method of manufacturing a hydrogen generating electrode according to an embodiment of the present invention in the order of steps.
First, for example, a soda lime glass substrate to be the insulating substrate 12 is prepared.
Next, as shown in FIG. 2A, for example, a Mo film or the like to be the conductive layer 14 is formed on the surface 12a of the insulating substrate 12 by sputtering.
 次に、図2(b)に示すように、導電層14上に、p型半導体層16として、例えば、CIGS膜を形成する。このCIGS膜は、前述のいずれか成膜方法により形成される。
 次に、図2(c)に示すように、p型半導体層16の表面16aにn型半導体層18となる、例えば、CdS層をCBD法により形成する。これにより、無機半導体層19が形成される。
 次に、図2(d)に示すように、n型半導体層18の表面18aに、例えば、スパッタ法を用いて、単層の金属層20を形成する。
 次に、図2(e)に示すように、金属層20の表面20aに、水素生成用の助触媒22として、例えば、光電着法を用いてPt助触媒を担持させる。これにより、水素発生電極10が形成される。
Next, as illustrated in FIG. 2B, for example, a CIGS film is formed as the p-type semiconductor layer 16 on the conductive layer 14. This CIGS film is formed by any of the film forming methods described above.
Next, as shown in FIG. 2C, for example, a CdS layer that becomes the n-type semiconductor layer 18 is formed on the surface 16 a of the p-type semiconductor layer 16 by the CBD method. Thereby, the inorganic semiconductor layer 19 is formed.
Next, as shown in FIG. 2D, a single-layer metal layer 20 is formed on the surface 18a of the n-type semiconductor layer 18 by using, for example, a sputtering method.
Next, as shown in FIG. 2 (e), a Pt promoter is supported on the surface 20a of the metal layer 20 as a hydrogen generating promoter 22 using, for example, a photo-deposition method. Thereby, the hydrogen generating electrode 10 is formed.
 金属層24が多層構造の図1(b)に示す水素発生電極10aの製造方法は、図1(a)に示す水素発生電極10の製造方法に比して、金属層24の形成方法が異なる点以外は、図2(a)~(c)、(e)に示す水素発生電極10の製造方法と同様の工程であるため、その詳細な説明は省略する。
 図1(b)に示す水素発生電極10aの製造方法では、金属層24を形成する際、まず、n型半導体層18の表面18aに、例えば、スパッタ法を用いて第1の金属層26を形成する。次に、例えば、スパッタ法を用いて、第1の金属層26上に第2の金属層28を形成する。この金属層24の第2の金属層28の表面28aに、上述のように助触媒22を形成する。
 図1(b)に示す水素発生電極10aも、例えば、水素発生電極10aを作用極とし、参照電極(図示せず)にAg/AgCl電極を用い、対極(図示せず)に白金ワイヤーを用い、これらをポテンショスタットに接続した3電極系の構成とすることにより、上述の図1(a)に示す水素発生電極10と同様にして水素を発生させることができる。さらには、例えば、酸素発生電極と接続して、水素発生電極10aと共に電解水溶液AQ内に浸漬して、助触媒22側から光Lを照射して、水素を発生させることもできる。
The method for manufacturing the hydrogen generating electrode 10a shown in FIG. 1B with the metal layer 24 having a multilayer structure differs from the method for forming the hydrogen generating electrode 10 shown in FIG. Except for this point, the steps are the same as those in the method for manufacturing the hydrogen generating electrode 10 shown in FIGS. 2A to 2C and 2E, and thus detailed description thereof is omitted.
In the method for manufacturing the hydrogen generating electrode 10a shown in FIG. 1B, when the metal layer 24 is formed, first, the first metal layer 26 is formed on the surface 18a of the n-type semiconductor layer 18 by using, for example, sputtering. Form. Next, the second metal layer 28 is formed on the first metal layer 26 by using, for example, a sputtering method. The promoter 22 is formed on the surface 28a of the second metal layer 28 of the metal layer 24 as described above.
The hydrogen generation electrode 10a shown in FIG. 1B also uses, for example, the hydrogen generation electrode 10a as a working electrode, an Ag / AgCl electrode as a reference electrode (not shown), and a platinum wire as a counter electrode (not shown). By adopting a three-electrode system configuration in which these are connected to a potentiostat, hydrogen can be generated in the same manner as the hydrogen generation electrode 10 shown in FIG. Furthermore, for example, it can be connected to an oxygen generating electrode, immersed in the electrolytic aqueous solution AQ together with the hydrogen generating electrode 10a, and irradiated with light L from the cocatalyst 22 side to generate hydrogen.
 上述のように、図1(a)に示す水素発生電極10では金属層20を設けることで、図1(b)に示す水素発生電極10aでは金属層24を設けることで、上述のように無機半導体層19で生成された電子を助触媒22側に容易に移動させることができる。これにより、キャリアとして生成された電子のうち、助触媒22に移動する電子の量を多くすることができ、水素の発生量に相当する光電流値を高くすることができる。さらには金属層20、24により、上述のように助触媒22との密着性を高めることができるため、安定した水素の発生が可能となり、長時間にわたり安定して水素を発生させることができる。
 また、図1(a)に示す水素発生電極10および図1(b)に示す水素発生電極10aは、いずれも光Lにより電解水溶液AQを水素と酸素に分解する人工光合成モジュールに用いることができる。
As described above, the metal layer 20 is provided in the hydrogen generation electrode 10 shown in FIG. 1A, and the metal layer 24 is provided in the hydrogen generation electrode 10a shown in FIG. Electrons generated in the semiconductor layer 19 can be easily moved to the cocatalyst 22 side. Thereby, among the electrons generated as carriers, the amount of electrons moving to the promoter 22 can be increased, and the photocurrent value corresponding to the amount of hydrogen generated can be increased. Furthermore, since the metal layers 20 and 24 can improve the adhesion to the co-catalyst 22 as described above, stable hydrogen generation is possible, and hydrogen can be stably generated over a long period of time.
Further, both the hydrogen generating electrode 10 shown in FIG. 1A and the hydrogen generating electrode 10a shown in FIG. 1B can be used in an artificial photosynthesis module that decomposes the electrolytic aqueous solution AQ into hydrogen and oxygen by light L. .
 本発明は、基本的に以上のように構成されるものである。以上、本発明の水素発生電極について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The hydrogen generating electrode of the present invention has been described in detail above. However, the present invention is not limited to the above embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. is there.
 以下、本発明の水素発生電極の効果について詳細に説明する。
 本実施例においては、本発明の効果を確認するために、以下に示す実施例1~3および比較例1、2の水素発生電極を作製した。
 実施例1~3および比較例1、2の水素発生電極について、ABPE(Applied bias photon-to-current efficiency)(%)を測定し、その最大値を求めた。その結果を下記表1に示す。なお、ABPE(%)は、疑似太陽光を水素発生電極に照射し、ポテンショスタットを用いた3電極系にて測定した。ABPE(%)の測定条件を以下に示す。
Hereinafter, the effect of the hydrogen generating electrode of the present invention will be described in detail.
In this example, in order to confirm the effect of the present invention, hydrogen generating electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 shown below were produced.
ABPE (Applied bias photon-to-current efficiency) (%) was measured for the hydrogen generating electrodes of Examples 1 to 3 and Comparative Examples 1 and 2, and the maximum value was obtained. The results are shown in Table 1 below. ABPE (%) was measured with a three-electrode system using a potentiostat by irradiating pseudo-sunlight onto a hydrogen generating electrode. The measurement conditions of ABPE (%) are shown below.
光源:ソーラーシミュレーター(AM1.5G) 三永電機製作所製 XES-70S1
電解液:0.5M NaSO+0.25M NaHPO+0.25M NaHPO pH7.0
電気化学測定置:ポテンショスタット 北斗電工製 HZ-7000
参照電極:Ag/AgCl電極
対極:白金ワイヤー
作用極:水素発生電極
Light source: Solar simulator (AM1.5G) XES-70S1 manufactured by Mitsunaga Electric Mfg. Co., Ltd.
Electrolyte: 0.5M Na 2 SO 4 + 0.25M Na 2 HPO 4 + 0.25M NaH 2 PO 4 pH 7.0
Electrochemical measuring device: Potentiostat Hokuto Denko HZ-7000
Reference electrode: Ag / AgCl electrode Counter electrode: Platinum wire Working electrode: Hydrogen generation electrode
 実施例1~3および比較例1、2の水素発生電極について安定性を求めた。その結果を下記表1に示す。
 安定性は、保持電位を0.3VRHEとして、駆動開始時の光電流値と駆動1時間後の光電流値の比率で表される値である。比率は、駆動1時間後の光電流値/駆動開始時の光電流値で求められる。なお、比率の値が大きい程、水素を安定して発生させることができる。
 実施例1~3および比較例1、2の水素発生電極について、さらに、ABPE(%)と安定性を加味して、下記判定基準にて総合的に評価した。その結果を下記表1に示す。
 評価の判定基準は、ABPE(%)の値が比較例1以上であり、かつ上述の比率が0.5以上であるものを「A」とし、それ以外のものを「B」とした。すなわち、ABPE(%)の値が比較例1未満、または比率が0.5未満であるものが「B」と判定される。
 以下、実施例1~3および比較例1、2の水素発生電極について説明する。
Stability was determined for the hydrogen generating electrodes of Examples 1 to 3 and Comparative Examples 1 and 2. The results are shown in Table 1 below.
Stability is a value represented by the ratio between the photocurrent value at the start of driving and the photocurrent value after one hour of driving, assuming that the holding potential is 0.3 V RHE . The ratio is obtained by the photocurrent value after 1 hour of driving / the photocurrent value at the start of driving. In addition, hydrogen can be generated more stably as the ratio value is larger.
The hydrogen generation electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 were further evaluated comprehensively according to the following judgment criteria in consideration of ABPE (%) and stability. The results are shown in Table 1 below.
The evaluation criteria were “A” when the ABPE (%) value was not less than Comparative Example 1 and the above-mentioned ratio was not less than 0.5, and “B” otherwise. That is, a value of ABPE (%) less than Comparative Example 1 or a ratio of less than 0.5 is determined as “B”.
Hereinafter, the hydrogen generating electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 will be described.
(実施例1)
 実施例1の水素発生電極は、図1(b)に示す水素発生電極10aと同じ構成である。各部の構成は以下の通りである。実施例1の水素発生電極は、導電層に導線を接続した後、露出している部分をエポキシ樹脂で覆って絶縁した。
<水素発生電極の構成>
絶縁基板:ソーダライムガラス、1mm厚
導電層:Mo、500nm厚
無機半導体層
p型半導体層:CIGS、1500nm厚
n型半導体層:CdS、50nm厚
金属層
Mo膜、3nm厚(助触媒側)
Ti膜、3nm厚(n型半導体層側)
助触媒:Pt(光電着法)
(Example 1)
The hydrogen generation electrode of Example 1 has the same configuration as the hydrogen generation electrode 10a shown in FIG. The configuration of each part is as follows. The hydrogen generating electrode of Example 1 was insulated by connecting the conductive wire to the conductive layer and then covering the exposed portion with an epoxy resin.
<Configuration of hydrogen generating electrode>
Insulating substrate: soda lime glass, 1 mm thick conductive layer: Mo, 500 nm thick inorganic semiconductor layer p type semiconductor layer: CIGS, 1500 nm thick n type semiconductor layer: CdS, 50 nm thick metal layer Mo film, 3 nm thick (promoter side)
Ti film, 3nm thickness (n-type semiconductor layer side)
Cocatalyst: Pt (photodeposition method)
(実施例2)
 実施例2の水素発生電極は、図1(a)に示す水素発生電極10と同じ構成である。実施例2の水素発生電極は、実施例1に比して、金属層が厚み3nmのMo膜の単層膜である点、以外は実施例1と同じ構成であるため、その詳細な説明は省略する。
(Example 2)
The hydrogen generating electrode of Example 2 has the same configuration as the hydrogen generating electrode 10 shown in FIG. Since the hydrogen generating electrode of Example 2 has the same configuration as that of Example 1 except that the metal layer is a single-layer film of Mo film having a thickness of 3 nm as compared with Example 1, the detailed description thereof is as follows. Omitted.
(実施例3)
 実施例3の水素発生電極は、図1(a)に示す水素発生電極10と同じ構成である。実施例3の水素発生電極は、実施例1に比して、金属層が厚み3nmのTi膜の単層膜である点、以外は実施例1と同じ構成であるため、その詳細な説明は省略する。
(Example 3)
The hydrogen generating electrode of Example 3 has the same configuration as the hydrogen generating electrode 10 shown in FIG. Since the hydrogen generating electrode of Example 3 has the same configuration as that of Example 1 except that the metal layer is a single-layer Ti film having a thickness of 3 nm as compared with Example 1, the detailed description thereof is as follows. Omitted.
(比較例1)
 比較例1は、実施例1に比して、金属層が形成されていない点以外は実施例1と同じ構成であるため、その詳細な説明は省略する。比較例1では、金属層がないので、下記表1の「金属層の構成」の欄および「金属層の膜厚」の欄には「-」と記した。
(Comparative Example 1)
Compared to Example 1, Comparative Example 1 has the same configuration as that of Example 1 except that the metal layer is not formed, and thus detailed description thereof is omitted. In Comparative Example 1, since there is no metal layer, “-” is written in the column “Configuration of metal layer” and the column “Metal layer thickness” in Table 1 below.
(比較例2)
 比較例2は、実施例1に比して、金属層に代えて、厚み5nmの結晶性のITO膜を形成した点以外は実施例1と同じ構成であるため、その詳細な説明は省略する。比較例2では、結晶性のITO膜を形成したので、下記表1の「金属層の構成」の欄には「結晶ITO」と記した。
 なお、実施例2、3および比較例1、2において、水素発生電極の製造方法およびABPE(%)の測定方法、安定性の算出方法は、実施例1と同じであるため、その詳細な説明は省略する。
(Comparative Example 2)
Since Comparative Example 2 has the same configuration as that of Example 1 except that a crystalline ITO film having a thickness of 5 nm is formed instead of the metal layer as compared with Example 1, detailed description thereof is omitted. . In Comparative Example 2, since a crystalline ITO film was formed, “Crystal ITO” was described in the column “Metal Layer Configuration” in Table 1 below.
In Examples 2 and 3 and Comparative Examples 1 and 2, the method for producing the hydrogen generating electrode, the method for measuring ABPE (%), and the method for calculating the stability are the same as those in Example 1, and therefore detailed description thereof will be given. Is omitted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3は、いずれもABPEの最大値(%)が高く、かつ安定性も良好であった。実施例1のように金属層をMo膜とTi膜の2層構造にすることで、ABPEの最大値(%)と安定性の両方においてバランス良く高い値が得られた。
 一方、比較例1は、金属層が形成されておらず、ABPEの最大値(%)が実施例1~3に比して小さく、かつ、安定性も悪い。比較例2は、金属層に代えて、実施例1と同程度の厚みの結晶性のITO膜を形成したものであるが、ABPEの最大値(%)が比較例1と同程度と低く、しかも安定性が比較例1よりも悪い。
In each of Examples 1 to 3, the maximum value (%) of ABPE was high and the stability was good. By making the metal layer into a two-layer structure of Mo film and Ti film as in Example 1, a high value with good balance was obtained in both the maximum value (%) and stability of ABPE.
On the other hand, the metal layer is not formed in Comparative Example 1, the maximum value (%) of ABPE is smaller than that of Examples 1 to 3, and the stability is poor. In Comparative Example 2, instead of the metal layer, a crystalline ITO film having the same thickness as that of Example 1 was formed, but the maximum value (%) of ABPE was as low as that of Comparative Example 1, Moreover, the stability is worse than that of Comparative Example 1.
(実施例4:Pt/Mo/Ti/CdS/ZnSe:Cu(In,Ga)Se電極の作製および評価)
 スパッタ法によりMoコート(500nm厚)したソーダライムガラス(甲子光学工業社製、フロートガラス)を基板材料として用い、i)多源蒸着法によるZnSe:Cu(In,Ga)Se薄膜の形成、ii)化学浴堆積(Chemical Bath Deposition:以下CBDと省略する。)法によるCdS層の形成、iii)スパッタ法によるMo/Ti層の形成、iv)真空蒸着法によるPtの担持という3つのプロセスを経て、Pt/Mo/Ti/CdS/ZnSe:Cu(In,Ga)Se電極を作製した。以下、各プロセスについて詳述する。
(Example 4: Pt / Mo / Ti / CdS / ZnSe: Cu (In, Ga) Preparation and Evaluation of Se 2 electrode)
Using soda lime glass (Float glass, manufactured by Koshi Optical Co., Ltd.) coated with Mo by sputtering (as a substrate material), i) formation of ZnSe: Cu (In, Ga) Se 2 thin film by multi-source deposition method, ii) CdS layer formation by chemical bath deposition (hereinafter abbreviated as CBD) method, iii) Mo / Ti layer formation by sputtering method, and iv) Pt loading by vacuum deposition method. Then, a Pt / Mo / Ti / CdS / ZnSe: Cu (In, Ga) Se 2 electrode was produced. Hereinafter, each process will be described in detail.
i)多源蒸着法によるZnSe:Cu(In,Ga)Se薄膜の形成
 原料であるGa、In、Cu、Se、Zn{Gaショット(6N:フルウチ化学社製)、Inショット(6N:フルウチ化学社製)、Cuショット(6N:フルウチ化学社製)、Seショット(6N:朝日メタル社製)、Znショット(6N:朝日メタル社製)}をそれぞれ個別の熱分解窒化ホウ素(Pyrolitic Boron Nitride:以下PBN)製のルツボに入れ、<10-5Paの圧力に保たれた真空容器中において原料を独立に加熱、蒸発させ、適度な温度(はじめ5分間350℃、他35分間450℃)に制御した基板材料上に堆積させることにより、ZnSe:Cu(In,Ga)Se薄膜(p型半導体層、1500nm厚)を得た。原料供給量は各原料の堆積速度を水晶振動子膜厚計(ULVAC社製、CRTM-6000)を用いて計測し、各ルツボの温度により制御した。各原料の堆積速度はCu:0.042nm/s、Ga:0.014nm/s、In:0.048nm/s、Zn:0.35~0.40nm/s、Se:1nm/sとした。
i) Formation of ZnSe: Cu (In, Ga) Se 2 thin film by multi-source deposition method Raw materials Ga, In, Cu, Se, Zn {Ga shot (6N: manufactured by Furuuchi Chemical Co., Ltd.), In shot (6N: Flutuchi) Chemical shot), Cu shot (6N: manufactured by Furuuchi Chemical Co., Ltd.), Se shot (6N: manufactured by Asahi Metal Co., Ltd.), and Zn shot (6N: manufactured by Asahi Metal Co., Ltd.)} are individually pyrolyzed boron nitride (Pyrolitic Boron Nitride). : PBN) Put in a crucible made of PBN), and heat and evaporate the raw materials independently in a vacuum vessel maintained at a pressure of <10 −5 Pa, at an appropriate temperature (first 5 minutes at 350 ° C., other 35 minutes at 450 ° C.) By depositing on a controlled substrate material, a ZnSe: Cu (In, Ga) Se 2 thin film (p-type semiconductor layer, 1500 nm thickness) was obtained. The feed rate of the raw material was controlled by measuring the deposition rate of each raw material using a quartz vibrator film thickness meter (manufactured by ULVAC, CRTM-6000) and controlling the temperature of each crucible. The deposition rate of each raw material was Cu: 0.042 nm / s, Ga: 0.014 nm / s, In: 0.048 nm / s, Zn: 0.35 to 0.40 nm / s, Se: 1 nm / s.
ii)CBD法によるCdS層の形成
 Cd源である酢酸カドミウム二水和物(関東化学社製、98.0%)、S源であるチオ尿素(関東化学社製、98.0%)を用い、オイルバス中においてガラス製のビーカーに蒸留水50ml、アンモニア水50ml(和光純薬社製、特級、28質量%)、酢酸カドミウム二水和物0.666gを入れてCBD溶液を得た。得られたCBD溶液に、上記多源蒸着法によって調製したZnSe:Cu(In,Ga)Se薄膜を浸漬し、続いて速やかにチオ尿素を2.855gを加え、室温の状態から60℃のウォーターバスに入れ、14分間処理することにより、CdS層(n型半導体層、50nm厚)を形成した。
ii) Formation of CdS layer by CBD method Cd source cadmium acetate dihydrate (Kanto Chemical Co., 98.0%) and S source thiourea (Kanto Chemical Co., 98.0%) were used. In an oil bath, 50 ml of distilled water, 50 ml of ammonia water (special grade, 28% by mass, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.666 g of cadmium acetate dihydrate were placed in a glass beaker to obtain a CBD solution. In the obtained CBD solution, the ZnSe: Cu (In, Ga) Se 2 thin film prepared by the multi-source vapor deposition method is immersed, and then 2.855 g of thiourea is quickly added. A CdS layer (n-type semiconductor layer, 50 nm thick) was formed by placing in a water bath and treating for 14 minutes.
iii)スパッタ法によるMo/Ti層の形成
 Mo膜、3nm厚(助触媒側)
 Ti膜、3nm厚(n型半導体層側)
iii) Formation of Mo / Ti layer by sputtering method Mo film, 3 nm thickness (promoter side)
Ti film, 3nm thickness (n-type semiconductor layer side)
iv)真空蒸着法によるPtの担持
 真空蒸着装置(アルバック機工、VWR-400M)を用いて、Ptを2~3nm蒸着した。
iv) Supporting Pt by vacuum vapor deposition Pt was vapor-deposited by 2 to 3 nm using a vacuum vapor deposition apparatus (ULVAC KIKOH, VWR-400M).
 上記で作製した電極を用いて、実施例1と同様に、ABPE(%)の測定、安定性の評価を実施したところ、実施例1の同等以上であった。 Using the electrode prepared above, the ABPE (%) was measured and the stability was evaluated in the same manner as in Example 1. The result was equal to or higher than that in Example 1.
 10 水素発生電極
 12 絶縁基板
 14 導電層
 16 p型半導体層
 18 n型半導体層
 19 無機半導体層
 20、24 金属層
 22 助触媒
 24 第1の金属層
 26 第2の金属層
 30 容器
 AQ 電解水溶液
DESCRIPTION OF SYMBOLS 10 Hydrogen generating electrode 12 Insulating substrate 14 Conductive layer 16 P-type semiconductor layer 18 N-type semiconductor layer 19 Inorganic semiconductor layer 20, 24 Metal layer 22 Promoter 24 First metal layer 26 Second metal layer 30 Container AQ Electrolysis aqueous solution

Claims (7)

  1.  光を用いて電解水溶液から水素を発生させる水素発生電極であって、
     導電層と、
     前記導電層上に設けられたpn接合を有する無機半導体層と、
     前記無機半導体層上に形成された金属層と、
     前記金属層の表面に担持された助触媒とを有し、
     前記助触媒側から前記光が入射されることを特徴とする水素発生電極。
    A hydrogen generating electrode for generating hydrogen from an aqueous electrolytic solution using light,
    A conductive layer;
    An inorganic semiconductor layer having a pn junction provided on the conductive layer;
    A metal layer formed on the inorganic semiconductor layer;
    A promoter supported on the surface of the metal layer,
    The hydrogen generating electrode, wherein the light is incident from the promoter side.
  2.  前記金属層は4族以上の遷移金属で構成される請求項1に記載の水素発生電極。 The hydrogen generating electrode according to claim 1, wherein the metal layer is composed of a transition metal of group 4 or higher.
  3.  前記金属層は単層構造または多層構造である請求項1または2に記載の水素発生電極。 The hydrogen generating electrode according to claim 1 or 2, wherein the metal layer has a single layer structure or a multilayer structure.
  4.  前記金属層は厚みが8nm以下である請求項1~3のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 3, wherein the metal layer has a thickness of 8 nm or less.
  5.  前記無機半導体層はCIGS化合物半導体を含む請求項1~4のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 4, wherein the inorganic semiconductor layer includes a CIGS compound semiconductor.
  6.  前記無機半導体層はCZTS化合物半導体を含む請求項1~4のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 4, wherein the inorganic semiconductor layer contains a CZTS compound semiconductor.
  7.  前記無機半導体層はCGSe化合物半導体を含む請求項1~4のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 4, wherein the inorganic semiconductor layer includes a CGSe compound semiconductor.
PCT/JP2015/080226 2014-11-12 2015-10-27 Hydrogen generating electrode WO2016076106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016558960A JP6388665B2 (en) 2014-11-12 2015-10-27 Hydrogen generation electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014229653 2014-11-12
JP2014-229653 2014-11-12
JP2015169713 2015-08-28
JP2015-169713 2015-08-28

Publications (1)

Publication Number Publication Date
WO2016076106A1 true WO2016076106A1 (en) 2016-05-19

Family

ID=55954198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080226 WO2016076106A1 (en) 2014-11-12 2015-10-27 Hydrogen generating electrode

Country Status (2)

Country Link
JP (1) JP6388665B2 (en)
WO (1) WO2016076106A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135144A1 (en) * 2017-01-18 2018-07-26 日立化成株式会社 Method for producing hydrogen gas, and method for producing semiconductor device
KR20190081406A (en) * 2017-12-29 2019-07-09 인천대학교 산학협력단 Photocatalytic electrode, method of manufacturing the same, and photocatalyst device
WO2019172014A1 (en) * 2018-03-06 2019-09-12 富士フイルム株式会社 Photocatalytic electrode for electrolysis and electrolysis device
WO2023283687A1 (en) * 2021-07-15 2023-01-19 Australian National University A photoelectrode and method for fabrication thereof
WO2023089656A1 (en) * 2021-11-16 2023-05-25 日本電信電話株式会社 Method for producing semiconductor photoelectrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151273A (en) * 1975-06-20 1976-12-25 Toray Ind Inc A light radiation type water electrolysis system
JPS5237574A (en) * 1975-09-19 1977-03-23 Sanyo Electric Co Ltd Water decomposition apparatus using light energy
JP2012046385A (en) * 2010-08-27 2012-03-08 Mitsubishi Chemical Holdings Corp Electrode for water decomposition by light, method for producing the same and method for decomposing water
JP2014101551A (en) * 2012-11-20 2014-06-05 Toshiba Corp Photochemical reaction apparatus
JP2014101550A (en) * 2012-11-20 2014-06-05 Toshiba Corp Photochemical reaction system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8388818B1 (en) * 2007-07-16 2013-03-05 Shalini Menezes Photoelectrochemical generation of hydrogen
KR102014990B1 (en) * 2013-01-29 2019-08-27 삼성전자주식회사 Composite protective layer for photoelectrode structure, photoelectrode structure comprising the composite protective layer for photoelectrode structure and photoelectochemical cell including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151273A (en) * 1975-06-20 1976-12-25 Toray Ind Inc A light radiation type water electrolysis system
JPS5237574A (en) * 1975-09-19 1977-03-23 Sanyo Electric Co Ltd Water decomposition apparatus using light energy
JP2012046385A (en) * 2010-08-27 2012-03-08 Mitsubishi Chemical Holdings Corp Electrode for water decomposition by light, method for producing the same and method for decomposing water
JP2014101551A (en) * 2012-11-20 2014-06-05 Toshiba Corp Photochemical reaction apparatus
JP2014101550A (en) * 2012-11-20 2014-06-05 Toshiba Corp Photochemical reaction system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135144A1 (en) * 2017-01-18 2018-07-26 日立化成株式会社 Method for producing hydrogen gas, and method for producing semiconductor device
KR20190081406A (en) * 2017-12-29 2019-07-09 인천대학교 산학협력단 Photocatalytic electrode, method of manufacturing the same, and photocatalyst device
KR102050206B1 (en) 2017-12-29 2019-11-29 인천대학교 산학협력단 Photocatalytic electrode, method of manufacturing the same, and photocatalyst device
WO2019172014A1 (en) * 2018-03-06 2019-09-12 富士フイルム株式会社 Photocatalytic electrode for electrolysis and electrolysis device
CN111836779A (en) * 2018-03-06 2020-10-27 富士胶片株式会社 Photocatalyst electrode for water splitting and water splitting apparatus
JPWO2019172014A1 (en) * 2018-03-06 2021-02-04 富士フイルム株式会社 Photocatalytic electrode for water decomposition and water decomposition equipment
JP7026773B2 (en) 2018-03-06 2022-02-28 富士フイルム株式会社 Photocatalytic electrode for water splitting and water splitting device
WO2023283687A1 (en) * 2021-07-15 2023-01-19 Australian National University A photoelectrode and method for fabrication thereof
WO2023089656A1 (en) * 2021-11-16 2023-05-25 日本電信電話株式会社 Method for producing semiconductor photoelectrode

Also Published As

Publication number Publication date
JP6388665B2 (en) 2018-09-12
JPWO2016076106A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
Ge et al. Employing overlayers to improve the performance of Cu2BaSnS4 thin film based photoelectrochemical water reduction devices
JP6388665B2 (en) Hydrogen generation electrode
US11098410B2 (en) Artificial photosynthesis module
JP6316436B2 (en) Hydrogen generating electrode and artificial photosynthesis module
US10258971B2 (en) Photocatalyst electrode and artificial photosynthesis module
JP2011171707A (en) Solar cell and method of manufacturing solar cell
Gaillard et al. Wide-bandgap Cu (In, Ga) S2 photocathodes integrated on transparent conductive F: SnO2 substrates for chalcopyrite-based water splitting tandem devices
JP7026773B2 (en) Photocatalytic electrode for water splitting and water splitting device
WO2015087682A1 (en) Artificial photosynthesis module
WO2015087828A1 (en) Water electrolysis system
JP6470868B2 (en) Artificial photosynthesis module
JP2011176285A (en) Photoelectric conversion element, thin film solar cell, and method of manufacturing photoelectric conversion element
JP5815848B2 (en) Method for manufacturing photoelectric conversion device
JP6412417B2 (en) Hydrogen generating electrode and manufacturing method thereof
Gaillard et al. Development of chalcogenide thin film materials for photoelectrochemical hydrogen production
KR101036165B1 (en) Method for fabricating chalcogenide solar cell
JP6322558B2 (en) Method for regenerating hydrogen generating electrode
JP6559710B2 (en) Hydrogen generation electrode
JP2011159796A (en) Substrate with insulating layer, and thin-film solar cell
JP2010232427A (en) Photoelectric conversion device, method for manufacturing the same, anodic oxidation substrate for use therein, and solar cell
TW201427054A (en) Photoelectric conversion element and method of producing the same, manufacturing method for buffer layer of photoelectric conversion element, and solar cell
JP7320775B2 (en) Hydrogen generating electrode and method for producing hydrogen generating electrode
JPWO2014002646A1 (en) Method for manufacturing photoelectric conversion device
JP2012182340A (en) Compound semiconductor and solar cell
JP5964683B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558960

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859919

Country of ref document: EP

Kind code of ref document: A1