WO2019172014A1 - Photocatalytic electrode for electrolysis and electrolysis device - Google Patents

Photocatalytic electrode for electrolysis and electrolysis device Download PDF

Info

Publication number
WO2019172014A1
WO2019172014A1 PCT/JP2019/007233 JP2019007233W WO2019172014A1 WO 2019172014 A1 WO2019172014 A1 WO 2019172014A1 JP 2019007233 W JP2019007233 W JP 2019007233W WO 2019172014 A1 WO2019172014 A1 WO 2019172014A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
electrode
water splitting
photocatalyst
Prior art date
Application number
PCT/JP2019/007233
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 小林
政寛 折田
Original Assignee
富士フイルム株式会社
人工光合成化学プロセス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 人工光合成化学プロセス技術研究組合 filed Critical 富士フイルム株式会社
Priority to JP2020504938A priority Critical patent/JP7026773B2/en
Priority to CN201980017033.8A priority patent/CN111836779A/en
Publication of WO2019172014A1 publication Critical patent/WO2019172014A1/en
Priority to US17/002,059 priority patent/US20200385873A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/049Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/50Cells or assemblies of cells comprising photoelectrodes; Assemblies of constructional parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a photocatalytic electrode for water splitting and a water splitting apparatus.
  • Non-Patent Document 1 As a CIGS compound used for a light absorption layer of a solar cell, when the molar ratio of Ga to the total amount of Ga and In is 0.3, solar conversion efficiency is particularly excellent. It is disclosed. In recent years, in addition to photoelectric conversion devices that convert light such as the above-described solar cells into electricity, attention has been focused on technologies for producing hydrogen and oxygen by decomposing water using a photocatalyst as a method of utilizing solar energy. Yes.
  • the photocatalyst electrode for water splitting is required to have a high current value generated when applied to a water splitting device in order to increase the amount of gas generated.
  • the potential (onset potential) from which the current value can be extracted is also important.
  • a photocatalyst electrode for hydrogen generation and a photocatalyst electrode for oxygen generation a system capable of generating both hydrogen and oxygen by decomposing water under visible light irradiation (so-called “Z scheme”) is used.
  • a water splitting apparatus is known. When attention is paid to a water splitting apparatus having two photocatalytic electrodes using such a Z scheme, a voltage of about half or more of a voltage (about 1.23 V) required for water splitting is obtained at one photocatalytic electrode.
  • the ability to extract the current at such a potential is a guideline for the performance of the water splitting device. From such a viewpoint, when the present inventors applied the CIGS compound semiconductor used in the solar cell described in the above document to the photocatalytic electrode for water splitting, the onset potential is insufficient, It was found that the performance required for the device was not satisfied.
  • an object of the present invention is to provide a photocatalyst electrode for water splitting and a water splitting apparatus that are excellent in onset potential.
  • the band offset which is the difference from the potential at the lower end of the conduction band, is less than or equal to a predetermined value, it was found that the onset potential of the photocatalytic electrode for water splitting is excellent, and the present invention has been achieved. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • a water splitting device that generates gas from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation,
  • the photocatalytic electrode for hydrogen generation has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer,
  • the p-type semiconductor layer is a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se;
  • the water splitting apparatus wherein the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8.
  • a water splitting device that generates gas from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation,
  • the photocatalytic electrode for hydrogen generation has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer, Water splitting in which the band offset ⁇ E, which is the difference between the potential p-CBM at the lower end of the conduction band of the p-type semiconductor layer and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, satisfies the following relationship: apparatus.
  • a photocatalyst electrode for water splitting and a water splitting device excellent in onset potential can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and specifically indicates light having a wavelength range of 380 to 780 nm.
  • being excellent in onset potential means that the value of onset potential is 0.6 V (vs. RHE) or more.
  • RHE is an abbreviation for reversible hydrogen electrode. When used as a photocatalytic electrode, it is preferable that a larger amount of current is obtained at 0.6 V (vs. RHE).
  • One embodiment of the water splitting device of the present invention is configured to irradiate light from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation.
  • a water splitting device for filling the electrolytic aqueous solution, the hydrogen generating photocatalyst electrode and the oxygen generating photocatalyst electrode disposed in the tank, and the hydrogen generation
  • the photocatalytic electrode for use has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer, and the p-type semiconductor layer Is a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se, and the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8. is there.
  • the molar ratio of Ga to the total amount of Ga and In in the CIGS compound semiconductor may be simply abbreviated as “Ga ratio”.
  • the photocatalyst electrode (specifically, the photocatalyst electrode for hydrogen generation) in the water splitting apparatus of the first embodiment exhibits an excellent onset potential.
  • the reason is as follows. That is, when a CIGS compound semiconductor with a Ga ratio of 0.3, which is an optimal composition as a light absorption layer constituting the solar cell, is applied to the photocatalytic electrode, the conduction band edge (the bottom of the conduction band) of the CIGS compound semiconductor, This is considered to be because the offset potential with the conduction band edge (the bottom of the conduction band) of the adjacent layer (for example, an n-type semiconductor layer to be described later) is large, which acts as a barrier and inhibits carrier transport.
  • the conduction band edge (the bottom part of the conduction band) of the CIGS compound semiconductor should be equal to or shallower than the conduction band edge (the bottom part of the conduction band) of a layer adjacent thereto (for example, an n-type semiconductor layer described later).
  • the band offset ⁇ E (see the following formula), which is the difference between the potential p-CBM at the lower end of the conduction band of the p-type semiconductor layer and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, is 0.1 eV or less is preferable, and 0 eV or less is more preferable.
  • the lower limit of ⁇ E is preferably ⁇ 0.5 eV or more.
  • ⁇ E (n-CBM)-(p-CBM) If the Ga ratio is 0.4 or more, the conduction band edge (the bottom of the conduction band) of the CIGS compound semiconductor becomes shallow, and as a result, the offset potential between the CIGS compound semiconductor and the adjacent layer is reduced, resulting in excellent onset. It is presumed that it has shown potential.
  • p-CBM and n-CBM use an atmospheric photoelectron spectrometer (product name “AC-3”, manufactured by Riken Keiki Co., Ltd.) to determine the potential at the upper end of the valence band, and to UV-visible spectroscopy.
  • AC-3 atmospheric photoelectron spectrometer
  • V-770 photometer
  • the potential value at the lower end of the conduction band is a value when the axis is on the minus side with the vacuum level as a reference (0 eV).
  • Drawing 1 is a side view showing typically water splitting device 1 which is an example of a water splitting device of a 1st embodiment.
  • the water splitting device 1 is a device that generates gas from the anode electrode 10 (photocatalytic electrode for oxygen generation) and the cathode electrode 20 (photocatalytic electrode for hydrogen generation) by irradiation with light L. Specifically, water is decomposed by the light L, oxygen is generated from the anode electrode 10, and hydrogen is generated from the cathode electrode 20. As shown in FIG.
  • the water splitting apparatus 1 includes a tank 40 filled with an electrolytic aqueous solution S, an anode electrode 10 and a cathode electrode 20 disposed in the tank 40, and between the anode electrode 10 and the cathode electrode 20. And the diaphragm 30 disposed in the tank 40.
  • the anode electrode 10, the diaphragm 30, and the cathode electrode 20 are arranged in this order along the direction intersecting with the traveling direction of the light L.
  • the irradiated light L visible light such as sunlight, ultraviolet light, infrared light, or the like can be used, and among these, sunlight whose amount is inexhaustible is preferable.
  • the tank 40 is partitioned by the diaphragm 30 into an anode electrode chamber 42 in which the anode electrode 10 is disposed and a cathode electrode chamber 44 in which the cathode electrode 20 is disposed.
  • the tank 40 is arranged so as to be inclined so that the amount of incident light per unit area with respect to the anode electrode 10 and the cathode electrode 20 becomes large.
  • the tank 40 is sealed so that the electrolytic aqueous solution S does not flow out in a state where the tank 40 is inclined.
  • a material excellent in corrosion resistance As a specific example of the material constituting the tank 40, a material excellent in corrosion resistance (particularly alkali resistance) is preferable, and examples thereof include polyacrylate, polymethacrylate, polycarbonate, polypropylene, polyethylene, polystyrene, and glass.
  • the electrolytic aqueous solution S is a solution in which an electrolyte is dissolved in water.
  • the electrolyte include sulfuric acid, sodium sulfate, potassium hydroxide, potassium phosphate, and boric acid.
  • the pH of the electrolytic aqueous solution S is preferably 6-11. If the pH of the electrolytic aqueous solution S is within the above range, there is an advantage that it can be handled safely.
  • the pH of the electrolytic aqueous solution S can be measured using a known pH meter, and the measurement temperature is 25 ° C.
  • the concentration of the electrolyte in the electrolytic aqueous solution S is not particularly limited, but is preferably adjusted so that the pH of the electrolytic aqueous solution S is in the above range.
  • the anode electrode 10 is disposed in the anode electrode chamber 42.
  • the anode electrode 10 includes a first substrate 12, a first conductive layer 14 disposed on the first substrate 12, and a first photocatalytic layer 16 disposed on the first conductive layer 14.
  • the anode electrode 10 is disposed in the tank 40 so that the first photocatalyst layer 16, the first conductive layer 14, and the first substrate 12 are arranged in this order from the side irradiated with the light L.
  • the anode electrode 10 has a flat plate shape, but is not limited thereto.
  • the anode electrode 10 may be a punching metal shape, a mesh shape, a lattice shape, or a porous body having penetrating pores.
  • the anode electrode 10 is electrically connected to the cathode electrode 20 by a conducting wire 50.
  • FIG. 1 shows an example in which the anode electrode 10 and the cathode electrode 20 are connected by the conductive wire 50, the connection method is not particularly limited as long as they are electrically connected.
  • the thickness of the anode electrode 10 is preferably 0.1 to 5 mm, and more preferably 0.5 to 2 mm.
  • the first substrate 12 is a layer that supports the first conductive layer 14 and the first photocatalytic layer 16.
  • Specific examples of the material constituting the first substrate 12 include metals, organic compounds (for example, polyacrylates and polymethacrylates), and inorganic compounds (for example, metal oxides such as SrTiO 3 , glass, and ceramics).
  • the thickness of the first substrate 12 is preferably 0.1 to 5 mm, and more preferably 0.5 to 2 mm.
  • first conductive layer Since the anode electrode 10 has the first conductive layer 14, electrons generated by the incidence of the light L on the anode electrode 10 move to the second conductive layer 24 (described later) of the cathode electrode 20 through the conductive wire 50.
  • the material constituting the first conductive layer 14 include metals (for example, Sn, Ti, Ta, Au), SrRuO 3 , ITO (indium tin oxide), and zinc oxide-based transparent conductive materials (Al: ZnO, In: ZnO, Ga: ZnO, etc.).
  • the thickness of the first conductive layer 14 is preferably 50 nm to 1 ⁇ m, and more preferably 100 to 500 nm.
  • a method for forming the first conductive layer 14 is not particularly limited, and examples thereof include a vapor deposition method (for example, a chemical vapor deposition method and a sputtering method).
  • the thickness of the first photocatalyst layer 16 is preferably 100 nm to 10 ⁇ m, and more preferably 300 nm to 2 ⁇ m.
  • Examples of materials that can constitute the first photocatalytic layer 16 include Bi 2 WO 6 , BiVO 4 , BiYWO 6 , In 2 O 3 (ZnO) 3 , InTaO 4 , InTaO 4 : Ni (“Compound: M” is an optical semiconductor. TiO 2 : Ni, TiO 2 : Ru, TiO 2 Rh, TiO 2 : Ni / Ta (“Compound: M1 / M2” is M1 in the optical semiconductor.
  • TiO 2 Ni / Nb, TiO 2 : Cr / Sb, TiO 2 : Ni / Sb, TiO 2 : Sb / Cu, TiO 2 : Rh / Sb, TiO 2 : Rh / Ta, TiO 2 : Rh / Nb, SrTiO 3 : Ni / Ta, SrTiO 3 : Ni / Nb, SrTiO 3 : Cr, SrTiO 3 : Cr / Sb, SrTiO 3 : Cr / Ta, SrTiO 3: Cr / Nb, SrTiO 3: Cr / W, SrTiO 3: Mn, SrTiO 3: Ru, SrTiO 3: Rh, SrTiO 3: Rh / Sb, SrTiO 3: Ir, CaTiO 3: Rh La 2 Ti 2 O 7 : Cr, La 2 Ti 2 O 7 : Cr / Sb, La 2 Ti 2 O 7 : Cr
  • the formation method of the first photocatalyst layer 16 is not particularly limited, and examples thereof include a vapor deposition method (for example, a chemical vapor deposition method, a sputtering method, a pulse laser deposition method, etc.) and a particle transfer method.
  • a vapor deposition method for example, a chemical vapor deposition method, a sputtering method, a pulse laser deposition method, etc.
  • a particle transfer method for example, a vapor deposition method, a chemical vapor deposition method, a sputtering method, a pulse laser deposition method, etc.
  • the first photocatalyst layer 16 may have a promoter supported on its surface. If the promoter is supported, the onset potential and gas generation efficiency will be good. Specific examples of the cocatalyst are as described above.
  • the method for supporting the cocatalyst is not particularly limited, and examples thereof include an immersion method (for example, a method of immersing the photocatalyst layer in a suspension containing the cocatalyst) and a vapor phase growth method (for example, a sputtering method). It is done.
  • a conductive layer 24, a p-type semiconductor layer 26, an n-type semiconductor layer 28, and a promoter 32 are stacked in this order on the surface 22 a of the insulating substrate 22.
  • the p-type semiconductor layer 26 and the n-type semiconductor layer 28 constitute a semiconductor layer 29.
  • the insulating substrate 22 is a substrate that supports the conductive layer 24 and the semiconductor layer 29, and is made of an electrically insulating material.
  • the insulating substrate 22 is not particularly limited.
  • a soda lime glass substrate hereinafter referred to as an SLG substrate
  • a ceramic substrate can be used.
  • the insulating substrate 22 may be a substrate in which an insulating layer is formed on a metal substrate.
  • the insulating substrate 22 may be made of a glass plate such as high strain point glass and non-alkali glass, or a polyimide material.
  • the insulating substrate 22 may or may not be flexible.
  • the thickness of the insulating substrate 22 is not particularly limited, and may be, for example, about 20 to 20000 ⁇ m, preferably 100 to 10,000 ⁇ m, and more preferably 1000 to 5000 ⁇ m.
  • the conductive layer 24 is formed on the surface 22a of the insulating substrate 22, and is used for applying a voltage to the semiconductor layer 29, for example. Although it will not specifically limit if the conductive layer 24 has electroconductivity, For example, it is comprised with metals, such as Mo, Cr, and W, or what combined these. Among these, the conductive layer 24 is preferably composed of Mo.
  • the conductive layer 24 may have a single layer structure or a laminated structure such as a two-layer structure.
  • the thickness of the conductive layer 24 is generally about 800 nm, but the thickness of the conductive layer 24 is preferably 400 nm to 1 ⁇ m.
  • the semiconductor layer 29 generates an electromotive force.
  • the semiconductor layer 29 has a p-type semiconductor layer 26 formed on the surface 24a of the conductive layer 24 and an n-type semiconductor layer 28 formed on the surface 26a of the p-type semiconductor layer 26.
  • a pn junction is formed at the interface with the type semiconductor layer 28.
  • Light incident on the semiconductor layer 29 is absorbed in the semiconductor layer 29 and excites electrons from the valence band of the semiconductor to the conduction band. Of the carriers excited by the internal electric field created by the pn junction, electrons are moved to the n-type semiconductor side and holes are moved to the p-type semiconductor side.
  • the conduction type of the p-type semiconductor layer 26 and the n-type semiconductor layer 28 can be measured by a measuring device (product name “PN-12 ⁇ ”, manufactured by NAPSON) using the Seebeck effect.
  • the p-type semiconductor layer 26 is made of a CIGS compound semiconductor containing Cu, In, Ga, and Se.
  • Cu, an In, CIGS compound containing Ga and Se semiconductor specifically, Cu (In, Ga) may be a compound represented by the Se 2, Cu (In, Ga) in the Se 2 of Se
  • a compound represented by Cu (In, Ga) (Se, S) 2 partially substituted with S may be used.
  • the molar ratio (Ga ratio) of Ga to the total amount of Ga and In in the CIGS compound semiconductor constituting the p-type semiconductor layer 26 is 0.4 to 0.8.
  • the Ga ratio is 0.4 or more, preferably 0.45 or more, and more preferably 0.5 or more.
  • the conduction band edge of the p-type semiconductor layer 26 becomes shallow and the band discontinuity (band barrier) with the n-type semiconductor layer 28 is eliminated, so that electrons easily flow into the n-type semiconductor layer 28.
  • the larger the Ga ratio is the better the onset potential is.
  • the Ga ratio is too large, the band gap is widened, and the grain growth is hindered by the increase in the melting point of the CIGS compound semiconductor, thereby reducing the grain size. In some cases, problems such as a decrease in crystallinity of the CIGS compound semiconductor may occur. In particular, when the Ga ratio exceeds 0.7, such a problem becomes remarkable and the current value becomes small.
  • the Ga ratio is preferably 0.7 or less, more preferably 0.65 or less, and even more preferably 0.6 or less.
  • the Ga ratio is calculated based on elemental analysis of the entire semiconductor layer (CIGS compound semiconductor) using high frequency inductively coupled plasma emission spectroscopy (ICP-AES).
  • a method for forming the p-type semiconductor layer 26 for example, a multi-source deposition method (preferably a three-step method), a selenization method, a sputtering method, a hybrid sputtering method, a mechanochemical process method, a screen printing method, Examples include a proximity sublimation method, a MOCVD (Metal Organic Chemical Vapor Deposition) method and a spray method (wet film forming method).
  • a multi-source deposition method is preferable, and a three-stage method is more preferable.
  • the film thickness of the p-type semiconductor layer 26 is preferably 0.5 to 3.0 ⁇ m, more preferably 1.0 to 2.0 ⁇ m.
  • the n-type semiconductor layer 28 forms a pn junction at the interface with the p-type semiconductor layer 26 as described above. Further, the n-type semiconductor layer 28 is preferably a layer through which the light L is transmitted so that the incident light L reaches the p-type semiconductor layer 26.
  • the material constituting the n-type semiconductor layer 28 include metal sulfides containing at least one metal element selected from the group consisting of Cd, Zn, Sn, and In. A metal sulfide may be used individually by 1 type, or may use 2 or more types together.
  • the metal sulfide examples include CdS, ZnS, Zn (S, O), Zn (S, O, OH), In 2 S 3 , SnS, and SnS x Se 1-x (X is 0 or more and less than 1)
  • CdS and ZnS are preferable, and CdS is more preferable.
  • CdS is preferable from the viewpoint of lattice matching with a CIGS compound semiconductor.
  • the film can be formed in a state (epitaxial) in which CdS is lattice-matched on the CIGS compound semiconductor, and defects at the junction interface can be reduced.
  • the film thickness of the n-type semiconductor layer 28 is preferably 10 nm to 2 ⁇ m, more preferably 15 to 200 nm.
  • a chemical bath deposition method hereinafter referred to as CBD method
  • a window layer may be provided on the n-type semiconductor layer 28. This window layer is composed of, for example, a ZnO layer having a thickness of about 10 nm.
  • the co-catalyst 32 is formed on the semiconductor layer 29, that is, on the surface 28 a of the n-type semiconductor layer 28.
  • the co-catalyst 32 can improve the onset potential and photocurrent density of the cathode electrode 20.
  • the co-catalyst 32 may be formed on the entire surface of the n-type semiconductor layer 28, or may be formed in an island shape so as to be scattered. Examples of the material constituting the co-catalyst 32 include simple substances composed of Pt, Pd, Ni, Au, Ag, Ru, Cu, Co, Rh, Ir, Mn, etc., alloys combining them, and oxidation thereof. Things.
  • the size of the co-catalyst 32 is not particularly limited, and is preferably 0.5 nm to 1 ⁇ m, and the height is preferably about several nm.
  • the co-catalyst 32 can be formed by, for example, a coating baking method, a photo-deposition method, a vacuum deposition method, a sputtering method, an impregnation method, or the like.
  • the cathode electrode 20 may have a metal layer (not shown) between the n-type semiconductor layer 28 and the promoter 32.
  • the promoter 32 is formed on the surface of the metal layer.
  • the metal layer can impart conductivity to the surface layer of the n-type semiconductor layer 28. Therefore, carriers (electrons) generated in the semiconductor layer 29 can easily move to the promoter 32 side by the metal layer.
  • the metal layer is preferably composed of a transition metal of group 4 or higher. Examples of the group 4 or higher transition metal include Ti, Zr, Mo, Ta, and W.
  • the thickness of the metal layer is preferably 8 nm or less, and more preferably 6 nm or less.
  • the lower limit of the metal layer is not particularly limited as long as the above-described function can be satisfactorily exhibited and the thickness is manufacturable.
  • the metal layer can be formed by, for example, a sputtering method, a vacuum evaporation method, an electron beam evaporation method, or the like.
  • the cathode electrode 20 may have a layer other than the above.
  • the other layer include a surface protective layer that can be formed on the photocatalytic electrode 32.
  • the cathode electrode 20 gave and demonstrated the example which has the insulating substrate 12, as long as the effect of this invention can be exhibited, it has either of these members. It does not have to be.
  • the diaphragm 30 allows ions contained in the electrolytic aqueous solution S to freely enter and exit the anode electrode chamber 42 and the cathode electrode chamber 44, but the gas generated in the anode electrode 10 and the gas generated in the cathode electrode 20 are not mixed. It is arranged between the anode electrode 10 and the cathode electrode 20.
  • the material constituting the diaphragm 30 is not particularly limited, and examples thereof include known ion exchange membranes.
  • the example provided with the diaphragm 30 was shown in FIG. 1, it is not limited to this, The diaphragm 30 may not be provided.
  • the gas generated in the anode electrode 10 can be recovered from a pipe (not shown) connected to the anode electrode chamber 42.
  • the gas generated at the cathode electrode 20 can be recovered from a pipe (not shown) connected to the cathode electrode chamber 44.
  • the tank 40 may be connected to a supply pipe for supplying the electrolytic aqueous solution S, a pump, and the like.
  • FIG. 1 shows an example in which the tank 40 is filled with the electrolytic aqueous solution S
  • the present invention is not limited to this, and the tank 40 may be filled with the electrolytic aqueous solution S when the water splitting apparatus is driven.
  • FIG. 1 shows a case where both the anode electrode 10 and the cathode electrode 20 are photocatalytic electrodes, the present invention is not limited to this, and only the cathode electrode 20 may be a photocatalytic electrode.
  • FIG. 1 shows an example in which the anode electrode 10, the diaphragm 30 and the cathode electrode 20 are arranged in this order along the direction intersecting the traveling direction of the light L
  • the present invention is not limited to this, and the water of the present invention is not limited thereto.
  • the decomposition apparatus may have a structure shown in FIG. FIG. 2 is a side view schematically showing a water splitting device 100 which is an embodiment of the water splitting device of the present invention.
  • the water splitting device 100 is a device that generates gas from the anode electrode 110 and the cathode electrode 120 by irradiation with light L. Specifically, water is decomposed by the light L, oxygen is generated from the anode electrode 110, and hydrogen is generated from the cathode electrode 120.
  • the water splitting apparatus 100 includes a tank 40 filled with an electrolytic aqueous solution S, an anode electrode 110 and a cathode electrode 120 disposed in the tank 40, and a gap between the anode electrode 110 and the cathode electrode 120. And the diaphragm 30 disposed in the tank 40.
  • the anode electrode 110, the diaphragm 30 and the cathode electrode 120 are arranged in this order along the traveling direction of the light L.
  • the water decomposition apparatus 100 is the same as the water decomposition apparatus 1 except that the arrangement of the anode electrode 110, the arrangement of the cathode electrode 120, and the irradiation direction of the light L are different from the water decomposition apparatus 1 in FIG. Is mainly described.
  • the anode electrode 110 is disposed in the tank 40 so that the first photocatalyst layer 116, the first conductive layer 114, and the first substrate 112 are arranged in this order from the side irradiated with the light L.
  • the cathode electrode 120 is arranged so that the promoter 132, the n-type semiconductor layer 128, the p-type semiconductor layer 126, the conductive layer 124, and the insulating substrate 122 are in this order from the side irradiated with the light L. It is arranged in the tank 40.
  • the semiconductor layer 129 includes the p-type semiconductor layer 126 and the n-type semiconductor layer 128.
  • the anode electrode 110 and the cathode electrode 120 are arranged so as to be inclined so that the amount of incident light per unit area is large.
  • the first substrate 112 and the first conductive layer 114 are preferably transparent so that the light L is incident on the cathode electrode 120.
  • transparent means that the light transmittance in a wavelength region of 380 nm to 780 nm is 60% or more.
  • the light transmittance is measured with a spectrophotometer.
  • the spectrophotometer for example, V-770 (product name) manufactured by JASCO Corporation, which is an ultraviolet-visible spectrophotometer, is used.
  • the photocatalytic electrode for water splitting of the present invention has a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se, and the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8.
  • the details of the photocatalytic electrode for water splitting according to the present invention are the same as those described for the cathode electrode 20 in the water splitting apparatus 1, and therefore the description thereof is omitted.
  • One embodiment of the water splitting device of the present invention is configured to irradiate light from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation.
  • a water splitting device for filling the electrolytic aqueous solution, the hydrogen generating photocatalyst electrode and the oxygen generating photocatalyst electrode disposed in the tank, and the hydrogen generation
  • the photocatalytic electrode for use has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer, and the p-type semiconductor layer
  • the band offset ⁇ E which is the difference between the potential p-CBM at the lower end of the conduction band of n and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, satisfies the following relationship.
  • ⁇ E (n ⁇ CBM) ⁇ (p ⁇ CBM) ⁇ 0.1 [eV]
  • the photocatalytic electrode (specifically, the photocatalytic electrode for hydrogen generation) in the water splitting device of the second embodiment exhibits an excellent onset potential.
  • the reason is as follows. That is, if ⁇ E is 0.1 eV or less, carrier transport is hardly inhibited. Therefore, it is estimated that the photocatalytic electrode in the water splitting device of the second embodiment has an excellent onset potential.
  • (DELTA) E is 0.1 eV or less, and 0 eV or less is more preferable from the point which the onset potential of a photocatalyst electrode is more excellent.
  • the lower limit of ⁇ E is preferably ⁇ 0.5 eV or more.
  • the p-type semiconductor layer in the second embodiment is not particularly limited as long as ⁇ E can be made 0.1 eV or less, but will be described in the first embodiment because ⁇ E can be easily made 0.1 eV or less. It is preferable to use the p-type semiconductor layer.
  • the n-type semiconductor layer in the second embodiment is not particularly limited as long as ⁇ E can be made 0.1 eV or less, but will be described in the first embodiment because ⁇ E can be easily made 0.1 eV or less. It is preferable to use the n-type semiconductor layer.
  • Example 1 The photocatalytic electrode of Example 1 was produced as follows. First, a layer made of Mo having a thickness of 600 nm is formed on the surface of a soda lime glass substrate (insulating substrate) by a DC (direct current) magnetron sputtering method using a magnetron sputtering apparatus (product name “CFS-12P”, manufactured by Shibaura Eletech Corporation). (Conductive layer) was formed. Next, a layer made of CIGS compound semiconductor (p-type semiconductor layer) having a thickness of 2 ⁇ m is formed on the surface of the conductive layer by a three-stage method using a multi-source deposition apparatus (product name “EW-10”, manufactured by Eiko Engineering Co., Ltd.). Formed.
  • a layer made of Mo having a thickness of 600 nm is formed on the surface of a soda lime glass substrate (insulating substrate) by a DC (direct current) magnetron sputtering method using a magnetron sputtering apparatus (product name “CFS-12P”,
  • CdS having a thickness of 70 nm is formed on the surface of the p-type semiconductor layer by a chemical bath deposition method (CBD method) using 1.5 mM CdSO 4 , 1.5 M NH 4 OH, and 7.5 mM thiourea aqueous solution.
  • CBD method was performed at 70 ° C. for 40 minutes.
  • Examples 2 to 5, Comparative Example 1 When forming the p-type semiconductor layer, the vapor deposition rate of Ga and In was changed as appropriate so that the Ga ratio became the value shown in Table 1, and the same as the production of the photocatalytic electrode of Example 1.
  • the photocatalyst electrodes of Examples 2 to 5 and Comparative Example 1 photocatalyst electrodes for hydrogen generation were obtained.
  • the inside of the electrochemical cell was filled with argon, and dissolved oxygen and carbon dioxide were removed by sufficiently bubbling before measurement.
  • a solar simulator AM1.5G (product name “XES-70S1”, manufactured by Mitsunaga Electric Mfg. Co., Ltd.) was used. Then, it was swept from 0 V (vs. RHE) to 0.8 V (vs. RHE) at 20 mV / s to obtain a current-potential curve under pseudo-sunlight irradiation by the solar simulator. Based on the value of the obtained onset potential, evaluation was performed according to the following evaluation criteria. The evaluation results are shown in Table 1.
  • A: Onset potential value is 0.6 V (vs. RHE) or more
  • n-CBM of the n-type semiconductor layer in the photocatalytic electrode was determined in the same manner as the p-CBM measurement except that the n-type semiconductor layer was used.
  • ⁇ E was determined from the obtained p-CBM and n-CBM values. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

The present invention addresses the problem of providing: a photocatalytic electrode for electrolysis that has outstanding onset potential; and an electrolysis device. This electrolysis device causes gases to be generated from a photocatalytic electrode for hydrogen generation and a photocatalytic electrode for oxygen generation. The electrolysis device comprises: a tank for filling with an electrolysis solution; and a photocatalytic electrode for hydrogen generation and a photocatalytic electrode for oxygen generation that are disposed in the tank. The photocatalytic electrode for hydrogen generation comprises a p-type semiconductor layer, an n-type semiconductor layer disposed on the p-type semiconductor layer, and a promoter that is disposed on the n-type semiconductor layer. The p-type semiconductor layer includes a CIGS compound semiconductor that includes copper, indium, gallium, and selenium. The molar ratio of gallium to the total molar quantity of gallium and indium in the CIGS compound semiconductor is 0.4–0.8.

Description

水分解用光触媒電極および水分解装置Photocatalytic electrode for water splitting and water splitting device
 本発明は、水分解用光触媒電極および水分解装置に関する。 The present invention relates to a photocatalytic electrode for water splitting and a water splitting apparatus.
 太陽電池の光吸収層として、優れた太陽光変換効率を有する等の点から、Cu、In、GaおよびSeの合金からなるCIGS化合物を用いることが知られている。例えば、非特許文献1には、太陽電池の光吸収層に用いるCIGS化合物として、GaおよびInの合計量に対する、Gaのモル比が0.3の場合に、太陽光変換効率が特に優れることが開示されている。
 近年、上述の太陽電池等の光を電気に変換する光電変換装置の他に、太陽エネルギーの利用方法として、光触媒を用いて水を分解して、水素および酸素を製造する技術に注目が集まっている。
It is known that a CIGS compound made of an alloy of Cu, In, Ga and Se is used as a light absorption layer of a solar cell from the viewpoint of having excellent solar conversion efficiency. For example, in Non-Patent Document 1, as a CIGS compound used for a light absorption layer of a solar cell, when the molar ratio of Ga to the total amount of Ga and In is 0.3, solar conversion efficiency is particularly excellent. It is disclosed.
In recent years, in addition to photoelectric conversion devices that convert light such as the above-described solar cells into electricity, attention has been focused on technologies for producing hydrogen and oxygen by decomposing water using a photocatalyst as a method of utilizing solar energy. Yes.
 水分解用光触媒電極には、気体の発生量を増加させるために、水分解装置に適用した際に生じる電流値が高いことが求められる。この場合、その電流値を取り出せる電位(オンセットポテンシャル)も重要である。
 ここで、水素発生用の光触媒電極と酸素発生用の光触媒電極とを用い、可視光照射下で水を分解して、水素および酸素の両方を発生できる系(いわゆる、「Zスキーム」)を利用した水分解装置が知られている。
 このようなZスキームを利用した2つの光触媒電極を有する水分解装置に着目した場合、1つの光触媒電極において、水の分解に必要とされる電圧(約1.23V)の約半分以上の電圧をもつような電位(オンセットポテンシャル)で電流を取り出せることが水分解装置の性能の指針となる。
 このような観点から、本発明者らが、上記文献に記載された太陽電池に使用されているCIGS化合物半導体を水分解用光触媒電極に適用したところ、オンセットポテンシャルが不充分であり、水分解装置に求められる性能を満たしていないことを知見した。
The photocatalyst electrode for water splitting is required to have a high current value generated when applied to a water splitting device in order to increase the amount of gas generated. In this case, the potential (onset potential) from which the current value can be extracted is also important.
Here, using a photocatalyst electrode for hydrogen generation and a photocatalyst electrode for oxygen generation, a system capable of generating both hydrogen and oxygen by decomposing water under visible light irradiation (so-called “Z scheme”) is used. A water splitting apparatus is known.
When attention is paid to a water splitting apparatus having two photocatalytic electrodes using such a Z scheme, a voltage of about half or more of a voltage (about 1.23 V) required for water splitting is obtained at one photocatalytic electrode. The ability to extract the current at such a potential (onset potential) is a guideline for the performance of the water splitting device.
From such a viewpoint, when the present inventors applied the CIGS compound semiconductor used in the solar cell described in the above document to the photocatalytic electrode for water splitting, the onset potential is insufficient, It was found that the performance required for the device was not satisfied.
 そこで、本発明は、オンセットポテンシャルに優れた水分解用光触媒電極および水分解装置の提供を課題とする。 Therefore, an object of the present invention is to provide a photocatalyst electrode for water splitting and a water splitting apparatus that are excellent in onset potential.
 本発明者らは、上記課題について鋭意検討した結果、CIGS化合物半導体を含む半導体層を有する水分解用光触媒電極を水分解装置に適用した場合において、CIGS化合物半導体中のGaおよびInの合計量に対するGaのモル比が所定範囲内にあれば、オンセットポテンシャルに優れることを見出し、本発明に至った。
 また、本発明者らは、p型半導体層とn型半導体層とを有する水分解用光触媒電極を有する水分解装置において、p型半導体層の伝導帯の下端のポテンシャルと、n型半導体層の伝導帯の下端のポテンシャルとの差であるバンドオフセットが所定値以下であれば、水分解用光触媒電極のオンセットポテンシャルに優れることを見出し、本発明に至った。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
As a result of earnestly examining the above problems, the present inventors have applied a water-splitting photocatalyst electrode having a semiconductor layer containing a CIGS compound semiconductor to a water-splitting apparatus, with respect to the total amount of Ga and In in the CIGS compound semiconductor. When the molar ratio of Ga is within a predetermined range, the inventors have found that the onset potential is excellent and have reached the present invention.
In addition, in the water splitting apparatus having a water splitting photocatalytic electrode having a p-type semiconductor layer and an n-type semiconductor layer, the inventors of the present invention have the potential at the lower end of the conduction band of the p-type semiconductor layer and the n-type semiconductor layer. When the band offset, which is the difference from the potential at the lower end of the conduction band, is less than or equal to a predetermined value, it was found that the onset potential of the photocatalytic electrode for water splitting is excellent, and the present invention has been achieved.
That is, the present inventors have found that the above problem can be solved by the following configuration.
[1]
 水素発生用の光触媒電極および酸素発生用の光触媒電極に光を照射することによって、上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極から気体を発生させる水分解装置であって、
 電解水溶液を満たすための槽と、
 上記槽内に配置された上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極と、を有し、
 上記水素発生用の光触媒電極が、p型半導体層と、上記p型半導体層上に設けられたn型半導体層と、上記n型半導体層の上に設けられた助触媒を有し、
 上記p型半導体層が、Cu、In、GaおよびSeを含むCIGS化合物半導体を含む半導体層であり、
 上記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.4~0.8である、水分解装置。
[2]
 上記n型半導体層がCdSを含む、[1]に記載の水分解装置。
[3]
 さらに、上記n型半導体層と上記助触媒との間に設けられた金属層を有する、[1]または[2]に記載の水分解装置。
[4]
 上記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.5~0.7である、[1]~[3]のいずれか1つに記載の水分解装置。
[5]
 水素発生用の光触媒電極および酸素発生用の光触媒電極に光を照射することによって、上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極から気体を発生させる水分解装置であって、
 電解水溶液を満たすための槽と、
 上記槽内に配置された上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極と、を有し、
 上記水素発生用の光触媒電極が、p型半導体層と、上記p型半導体層上に設けられたn型半導体層と、上記n型半導体層の上に設けられた助触媒を有し、
 上記p型半導体層の伝導帯の下端のポテンシャルp-CBMと、上記n型半導体層の伝導帯の下端のポテンシャルn-CBMと、の差であるバンドオフセットΔEが以下の関係を満たす、水分解装置。
  ΔE=(n-CBM)-(p-CBM)≦0.1[eV]
[6]
 Cu、In、GaおよびSeを含むCIGS化合物半導体を含む半導体層を有し、
 上記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.4~0.8である、水分解用光触媒電極。
[1]
A water splitting device that generates gas from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation,
A tank for filling the electrolytic solution;
The hydrogen generating photocatalytic electrode and the oxygen generating photocatalytic electrode disposed in the tank,
The photocatalytic electrode for hydrogen generation has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer,
The p-type semiconductor layer is a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se;
The water splitting apparatus, wherein the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8.
[2]
The water splitting device according to [1], wherein the n-type semiconductor layer contains CdS.
[3]
Furthermore, the water splitting device according to [1] or [2], further including a metal layer provided between the n-type semiconductor layer and the promoter.
[4]
The water splitting device according to any one of [1] to [3], wherein the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.5 to 0.7.
[5]
A water splitting device that generates gas from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation,
A tank for filling the electrolytic solution;
The hydrogen generating photocatalytic electrode and the oxygen generating photocatalytic electrode disposed in the tank,
The photocatalytic electrode for hydrogen generation has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer,
Water splitting in which the band offset ΔE, which is the difference between the potential p-CBM at the lower end of the conduction band of the p-type semiconductor layer and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, satisfies the following relationship: apparatus.
ΔE = (n−CBM) − (p−CBM) ≦ 0.1 [eV]
[6]
A semiconductor layer including a CIGS compound semiconductor including Cu, In, Ga, and Se;
The photocatalytic electrode for water splitting, wherein the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8.
 以下に示すように、本発明によれば、オンセットポテンシャルに優れた水分解用光触媒電極および水分解装置を提供できる。 As described below, according to the present invention, a photocatalyst electrode for water splitting and a water splitting device excellent in onset potential can be provided.
本発明の水分解用光触媒電極の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of the photocatalyst electrode for water splitting of the present invention. 本発明の水分解用光触媒電極の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of the photocatalyst electrode for water splitting of the present invention.
 以下に、本発明について説明する。
 なお、本発明において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明において、可視光とは、電磁波のうちヒトの目で見える波長の光であり、具体的には380~780nmの波長域の光を示す。
 なお、本明細書において、オンセットポテンシャルに優れるとは、オンセットポテンシャルの値が0.6V(vs.RHE)以上であることを意味する。ここで、RHEは、reversible hydrogen electrode(可逆水素電極)の略である。光触媒電極として用いる場合に、0.6V(vs.RHE)でより多くの電流が得られることが好ましい。
The present invention will be described below.
In the present invention, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In the present invention, visible light is light having a wavelength that can be seen by human eyes among electromagnetic waves, and specifically indicates light having a wavelength range of 380 to 780 nm.
In the present specification, being excellent in onset potential means that the value of onset potential is 0.6 V (vs. RHE) or more. Here, RHE is an abbreviation for reversible hydrogen electrode. When used as a photocatalytic electrode, it is preferable that a larger amount of current is obtained at 0.6 V (vs. RHE).
 以下において、本発明の水分解装置について、実施形態毎に詳細に説明する。 Hereinafter, the water splitting apparatus of the present invention will be described in detail for each embodiment.
[第1実施形態]
 本発明の水分解装置の一実施形態は、水素発生用の光触媒電極および酸素発生用の光触媒電極に光を照射することによって、上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極から気体を発生させる水分解装置であって、電解水溶液を満たすための槽と、上記槽内に配置された上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極と、を有し、上記水素発生用の光触媒電極が、p型半導体層と、上記p型半導体層上に設けられたn型半導体層と、上記n型半導体層の上に設けられた助触媒を有し、上記p型半導体層が、Cu、In、GaおよびSeを含むCIGS化合物半導体を含む半導体層であり、上記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.4~0.8である。本明細書において、上記CIGS化合物半導体中のGaおよびInの合計量に対するGaのモル比を、単に「Ga比」と略記する場合がある。
[First Embodiment]
One embodiment of the water splitting device of the present invention is configured to irradiate light from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation. A water splitting device for filling the electrolytic aqueous solution, the hydrogen generating photocatalyst electrode and the oxygen generating photocatalyst electrode disposed in the tank, and the hydrogen generation The photocatalytic electrode for use has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer, and the p-type semiconductor layer Is a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se, and the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8. is there. In the present specification, the molar ratio of Ga to the total amount of Ga and In in the CIGS compound semiconductor may be simply abbreviated as “Ga ratio”.
 第1実施形態の水分解装置における光触媒電極(具体的には、水素発生用の光触媒電極)は、優れたオンセットポテンシャルを示す。この理由の詳細は明らかになっていないが、概ね以下の理由によるものと推測される。
 すなわち、太陽電池を構成する光吸収層として最適な組成であるGa比が0.3のCIGS化合物半導体を光触媒電極に適用した場合、CIGS化合物半導体の伝導帯端(伝導帯の最底部)と、これと隣接する層(例えば、後述するn型半導体層)の伝導帯端(伝導帯の最底部)とのオフセット電位が大きく、これが障壁となって、キャリア輸送を阻害するためと考えられる。そのため、CIGS化合物半導体の伝導帯端(伝導帯の最底部)は、これと隣接する層(例えば、後述するn型半導体層)の伝導帯端(伝導帯の最底部)と同等または浅い方が好ましい。具体的には、p型半導体層の伝導帯の下端のポテンシャルp-CBMと、n型半導体層の伝導帯の下端のポテンシャルn-CBMと、の差であるバンドオフセットΔE(下記式参照)は、0.1eV以下が好ましく、0eV以下がより好ましい。また、ΔEの下限値は、-0.5eV以上が好ましい。
  ΔE=(n-CBM)-(p-CBM)
 Ga比が0.4以上であれば、CIGS化合物半導体の伝導帯端(伝導帯の最底部)が浅くなるので、CIGS化合物半導体と隣接する層とのオフセット電位が小さくなる結果、優れたオンセットポテンシャルを示すものになったと推測される。
The photocatalyst electrode (specifically, the photocatalyst electrode for hydrogen generation) in the water splitting apparatus of the first embodiment exhibits an excellent onset potential. Although the details of this reason are not clear, it is presumed that the reason is as follows.
That is, when a CIGS compound semiconductor with a Ga ratio of 0.3, which is an optimal composition as a light absorption layer constituting the solar cell, is applied to the photocatalytic electrode, the conduction band edge (the bottom of the conduction band) of the CIGS compound semiconductor, This is considered to be because the offset potential with the conduction band edge (the bottom of the conduction band) of the adjacent layer (for example, an n-type semiconductor layer to be described later) is large, which acts as a barrier and inhibits carrier transport. Therefore, the conduction band edge (the bottom part of the conduction band) of the CIGS compound semiconductor should be equal to or shallower than the conduction band edge (the bottom part of the conduction band) of a layer adjacent thereto (for example, an n-type semiconductor layer described later). preferable. Specifically, the band offset ΔE (see the following formula), which is the difference between the potential p-CBM at the lower end of the conduction band of the p-type semiconductor layer and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, is 0.1 eV or less is preferable, and 0 eV or less is more preferable. Further, the lower limit of ΔE is preferably −0.5 eV or more.
ΔE = (n-CBM)-(p-CBM)
If the Ga ratio is 0.4 or more, the conduction band edge (the bottom of the conduction band) of the CIGS compound semiconductor becomes shallow, and as a result, the offset potential between the CIGS compound semiconductor and the adjacent layer is reduced, resulting in excellent onset. It is presumed that it has shown potential.
 本発明において、p-CBMおよびn-CBMは、大気中光電子分光装置(製品名「AC-3」、理研計器社製)を用いて価電子帯の上端のポテンシャルを求めて、それに紫外可視分光光度計(製品名「V-770」、日本分光社製)から求めたバンドギャップの値を加えて得られる値である。
 なお、本発明において、伝導帯の下端のポテンシャルの値は、真空準位を基準(0eV)として、マイナス側に軸を取った場合の値である。
In the present invention, p-CBM and n-CBM use an atmospheric photoelectron spectrometer (product name “AC-3”, manufactured by Riken Keiki Co., Ltd.) to determine the potential at the upper end of the valence band, and to UV-visible spectroscopy. This is a value obtained by adding a band gap value obtained from a photometer (product name “V-770”, manufactured by JASCO Corporation).
In the present invention, the potential value at the lower end of the conduction band is a value when the axis is on the minus side with the vacuum level as a reference (0 eV).
 以下において、第1実施形態の水分解装置の構成について、図面を参照しながら説明する。
 図1は、第1実施形態の水分解装置の一例である水分解装置1を模式的に示す側面図である。水分解装置1は、光Lの照射によって、アノード電極10(酸素発生用の光触媒電極)およびカソード電極20(水素発生用の光触媒電極)から気体を発生させる装置である。具体的には、光Lによって水が分解して、アノード電極10から酸素が発生し、カソード電極20から水素が発生する。
 図1に示すように、水分解装置1は、電解水溶液Sで満たされた槽40と、槽40内に配置されたアノード電極10およびカソード電極20と、アノード電極10とカソード電極20との間であって槽40内に配置された隔膜30と、を有する。アノード電極10、隔膜30およびカソード電極20は、光Lの進行方向と交差する方向に沿って、この順に配置されている。
 照射される光Lとしては、太陽光などの可視光、紫外光または赤外光などが利用でき、その中でも、その量が無尽蔵である太陽光が好ましい。
Below, the structure of the water splitting device of 1st Embodiment is demonstrated, referring drawings.
Drawing 1 is a side view showing typically water splitting device 1 which is an example of a water splitting device of a 1st embodiment. The water splitting device 1 is a device that generates gas from the anode electrode 10 (photocatalytic electrode for oxygen generation) and the cathode electrode 20 (photocatalytic electrode for hydrogen generation) by irradiation with light L. Specifically, water is decomposed by the light L, oxygen is generated from the anode electrode 10, and hydrogen is generated from the cathode electrode 20.
As shown in FIG. 1, the water splitting apparatus 1 includes a tank 40 filled with an electrolytic aqueous solution S, an anode electrode 10 and a cathode electrode 20 disposed in the tank 40, and between the anode electrode 10 and the cathode electrode 20. And the diaphragm 30 disposed in the tank 40. The anode electrode 10, the diaphragm 30, and the cathode electrode 20 are arranged in this order along the direction intersecting with the traveling direction of the light L.
As the irradiated light L, visible light such as sunlight, ultraviolet light, infrared light, or the like can be used, and among these, sunlight whose amount is inexhaustible is preferable.
<槽>
 槽40内は、隔膜30によって、アノード電極10が配置されたアノード電極室42と、カソード電極20が配置されたカソード電極室44と、に区画されている。
 槽40は、これに限定されないが、アノード電極10およびカソード電極20に対する単位面積当たりの入射光量が大きくなるように、傾けて配置されている。また、槽40を傾けた状態で電解水溶液Sが流れ出ないように、槽40は密封されている。
 槽40を構成する材料の具体例としては、耐腐食性(特に、耐アルカリ性)に優れた材料が好ましく、ポリアクリレート、ポリメタクリレート、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリスチレン、ガラスが挙げられる。
<Tank>
The tank 40 is partitioned by the diaphragm 30 into an anode electrode chamber 42 in which the anode electrode 10 is disposed and a cathode electrode chamber 44 in which the cathode electrode 20 is disposed.
Although not limited to this, the tank 40 is arranged so as to be inclined so that the amount of incident light per unit area with respect to the anode electrode 10 and the cathode electrode 20 becomes large. Moreover, the tank 40 is sealed so that the electrolytic aqueous solution S does not flow out in a state where the tank 40 is inclined.
As a specific example of the material constituting the tank 40, a material excellent in corrosion resistance (particularly alkali resistance) is preferable, and examples thereof include polyacrylate, polymethacrylate, polycarbonate, polypropylene, polyethylene, polystyrene, and glass.
(電解水溶液)
 図1に示すように、槽40内は電解水溶液Sで満たされており、アノード電極10、カソード電極20および隔膜30の全体が電解水溶液Sに浸漬している。
 電解水溶液Sは、電解質を水に溶解させた溶液である。電解質の具体例としては、硫酸、硫酸ナトリウム、水酸化カリウム、リン酸カリウム、および、ホウ酸が挙げられる。
 電解水溶液SのpHは、6~11が好ましい。電解水溶液SのpHが上記範囲内にあれば、安全に取り扱いができるという利点がある。なお、電解水溶液SのpHは、公知のpHメータを用いて測定でき、測定温度は25℃である。
 電解水溶液S中の電解質の濃度は、特に限定されないが、電解水溶液SのpHが上記範囲内になるように調整されるのが好ましい。
(Electrolytic aqueous solution)
As shown in FIG. 1, the inside of the tank 40 is filled with the electrolytic aqueous solution S, and the whole of the anode electrode 10, the cathode electrode 20 and the diaphragm 30 is immersed in the electrolytic aqueous solution S.
The electrolytic aqueous solution S is a solution in which an electrolyte is dissolved in water. Specific examples of the electrolyte include sulfuric acid, sodium sulfate, potassium hydroxide, potassium phosphate, and boric acid.
The pH of the electrolytic aqueous solution S is preferably 6-11. If the pH of the electrolytic aqueous solution S is within the above range, there is an advantage that it can be handled safely. The pH of the electrolytic aqueous solution S can be measured using a known pH meter, and the measurement temperature is 25 ° C.
The concentration of the electrolyte in the electrolytic aqueous solution S is not particularly limited, but is preferably adjusted so that the pH of the electrolytic aqueous solution S is in the above range.
<アノード電極>
 アノード電極10は、アノード電極室42内に配置されている。
 アノード電極10は、第1基板12と、第1基板12上に配置された第1導電層14と、第1導電層14上に配置された第1光触媒層16と、を有する。アノード電極10は、光Lが照射される側から、第1光触媒層16、第1導電層14、および、第1基板12の順になるように、槽40内に配置されている。
 図1の例では、アノード電極10は平板状であるが、これに限定されない。アノード電極10は、パンチングメタル状、メッシュ状、格子状、または、貫通した細孔を持つ多孔体であってもよい。
 アノード電極10は、導線50によってカソード電極20と電気的に接続されている。図1では、アノード電極10とカソード電極20とが導線50によって接続されている例を示したが、電気的に接続されていれば、接続方式は特に限定されない。
 アノード電極10の厚みは、0.1~5mmが好ましく、0.5~2mmがより好ましい。
<Anode electrode>
The anode electrode 10 is disposed in the anode electrode chamber 42.
The anode electrode 10 includes a first substrate 12, a first conductive layer 14 disposed on the first substrate 12, and a first photocatalytic layer 16 disposed on the first conductive layer 14. The anode electrode 10 is disposed in the tank 40 so that the first photocatalyst layer 16, the first conductive layer 14, and the first substrate 12 are arranged in this order from the side irradiated with the light L.
In the example of FIG. 1, the anode electrode 10 has a flat plate shape, but is not limited thereto. The anode electrode 10 may be a punching metal shape, a mesh shape, a lattice shape, or a porous body having penetrating pores.
The anode electrode 10 is electrically connected to the cathode electrode 20 by a conducting wire 50. Although FIG. 1 shows an example in which the anode electrode 10 and the cathode electrode 20 are connected by the conductive wire 50, the connection method is not particularly limited as long as they are electrically connected.
The thickness of the anode electrode 10 is preferably 0.1 to 5 mm, and more preferably 0.5 to 2 mm.
(第1基板)
 第1基板12は、第1導電層14および第1光触媒層16を支持する層である。
 第1基板12を構成する材料の具体例としては、金属、有機化合物(例えば、ポリアクリレート、ポリメタクリレート)、無機化合物(例えば、SrTiO等の金属酸化物、ガラス、セラミックス)が挙げられる。
 第1基板12の厚みは、0.1~5mmが好ましく、0.5~2mmがより好ましい。
(First substrate)
The first substrate 12 is a layer that supports the first conductive layer 14 and the first photocatalytic layer 16.
Specific examples of the material constituting the first substrate 12 include metals, organic compounds (for example, polyacrylates and polymethacrylates), and inorganic compounds (for example, metal oxides such as SrTiO 3 , glass, and ceramics).
The thickness of the first substrate 12 is preferably 0.1 to 5 mm, and more preferably 0.5 to 2 mm.
(第1導電層)
 アノード電極10が第1導電層14を有することで、アノード電極10に対する光Lの入射によって生じた電子が、導線50を介してカソード電極20の第2導電層24(後述)に移動する。
 第1導電層14を構成する材料の具体例としては、金属(例えば、Sn、Ti、Ta、Au)、SrRuO、ITO(酸化インジウムスズ)、酸化亜鉛系の透明導電材料(Al:ZnO,In:ZnO,Ga:ZnOなど)が挙げられる。なお、Al:ZnOなどの「金属原子:金属酸化物」との表記は、金属酸化物を構成する金属(Al:ZnOの場合には、Zn)の一部を、金属原子(Al:ZnOの場合には、Al)で置換したものを意味する。
 第1導電層14の厚みは、50nm~1μmが好ましく、100~500nmがより好ましい。
 第1導電層14を形成する方法としては、特に限定されず、例えば、気相成長法(例えば、化学気相成長法、スパッタ法)が挙げられる。
(First conductive layer)
Since the anode electrode 10 has the first conductive layer 14, electrons generated by the incidence of the light L on the anode electrode 10 move to the second conductive layer 24 (described later) of the cathode electrode 20 through the conductive wire 50.
Specific examples of the material constituting the first conductive layer 14 include metals (for example, Sn, Ti, Ta, Au), SrRuO 3 , ITO (indium tin oxide), and zinc oxide-based transparent conductive materials (Al: ZnO, In: ZnO, Ga: ZnO, etc.). Note that the notation “metal atom: metal oxide” such as Al: ZnO represents a part of metal (Zn in the case of Al: ZnO) constituting the metal oxide with a metal atom (Al: ZnO). In the case, it means one substituted with Al).
The thickness of the first conductive layer 14 is preferably 50 nm to 1 μm, and more preferably 100 to 500 nm.
A method for forming the first conductive layer 14 is not particularly limited, and examples thereof include a vapor deposition method (for example, a chemical vapor deposition method and a sputtering method).
(第1光触媒層)
 アノード電極10に光Lが照射されると、第1光触媒層16で生じた電子が、第1導電層14に移動する。一方、第1光触媒層16で生じたホール(正孔)が水と反応することで、アノード電極10から酸素が発生する。
 第1光触媒層16の厚みは、100nm~10μmが好ましく、300nm~2μmがより好ましい。
(First photocatalyst layer)
When the light L is applied to the anode electrode 10, electrons generated in the first photocatalytic layer 16 move to the first conductive layer 14. On the other hand, the holes generated in the first photocatalyst layer 16 react with water to generate oxygen from the anode electrode 10.
The thickness of the first photocatalyst layer 16 is preferably 100 nm to 10 μm, and more preferably 300 nm to 2 μm.
 第1光触媒層16を構成し得る材料としては、BiWO、BiVO、BiYWO、In(ZnO)、InTaO、InTaO:Ni(「化合物:M」は、光半導体にMをドープしていることを示す。以下同様。)、TiO:Ni、TiO:Ru、TiORh、TiO:Ni/Ta(「化合物:M1/M2」は、光半導体にM1とM2を共ドープしていることを示す。以下同様。)、TiO:Ni/Nb、TiO:Cr/Sb、TiO:Ni/Sb、TiO:Sb/Cu、TiO:Rh/Sb、TiO:Rh/Ta、TiO:Rh/Nb、SrTiO:Ni/Ta、SrTiO:Ni/Nb、SrTiO:Cr、SrTiO:Cr/Sb、SrTiO:Cr/Ta、SrTiO:Cr/Nb、SrTiO:Cr/W、SrTiO:Mn、SrTiO:Ru、SrTiO:Rh、SrTiO:Rh/Sb、SrTiO:Ir、CaTiO:Rh、LaTi:Cr、LaTi:Cr/Sb、LaTi:Fe、PbMoO:Cr、RbPbNb10、HPbNb10、PbBiNb、BiVO、BiCuVO、BiSnVO、SnNb、AgNbO、AgVO、AgLi1/3Ti2/3、AgLi1/3Sn2/3、WO、BaBi1-xInxO、BaZr1-xSn、BaZr1-xGe、およびBaZr1-xSiなどの酸化物、LaTiON、Ca0.25La0.75TiO2.250.75、TaON、CaNbON、BaNbON、CaTaON、SrTaON、BaTaON、LaTaON、YTa、(Ga1-xZn)(N1-x)、(Zn1+xGe)(N)(xは、0-1の数値を表す)、およびTiNなどの酸窒化物、NbN、およびTaなどの窒化物、CdSなどの硫化物、CdSeなどのセレン化物、L Ti(L:Pr、Nd、Sm、Gd、Tb、Dy、Ho、またはEr)、ならびにLa、Inを含むオキシサルファイド化合物(Chemistry Letters、2007,36,854-855)が挙げられるが、ここに例示した材料に限定されるものではない。 Examples of materials that can constitute the first photocatalytic layer 16 include Bi 2 WO 6 , BiVO 4 , BiYWO 6 , In 2 O 3 (ZnO) 3 , InTaO 4 , InTaO 4 : Ni (“Compound: M” is an optical semiconductor. TiO 2 : Ni, TiO 2 : Ru, TiO 2 Rh, TiO 2 : Ni / Ta (“Compound: M1 / M2” is M1 in the optical semiconductor. And TiO 2 : Ni / Nb, TiO 2 : Cr / Sb, TiO 2 : Ni / Sb, TiO 2 : Sb / Cu, TiO 2 : Rh / Sb, TiO 2 : Rh / Ta, TiO 2 : Rh / Nb, SrTiO 3 : Ni / Ta, SrTiO 3 : Ni / Nb, SrTiO 3 : Cr, SrTiO 3 : Cr / Sb, SrTiO 3 : Cr / Ta, SrTiO 3: Cr / Nb, SrTiO 3: Cr / W, SrTiO 3: Mn, SrTiO 3: Ru, SrTiO 3: Rh, SrTiO 3: Rh / Sb, SrTiO 3: Ir, CaTiO 3: Rh La 2 Ti 2 O 7 : Cr, La 2 Ti 2 O 7 : Cr / Sb, La 2 Ti 2 O 7 : Fe, PbMoO 4 : Cr, RbPb 2 Nb 3 O 10 , HPb 2 Nb 3 O 10 , PbBi 2 Nb 2 O 9, BiVO 4 , BiCu 2 VO 6, BiSn 2 VO 6, SnNb 2 O 6, AgNbO 3, AgVO 3, AgLi 1/3 Ti 2/3 O 2, AgLi 1/3 Sn 2/3 O 2 , WO 3 , BaBi 1-x InxO 3 , BaZr 1-x Sn x O 3 , BaZr 1-x Ge x O 3 , and Oxides such as BaZr 1-x Si x O 3 , LaTiO 2 N, Ca 0.25 La 0.75 TiO 2.25 N 0.75 , TaON, CaNbO 2 N, BaNbO 2 N, CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N 2 , (Ga 1-x Zn x ) (N 1-x O x ), (Zn 1 + x Ge) (N 2 O x ) (x is , And oxynitrides such as TiN x O y F z , nitrides such as NbN and Ta 3 N 5 , sulfides such as CdS, selenides such as CdSe, L x 2 Ti 2 S 2 O 5 (L x: Pr, Nd, Sm, Gd, Tb, Dy, Ho or Er,), as well as La, oxysulfide compound containing In (Chemistry Letters, 2007,36,854-855) can be mentioned But it is not limited to the exemplified materials herein.
 第1光触媒層16の形成方法としては、特に限定されず、例えば、気相成長法(例えば、化学気相成長法、スパッタ法、パルスレーザーデポジション法など)および粒子転写法が挙げられる。 The formation method of the first photocatalyst layer 16 is not particularly limited, and examples thereof include a vapor deposition method (for example, a chemical vapor deposition method, a sputtering method, a pulse laser deposition method, etc.) and a particle transfer method.
 第1光触媒層16は、その表面に助触媒が担持されていてもよい。助触媒が担持されていれば、オンセットポテンシャルや気体生成効率が良好になる。助触媒の具体例は、上述の通りである。
 助触媒を担持させる方法としては、特に限定されず、例えば、浸漬法(例えば、助触媒を含む懸濁液中に光触媒層を浸漬させる方法)および気相成長法(例えば、スパッタ法)が挙げられる。
The first photocatalyst layer 16 may have a promoter supported on its surface. If the promoter is supported, the onset potential and gas generation efficiency will be good. Specific examples of the cocatalyst are as described above.
The method for supporting the cocatalyst is not particularly limited, and examples thereof include an immersion method (for example, a method of immersing the photocatalyst layer in a suspension containing the cocatalyst) and a vapor phase growth method (for example, a sputtering method). It is done.
<カソード電極>
 カソード電極10は、絶縁基板22の表面22a上に、導電層24と、p型半導体層26と、n型半導体層28と、助触媒32とが、この順で積層されている。図1の例では、p型半導体層26とn型半導体層28とで半導体層29が構成される。
<Cathode electrode>
In the cathode electrode 10, a conductive layer 24, a p-type semiconductor layer 26, an n-type semiconductor layer 28, and a promoter 32 are stacked in this order on the surface 22 a of the insulating substrate 22. In the example of FIG. 1, the p-type semiconductor layer 26 and the n-type semiconductor layer 28 constitute a semiconductor layer 29.
(絶縁基板)
 絶縁基板22は、導電層24および半導体層29を支持する基板であり、電気絶縁性を有する材料で構成される。
 絶縁基板22は、特に限定されないが、例えば、ソーダライムガラス基板(以下、SLG基板という)またはセラミックス基板を用いることができる。
 また、絶縁基板22には、金属基板上に絶縁層が形成されたものを用いてもよい。
 また、絶縁基板22には、高歪点ガラスおよび無アルカリガラス等のガラス板、または、ポリイミド材を用いることもできる。
 絶縁基板22は、フレキシブルなものであっても、そうでなくてもよい。
(Insulated substrate)
The insulating substrate 22 is a substrate that supports the conductive layer 24 and the semiconductor layer 29, and is made of an electrically insulating material.
The insulating substrate 22 is not particularly limited. For example, a soda lime glass substrate (hereinafter referred to as an SLG substrate) or a ceramic substrate can be used.
The insulating substrate 22 may be a substrate in which an insulating layer is formed on a metal substrate.
The insulating substrate 22 may be made of a glass plate such as high strain point glass and non-alkali glass, or a polyimide material.
The insulating substrate 22 may or may not be flexible.
 絶縁基板22の厚みは、特に限定されるものではなく、例えば、20~20000μm程度あればよく、100~10000μmが好ましく、1000~5000μmがより好ましい。 The thickness of the insulating substrate 22 is not particularly limited, and may be, for example, about 20 to 20000 μm, preferably 100 to 10,000 μm, and more preferably 1000 to 5000 μm.
(導電層)
 導電層24は、絶縁基板22の表面22aに形成され、例えば、半導体層29に電圧を印加するために使用される。
 導電層24は、導電性を有していれば、特に限定されるものではないが、例えば、Mo、CrおよびW等の金属、またはこれらを組み合わせたものにより構成される。これらの中でも、導電層24は、Moで構成することが好ましい。
 導電層24は、単層構造でもよいし、2層構造等の積層構造でもよい。
 導電層24の膜厚は、一般的に、その厚みが800nm程度であるが、導電層24は厚みが400nm~1μmであることが好ましい。
(Conductive layer)
The conductive layer 24 is formed on the surface 22a of the insulating substrate 22, and is used for applying a voltage to the semiconductor layer 29, for example.
Although it will not specifically limit if the conductive layer 24 has electroconductivity, For example, it is comprised with metals, such as Mo, Cr, and W, or what combined these. Among these, the conductive layer 24 is preferably composed of Mo.
The conductive layer 24 may have a single layer structure or a laminated structure such as a two-layer structure.
The thickness of the conductive layer 24 is generally about 800 nm, but the thickness of the conductive layer 24 is preferably 400 nm to 1 μm.
(半導体層)
 半導体層29は、起電力を発生するものである。半導体層29は、導電層24の表面24aに形成されたp型半導体層26と、p型半導体層26の表面26aに形成されたn型半導体層28と有し、p型半導体層26とn型半導体層28との界面でpn接合が形成される。
 半導体層29に入射した光は、半導体層29内で吸収されて、半導体の価電子帯から伝導帯へ電子を励起する。そして、pn接合が作る内部電界によって励起されたキャリアのうち、電子はn型半導体側へ、正孔はp型半導体側へ移動させられる。
 ここで、半導体層29内において、p型半導体層26およびn型半導体層28の伝導タイプは、ゼーベック効果を利用した計測装置(製品名「PN-12α」、NAPSON社製)により測定できる。
(Semiconductor layer)
The semiconductor layer 29 generates an electromotive force. The semiconductor layer 29 has a p-type semiconductor layer 26 formed on the surface 24a of the conductive layer 24 and an n-type semiconductor layer 28 formed on the surface 26a of the p-type semiconductor layer 26. A pn junction is formed at the interface with the type semiconductor layer 28.
Light incident on the semiconductor layer 29 is absorbed in the semiconductor layer 29 and excites electrons from the valence band of the semiconductor to the conduction band. Of the carriers excited by the internal electric field created by the pn junction, electrons are moved to the n-type semiconductor side and holes are moved to the p-type semiconductor side.
Here, in the semiconductor layer 29, the conduction type of the p-type semiconductor layer 26 and the n-type semiconductor layer 28 can be measured by a measuring device (product name “PN-12α”, manufactured by NAPSON) using the Seebeck effect.
 p型半導体層26は、Cu、In、GaおよびSeを含むCIGS化合物半導体から構成されている。Cu、In、GaおよびSeを含むCIGS化合物半導体は、具体的には、Cu(In,Ga)Seで表される化合物であってもよいし、Cu(In,Ga)SeにおけるSeの一部がSで置換されたCu(In,Ga)(Se,S)で表される化合物であってもよい。
 p型半導体層26を構成するCIGS化合物半導体中のGaおよびInの合計量に対する、Gaのモル比(Ga比)は、0.4~0.8である。
 Ga比は、0.4以上であり、0.45以上が好ましく、0.5以上がより好ましい。これにより、p型半導体層26の伝導帯端が浅くなって、n型半導体層28とのバンド不連続(バンド障壁)が解消されるため、電子がn型半導体層28に流れやすくなる。
 Ga比が大きくなるほどオンセットポテンシャルは優れるという利点がある一方で、Ga比が大きすぎると、バンドギャップが広くなること、CIGS化合物半導体の融点上昇によって粒成長が阻害されて粒径が小さくなること、および、CIGS化合物半導体の結晶性が低下すること等の問題が生じる場合がある。特に、Ga比が0.7を超えると、このような問題が顕著になって、電流値が小さくなる。したがって、Ga比は、0.7以下が好ましく、0.65以下がより好ましく、0.6以下がさらに好ましい。
 本発明において、Ga比は、高周波誘導結合プラズマ発光分光分析法(ICP-AES)を用いて、半導体層(CIGS化合物半導体)全体の元素分析に基づいて、算出される。
The p-type semiconductor layer 26 is made of a CIGS compound semiconductor containing Cu, In, Ga, and Se. Cu, an In, CIGS compound containing Ga and Se semiconductor, specifically, Cu (In, Ga) may be a compound represented by the Se 2, Cu (In, Ga) in the Se 2 of Se A compound represented by Cu (In, Ga) (Se, S) 2 partially substituted with S may be used.
The molar ratio (Ga ratio) of Ga to the total amount of Ga and In in the CIGS compound semiconductor constituting the p-type semiconductor layer 26 is 0.4 to 0.8.
The Ga ratio is 0.4 or more, preferably 0.45 or more, and more preferably 0.5 or more. As a result, the conduction band edge of the p-type semiconductor layer 26 becomes shallow and the band discontinuity (band barrier) with the n-type semiconductor layer 28 is eliminated, so that electrons easily flow into the n-type semiconductor layer 28.
On the other hand, the larger the Ga ratio is, the better the onset potential is. On the other hand, if the Ga ratio is too large, the band gap is widened, and the grain growth is hindered by the increase in the melting point of the CIGS compound semiconductor, thereby reducing the grain size. In some cases, problems such as a decrease in crystallinity of the CIGS compound semiconductor may occur. In particular, when the Ga ratio exceeds 0.7, such a problem becomes remarkable and the current value becomes small. Therefore, the Ga ratio is preferably 0.7 or less, more preferably 0.65 or less, and even more preferably 0.6 or less.
In the present invention, the Ga ratio is calculated based on elemental analysis of the entire semiconductor layer (CIGS compound semiconductor) using high frequency inductively coupled plasma emission spectroscopy (ICP-AES).
 p型半導体層26(CIGS化合物半導体)の形成方法としては、例えば、多元蒸着法(好ましくは3段階法)、セレン化法、スパッタ法、ハイブリッドスパッタ法、メカノケミカルプロセス法等、スクリーン印刷法、近接昇華法、MOCVD(Metal Organic Chemical Vapor Deposition)法およびスプレー法(ウェット成膜法)等が挙げられ、これらの中でも、多元蒸着法が好ましく、3段階法がより好ましい。 As a method for forming the p-type semiconductor layer 26 (CIGS compound semiconductor), for example, a multi-source deposition method (preferably a three-step method), a selenization method, a sputtering method, a hybrid sputtering method, a mechanochemical process method, a screen printing method, Examples include a proximity sublimation method, a MOCVD (Metal Organic Chemical Vapor Deposition) method and a spray method (wet film forming method). Among these, a multi-source deposition method is preferable, and a three-stage method is more preferable.
 p型半導体層26の膜厚は、0.5~3.0μmが好ましく、1.0~2.0μmがより好ましい。 The film thickness of the p-type semiconductor layer 26 is preferably 0.5 to 3.0 μm, more preferably 1.0 to 2.0 μm.
 n型半導体層28は、上述のようにp型半導体層26との界面でpn接合を形成するものである。また、n型半導体層28は、入射した光Lをp型半導体層26に到達させるため、光Lが透過する層であるのが好ましい。
 n型半導体層28を構成する材料としては、例えば、Cd、Zn、SnおよびInからなる群より選ばれる少なくとも1種の金属元素を含む金属硫化物が挙げられる。金属硫化物は、1種単独で用いても2種以上を併用してもよい。
 金属硫化物としては、例えば、CdS、ZnS、Zn(S,O)、Zn(S,O,OH)、In、SnS、および、SnSSe1-x(Xは0以上1未満の数値を表す。)が挙げられ、CdSおよびZnSが好ましく、CdSがより好ましい。特に、CdSは、CIGS化合物半導体との格子整合の観点から好ましい。この場合、CIGS化合物半導体上にCdSを格子整合させた状態(エピタキシャル)で成膜でき、接合界面の欠陥を減らすことができる。
 n型半導体層28の膜厚は、10nm~2μmが好ましく、15~200nmがより好ましい。
 n型半導体層28の形成には、例えば、化学浴析出法(以下、CBD法という)が用いられる。
 なお、n型半導体層28上に、例えば、窓層を設けてもよい。この窓層は、例えば、厚み10nm程度のZnO層で構成される。
The n-type semiconductor layer 28 forms a pn junction at the interface with the p-type semiconductor layer 26 as described above. Further, the n-type semiconductor layer 28 is preferably a layer through which the light L is transmitted so that the incident light L reaches the p-type semiconductor layer 26.
Examples of the material constituting the n-type semiconductor layer 28 include metal sulfides containing at least one metal element selected from the group consisting of Cd, Zn, Sn, and In. A metal sulfide may be used individually by 1 type, or may use 2 or more types together.
Examples of the metal sulfide include CdS, ZnS, Zn (S, O), Zn (S, O, OH), In 2 S 3 , SnS, and SnS x Se 1-x (X is 0 or more and less than 1) CdS and ZnS are preferable, and CdS is more preferable. In particular, CdS is preferable from the viewpoint of lattice matching with a CIGS compound semiconductor. In this case, the film can be formed in a state (epitaxial) in which CdS is lattice-matched on the CIGS compound semiconductor, and defects at the junction interface can be reduced.
The film thickness of the n-type semiconductor layer 28 is preferably 10 nm to 2 μm, more preferably 15 to 200 nm.
For the formation of the n-type semiconductor layer 28, for example, a chemical bath deposition method (hereinafter referred to as CBD method) is used.
For example, a window layer may be provided on the n-type semiconductor layer 28. This window layer is composed of, for example, a ZnO layer having a thickness of about 10 nm.
(助触媒)
 助触媒32は、半導体層29上、すなわち、n型半導体層28の表面28aに形成されている。助触媒32は、カソード電極20のオンセットポテンシャルおよび光電流密度をより良好にできる。
 助触媒32は、n型半導体層28の表面全体に形成されていてもよく、点在するように島状に形成されていてもよい。
 助触媒32を構成する材料としては、例えば、Pt、Pd、Ni、Au、Ag、Ru、Cu、Co、Rh、IrまたはMn等により構成される単体、およびそれらを組み合わせた合金、ならびにその酸化物が挙げられる。これらの中でも、本発明の効果がより発揮される点から、Pt、RhまたはRuが好ましい。
 助触媒32のサイズは、特に限定されるものではなく、0.5nm~1μmであり、高さが数nm程度であるのが好ましい。
 助触媒32は、例えば、塗布焼成法、光電着法、真空蒸着法、スパッタ法または含浸法等により形成できる。
(Cocatalyst)
The co-catalyst 32 is formed on the semiconductor layer 29, that is, on the surface 28 a of the n-type semiconductor layer 28. The co-catalyst 32 can improve the onset potential and photocurrent density of the cathode electrode 20.
The co-catalyst 32 may be formed on the entire surface of the n-type semiconductor layer 28, or may be formed in an island shape so as to be scattered.
Examples of the material constituting the co-catalyst 32 include simple substances composed of Pt, Pd, Ni, Au, Ag, Ru, Cu, Co, Rh, Ir, Mn, etc., alloys combining them, and oxidation thereof. Things. Among these, Pt, Rh, or Ru is preferable because the effects of the present invention are more exhibited.
The size of the co-catalyst 32 is not particularly limited, and is preferably 0.5 nm to 1 μm, and the height is preferably about several nm.
The co-catalyst 32 can be formed by, for example, a coating baking method, a photo-deposition method, a vacuum deposition method, a sputtering method, an impregnation method, or the like.
(カソード電極に含まれ得る他の部材)
 カソード電極20は、n型半導体層28と助触媒32との間に金属層(図示せず)を有していてもよい。この場合、助触媒32は、金属層の表面に形成される。
 金属層は、n型半導体層28の表層に導電性を付与できる。そのため、半導体層29で生成したキャリア(電子)が、金属層によって助触媒32側に容易に移動できる。
 金属層は、4族以上の遷移金属で構成することが好ましい。4族以上の遷移金属としては、例えば、Ti、Zr、Mo、TaおよびWが挙げられる。
 なお、金属層の厚みは、8nm以下が好ましく、6nm以下がより好ましい。金属層の下限は、上述の機能を良好に発揮でき、かつ製造上可能な厚みであれば、特に限定されない。
 金属層は、例えば、スパッタ法、真空蒸着法、および電子ビーム蒸着法等で形成できる。
(Other members that can be included in the cathode electrode)
The cathode electrode 20 may have a metal layer (not shown) between the n-type semiconductor layer 28 and the promoter 32. In this case, the promoter 32 is formed on the surface of the metal layer.
The metal layer can impart conductivity to the surface layer of the n-type semiconductor layer 28. Therefore, carriers (electrons) generated in the semiconductor layer 29 can easily move to the promoter 32 side by the metal layer.
The metal layer is preferably composed of a transition metal of group 4 or higher. Examples of the group 4 or higher transition metal include Ti, Zr, Mo, Ta, and W.
In addition, the thickness of the metal layer is preferably 8 nm or less, and more preferably 6 nm or less. The lower limit of the metal layer is not particularly limited as long as the above-described function can be satisfactorily exhibited and the thickness is manufacturable.
The metal layer can be formed by, for example, a sputtering method, a vacuum evaporation method, an electron beam evaporation method, or the like.
 カソード電極20は、上記以外の他の層を有していてもよい。他の層としては、例えば、光触媒電極32上に形成可能な表面保護層が挙げられる。 The cathode electrode 20 may have a layer other than the above. Examples of the other layer include a surface protective layer that can be formed on the photocatalytic electrode 32.
 なお、図1において、カソード電極20が、絶縁基板12を有する態様を例に挙げて説明したが、本発明の効果が発揮できるのであれば、これらの部材のうち、いずれかの部材を有していなくてもよい。 In addition, in FIG. 1, although the cathode electrode 20 gave and demonstrated the example which has the insulating substrate 12, as long as the effect of this invention can be exhibited, it has either of these members. It does not have to be.
<隔膜>
 隔膜30は、電解水溶液Sに含まれるイオンがアノード電極室42およびカソード電極室44に自由に出入りできるが、アノード電極10で発生した気体とカソード電極20で発生した気体とが混合しないように、アノード電極10とカソード電極20との間に配置されている。
 隔膜30を構成する材料としては、特に限定されず、公知のイオン交換膜などが挙げられる。
 なお、図1では、隔膜30が設けられている例を示したが、これに限定されず、隔膜30が設けられていなくてもよい。
<Diaphragm>
The diaphragm 30 allows ions contained in the electrolytic aqueous solution S to freely enter and exit the anode electrode chamber 42 and the cathode electrode chamber 44, but the gas generated in the anode electrode 10 and the gas generated in the cathode electrode 20 are not mixed. It is arranged between the anode electrode 10 and the cathode electrode 20.
The material constituting the diaphragm 30 is not particularly limited, and examples thereof include known ion exchange membranes.
In addition, although the example provided with the diaphragm 30 was shown in FIG. 1, it is not limited to this, The diaphragm 30 may not be provided.
<その他の構成>
 アノード電極10で発生した気体は、アノード電極室42と接続された図示しない配管から回収できる。カソード電極20で発生した気体は、カソード電極室44と接続された図示しない配管から回収できる。
 図示していないが、槽40には、電解水溶液Sを供給するための供給管およびポンプなどが接続されていてもよい。
<Other configurations>
The gas generated in the anode electrode 10 can be recovered from a pipe (not shown) connected to the anode electrode chamber 42. The gas generated at the cathode electrode 20 can be recovered from a pipe (not shown) connected to the cathode electrode chamber 44.
Although not shown, the tank 40 may be connected to a supply pipe for supplying the electrolytic aqueous solution S, a pump, and the like.
 図1では、槽40内が電解水溶液Sで満たされた例を示したが、これに限定されず、水分解装置の駆動時に槽40内を電解水溶液Sで満たせばよい。
 図1では、アノード電極10およびカソード電極20がいずれも、光触媒電極である場合を示したが、これに限定されず、カソード電極20のみが光触媒電極であってもよい。
Although FIG. 1 shows an example in which the tank 40 is filled with the electrolytic aqueous solution S, the present invention is not limited to this, and the tank 40 may be filled with the electrolytic aqueous solution S when the water splitting apparatus is driven.
Although FIG. 1 shows a case where both the anode electrode 10 and the cathode electrode 20 are photocatalytic electrodes, the present invention is not limited to this, and only the cathode electrode 20 may be a photocatalytic electrode.
 図1では、アノード電極10、隔膜30およびカソード電極20が、光Lの進行方向と交差する方向に沿ってこの順に配置されている例を示したが、これに限定されず、本発明の水分解装置は、図2に示す構造であってもよい。
 図2は、本発明の水分解装置の一実施形態である水分解装置100を模式的に示す側面図である。水分解装置100は、光Lの照射によってアノード電極110およびカソード電極120から気体を発生させる装置である。具体的には、光Lによって水が分解して、アノード電極110から酸素が発生し、カソード電極120から水素が発生する。
 図3に示すように、水分解装置100は、電解水溶液Sで満たされた槽40と、槽40内に配置されたアノード電極110およびカソード電極120と、アノード電極110とカソード電極120との間であって槽40内に配置された隔膜30と、を有する。アノード電極110、隔膜30およびカソード電極120は、光Lの進行方向に沿って、この順に配置されている。水分解装置100は、アノード電極110の配置、カソード電極120の配置、および光Lの照射方向が図1の水分解装置1と相違する以外は、水分解装置1と同様であるので、異なる部分について主に説明する。
Although FIG. 1 shows an example in which the anode electrode 10, the diaphragm 30 and the cathode electrode 20 are arranged in this order along the direction intersecting the traveling direction of the light L, the present invention is not limited to this, and the water of the present invention is not limited thereto. The decomposition apparatus may have a structure shown in FIG.
FIG. 2 is a side view schematically showing a water splitting device 100 which is an embodiment of the water splitting device of the present invention. The water splitting device 100 is a device that generates gas from the anode electrode 110 and the cathode electrode 120 by irradiation with light L. Specifically, water is decomposed by the light L, oxygen is generated from the anode electrode 110, and hydrogen is generated from the cathode electrode 120.
As shown in FIG. 3, the water splitting apparatus 100 includes a tank 40 filled with an electrolytic aqueous solution S, an anode electrode 110 and a cathode electrode 120 disposed in the tank 40, and a gap between the anode electrode 110 and the cathode electrode 120. And the diaphragm 30 disposed in the tank 40. The anode electrode 110, the diaphragm 30 and the cathode electrode 120 are arranged in this order along the traveling direction of the light L. The water decomposition apparatus 100 is the same as the water decomposition apparatus 1 except that the arrangement of the anode electrode 110, the arrangement of the cathode electrode 120, and the irradiation direction of the light L are different from the water decomposition apparatus 1 in FIG. Is mainly described.
 アノード電極110は、光Lが照射される側から、第1光触媒層116、第1導電層114および第1基板112の順になるように、槽40内に配置されている。
 カソード電極120は、光Lが照射される側から、助触媒132と、n型半導体層128と、p型半導体層126と、導電層124と、絶縁基板122とが、この順になるように、槽40内に配置されている。なお、p型半導体層126とn型半導体層128とで半導体層129が構成される。
 アノード電極110およびカソード電極120は、単位面積当たりの入射光量が大きくなるように傾けて配置されている。
 水分解装置100において、第1基板112および第1導電層114は、カソード電極120に光Lを入射させるために、透明であるのが好ましい。これにより、第1光触媒層116が吸収できなかった光を、カソード電極120が利用できるので、単位面積あたりの光の利用効率が向上するという利点がある。
 本発明において「透明」とは、波長380nm~780nmの領域における光透過率が60%以上であるのを意味する。光透過率は分光光度計により測定される。分光光度計としては、例えば、紫外可視分光光度計である日本分光社製のV-770(製品名)が用いられる。
The anode electrode 110 is disposed in the tank 40 so that the first photocatalyst layer 116, the first conductive layer 114, and the first substrate 112 are arranged in this order from the side irradiated with the light L.
The cathode electrode 120 is arranged so that the promoter 132, the n-type semiconductor layer 128, the p-type semiconductor layer 126, the conductive layer 124, and the insulating substrate 122 are in this order from the side irradiated with the light L. It is arranged in the tank 40. Note that the semiconductor layer 129 includes the p-type semiconductor layer 126 and the n-type semiconductor layer 128.
The anode electrode 110 and the cathode electrode 120 are arranged so as to be inclined so that the amount of incident light per unit area is large.
In the water splitting apparatus 100, the first substrate 112 and the first conductive layer 114 are preferably transparent so that the light L is incident on the cathode electrode 120. Thereby, since the cathode electrode 120 can use the light that the first photocatalyst layer 116 could not absorb, there is an advantage that the light use efficiency per unit area is improved.
In the present invention, “transparent” means that the light transmittance in a wavelength region of 380 nm to 780 nm is 60% or more. The light transmittance is measured with a spectrophotometer. As the spectrophotometer, for example, V-770 (product name) manufactured by JASCO Corporation, which is an ultraviolet-visible spectrophotometer, is used.
 本発明の水分解用光触媒電極は、Cu、In、GaおよびSeを含むCIGS化合物半導体を含む半導体層を有し、CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.4~0.8である。本発明の水分解用光触媒電極の詳細は、水分解装置1におけるカソード電極20で説明した通りであるのでその説明を省略する。 The photocatalytic electrode for water splitting of the present invention has a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se, and the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8. The details of the photocatalytic electrode for water splitting according to the present invention are the same as those described for the cathode electrode 20 in the water splitting apparatus 1, and therefore the description thereof is omitted.
[第2実施形態]
 本発明の水分解装置の一実施形態は、水素発生用の光触媒電極および酸素発生用の光触媒電極に光を照射することによって、上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極から気体を発生させる水分解装置であって、電解水溶液を満たすための槽と、上記槽内に配置された上記水素発生用の光触媒電極および上記酸素発生用の光触媒電極と、を有し、上記水素発生用の光触媒電極が、p型半導体層と、上記p型半導体層上に設けられたn型半導体層と、上記n型半導体層の上に設けられた助触媒を有し、上記p型半導体層の伝導帯の下端のポテンシャルp-CBMと、上記n型半導体層の伝導帯の下端のポテンシャルn-CBMと、の差であるバンドオフセットΔEが以下の関係を満たす。
  ΔE=(n-CBM)-(p-CBM)≦0.1[eV]
[Second Embodiment]
One embodiment of the water splitting device of the present invention is configured to irradiate light from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation. A water splitting device for filling the electrolytic aqueous solution, the hydrogen generating photocatalyst electrode and the oxygen generating photocatalyst electrode disposed in the tank, and the hydrogen generation The photocatalytic electrode for use has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer, and the p-type semiconductor layer The band offset ΔE, which is the difference between the potential p-CBM at the lower end of the conduction band of n and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, satisfies the following relationship.
ΔE = (n−CBM) − (p−CBM) ≦ 0.1 [eV]
 第2実施形態の水分解装置における光触媒電極(具体的には、水素発生用の光触媒電極)は、優れたオンセットポテンシャルを示す。この理由の詳細は明らかになっていないが、概ね以下の理由によるものと推測される。
 すなわち、ΔEが0.1eV以下であれば、キャリア輸送が阻害されにくくなる。そのため、第2実施形態の水分解装置における光触媒電極は、優れたオンセットポテンシャルを示すものになったと推測される。
 第2実施形態において、ΔEは、0.1eV以下であり、光触媒電極のオンセットポテンシャルがより優れる点から、0eV以下がより好ましい。また、ΔEの下限値は、-0.5eV以上が好ましい。
The photocatalytic electrode (specifically, the photocatalytic electrode for hydrogen generation) in the water splitting device of the second embodiment exhibits an excellent onset potential. Although the details of this reason are not clear, it is presumed that the reason is as follows.
That is, if ΔE is 0.1 eV or less, carrier transport is hardly inhibited. Therefore, it is estimated that the photocatalytic electrode in the water splitting device of the second embodiment has an excellent onset potential.
In 2nd Embodiment, (DELTA) E is 0.1 eV or less, and 0 eV or less is more preferable from the point which the onset potential of a photocatalyst electrode is more excellent. Further, the lower limit of ΔE is preferably −0.5 eV or more.
 第2実施形態におけるp型半導体層は、ΔEを0.1eV以下にできるのであれば、特に限定されないが、ΔEを0.1eV以下にするのが容易である点から、第1実施形態で説明したp型半導体層を用いるのが好ましい。
 第2実施形態におけるn型半導体層は、ΔEを0.1eV以下にできるのであれば、特に限定されないが、ΔEを0.1eV以下にするのが容易である点から、第1実施形態で説明したn型半導体層を用いるのが好ましい。
The p-type semiconductor layer in the second embodiment is not particularly limited as long as ΔE can be made 0.1 eV or less, but will be described in the first embodiment because ΔE can be easily made 0.1 eV or less. It is preferable to use the p-type semiconductor layer.
The n-type semiconductor layer in the second embodiment is not particularly limited as long as ΔE can be made 0.1 eV or less, but will be described in the first embodiment because ΔE can be easily made 0.1 eV or less. It is preferable to use the n-type semiconductor layer.
 第2実施形態の水分解装置において、p型半導体層およびn型半導体層以外の構成は、第1実施形態の水分解装置と同様であるので、その説明を省略する。 In the water decomposing apparatus of the second embodiment, since the configuration other than the p-type semiconductor layer and the n-type semiconductor layer is the same as that of the water decomposing apparatus of the first embodiment, the description thereof is omitted.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
[実施例1]
 実施例1の光触媒電極を次のようにして作製した。
 まず、マグネトロンスパッタ装置(製品名「CFS-12P」、芝浦エレテック社製)を用いたDC(直流)マグネトロンスパッタリング法によって、ソーダライムガラス基板(絶縁基板)の表面に、厚み600nmのMoからなる層(導電層)を形成した。
 次に、導電層の表面に、多元蒸着装置(製品名「EW-10」、エイコーエンジニアリング社製)を用いた3段階法によって、厚み2μmのCIGS化合物半導体からなる層(p型半導体層)を形成した。具体的には、蒸着源として、Cu、In、GaおよびSeを用いて、1段目の基板温度を400℃、2段目および3段目の基板温度を520℃とした。Ga比(Ga/(Ga+In))は、GaとInの蒸着速度を制御して調整した。
 次に、p型半導体層の表面に、1.5mMのCdSO、1.5MのNHOH、7.5mMのチオ尿素水溶液を用いた化学浴析出法(CBD法)によって、厚み70nmのCdSからなる層(n型半導体層)を作製した。なお、CBD法は70℃で40分間行った。
 次に、n型半導体層の表面に、マグネトロンスパッタ装置(製品名「MSP-30T」、真空デバイス社製)を用いたDCマグネトロンスパッタリング法によって、サイズが0.5nmのPtからなる粒子(助触媒)を担持させた。
 このようにして、図1の光触媒電極10と同様の構造をもつ、実施例1の光触媒電極(水素発生用の光触媒電極)を得た。
[Example 1]
The photocatalytic electrode of Example 1 was produced as follows.
First, a layer made of Mo having a thickness of 600 nm is formed on the surface of a soda lime glass substrate (insulating substrate) by a DC (direct current) magnetron sputtering method using a magnetron sputtering apparatus (product name “CFS-12P”, manufactured by Shibaura Eletech Corporation). (Conductive layer) was formed.
Next, a layer made of CIGS compound semiconductor (p-type semiconductor layer) having a thickness of 2 μm is formed on the surface of the conductive layer by a three-stage method using a multi-source deposition apparatus (product name “EW-10”, manufactured by Eiko Engineering Co., Ltd.). Formed. Specifically, Cu, In, Ga, and Se were used as the evaporation source, and the first stage substrate temperature was 400 ° C., and the second and third stage substrate temperatures were 520 ° C. The Ga ratio (Ga / (Ga + In)) was adjusted by controlling the deposition rate of Ga and In.
Next, CdS having a thickness of 70 nm is formed on the surface of the p-type semiconductor layer by a chemical bath deposition method (CBD method) using 1.5 mM CdSO 4 , 1.5 M NH 4 OH, and 7.5 mM thiourea aqueous solution. A layer made of (n-type semiconductor layer) was prepared. The CBD method was performed at 70 ° C. for 40 minutes.
Next, particles (co-catalyst) having a size of 0.5 nm are formed on the surface of the n-type semiconductor layer by a DC magnetron sputtering method using a magnetron sputtering apparatus (product name “MSP-30T”, manufactured by Vacuum Device Inc.). ) Was supported.
Thus, the photocatalyst electrode of Example 1 (photocatalyst electrode for hydrogen generation) having the same structure as the photocatalyst electrode 10 of FIG. 1 was obtained.
[実施例2~5、比較例1]
 p型半導体層を形成する際に、GaとInの蒸着速度を適宜変更して、Ga比が表1に示す値になるようにした以外は、実施例1の光触媒電極の作製と同様にして、実施例2~5および比較例1の光触媒電極(水素発生用の光触媒電極)を得た。
[Examples 2 to 5, Comparative Example 1]
When forming the p-type semiconductor layer, the vapor deposition rate of Ga and In was changed as appropriate so that the Ga ratio became the value shown in Table 1, and the same as the production of the photocatalytic electrode of Example 1. The photocatalyst electrodes of Examples 2 to 5 and Comparative Example 1 (photocatalyst electrodes for hydrogen generation) were obtained.
[Ga比の測定]
 高周波誘導結合プラズマ発光分光分析法(ICP-AES)を測定原理とする装置(製品名「ICP-AES 8100」、島津製作所製)を用いて、p型半導体層(CIGS化合物半導体)の全体的な元素分析を行って、GaおよびInのモル量を算出し、得られたモル量から、Ga比(Ga/(Ga+In))を算出した。具体的には、上記のp型半導体層に含まれるCIGS化合物半導体を適切な溶解液(フッ酸)で溶解させて、定量測定を行った。結果を表1に示す。
[Measurement of Ga ratio]
Using an apparatus (product name “ICP-AES 8100”, manufactured by Shimadzu Corporation) whose measurement principle is high frequency inductively coupled plasma optical emission spectrometry (ICP-AES), the entire p-type semiconductor layer (CIGS compound semiconductor) Elemental analysis was performed to calculate the molar amount of Ga and In, and the Ga ratio (Ga / (Ga + In)) was calculated from the molar amount obtained. Specifically, the CIGS compound semiconductor contained in the p-type semiconductor layer was dissolved with an appropriate solution (hydrofluoric acid), and quantitative measurement was performed. The results are shown in Table 1.
[評価試験]
<オンセットポテンシャル測定>
 作製した光触媒電極のオンセットポテンシャルの評価は、ポテンショスタット(製品名「HZ-7000」、北斗電工製)を用いた3電極系での電気化学測定により行った。
 具体的には、パイレックスガラス製の電気化学セルを用い、作用極として上記実施例および比較例の各光触媒電極、参照極にAg/AgCl電極、対極にPtワイヤーを用いた。電解水溶液には、0.5Mの硫酸ナトリウム、0.25Mのリン酸二水素ナトリウムおよび0.25Mのリン酸水素二ナトリウムを含む水溶液を用いた。
 電気化学セル内部はアルゴンで満たし、かつ、測定前に十分にバブリングを行うことによって溶存する酸素、二酸化炭素を除去した。
 光源には、ソーラーシミュレータ(AM1.5G)(製品名「XES-70S1」、三永電機製作所製)を用いた。
 そして、20mV/sで0V(vs.RHE)から0.8V(vs.RHE)まで掃引して、上記ソーラーシュミレータによる疑似太陽光照射下における電流電位曲線を得た。
 得られたオンセットポテンシャルの値に基づいて、以下の評価基準により評価を行った。評価結果を表1に示す。
 A:オンセットポテンシャルの値が0.6V(vs.RHE)以上
 B:オンセットポテンシャルの値が0.6V(vs.RHE)未満
[Evaluation test]
<Onset potential measurement>
The onset potential of the produced photocatalytic electrode was evaluated by electrochemical measurement using a three-electrode system using a potentiostat (product name “HZ-7000”, manufactured by Hokuto Denko).
Specifically, a Pyrex glass electrochemical cell was used, the photocatalyst electrodes of the above examples and comparative examples were used as the working electrode, the Ag / AgCl electrode was used as the reference electrode, and the Pt wire was used as the counter electrode. As the electrolytic aqueous solution, an aqueous solution containing 0.5 M sodium sulfate, 0.25 M sodium dihydrogen phosphate and 0.25 M disodium hydrogen phosphate was used.
The inside of the electrochemical cell was filled with argon, and dissolved oxygen and carbon dioxide were removed by sufficiently bubbling before measurement.
As a light source, a solar simulator (AM1.5G) (product name “XES-70S1”, manufactured by Mitsunaga Electric Mfg. Co., Ltd.) was used.
Then, it was swept from 0 V (vs. RHE) to 0.8 V (vs. RHE) at 20 mV / s to obtain a current-potential curve under pseudo-sunlight irradiation by the solar simulator.
Based on the value of the obtained onset potential, evaluation was performed according to the following evaluation criteria. The evaluation results are shown in Table 1.
A: Onset potential value is 0.6 V (vs. RHE) or more B: Onset potential value is less than 0.6 V (vs. RHE)
<光電流密度>
 上記オンセットポテンシャル測定で得られた電流電圧曲線から、0.6V(vs.RHE)における光電流密度(mA/cm)を読み取り、以下の評価基準により評価を行った。評価結果を表1に示す。
 A:光電流密度が4mA/cm以上
 B:光電流密度が0mA/cm超4mA/cm未満
 C:光電流密度が0mA/cm以下
<Photocurrent density>
The photocurrent density (mA / cm 2 ) at 0.6 V (vs. RHE) was read from the current-voltage curve obtained by the onset potential measurement, and evaluated according to the following evaluation criteria. The evaluation results are shown in Table 1.
A: photocurrent density 4mA / cm 2 or more B: less than photocurrent density 0 mA / cm 2 ultra 4mA / cm 2 C: photocurrent density 0 mA / cm 2 or less
<バンドオフセットΔE>
 大気中光電子分光装置(製品名「AC-3」、理研計器社製)を用いて、作製した光触媒電極のp型半導体層の価電子帯の上端のポテンシャルを求めた。また、紫外可視分光光度計(製品名「V-770」、日本分光社製)を用いて、作製した光触媒電極のp型半導体層のバンドギャップの値を求めた。このようにして得たp型半導体層の価電子帯の上端のポテンシャルにバンドギャップの値を加えて、光触媒電極におけるp型半導体層のp-CBMを求めた。
 また、n型半導体層を用いた以外はp-CBMの測定と同様にして、光触媒電極におけるn型半導体層のn-CBMを求めた。
 得られたp-CBMとn-CBMの値からΔEを求めた。結果を表1に示す。
<Band offset ΔE>
Using the atmospheric photoelectron spectrometer (product name “AC-3”, manufactured by Riken Keiki Co., Ltd.), the potential at the upper end of the valence band of the p-type semiconductor layer of the produced photocatalytic electrode was determined. In addition, the band gap value of the p-type semiconductor layer of the produced photocatalytic electrode was determined using an ultraviolet-visible spectrophotometer (product name “V-770”, manufactured by JASCO Corporation). The band gap value was added to the potential at the upper end of the valence band of the p-type semiconductor layer thus obtained to obtain the p-CBM of the p-type semiconductor layer in the photocatalytic electrode.
In addition, the n-CBM of the n-type semiconductor layer in the photocatalytic electrode was determined in the same manner as the p-CBM measurement except that the n-type semiconductor layer was used.
ΔE was determined from the obtained p-CBM and n-CBM values. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Ga比が0.4~0.8であるCIGS化合物半導体を含む半導体層を有する光触媒電極を用いれば、オンセットポテンシャルに優れることが確認できた(実施例1~5)。
 また、表1に示すように、ΔEが0.1eV以下である光触媒電極を用いれば、オンセットポテンシャルに優れることが確認できた(実施例1~5)。
 また、実施例1~5の対比から、Ga比が0.5~0.6であるCIGS化合物半導体を含む半導体層を有する光触媒電極を用いれば(実施例2および実施例3)、光電流密度に優れることが確認できた。
 一方で、表1に示すように、Ga比が0.4未満であるCIGS化合物半導体を含む半導体層を有する光触媒電極を用いると、オンセットポテンシャルが劣ることが確認できた(比較例1)。
As shown in Table 1, when a photocatalytic electrode having a semiconductor layer containing a CIGS compound semiconductor having a Ga ratio of 0.4 to 0.8 was used, it was confirmed that the onset potential was excellent (Examples 1 to 5). ).
In addition, as shown in Table 1, it was confirmed that if a photocatalytic electrode having ΔE of 0.1 eV or less was used, the onset potential was excellent (Examples 1 to 5).
Further, in comparison with Examples 1 to 5, if a photocatalytic electrode having a semiconductor layer containing a CIGS compound semiconductor having a Ga ratio of 0.5 to 0.6 is used (Example 2 and Example 3), the photocurrent density It was confirmed that it was excellent.
On the other hand, as shown in Table 1, when a photocatalytic electrode having a semiconductor layer containing a CIGS compound semiconductor with a Ga ratio of less than 0.4 was used, it was confirmed that the onset potential was inferior (Comparative Example 1).
 1,100 装置
 10,110 アノード電極
 12,112 第1基板
 14,114 第1導電層
 16,116 第1光触媒層
 20,120 カソード電極
 22,122 絶縁基板
 22a、24a、26a、28a 表面
 24,124 導電層
 26,126 p型半導体層
 28,128 n型半導体層
 29,129 半導体層
 30 隔膜
 32,132 助触媒
 40 槽
 42 アノード電極室
 44 カソード電極室
 50 導線
 S 電解液
 L 光
DESCRIPTION OF SYMBOLS 1,100 Apparatus 10,110 Anode electrode 12,112 1st board | substrate 14,114 1st conductive layer 16,116 1st photocatalyst layer 20,120 Cathode electrode 22,122 Insulation board | substrate 22a, 24a, 26a, 28a Surface 24,124 Conductive layer 26, 126 p-type semiconductor layer 28, 128 n- type semiconductor layer 29, 129 semiconductor layer 30 diaphragm 32, 132 promoter 40 tank 42 anode electrode chamber 44 cathode electrode chamber 50 conducting wire S electrolyte L light

Claims (6)

  1.  水素発生用の光触媒電極および酸素発生用の光触媒電極に光を照射することによって、前記水素発生用の光触媒電極および前記酸素発生用の光触媒電極から気体を発生させる水分解装置であって、
     電解水溶液を満たすための槽と、
     前記槽内に配置された前記水素発生用の光触媒電極および前記酸素発生用の光触媒電極と、を有し、
     前記水素発生用の光触媒電極が、p型半導体層と、前記p型半導体層上に設けられたn型半導体層と、前記n型半導体層の上に設けられた助触媒を有し、
     前記p型半導体層が、Cu、In、GaおよびSeを含むCIGS化合物半導体を含む半導体層であり、
     前記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.4~0.8である、水分解装置。
    A water splitting device that generates gas from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation,
    A tank for filling the electrolytic solution;
    The hydrogen generating photocatalytic electrode and the oxygen generating photocatalytic electrode disposed in the tank,
    The photocatalytic electrode for hydrogen generation has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer;
    The p-type semiconductor layer is a semiconductor layer containing a CIGS compound semiconductor containing Cu, In, Ga and Se;
    The water splitting device, wherein the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8.
  2.  前記n型半導体層がCdSを含む、請求項1に記載の水分解装置。 The water splitting device according to claim 1, wherein the n-type semiconductor layer contains CdS.
  3.  さらに、前記n型半導体層と前記助触媒との間に設けられた金属層を有する、請求項1または2に記載の水分解装置。 The water splitting device according to claim 1 or 2, further comprising a metal layer provided between the n-type semiconductor layer and the promoter.
  4.  前記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.5~0.7である、請求項1~3のいずれか1項に記載の水分解装置。 The water splitting device according to any one of claims 1 to 3, wherein a molar ratio of Ga to a total molar amount of Ga and In in the CIGS compound semiconductor is 0.5 to 0.7.
  5.  水素発生用の光触媒電極および酸素発生用の光触媒電極に光を照射することによって、前記水素発生用の光触媒電極および前記酸素発生用の光触媒電極から気体を発生させる水分解装置であって、
     電解水溶液を満たすための槽と、
     前記槽内に配置された前記水素発生用の光触媒電極および前記酸素発生用の光触媒電極と、を有し、
     前記水素発生用の光触媒電極が、p型半導体層と、前記p型半導体層上に設けられたn型半導体層と、前記n型半導体層の上に設けられた助触媒を有し、
     前記p型半導体層の伝導帯の下端のポテンシャルp-CBMと、前記n型半導体層の伝導帯の下端のポテンシャルn-CBMと、の差であるバンドオフセットΔEが以下の関係を満たす、水分解装置。
      ΔE=(n-CBM)-(p-CBM)≦0.1[eV]
    A water splitting device that generates gas from the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation by irradiating light to the photocatalyst electrode for hydrogen generation and the photocatalyst electrode for oxygen generation,
    A tank for filling the electrolytic solution;
    The hydrogen generating photocatalytic electrode and the oxygen generating photocatalytic electrode disposed in the tank,
    The photocatalytic electrode for hydrogen generation has a p-type semiconductor layer, an n-type semiconductor layer provided on the p-type semiconductor layer, and a promoter provided on the n-type semiconductor layer;
    Water splitting in which the band offset ΔE, which is the difference between the potential p-CBM at the lower end of the conduction band of the p-type semiconductor layer and the potential n-CBM at the lower end of the conduction band of the n-type semiconductor layer, satisfies the following relationship: apparatus.
    ΔE = (n−CBM) − (p−CBM) ≦ 0.1 [eV]
  6.  Cu、In、GaおよびSeを含むCIGS化合物半導体を含む半導体層を有し、
     前記CIGS化合物半導体中のGaおよびInの合計モル量に対する、Gaのモル比が、0.4~0.8である、水分解用光触媒電極。
    A semiconductor layer including a CIGS compound semiconductor including Cu, In, Ga, and Se;
    The photocatalytic electrode for water splitting, wherein the molar ratio of Ga to the total molar amount of Ga and In in the CIGS compound semiconductor is 0.4 to 0.8.
PCT/JP2019/007233 2018-03-06 2019-02-26 Photocatalytic electrode for electrolysis and electrolysis device WO2019172014A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020504938A JP7026773B2 (en) 2018-03-06 2019-02-26 Photocatalytic electrode for water splitting and water splitting device
CN201980017033.8A CN111836779A (en) 2018-03-06 2019-02-26 Photocatalyst electrode for water splitting and water splitting apparatus
US17/002,059 US20200385873A1 (en) 2018-03-06 2020-08-25 Photocatalytic electrode for water splitting and water splitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040134 2018-03-06
JP2018-040134 2018-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/002,059 Continuation US20200385873A1 (en) 2018-03-06 2020-08-25 Photocatalytic electrode for water splitting and water splitting device

Publications (1)

Publication Number Publication Date
WO2019172014A1 true WO2019172014A1 (en) 2019-09-12

Family

ID=67846515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007233 WO2019172014A1 (en) 2018-03-06 2019-02-26 Photocatalytic electrode for electrolysis and electrolysis device

Country Status (4)

Country Link
US (1) US20200385873A1 (en)
JP (1) JP7026773B2 (en)
CN (1) CN111836779A (en)
WO (1) WO2019172014A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022187124A (en) * 2021-06-07 2022-12-19 株式会社日立製作所 hydrogen generation cell
CN113471420A (en) * 2021-06-23 2021-10-01 绍兴铋华科技有限公司 Bismuth tungstate coated lithium iron phosphate cathode material and preparation method thereof
WO2023283687A1 (en) * 2021-07-15 2023-01-19 Australian National University A photoelectrode and method for fabrication thereof
CN113755880B (en) * 2021-09-15 2022-08-02 中山大学 Application of ruthenate material in electrocatalytic hydrogen evolution reaction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167652A (en) * 2004-12-17 2006-06-29 Tokyo Univ Of Science Black photocatalyst for forming hydrogen absorbing all visible light
JP2012046385A (en) * 2010-08-27 2012-03-08 Mitsubishi Chemical Holdings Corp Electrode for water decomposition by light, method for producing the same and method for decomposing water
WO2016024452A1 (en) * 2014-08-11 2016-02-18 富士フイルム株式会社 Hydrogen generating electrode and artificial photosynthesis module
WO2016076106A1 (en) * 2014-11-12 2016-05-19 富士フイルム株式会社 Hydrogen generating electrode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106013A (en) * 2011-11-16 2013-05-30 Toshiba Corp Photoelectric conversion element and solar cell
JP5783984B2 (en) * 2012-09-26 2015-09-24 株式会社東芝 Photoelectric conversion element, solar cell, and production method thereof
JP5993768B2 (en) * 2013-03-28 2016-09-14 富士フイルム株式会社 Gas production equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167652A (en) * 2004-12-17 2006-06-29 Tokyo Univ Of Science Black photocatalyst for forming hydrogen absorbing all visible light
JP2012046385A (en) * 2010-08-27 2012-03-08 Mitsubishi Chemical Holdings Corp Electrode for water decomposition by light, method for producing the same and method for decomposing water
WO2016024452A1 (en) * 2014-08-11 2016-02-18 富士フイルム株式会社 Hydrogen generating electrode and artificial photosynthesis module
WO2016076106A1 (en) * 2014-11-12 2016-05-19 富士フイルム株式会社 Hydrogen generating electrode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUMAGAI, H. ET AL.: "Efficient solar hydrogen production from neutral electrolytes using surface-modified Cu(In, Ga)Se2 photocathodes", JOURNAL OF MATERIALS CHEMISTRY A, vol. 3, no. 16, 12 March 2015 (2015-03-12), pages 8300 - 8307, XP055638319 *
SEPTINA, W. ET AL.: "Photosplitting of Water from Wide-Gap Cu(In,Ga)S2 Thin Films Modified with a CdS Layer and Pt Nanoparticles for a High-Onset- Potential Photocathode", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 16, 6 April 2015 (2015-04-06), pages 8576 - 8583, XP055638325 *
SUGIMOTO, MINORI ET AL.: "Photoelectrochemical water splitting reaction using Cu(In, Ga)S2 thin film which is modified surface with an n-type semiconductor", PROCEEDINGS OF THE FORUM A OF 116TH CATALYSIS SOCIETY OF JAPAN MEETING, 9 September 2015 (2015-09-09) *

Also Published As

Publication number Publication date
JP7026773B2 (en) 2022-02-28
CN111836779A (en) 2020-10-27
JPWO2019172014A1 (en) 2021-02-04
US20200385873A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Yao et al. Photoelectrocatalytic materials for solar water splitting
Zhang et al. Scalable low-band-gap Sb2Se3 thin-film photocathodes for efficient visible–near-infrared solar hydrogen evolution
JP7026773B2 (en) Photocatalytic electrode for water splitting and water splitting device
Nasir et al. New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study
Zhang et al. Durable hydrogen evolution from water driven by sunlight using (Ag, Cu) GaSe 2 photocathodes modified with CdS and CuGa 3 Se 5
Alexander et al. Metal oxide photoanodes for solar hydrogen production
US8821700B2 (en) Photoelectrochemical cell and energy system using same
US20200407859A1 (en) Photocatalyst for water splitting, electrode, and water splitting device
US20140374270A1 (en) Electrode for water-splitting reaction and method for producing the same
US8758578B2 (en) Photoelectrochemical cell and energy system using the same
CN109312478B (en) Photocatalyst electrode, artificial photosynthesis module and artificial photosynthesis device
US10384195B2 (en) Artificial photosynthesis module
Kamimura et al. Platinum and indium sulfide-modified Cu 3 BiS 3 photocathode for photoelectrochemical hydrogen evolution
US20180290129A1 (en) Photocatalyst electrode and artificial photosynthesis module
Asakura et al. Activation of a particulate Ta 3 N 5 water-oxidation photoanode with a GaN hole-blocking layer
Bozheyev et al. Thin film transition metal dichalcogenide photoelectrodes for solar hydrogen evolution: a review
Shet Zinc oxide (ZnO) nanostructures for photoelectrochemical water splitting application
Correa et al. Interfacial band alignment and photoelectrochemical properties of all-sputtered BiVO 4/FeNiO x and BiVO 4/FeMnO xp–n heterojunctions
JP6559710B2 (en) Hydrogen generation electrode
Che Mohamad et al. Photocatalytic and Photoelectrochemical Overall Water Splitting
Vishwakarma et al. Exploring the Role of Graphene Oxide as a Co-Catalyst in the CZTS Photocathodes for Improved Photoelectrochemical Properties
Naushad et al. High current density cation-exchanged SnO 2–CdSe/ZnSe and SnO 2–CdSe/SnSe quantum-dot photoelectrochemical cells
JP2020176301A (en) Electrode for hydrogen generation and manufacturing method of electrode for hydrogen generation
US20200040470A1 (en) Artificial photosynthesis module electrode and artificial photosynthesis module
JP2015179768A (en) Photocatalyst electrode for water-splitting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765048

Country of ref document: EP

Kind code of ref document: A1