JP5993768B2 - Gas production equipment - Google Patents

Gas production equipment Download PDF

Info

Publication number
JP5993768B2
JP5993768B2 JP2013068993A JP2013068993A JP5993768B2 JP 5993768 B2 JP5993768 B2 JP 5993768B2 JP 2013068993 A JP2013068993 A JP 2013068993A JP 2013068993 A JP2013068993 A JP 2013068993A JP 5993768 B2 JP5993768 B2 JP 5993768B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen
oxygen
generation
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013068993A
Other languages
Japanese (ja)
Other versions
JP2014189883A (en
JP2014189883A5 (en
Inventor
尚俊 佐藤
尚俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Original Assignee
Fujifilm Corp
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical Fujifilm Corp
Priority to JP2013068993A priority Critical patent/JP5993768B2/en
Priority to CN201480018716.2A priority patent/CN105102683B/en
Priority to AU2014246142A priority patent/AU2014246142B2/en
Priority to PCT/JP2014/057583 priority patent/WO2014156899A1/en
Publication of JP2014189883A publication Critical patent/JP2014189883A/en
Publication of JP2014189883A5 publication Critical patent/JP2014189883A5/ja
Priority to US14/866,387 priority patent/US20160017506A1/en
Application granted granted Critical
Publication of JP5993768B2 publication Critical patent/JP5993768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、ガス製造装置に係り、詳しくは、光を受けて水を分解して水素及び酸素を製造するガス製造装置に関する。   The present invention relates to a gas manufacturing apparatus, and more particularly to a gas manufacturing apparatus that receives light to decompose water and produce hydrogen and oxygen.

従来、再生可能なエネルギーとして太陽光エネルギーを利用する形態の1つとして、太陽電池に使用される光電変換材料を用いて、光電変換で得られる電子と正孔とを水の分解反応に利用して、燃料電池等に用いられる水素を製造する水素製造装置が提案されている(例えば、特許文献1及び2参照)。
特許文献1及び2に開示の水素製造装置は、いずれも、太陽光が入射されると起電力を発生するpn接合を2つ以上直列にした光電変換部又は太陽電池を設け、その上側の太陽光を受光する受光面とは逆の光電変換部又は太陽電池の下側に電解液室を設け、電解室内をイオン伝導性隔壁又は隔膜によって分け、太陽光の受光により光電変換部又は太陽電池で発生する電力により、水を電解して水素を生成することを開示している。
Conventionally, as one form of utilizing solar energy as renewable energy, photoelectric conversion materials used in solar cells are used, and electrons and holes obtained by photoelectric conversion are used for water decomposition reaction. Thus, hydrogen production apparatuses that produce hydrogen used in fuel cells and the like have been proposed (see, for example, Patent Documents 1 and 2).
Each of the hydrogen production apparatuses disclosed in Patent Documents 1 and 2 includes a photoelectric conversion unit or a solar cell in which two or more pn junctions that generate an electromotive force when sunlight is incident are connected in series. An electrolytic solution chamber is provided on the lower side of the photoelectric conversion unit or solar cell opposite to the light receiving surface that receives light, the electrolytic chamber is divided by an ion conductive partition or a diaphragm, and the photoelectric conversion unit or solar cell is received by receiving sunlight. It discloses that water is electrolyzed to generate hydrogen by the generated electric power.

特許文献1に開示の水素製造装置は、さらに、受光面の太陽光に対する向きを調整することができるので、光電変換する入射光の量を多くすることができ、かつ、水素生成効率を低下させることはないとしている。
また、特許文献2に開示の水素製造装置は、太陽電池のp型及びn型半導体に接続された電極板をそれぞれ陽極及び陰極として水を電解しているので、太陽エネルギーから水素への変換効率を高くすることができるとしている。
The hydrogen production apparatus disclosed in Patent Document 1 can further adjust the direction of the light-receiving surface with respect to sunlight, so that the amount of incident light to be subjected to photoelectric conversion can be increased and the hydrogen generation efficiency is reduced. There is no such thing.
Moreover, since the hydrogen production apparatus disclosed in Patent Document 2 electrolyzes water using the electrode plates connected to the p-type and n-type semiconductors of the solar cell as an anode and a cathode, respectively, the conversion efficiency from solar energy to hydrogen It can be raised.

特開2012−177160号公報JP 2012-177160 A 特開2004−197167号公報JP 2004-197167 A

ところで、特許文献1及び2に開示の水素製造装置では、いずれも、光電変換部又は太陽電池の受光面とは逆側、即ち裏面側の電解液室において、水を電解して水素及び酸素を生成しているため、生成された水素や酸素等のガスが光電変換部のガス生成電極や太陽電池の電極板等のガス発生面に付着し、ガス発生面と電解液等の水溶液との間に滞留すると、ガス発生面と水溶液との接触面積が低下するため、水素及び酸素等のガス生成効率を低下させるという問題があった。
特許文献1及び2に開示の水素製造装置は、特に、ガス生成の初期には、高いガス生成効率を発揮するものであっても、時間が経過すると、ガス発生面と電解液等の水溶液との間に滞留するガスの量が増加して、ガス発生面と水溶液との接触面積がさらに低下するため、水素及び酸素等のガス生成効率を大きく低下させてしまい、安定したガス生成ができないという問題があった。
By the way, in the hydrogen production apparatus disclosed in Patent Documents 1 and 2, both of the hydrogen and oxygen are obtained by electrolyzing water in the electrolytic solution chamber on the side opposite to the light receiving surface of the photoelectric conversion unit or solar cell, that is, the back surface side. The generated gas such as hydrogen or oxygen adheres to the gas generation surface of the photoelectric conversion unit gas generation electrode or the electrode plate of the solar cell, and the gas generation surface and an aqueous solution such as an electrolyte solution are present. If it stays in the gas, the contact area between the gas generating surface and the aqueous solution is lowered, and there is a problem that the efficiency of gas production such as hydrogen and oxygen is lowered.
Even if the hydrogen production apparatus disclosed in Patent Documents 1 and 2 exhibits high gas generation efficiency at the initial stage of gas generation, the gas generation surface and an aqueous solution such as an electrolyte solution are obtained over time. The amount of gas staying in between increases and the contact area between the gas generation surface and the aqueous solution further decreases, so that the efficiency of gas generation such as hydrogen and oxygen is greatly reduced, and stable gas generation cannot be performed. There was a problem.

本発明の目的は、上記従来技術の問題点を解消し、ガス生成の初期であっても、時間が経過した場合であっても、高いガス生成効率を維持することができ、水素及び酸素のガスを完全に分離された高純度の気体として安定して製造することができるガス製造装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art and maintain high gas generation efficiency even at the initial stage of gas generation or when time has passed. An object of the present invention is to provide a gas production apparatus capable of stably producing a gas as a high-purity gas completely separated.

上記目的を達成するために、本発明のガス製造装置は、それぞれ、受光部を有し、pn接合を有する半導体薄膜が形成された複数の素子が直列に連なるように積層された素子積層体と、複数の素子中の、素子積層体の一方の端部にある第1の素子の表面に形成され、水素ガスを生成する水素ガス生成部と、水素ガス生成部を含み、水素ガス生成部と接触する電解水溶液、及び生成される水素ガスを収容する第1の電解室と、複数の素子中の、素子積層体の他方の端部にある第2の素子の半導体薄膜が形成されている導電性基板の裏面に形成され、酸素ガスを生成する酸素ガス生成部と、酸素ガス生成部を含み、酸素ガス生成部と接触する電解水溶液、及び生成される酸素ガスを収容する第2の電解室と、第1の電解室と第2の電解室との間に設けられるイオン透過性、かつガス非透過性の隔膜とを有し、第1の素子は、複数の副素子からなり、これらの複数の副素子は、第2の素子上に、この第2の素子に対して離散的に配置されていることを特徴とする。 In order to achieve the above object, the gas production apparatus of the present invention includes an element laminate in which a plurality of elements each having a light receiving portion and formed with a semiconductor thin film having a pn junction are laminated in series. A hydrogen gas generation unit that is formed on the surface of the first element at one end of the element stack in the plurality of elements and generates hydrogen gas; and a hydrogen gas generation unit, A first electrolysis chamber for accommodating an electrolytic aqueous solution in contact with the generated hydrogen gas, and a conductive film in which a semiconductor thin film of a second element at the other end of the element stack is formed in the plurality of elements. An oxygen gas generation unit that generates oxygen gas, an electrolytic aqueous solution that includes the oxygen gas generation unit and is in contact with the oxygen gas generation unit, and a second electrolytic chamber that stores the generated oxygen gas And between the first electrolysis chamber and the second electrolysis chamber Ion permeability kicked, and have a gas impermeable membrane, the first element is comprised of a plurality of sub-elements, the plurality of sub-elements, on the second element, the second It is characterized by being discretely arranged with respect to the element .

ここで、水素ガス生成部は、水素生成面を備え、この水素生成面は、第1素子の半導体薄膜の表面に形成されることが好ましい。
また、複数の副素子は、第2の素子に対して、素子面積が小さいものであることが好ましい。
また、酸素ガス生成部は、酸素生成面を備え、この酸素生成面は、導電性基板の裏面に形成され、酸素生成面は、第2の電解室内の電解水溶液の流動方向に沿って上側に傾斜していることが好ましい。
Here, the hydrogen gas generator includes a hydrogen generation plane, the hydrogen generating surface is not preferable to be formed on the surface of the semiconductor thin film of the first element.
The plurality of subelements preferably have a smaller element area than the second element.
The oxygen gas generation unit includes an oxygen generation surface, and the oxygen generation surface is formed on the back surface of the conductive substrate. The oxygen generation surface is on the upper side along the flow direction of the electrolytic aqueous solution in the second electrolytic chamber. It is preferable to be inclined.

また、半導体薄膜が、CIGS系化合物半導体を含むことが好ましい。
また、半導体薄膜が、CZTS系化合物半導体を含むことが好ましい。
また、半導体薄膜の吸収波長端が、800nm以上であることが好ましい。
また、さらに、水素ガス生成部が備える水素生成面に設けられる水素生成助触媒を有することが好ましい。
また、水素生成触媒は、白金であることが好ましい。
Moreover, it is preferable that a semiconductor thin film contains a CIGS type compound semiconductor.
Moreover, it is preferable that a semiconductor thin film contains a CZTS type compound semiconductor.
Moreover, it is preferable that the absorption wavelength edge of a semiconductor thin film is 800 nm or more.
Furthermore, it is preferable to have a hydrogen generation co-catalyst provided on the hydrogen generation surface provided in the hydrogen gas generation unit.
The hydrogen generation co- catalyst is preferably platinum.

本発明によれば、ガス生成の初期であっても、時間が経過した場合であっても、高いガス生成効率を維持することができ、水素及び酸素のガスを完全に分離された高純度の気体として安定して製造することができる。   According to the present invention, it is possible to maintain a high gas generation efficiency even in the initial stage of gas generation or when time has elapsed, and the high purity of hydrogen and oxygen gas completely separated. It can be manufactured stably as a gas.

本発明の一実施形態に係るガス製造装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the gas manufacturing apparatus which concerns on one Embodiment of this invention. 図1に示すガス製造装置の上面図である。It is a top view of the gas manufacturing apparatus shown in FIG. 図1に示すガス製造装置を製造するプロセスの一例を示すフローチャートである。It is a flowchart which shows an example of the process which manufactures the gas manufacturing apparatus shown in FIG.

以下に、本発明に係るガス製造装置を添付の図面に示す好適実施形態に基づいて詳細に説明する。
本発明は、水を分解する電極として、太陽電池等で用いられるpn接合の半導体薄膜を用い、例えばpn接合−半導体薄膜、導電膜及び支持基板で構成される1つの素子では、水を光分解する能力が不足し、水の電解開始電圧以上の起電力とならないため、複数の素子を直列に繋ぎ合わせることで起電力を高くして、複数の素子の起電力の和が水の電解開始電圧以上となるようにすることで、水の光分解反応により、素子の受光面側から水素を発生させ、受光面とは逆面側から酸素を発生させることで、水分解により発生した水素と酸素とを分離回収して、高い純度で水素及び酸素を製造する装置である。なお、素子の繋ぎ方としては、素子面積の大きい素子の上に、積層する素子を素子面積の小さい複数の副素子で構成し、これらの複数の副素子を離散的に積層させるのが良い。
Below, the gas manufacturing apparatus concerning the present invention is explained in detail based on the suitable embodiment shown in an accompanying drawing.
The present invention uses a pn junction semiconductor thin film used in solar cells or the like as an electrode for decomposing water. For example, in one element composed of a pn junction-semiconductor thin film, a conductive film, and a support substrate, water is photolyzed. Since the electromotive force is not higher than the electrolysis start voltage of water, the electromotive force is increased by connecting multiple elements in series, and the sum of electromotive forces of the multiple elements is the electrolysis start voltage of water By doing so, hydrogen is generated from the light receiving surface side of the element by the photolysis reaction of water, and oxygen is generated from the side opposite to the light receiving surface, so that hydrogen and oxygen generated by water decomposition are generated. Is a device for producing hydrogen and oxygen with high purity. As a method of connecting the elements, it is preferable that the elements to be stacked are composed of a plurality of subelements having a small element area on the elements having a large element area, and these subelements are stacked in a discrete manner.

まず、従来技術の装置に対する本発明に係るガス製造装置の特徴について説明する。
上述したように、従来技術ではガスを生成する電解用電極の表面(ガス生成面)が全て太陽光を受光する受光面とは逆側の光電変換部の裏面側に設けられているのに対し、本発明の特徴は、水素生成面が太陽光を受光する受光面と同じ側に設けられている点にある。このように、水素生成面を受光面側に配置することにより、時間経過によらず、高いガス生成効率を維持することができ、水素及び酸素のガスを安定して製造することができるという所望の効果が得られる。
First, the characteristics of the gas production apparatus according to the present invention with respect to the conventional apparatus will be described.
As described above, in the prior art, the surface of the electrode for electrolysis that generates gas (gas generation surface) is all provided on the back side of the photoelectric conversion unit opposite to the light receiving surface that receives sunlight. The feature of the present invention is that the hydrogen generating surface is provided on the same side as the light receiving surface that receives sunlight. Thus, by arranging the hydrogen generation surface on the light receiving surface side, high gas generation efficiency can be maintained regardless of the passage of time, and hydrogen and oxygen gas can be stably manufactured. The desired effect is obtained.

図1は、本発明の一実施形態に係るガス製造装置の一例を模式的に示す断面図であり、図2は、図1に示すガス製造装置の上面図である。
まず、これらの図に示すように、ガス製造装置10は、pn接合を有する半導体薄膜が形成された複数の素子が上下に直列に積層され素子積層体12と、素子積層体12の上下両端の素子の開放端にそれぞれ設けられる水素のガス生成部14a及び酸素のガス生成部14bと、この2つのガス生成部14a及び14bと接触する電解水溶液AQ、及びガス生成部14a及び14bでそれぞれ生成される水素及び酸素のガスを収容する電解室16を構成する容器18と、この電解室16を、それぞれガス生成部14a及び14bの1つを含む2つの電解室16a及び16bに仕切る隔膜20とを有する。
FIG. 1 is a cross-sectional view schematically showing an example of a gas production apparatus according to an embodiment of the present invention, and FIG. 2 is a top view of the gas production apparatus shown in FIG.
First, as shown in these drawings, the gas production apparatus 10 includes an element laminated body 12 in which a plurality of elements semiconductor thin film is formed is Ru are stacked in series in the vertical having a pn junction, the upper and lower ends of the element stack 12 The hydrogen gas generation unit 14a and the oxygen gas generation unit 14b, the electrolytic aqueous solution AQ that is in contact with the two gas generation units 14a and 14b, and the gas generation units 14a and 14b, respectively, are provided at the open ends of the elements. A container 18 that constitutes an electrolysis chamber 16 that accommodates hydrogen and oxygen gas, and a diaphragm 20 that partitions the electrolysis chamber 16 into two electrolysis chambers 16a and 16b each including one of the gas generation units 14a and 14b, respectively. Have

素子積層体12は、受光面から太陽光などの光を受光して水を光分解反応により分解して、水素及び酸素を生成させるためのもので、図中上下に積層された複数(図示例では2つ)のpn接合素子22及び24を有する。なお、直列に接続されるpn接合素子の数は、以下では2つを代表例として説明するが、複数のpn接合素子の起電力の和が水の電解開始電圧以上であれば、図示例の2つに限定されず、幾つであっても良いのは勿論である。
pn接合素子22及び24は、太陽電池として用いられる太陽電池セルと同様の構成を有する積層構造を有する光電変換素子であって、受光面から太陽光などの光を受光し、光電変換して電子及び正孔を生成し、生成した電子及び正孔をそれぞれガス生成部14a及び14bに送るためのものである。
Element laminate 12, the water receiving light such as sunlight from the light-receiving surface is decomposed by photolysis reaction, intended to produce hydrogen and oxygen, a plurality (shown example stacked vertically in the drawing in having a pn junction element 22 and 2 4 for two). The number of pn junction elements connected in series will be described below as two representative examples. However, if the sum of electromotive forces of a plurality of pn junction elements is equal to or higher than the electrolysis start voltage of water, Of course, the number is not limited to two and may be any number.
The pn junction elements 22 and 24 are photoelectric conversion elements having a stacked structure having the same configuration as that of a solar battery cell used as a solar battery. The pn junction elements 22 and 24 receive light such as sunlight from a light receiving surface, and perform photoelectric conversion to generate electrons. And holes are generated, and the generated electrons and holes are sent to the gas generators 14a and 14b, respectively.

素子積層体12の基板側、即ち図中下側のpn接合素子22は、酸素を生成する酸素生成素子であって、図中下側から上側に向かって順に積層される、導電板26、光電変換層28、及びバッファ層30を有し、バッファ層30の上には、上側電極となる透明導電膜32を有する。
一方、素子積層体12の受光面側、即ち図中上側のpn接合素子24は、水素を生成する水素生成素子であり、複数(図示例では、9個)の小サイズのpn接合素子24aからなる集合体であって、9個の小サイズのpn接合素子(以下、副素子ともいう)24aは、pn接合素子22上に、具体的には、透明導電膜32上に、離散的に、即ち島状に点在するように配置されている。pn接合素子24(24a)は、下側のpn接合素子22から図中上側に向かって順に、透明導電膜32、光電変換層28、バッファ層30、及び透明保護膜34が積層され、透明保護膜34上には、水素生成用の助触媒36が点在する島状に形成されている。
The pn junction element 22 on the substrate side of the element stack 12, that is, the lower side in the figure, is an oxygen generation element that generates oxygen, and is laminated in order from the lower side to the upper side in the figure. A conversion layer 28 and a buffer layer 30 are provided, and a transparent conductive film 32 serving as an upper electrode is provided on the buffer layer 30.
On the other hand, the pn junction element 24 on the light-receiving surface side of the element stack 12, that is, the upper side in the drawing is a hydrogen generation element that generates hydrogen, and includes a plurality (9 in the illustrated example) of small pn junction elements 24 a. Nine small-sized pn junction elements (hereinafter also referred to as sub-elements) 24a are discretely formed on the pn junction element 22, specifically on the transparent conductive film 32. That is, it is arranged so as to be scattered in an island shape. In the pn junction element 24 (24a), a transparent conductive film 32, a photoelectric conversion layer 28, a buffer layer 30, and a transparent protective film 34 are stacked in this order from the lower pn junction element 22 to the upper side in the figure. On the membrane 34, the islands are formed in which promoters 36 for generating hydrogen are scattered.

ここで、透明導電膜32は、pn接合素子24(24a)では、下側電極として機能し、pn接合素子22では、上側電極として機能するので、pn接合素子22及び24(24a)の両方の素子に共通な電極として機能するものであると言える。なお、透明保護膜34は、pn接合素子24(24a)の上側電極を構成するので、透明導電性保護膜が用いられる。
したがって、pn接合素子24(24a)は、透明導電膜32、光電変換層28、バッファ層30、透明保護膜34、及び水素生成助触媒36で構成されると言える。
ところで、副素子24aは、透明導電膜32上に、離散的に、即ち島状に点在するように配置されるので、副素子24aが配置されていないところでは、透明導電膜32が電解室16aに露出して、電解水溶液AQと接触し、短絡することになる。また、pn接合素子24(24a)の側面、即ち光電変換層28、バッファ層30、及び透明保護膜34の積層体の側面も電解室16aに露出して、電解水溶液AQと接触し、短絡することになる。
このため、電解室16aに露出している透明導電膜32上、及びpn接合素子24(24a)の側面は、透明絶縁膜37によって覆われているのが良い。
Here, since the transparent conductive film 32 functions as a lower electrode in the pn junction element 24 (24a) and functions as an upper electrode in the pn junction element 22, both of the pn junction elements 22 and 24 (24a) are used. It can be said that it functions as an electrode common to the element. Since the transparent protective film 34 constitutes the upper electrode of the pn junction element 24 (24a), a transparent conductive protective film is used.
Therefore, it can be said that the pn junction element 24 (24 a) includes the transparent conductive film 32, the photoelectric conversion layer 28, the buffer layer 30, the transparent protective film 34, and the hydrogen generation promoter 36.
By the way, since the subelements 24a are arranged on the transparent conductive film 32 so as to be scattered discretely, that is, in an island shape, the transparent conductive film 32 is placed in the electrolytic chamber where the subelements 24a are not arranged. It will be exposed to 16a, will contact the electrolytic aqueous solution AQ, and will short-circuit. Further, the side surface of the pn junction element 24 (24a), that is, the side surface of the stacked body of the photoelectric conversion layer 28, the buffer layer 30, and the transparent protective film 34 is also exposed to the electrolysis chamber 16a, contacts the electrolytic aqueous solution AQ, and is short-circuited. It will be.
For this reason, the transparent conductive film 32 exposed to the electrolysis chamber 16a and the side surfaces of the pn junction element 24 (24a) are preferably covered with the transparent insulating film 37.

素子積層体12では、pn接合素子24に透明保護膜34側から光が入射されると、これらの光が透明保護膜34およびバッファ層30を通過し、光電変換層28で起電力が発生し、例えば、透明導電膜32から透明保護膜34に向かう電荷(電子)の移動が発生する。換言すれば、透明保護膜34から透明導電膜32に向かう電流(正孔の移動)が発生する。
一方、pn接合素子22に透明絶縁膜37側から光が入射されると、これらの光が透明絶縁膜37、透明導電膜32およびバッファ層30を通過し、光電変換層28で起電力が発生し、例えば、導電板26から透明導電膜32に向かう電荷(電子)の移動が発生する。換言すれば、透明導電膜32から導電板26に向かう電流(正孔の移動)が発生する。
このため、素子積層体12では、上側のpn接合素子24の透明保護膜34が、水素を生成するガス生成部14a(電気分解のカソード電極)となり、下側のpn接合素子22の導電板26が、酸素を生成するガス生成部14b(電気分解のアノード電極)となる。
In the element stack 12, when light enters the pn junction element 24 from the transparent protective film 34 side, the light passes through the transparent protective film 34 and the buffer layer 30, and an electromotive force is generated in the photoelectric conversion layer 28. For example, the movement of charges (electrons) from the transparent conductive film 32 toward the transparent protective film 34 occurs. In other words, a current (hole movement) from the transparent protective film 34 toward the transparent conductive film 32 is generated.
On the other hand, when light enters the pn junction element 22 from the transparent insulating film 37 side, the light passes through the transparent insulating film 37, the transparent conductive film 32, and the buffer layer 30, and an electromotive force is generated in the photoelectric conversion layer 28. For example, the movement of charges (electrons) from the conductive plate 26 toward the transparent conductive film 32 occurs. In other words, a current (hole movement) from the transparent conductive film 32 toward the conductive plate 26 is generated.
For this reason, in the element stack 12, the transparent protective film 34 of the upper pn junction element 24 serves as a gas generator 14 a (electrolytic cathode electrode) that generates hydrogen, and the conductive plate 26 of the lower pn junction element 22. Becomes a gas generating part 14b (electrolytic anode electrode) for generating oxygen.

導電板26は、例えば、Mo等からなり、素子積層体12を支持する基板として機能すると共に、酸素を生成する酸素生成面としても機能する。
光電変換層28は、例えば、CIGS系化合物半導体やCZTS系化合物半導体の膜からなり、下側のpn接合素子22では導電板26上に、上側のpn接合素子24では透明導電膜32上に形成されている。
バッファ層30は、例えば、CdS等の薄膜からなり、光電変換層28の表面に形成されている。この界面においてpn接合が形成されている。したがって、光電変換層28をp型半導体の薄膜、バッファ層30をn型半導体の薄膜ということもできる。
光電変換層28及びバッファ層30は、下側のpn接合素子22でも、上側のpn接合素子24でも用いられるが、光電変換層28及びバッファ層30の少なくとも一方が、両方のpn接合素子22,24で同じあっても良いし、異なっていても良い。
The conductive plate 26 is made of, for example, Mo, and functions as a substrate that supports the element stack 12 and also functions as an oxygen generation surface that generates oxygen.
The photoelectric conversion layer 28 is made of, for example, a CIGS compound semiconductor film or a CZTS compound semiconductor film, and is formed on the conductive plate 26 in the lower pn junction element 22 and on the transparent conductive film 32 in the upper pn junction element 24. Has been.
The buffer layer 30 is made of, for example, a thin film such as CdS, and is formed on the surface of the photoelectric conversion layer 28. A pn junction is formed at this interface. Therefore, it can also be said that the photoelectric conversion layer 28 is a p-type semiconductor thin film and the buffer layer 30 is an n-type semiconductor thin film.
The photoelectric conversion layer 28 and the buffer layer 30 are used for both the lower pn junction element 22 and the upper pn junction element 24. However, at least one of the photoelectric conversion layer 28 and the buffer layer 30 includes both pn junction elements 22, 24 may be the same or different.

透明導電膜32は、例えば、IMO(Mo添加In)膜等の透明導電膜からなり、バッファ層30上に形成されている。ここで、透明導電膜32は、下側のpn接合素子22では、上側電極、したがって、バッファ層30及び光電変換層28からなるpn接合上の受光面として機能すると共に、上側のpn接合素子24の下部電極としても機能する導電膜である。即ち、透明導電膜32は、下側のpn接合素子22と上側のpn接合素子24とを直列に接続する導電膜として機能する。
透明保護膜34は、例えば、ITO(Sn添加In)膜等の透明導電膜からなり、上側のpn接合素子24において、バッファ層30上に形成されている。ここで、透明保護膜34は、上側のpn接合素子24の上側電極、したがって、バッファ層30及び光電変換層28からなるpn接合上の受光面として機能すると共に、水素を生成する水素生成面としても機能する。
The transparent conductive film 32 is made of a transparent conductive film such as an IMO (Mo-added In 2 O 3 ) film, and is formed on the buffer layer 30. Here, in the lower pn junction element 22, the transparent conductive film 32 functions as a light receiving surface on the pn junction including the buffer layer 30 and the photoelectric conversion layer 28 and the upper pn junction element 24. The conductive film also functions as a lower electrode. That is, the transparent conductive film 32 functions as a conductive film that connects the lower pn junction element 22 and the upper pn junction element 24 in series.
The transparent protective film 34 is made of a transparent conductive film such as an ITO (Sn-added In 2 O 3 ) film, and is formed on the buffer layer 30 in the upper pn junction element 24. Here, the transparent protective film 34 functions as an upper electrode of the upper pn junction element 24, and thus as a light receiving surface on the pn junction including the buffer layer 30 and the photoelectric conversion layer 28, and as a hydrogen generation surface that generates hydrogen. Also works.

導電板26は、例えばMo、Al、Cu、Cr、W、Ni、Ta、Fe、Co等の金属、又はそれらの金属を組み合わせたものにより構成される。この導電板26は、単層構造でもよいし、2層構造等の積層構造でもよい。なお、導電板26の裏面は、酸素を生成する酸素ガス生成面となり、直接電解水溶液に接触するので、導電板26は、酸化されにくい金属であるのが好ましい。この中で、導電板26は、Moで構成することが好ましい。導電板26の膜厚は、一般的に、その厚さが1000μm程度であるが、導電板26は、その厚さが100〜1500μmであることが好ましい。   The conductive plate 26 is made of, for example, a metal such as Mo, Al, Cu, Cr, W, Ni, Ta, Fe, Co, or a combination of these metals. The conductive plate 26 may have a single layer structure or a laminated structure such as a two-layer structure. In addition, since the back surface of the conductive plate 26 becomes an oxygen gas generating surface that generates oxygen and directly contacts the electrolytic aqueous solution, the conductive plate 26 is preferably a metal that is not easily oxidized. Among these, the conductive plate 26 is preferably made of Mo. The thickness of the conductive plate 26 is generally about 1000 μm, but the thickness of the conductive plate 26 is preferably 100 to 1500 μm.

pn接合素子22の導電板26の裏面は、酸素を生成するガス生成部14b(電気分解のアノード電極)となるもので、電解水溶液AQ中の水分子からイオン化した水酸イオンOHから電子を取り出して酸素分子、即ち酸素(酸素ガス)を発生させる(2OH ―>HO+O/2+2e)もので、その表面は酸素ガス生成面として機能する。
このため、導電板26の裏面は、発生した酸素を滞留させないように、電解水溶液AQの流れの上流側から下流側に向かって傾斜しているのが好ましい。傾斜の方向は特に制限的ではなく、下流側に向かって下方に傾斜している場合には、導電板26の裏面に発生した酸素を表面から剥がす効果が高く、下流側に向かって上方に傾斜している場合には、電解水溶液Aから浮上して導電板26の裏面に集まる酸素ガスを電解水溶液AQと共に効率よく排出口40bに向けて流すことができる。図示例では、電解水溶液AQの供給口38bが図中右側にあり、発生した酸素を電解水溶液AQと共に排出する排出口40bが図中左側にあるので、発生した酸素を素早く輩出するためには、導電板26の裏面は、図中右側から図中左側に向かって上方に傾斜しているのが良い。
The back surface of the conductive plate 26 of the pn junction element 22 becomes a gas generating part 14b (electrolytic anode electrode) that generates oxygen, and electrons are generated from hydroxide ions OH ionized from water molecules in the aqueous electrolytic solution AQ. taken out oxygen molecules, i.e. to generate oxygen (oxygen gas) (2OH - -> H 2 O + O 2/2 + 2e -) ones, its surface acts as an oxygen gas generating surface.
For this reason, it is preferable that the back surface of the conductive plate 26 is inclined from the upstream side to the downstream side of the flow of the electrolytic aqueous solution AQ so as not to retain the generated oxygen. The direction of inclination is not particularly limited, and when it is inclined downward toward the downstream side, the effect of peeling off the oxygen generated on the back surface of the conductive plate 26 from the surface is high, and the inclination is inclined upward toward the downstream side. If you are in, it can flow oxygen gas collects in the rear surface of the conductive plate 26 floats above the electrolytic solution a Q toward efficiently discharge port 40b together with an electrolyte solution AQ. In the illustrated example, the supply port 38b for the electrolytic aqueous solution AQ is on the right side in the drawing, and the discharge port 40b for discharging the generated oxygen together with the electrolytic aqueous solution AQ is on the left side in the drawing. The back surface of the conductive plate 26 may be inclined upward from the right side in the figure toward the left side in the figure.

こうすることにより、発生した酸素を、酸素ガス生成面となる導電板26の裏面から滞留させること無く速やかに移動させて、電解水溶液AQと共に排出口40bから排出できるので、常に、導電板26の裏面を電解水溶液AQと接触させておくことができ、導電板26の裏面全面で、水の光分解反応を生じさせ、酸素を効率よく発生させることができる。
なお、水の光分解反応による酸素の生成を促進するために、酸素ガス生成面となる導電板26の裏面に、IrO、CoO等の酸素生成助触媒を、点在するように島状に形成しても良い。
By doing so, the generated oxygen can be quickly moved without staying from the back surface of the conductive plate 26 serving as the oxygen gas generation surface and discharged from the discharge port 40b together with the electrolytic aqueous solution AQ. The back surface can be kept in contact with the electrolytic aqueous solution AQ, and a photodecomposition reaction of water can be caused on the entire back surface of the conductive plate 26, so that oxygen can be generated efficiently.
In order to promote the generation of oxygen by water photolysis reaction, the rear surface of the conductive plate 26 serving as oxygen gas generating surface, the oxygen generation auxiliary catalysts such as IrO 2, CoO x, as scattered islands You may form in a shape.

光電変換層28は、バッファ層30との界面で、光電変換層28側をP型、バッファ層30側をN型とするpn接合を形成し、透明絶縁膜37、透明導電膜32及びバッファ層30を透過して到達した光を吸収して、p側に正孔を、n側に電子を生じさせる層であり、光電変換機能を有する。光電変換層28では、pn接合で生じた正孔を光電変換層28から導電板26側に移動させ、pn接合で生じた電子をバッファ層30から透明導電膜32側に移動させる。光電変換層28の膜厚は、好ましくは、200〜3000nmであるのが良く、500〜2000nmが特に好ましい。   The photoelectric conversion layer 28 forms a pn junction in which the photoelectric conversion layer 28 side is P-type and the buffer layer 30 side is N-type at the interface with the buffer layer 30, and the transparent insulating film 37, the transparent conductive film 32, and the buffer layer It is a layer that absorbs light that has passed through 30 and generates holes on the p side and electrons on the n side, and has a photoelectric conversion function. In the photoelectric conversion layer 28, holes generated at the pn junction are moved from the photoelectric conversion layer 28 to the conductive plate 26 side, and electrons generated at the pn junction are moved from the buffer layer 30 to the transparent conductive film 32 side. The film thickness of the photoelectric conversion layer 28 is preferably 200 to 3000 nm, particularly preferably 500 to 2000 nm.

光電変換層28は、化合物半導体系光電変換半導体層であるのが好ましく、主成分(主成分とは20質量%以上の成分を意味)としては、特に制限されず、高光電変換効率が得られることから、カルコゲン化合物半導体、カルコパイライト構造の化合物半導体、欠陥スタナイト型構造の化合物半導体を好適に用いることができる。
カルコゲン化合物(S、Se、Teを含む化合物)としては、
II−VI化合物:ZnS、ZnSe、ZnTe、CdS、CdSe、CdTeなど、
I−III−VI2族化合物:CuInSe2、CuGaSe2、Cu(In,Ga)Se2、CuInS2、CuGaSe2、Cu(In,Ga)(S,Se)2など、
I−III3−VI5族化合物:Culn3Se5、CuGa3Se5、Cu(ln,Ga)3Se5などを好ましく挙げることができる。
The photoelectric conversion layer 28 is preferably a compound semiconductor-based photoelectric conversion semiconductor layer, and the main component (the main component means a component of 20% by mass or more) is not particularly limited, and high photoelectric conversion efficiency is obtained. Therefore, a chalcogen compound semiconductor, a compound semiconductor having a chalcopyrite structure, and a compound semiconductor having a defect stannite structure can be preferably used.
As a chalcogen compound (compound containing S, Se, Te),
II-VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, etc.
I-III-VI 2 group compounds: CuInSe 2, CuGaSe 2, Cu (In, Ga) Se 2, CuInS 2, CuGaSe 2, Cu (In, Ga) (S, Se) 2 , etc.,
Preferable examples include I-III 3 -VI 5 group compounds: Cull 3 Se 5 , CuGa 3 Se 5 , Cu (ln, Ga) 3 Se 5 and the like.

カルコパイライト型構造および欠陥スタナイト型構造の化合物半導体としては、
I−III−VI2族化合物:CuInSe2、CuGaSe2、Cu(In,Ga)Se2、CuInS2、CuGaSe2、Cu(In,Ga)(S Se)2など、
I−III3-VI5族化合物:CuIn3Se5、CuGa3Se5、Cu(In,Ga)3Se5などを好ましく挙げることができる。
但し、上記記載において、(In,Ga)、(S,Se)は、それぞれ、(In1-xGax)、(S1-ySey)(ただし、x=0〜1、y=0〜1)を示す。
As a compound semiconductor having a chalcopyrite structure and a defect stannite structure,
I-III-VI 2 group compounds: CuInSe 2, CuGaSe 2, Cu (In, Ga) Se 2, CuInS 2, CuGaSe 2, Cu (In, Ga) (S Se) 2 , etc.,
Preferred examples include I-III 3 -VI 5 group compounds: CuIn 3 Se 5 , CuGa 3 Se 5 , Cu (In, Ga) 3 Se 5 and the like.
However, in the above description, (In, Ga) and (S, Se) are (In 1-x Ga x ) and (S 1-y Se y ) (where x = 0 to 1, y = 0, respectively). To 1).

光電変換層28は、この中でも、例えば、カルコパイライト結晶構造を有するCIGS系化合物半導体やCZTS系化合物半導体で構成されるのが好ましい。即ち、光電変換層28はCIGS層で構成するのが好ましい。CIGS層は、Cu(In,Ga)Seのみならず、CuInSe(CIS)等のCIGS系に利用される公知のもので構成されていても良い。
光電変換層28の成膜方法としては、特に制限されない。例えば、Cu,In,Ga,Sを含むCIGS層の形成方法としては、1)多源蒸着法、2)セレン化法、3)スパッタ法、4)ハイブリッドスパッタ法、及び5)メカノケミカルプロセス法等が知られている。
その他のCIGS層の形成方法としては、スクリーン印刷法、近接昇華法、MOCVD法、及びスプレー法(ウェット成膜法)等が挙げられる。例えば、スクリーン印刷法(ウェット成膜法)又はスプレー法(ウェット成膜法)等で、Ib族元素、IIIb族元素、及びVIb族元素を含む微粒子膜を基板上に形成し、熱分解処理(この際、VIb族元素雰囲気での熱分解処理でもよい)を実施する等により、所望の組成の結晶を得ることができる(特開平9−74065号公報、特開平9−74213号公報等)。
Among these, the photoelectric conversion layer 28 is preferably composed of, for example, a CIGS compound semiconductor or a CZTS compound semiconductor having a chalcopyrite crystal structure. That is, the photoelectric conversion layer 28 is preferably composed of a CIGS layer. The CIGS layer may be composed of not only Cu (In, Ga) Se 2 but also known materials used for CIGS systems such as CuInSe 2 (CIS).
A method for forming the photoelectric conversion layer 28 is not particularly limited. For example, methods for forming a CIGS layer containing Cu, In, Ga, and S include 1) multi-source deposition, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process. Etc. are known.
Other CIGS layer forming methods include screen printing, proximity sublimation, MOCVD, and spray (wet film formation). For example, a fine particle film containing an Ib group element, an IIIb group element, and a VIb group element is formed on a substrate by a screen printing method (wet film forming method) or a spray method (wet film forming method), and then pyrolyzed ( At this time, a crystal having a desired composition can be obtained by performing a thermal decomposition treatment in a VIb group element atmosphere (Japanese Patent Laid-Open Nos. 9-74065, 9-74213, etc.).

本発明においては、上述したように、光電変換層28は、例えば、カルコパイライト結晶構造を有するCIGS系化合物半導体やCZTS系化合物半導体で構成されるのが好ましいが、本発明は、これに限定されず、無機半導体からなるpn接合を形成でき、水の光分解反応を生じさせ、水素及び酸素を発生できれば、如何なる光電変換素子でも良い。例えば、太陽電池を構成する太陽電池セルに用いられる光電変換素子が好ましく用いられる。このような光電変換素子としては、CIGS系薄膜型光電変換素子、CIS系薄膜型光電変換素子や、CZTS系薄膜型光電変換素子に加え、薄膜シリコン系薄膜型光電変換素子、CdTe系薄膜型光電変換素子、色素増感系薄膜型光電変換素子、又は有機系薄膜型光電変換素子を挙げることができる。
なお、光電変換層28を形成する無機半導体の吸収波長は、光電変換可能な波長域であれば、特に制限的ではないが、太陽光等の波長域、特に、可視波長域から赤外波長域を含んでいればよいが、その吸収波長端は、800nm以上、即ち、赤外波長域までを含んでいるのが好ましい。その理由は、地上に到達する太陽光エネルギーの半分以上が、波長800nm以下の紫外・可視光領域に含まれており、これらのエネルギーを有効に活用することで、化石燃料の代替としての水素エネルギーを本装置で製造する意味が生じるからである。
In the present invention, as described above, the photoelectric conversion layer 28 is preferably composed of, for example, a CIGS compound semiconductor or a CZTS compound semiconductor having a chalcopyrite crystal structure, but the present invention is not limited thereto. First, any photoelectric conversion element may be used as long as it can form a pn junction made of an inorganic semiconductor, cause a photodecomposition reaction of water, and generate hydrogen and oxygen. For example, the photoelectric conversion element used for the photovoltaic cell which comprises a solar cell is used preferably. Such photoelectric conversion elements include CIGS thin film photoelectric conversion elements, CIS thin film photoelectric conversion elements, CZTS thin film photoelectric conversion elements, thin film silicon thin film photoelectric conversion elements, and CdTe thin film photoelectric conversion elements. Examples thereof include a conversion element, a dye-sensitized thin film photoelectric conversion element, and an organic thin film photoelectric conversion element.
The absorption wavelength of the inorganic semiconductor forming the photoelectric conversion layer 28 is not particularly limited as long as it is a wavelength range that allows photoelectric conversion. However, the wavelength range of sunlight and the like, particularly from the visible wavelength range to the infrared wavelength range. However, it is preferable that the absorption wavelength end includes 800 nm or more, that is, the infrared wavelength region. The reason for this is that more than half of the solar energy reaching the ground is contained in the ultraviolet and visible light region with a wavelength of 800 nm or less. By effectively using these energies, hydrogen energy can be used as an alternative to fossil fuels. This is because it makes sense to manufacture the device with this apparatus.

バッファ層30は、光電変換層28と共にpn接合層を構成し、即ち光電変換層28との界面でpn接合を形成し、透明導電膜32の形成時の光電変換層28を保護し、透明導電膜32に入射した光を光電変換層28まで透過させるために形成されたものである。
バッファ層30は、例えば、具体的には、CdS、ZnS,Zn(S,O)、及び/又はZn(S,O,OH)、SnS,Sn(S,O)、及び/又はSn(S,O,OH)、InS,In(S,O)、及び/又はIn(S,O,OH)等の、Cd,Zn,Sn,Inからなる群より選ばれる少なくとも1種の金属元素を含む金属硫化物を含むことが好ましい。バッファ層30の膜厚は、10nm〜2μmが好ましく、15〜200nmがより好ましい。バッファ層30の形成には、例えば、化学浴析出法(以下、CBD法という)により形成される。
なお、バッファ層30と透明導電膜32との間には、例えば、窓層を設けてもよい。この窓層は、例えば、厚さ10nm程度のZnO層で構成される。
The buffer layer 30 constitutes a pn junction layer together with the photoelectric conversion layer 28, that is, forms a pn junction at the interface with the photoelectric conversion layer 28, protects the photoelectric conversion layer 28 when the transparent conductive film 32 is formed, and It is formed to transmit light incident on the film 32 to the photoelectric conversion layer 28.
For example, the buffer layer 30 is specifically made of CdS, ZnS, Zn (S, O), and / or Zn (S, O, OH), SnS, Sn (S, O), and / or Sn (S , O, OH), InS, In (S, O), and / or at least one metal element selected from the group consisting of Cd, Zn, Sn, and In, such as In (S, O, OH). It preferably contains a metal sulfide. The thickness of the buffer layer 30 is preferably 10 nm to 2 μm, and more preferably 15 to 200 nm. The buffer layer 30 is formed by, for example, a chemical bath deposition method (hereinafter referred to as CBD method).
For example, a window layer may be provided between the buffer layer 30 and the transparent conductive film 32. This window layer is composed of, for example, a ZnO layer having a thickness of about 10 nm.

透明導電膜32は、透光性を有し、下側のpn接合素子22では、光を光電変換層28に取り込むとともに、下側電極となる導電板26と対になって、光電変換層28で生成された正孔及び電子を移動させる(電流が流れる)上側電極として機能すると共に、上側のpn接合素子24の下側電極としても機能し、下側のpn接合素子22と上側のpn接合素子24とを直列接続するために、直接接続する透明導電膜として機能するものである。
透明導電膜32は、例えば、IMO(Moが添加されたIn)、Al、B、Ga、In等がドープされたZnO、又はITO(インジウム錫酸化物)により構成される。透明導電膜32は、単層構造でもよいし、2層構造等の積層構造でもよい。また、透明導電膜32の厚さは、特に制限されるものではなく、好ましくは、0.1〜2μmであり、0.3〜1μmがより好ましい。
なお、透明導電膜32の形成方法は、特に制限されるものではなく、電子ビーム蒸着法、スパッタ法及びCVD法等の気相成膜法又は塗布法により形成することができる。
The transparent conductive film 32 has translucency. In the lower pn junction element 22, the light is taken into the photoelectric conversion layer 28 and is paired with the conductive plate 26 serving as the lower electrode, so that the photoelectric conversion layer 28. Functions as an upper electrode that moves holes and electrons generated (current flows), and also functions as a lower electrode of the upper pn junction element 24, and functions as a lower pn junction element 22 and an upper pn junction. In order to connect the element 24 in series, it functions as a transparent conductive film that is directly connected.
The transparent conductive film 32 is made of, for example, IMO (In 2 O 3 to which Mo is added), ZnO doped with Al, B, Ga, In, or the like, or ITO (indium tin oxide). The transparent conductive film 32 may have a single layer structure or a laminated structure such as a two-layer structure. The thickness of the transparent conductive film 32 is not particularly limited, and is preferably 0.1 to 2 μm, and more preferably 0.3 to 1 μm.
In addition, the formation method in particular of the transparent conductive film 32 is not restrict | limited, It can form by vapor phase film-forming methods, such as an electron beam vapor deposition method, a sputtering method, and CVD method, or the apply | coating method.

透明保護膜34は、上側のpn接合素子24において、バッファ層30の上表面に形成されるものであり、透光性を有し、光を光電変換層28に取り込むとともに、下側電極となる透明導電膜32と対になって、光電変換層28で生成された正孔及び電子を移動させる(電流が流れる)上側電極として機能すると共に、バッファ層30及び光電変換層28を保護する透明導電膜として機能するものである。
また、透明保護膜34は、水素を生成するガス生成部14a(電気分解のカソード電極)となるもので、水分子からイオン化した水素イオン(プロトン)Hに電子を供給して水素分子、即ち水素(水素ガス)を発生させる(2H+2e ―>H)もので、その表面は、水素ガス生成面として機能する。
透明保護膜34は、例えば、ITO(インジウム錫酸化物)、Al、B、Ga、In等がドープされたZnO、又はIMO(Moが添加されたIn)等の透明導電膜32と同様な透明導電膜を用いることができる。透明保護膜34も、透明導電膜32と同様に、単層構造でもよいし、2層構造等の積層構造でもよい。また、透明保護膜34の厚さは、特に制限されるものではなく、好ましくは、10〜200nmであり、30〜100nmがより好ましい。
なお、透明保護膜34の形成方法は、透明導電膜32と同様に、特に制限されるものではなく、電子ビーム蒸着法、スパッタ法及びCVD法等の気相成膜法又は塗布法により形成することができる。
The transparent protective film 34 is formed on the upper surface of the buffer layer 30 in the upper pn junction element 24, has translucency, takes light into the photoelectric conversion layer 28, and serves as a lower electrode. A transparent conductive film that functions as an upper electrode that is paired with the transparent conductive film 32 to move holes and electrons generated in the photoelectric conversion layer 28 (current flows) and protects the buffer layer 30 and the photoelectric conversion layer 28. It functions as a film.
The transparent protective film 34 serves as a gas generation unit 14a (electrolysis cathode electrode) that generates hydrogen, and supplies electrons to hydrogen ions (protons) H + ionized from water molecules to generate hydrogen molecules, Hydrogen (hydrogen gas) is generated (2H + + 2e −> H 2 ), and the surface functions as a hydrogen gas generation surface.
The transparent protective film 34 includes, for example, a transparent conductive film 32 such as ITO (indium tin oxide), ZnO doped with Al, B, Ga, In, or IMO (Mo 2 -added In 2 O 3 ). A similar transparent conductive film can be used. Similarly to the transparent conductive film 32, the transparent protective film 34 may have a single-layer structure or a laminated structure such as a two-layer structure. Further, the thickness of the transparent protective film 34 is not particularly limited, and is preferably 10 to 200 nm, and more preferably 30 to 100 nm.
The method for forming the transparent protective film 34 is not particularly limited, as is the case with the transparent conductive film 32, and is formed by a vapor deposition method such as an electron beam evaporation method, a sputtering method, or a CVD method, or a coating method. be able to.

上述したように、透明保護膜34は、水素生成用電極として機能し、その表面は、水素ガス生成面として機能する。したがって、透明保護膜34は、水素を生成するガス生成部14aとして機能し、その領域は水素ガスの発生領域を構成する。
この透明保護膜34の表面上には、水素生成を促進するための水素生成助触媒36が、点在するように、島状に形成されている。
水素生成助触媒36は、例えば、Pt(白金)、Pd(パラジウム)、Ni(ニッケル)、Au(金)、Ag(銀)、Ru(ルテニウム)、Cu(銅)、Co(コバルト)、Rh(ロジウム)、Ir(イリジウム)、Mn(マンガン)等により構成される単体、及びそれらを組み合わせた合金、及びその酸化物が挙げられる。また、水素生成助触媒36のサイズは、特に制限されるものではなく、1〜100nmであるが好ましい。
なお、水素生成助触媒36の形成方法は、特に制限されるものではなく、光電着法、スパッタ法、含侵法等により形成することができる。
As described above, the transparent protective film 34 functions as a hydrogen generation electrode, and its surface functions as a hydrogen gas generation surface. Therefore, the transparent protective film 34 functions as a gas generation unit 14a that generates hydrogen, and the region forms a hydrogen gas generation region.
On the surface of the transparent protective film 34, hydrogen generation promoters 36 for promoting hydrogen generation are formed in an island shape so as to be scattered.
Examples of the hydrogen generation promoter 36 include Pt (platinum), Pd (palladium), Ni (nickel), Au (gold), Ag (silver), Ru (ruthenium), Cu (copper), Co (cobalt), and Rh. (Rhodium), Ir (Iridium), Mn (Manganese), etc., simple substances, alloys combining them, and oxides thereof. Further, the size of the hydrogen generation co-catalyst 36 is not particularly limited and is preferably 1 to 100 nm.
The formation method of the hydrogen generation co-catalyst 36 is not particularly limited, and can be formed by a photo-deposition method, a sputtering method, an impregnation method, or the like.

なお、図示例のように、透明保護膜34の上表面には水素生成助触媒36を設けるのが好ましいが、十分な水素生成が可能である場合には、設けなくても良い。
また、図示例では、バッファ層30の上表面に形成された透明保護膜34の上表面に、水素生成助触媒36が点在するように形成されているが、本発明は、これに限定されず、透明保護膜34を設けることなく、バッファ層30の上表面に、直接水素生成助触媒36を点在するように形成しても良い。
この場合には、バッファ層30が、N型半導体と機能すると共に、水素生成用電極として機能し、その表面は、水素ガス生成面として機能する。したがって、バッファ層30は、水素を生成するガス生成部14aとして機能し、その領域は、水素ガスの発生領域を構成する。
As shown in the drawing, it is preferable to provide the hydrogen generation co-catalyst 36 on the upper surface of the transparent protective film 34. However, it may not be provided if sufficient hydrogen generation is possible.
In the illustrated example, the hydrogen generation co-catalyst 36 is scattered on the upper surface of the transparent protective film 34 formed on the upper surface of the buffer layer 30, but the present invention is not limited to this. Alternatively, the hydrogen generation co-catalyst 36 may be directly scattered on the upper surface of the buffer layer 30 without providing the transparent protective film 34.
In this case, the buffer layer 30 functions as an N-type semiconductor, functions as a hydrogen generation electrode, and its surface functions as a hydrogen gas generation surface. Therefore, the buffer layer 30 functions as a gas generation unit 14a that generates hydrogen, and the region forms a hydrogen gas generation region.

透明絶縁膜37は、透光性を有し、pn接合素子22及び24を保護するため,具体的には、電解室16a内の水素ガス発生領域以外の部分を保護するために、ガス発生領域以外の部分を覆うように設けられるものである。具体的には、透明絶縁膜37は、上側のpn接合素子24が形成されていない、したがって、下側のpn接合素子22の受光面となる透明導電膜32の表面、及びpn接合素子24を構成する個々の副素子24aの全側面を覆うものである。
透明絶縁膜37は、例えば、SiO、SnO、Nb、Ta、Al、Ga等により構成される。また、透明絶縁膜37の厚さは、特に制限されるものではなく、100〜1000nmが好ましい。
なお、透明絶縁膜37の形成方法は、特に制限されるものではなく、RFスパッタ法、DCリアクティブスパッタ法、MOCVD法等により形成することができる。
The transparent insulating film 37 has translucency and protects the pn junction elements 22 and 24. Specifically, the transparent insulating film 37 protects portions other than the hydrogen gas generating region in the electrolytic chamber 16a. It is provided so as to cover other parts. Specifically, in the transparent insulating film 37, the upper pn junction element 24 is not formed. Therefore, the surface of the transparent conductive film 32 serving as the light receiving surface of the lower pn junction element 22 and the pn junction element 24 are formed. It covers all the side surfaces of the individual sub-elements 24a.
Transparent insulating film 37, for example, a SiO 2, SnO 2, Nb 2 O 5, Ta 2 O 5, Al 2 O 3, Ga 2 O 3 or the like. The thickness of the transparent insulating film 37 is not particularly limited, and is preferably 100 to 1000 nm.
The method for forming the transparent insulating film 37 is not particularly limited, and can be formed by RF sputtering, DC reactive sputtering, MOCVD, or the like.

ところで、透明絶縁膜37が形成されている、上側のpn接合素子24が形成されていない透明導電膜32の領域は、下側のpn接合素子22の受光面となるのに対し、上側のpn接合素子24の副素子24aのそれぞれのバッファ層30又は透明保護膜34がその受光面となるので、水の光分解反応による水素及び酸素の生成を効率良く行うためには、上側のpn接合素子24の総受光面積、即ち全副素子24aの受光面の面積の総和と、下側のpn接合素子22の総受光面積、即ち上側のpn接合素子24が形成されていない透明導電膜32の領域の面積の総和とは、pn接合素子22及び24の能力、例えば起電力や電子や正孔の生成量に応じて、所定のバランスをとる必要がある。例えば、pn接合素子22及び24の両者の能力が等しい場合には、両者の総受光面積は等しくするのが好ましい。
したがって、pn接合素子22及び24の両者の能力に応じて、両者の総受光面積のバランスを取るのが良い。
素子積層体12は、以上のような構成を有する。
By the way, the region of the transparent conductive film 32 in which the transparent insulating film 37 is formed and the upper pn junction element 24 is not formed serves as a light receiving surface of the lower pn junction element 22, whereas the upper pn Since each buffer layer 30 or transparent protective film 34 of the subelement 24a of the junction element 24 serves as the light receiving surface, in order to efficiently generate hydrogen and oxygen by water photolysis reaction, the upper pn junction element is used. 24, the total light receiving area of all sub-elements 24a, and the total light receiving area of the lower pn junction element 22, that is, the region of the transparent conductive film 32 where the upper pn junction element 24 is not formed. The total area needs to have a predetermined balance according to the capabilities of the pn junction elements 22 and 24, for example, the electromotive force and the generation amount of electrons and holes. For example, when the capabilities of both the pn junction elements 22 and 24 are equal, it is preferable that the total light receiving areas of both are equal.
Therefore, it is preferable to balance the total light receiving area of both the pn junction elements 22 and 24 according to the capabilities of both.
The element laminate 12 has the above configuration.

素子積層体12は、以下の製造方法により製造することができるが、これに限定されない。
図3は、図1及び図2に示すガス製造装置を製造するプロセスの一例を示すフローチャートである。
まず、ステップS100において、支持基板として機能する導電板26として、例えば、Mo基板等を用意する。
次に、ステップS102で、導電板26の片面上に、光電変換層28として、例えば、CIGS系化合物半導体膜(P型半導体層)を、セレン化/硫化法又は多源同時蒸着法等の公知の方法により形成する。
次に、ステップS104で、こうして形成された光電変換層28上に、バッファ層30として、例えばCdS膜(N型半導体層)をCBD(ケミカルバス)法等の公知の方法により形成する。
次に、ステップS106で、こうして形成されたバッファ層30上に、透明導電膜32として、例えば、透明導電層となるITO膜を、MOCVD法又はRFスパッタ法等の公知の方法により形成する。
The element laminate 12 can be manufactured by the following manufacturing method, but is not limited thereto.
FIG. 3 is a flowchart illustrating an example of a process for manufacturing the gas manufacturing apparatus illustrated in FIGS. 1 and 2.
First, in step S100, for example, a Mo substrate or the like is prepared as the conductive plate 26 that functions as a support substrate.
Next, in step S102, for example, a CIGS compound semiconductor film (P-type semiconductor layer) is formed on one surface of the conductive plate 26 as a photoelectric conversion layer 28, such as a selenization / sulfurization method or a multi-source co-evaporation method. It forms by the method of.
Next, in step S104, thus on the formed photoelectric conversion layer 28, as a buffer layer 30, for example, more form CdS film (N-type semiconductor layer) in CBD (chemical bath) methods known ways, such as.
Next, in step S106, an ITO film serving as a transparent conductive layer, for example, is formed on the buffer layer 30 thus formed by a known method such as an MOCVD method or an RF sputtering method.

次に、ステップS108で、こうして形成された透明導電膜32上に、前述のステップS102のように、光電変換層28として、例えば、CIGS系化合物半導体膜(P型半導体層)を形成する。
次に、ステップS110で、こうして形成された光電変換層28上に、前述のステップS104のように、バッファ層30として、例えばCdS膜(N型半導体層)を形成する。
次に、ステップS112で、こうして形成されたバッファ層30上に、透明保護膜34として、例えば、保護層となるZnO膜を、MOCVD法又はRFスパッタ法等の公知の方法により形成する。
次に、ステップS114で、こうして形成された光電変換層28(CIGS系化合物半導体膜)及びバッファ層30(CdS膜)、及び透明保護膜34(ZnO膜)からなる構造体A(上側のpn接合素子24)をメカニカルスクライビング法により切断し、離散的に配置された構造体A群(副素子24aの群)を形成する。
Next, in step S108, for example, a CIGS compound semiconductor film (P-type semiconductor layer) is formed as the photoelectric conversion layer 28 on the transparent conductive film 32 thus formed, as in step S102 described above.
Next, in Step S110, for example, a CdS film (N-type semiconductor layer) is formed as the buffer layer 30 on the photoelectric conversion layer 28 thus formed as in Step S104 described above.
Next, in step S112, for example, a ZnO film serving as a protective layer is formed on the buffer layer 30 thus formed by a known method such as an MOCVD method or an RF sputtering method.
Next, in step S114, the structure A (upper pn junction) including the photoelectric conversion layer 28 (CIGS compound semiconductor film), the buffer layer 30 (CdS film), and the transparent protective film 34 (ZnO film) thus formed is formed. The element 24) is cut by a mechanical scribing method to form a group A of discrete structures (group of sub-elements 24a).

次に、ステップS116で、こうして形成された構造体A群上に、透明絶縁膜37として、例えば、透明絶縁層となるSiO2膜を、MOCVD法又はRFスパッタ法、DCリアクティブスパッタ法等の公知の方法により形成する。続いて、CMP法等の公知の方法により、構造体Aの上面部に形成されている透明絶縁膜37(SiO2膜)を選択的に削り取り、pn接合素子24である副素子24a(構造体A)の上面部のみに保護層となる透明保護膜34(ZnO膜)を露出させる。
最後に、ステップS118で、pn接合素子24(副素子24a)(構造体A)の上面部上に露出している透明保護膜34上にのみ、水素生成助触媒36として、例えば、Pt助触媒を、光電着法等の公知の方法により担持させる。
これにより、素子積層体12を製造することができる。
Next, in step S116, on the structure A group thus formed, as the transparent insulating film 37, for example, a SiO2 film to be a transparent insulating layer is formed by a known method such as MOCVD, RF sputtering, DC reactive sputtering, or the like. It forms by the method of. Subsequently, the transparent insulating film 37 (SiO 2 film) formed on the upper surface portion of the structure A is selectively scraped by a known method such as a CMP method, and the sub-element 24a (structure A as the pn junction element 24) is formed. The transparent protective film 34 (ZnO film) serving as a protective layer is exposed only on the upper surface portion of ().
Finally, in step S118, for example, a Pt promoter is used as the hydrogen generation promoter 36 only on the transparent protective film 34 exposed on the upper surface of the pn junction element 24 (subelement 24a) (structure A). Is supported by a known method such as a photo-deposition method.
Thereby, the element laminated body 12 can be manufactured.

容器18は、素子積層体12を収納すると共に、ガス生成部14aを構成する上側のpn接合素子24aの透明保護膜34の上側表面と接触する電解水溶液AQ、及びガス生成部14aから生成されるガスである水素を収容(貯留)する、素子積層体12の上側に設けられる上側の電解室16a、及びガス生成部14bを構成する下端のpn接合素子22の導電板26の裏面と接触する電解水溶液AQ、及びガス生成部14bから生成されるガスである酸素を収容(貯留)する、素子積層体12の下側に設けられる下側の電解室16bからなる電解室16を構成する。
上側の電解室16a及び下側の電解室16bは、図2に示すように、容器18の内表面に沿って、素子積層体12の外周を囲む領域で繋がっており、この繋がっている領域に隔膜20が配置されている。
The container 18 accommodates the element stack 12, and is generated from the electrolytic aqueous solution AQ that comes into contact with the upper surface of the transparent protective film 34 of the upper pn junction element 24a constituting the gas generator 14a, and the gas generator 14a. Electrolysis in contact with the back surface of the conductive plate 26 of the upper electrolysis chamber 16a provided on the upper side of the element stack 12 and the lower pn junction element 22 constituting the gas generation unit 14b, which stores (stores) hydrogen as a gas. An electrolysis chamber 16 is configured which includes an aqueous solution AQ and a lower electrolysis chamber 16b provided on the lower side of the element stack 12 that stores (stores) oxygen, which is a gas generated from the gas generation unit 14b.
Electrolysis chamber 16b of the upper electrolysis chamber 16a and the lower side, as shown in FIG. 2, along the inner front surface of the container 18, and connected in the region surrounding the outer periphery of the element stack 12, the area to which this leads A diaphragm 20 is disposed on the surface.

電解水溶液AQを電解室16a内に供給するための複数(図2に例では3つ)の供給口38aが、容器18内の電解室16aの図1中の右上側面(装置の右上側)に、電解室16a内の電解水溶液AQを排出するための複数(図2に例では4つ)の排出口40a、及び電解室16a内で生成された水素を回収するための複数(図2に例ではつ)の回収口42が、共に、容器内18の電解室16aの図1中の左上側面(装置の左上側)に設けられている。
電解水溶液AQを電解室16b内に供給するための複数(図2に例では2つ)の供給口38bが、容器18内の電解室16bの図1中の右下側面(装置の右下側)に、電解室16b内で生成された酸素と共に電解室16b内の電解水溶液AQを排出するための複数(図2に例では2つ)の排出口40bが、容器18内の電解室16bの図1中の左下側面(装置の左下側)に設けられている。排出口40bから電解水溶液AQと共に排出された酸素は、図示しない回収部により回収される。
Supply port 38a of the plurality for supplying electrolytic solution AQ to the electrolytic chamber 16a (3 one in shown to Example 2) is the upper right side of the right upper side (apparatus in FIG. 1 of the electrolytic chamber 16a in the container 18 a) a plurality of to recover hydrogen plurality (in shown to example 2 produced in the outlet 40a, and the electrolysis chamber 16a of the four) for discharging the electrolytic solution AQ electrolytic chamber 16a ( recovery port 42 of the shown three in to example) in FIG. 2 are both provided on the upper left side in FIG. 1 of the electrolysis chamber 16a of the container 18 (the upper left side of the device).
Supply ports 38b of the plurality for supplying electrolytic solution AQ in the electrolyte chamber 16b (2 one in shown to Example 2) is right in the lower right side (apparatus in FIG. 1 of the electrolysis chamber 16b in the container 18 the lower side), the discharge port 40b of the plurality for exhausting electrolytic solution AQ electrolysis chamber electrolysis chamber 16b together with the generated oxygen within 16b (2 one in shown to example 2) are, inside the container 18 of The electrolytic chamber 16b is provided on the lower left side surface (lower left side of the apparatus) in FIG. The oxygen discharged together with the electrolytic aqueous solution AQ from the discharge port 40b is recovered by a recovery unit (not shown).

供給口38a及び排出口40aは、共に、電解室16a内において、pn接合素子24(副素子24aの群)の透明保護膜34で生成された水素が表面に滞留しないような水の流れができるように、透明保護膜34の位置より少し上側の位置となるように取り付けられている。このため、透明保護膜34の表面を常に電解水溶液AQに接触させておくことができ、効率よく水素を発生させることができる。なお、供給口38a及び排出口40aの位置が、電解室16a内の電解水溶液AQの水面となるのは勿論である。
一方、供給口38b及び排出口40bは、共に、電解室16bの天井となる下流に向かって上方に傾斜する導電板26の裏面の位置となるように取り付けられている。
水素は、電解室16a内において電解水溶液AQの水面の上側に貯留されるので、電解室16aの天井は、導電板26の裏面と同様に、下流に向かって上方に傾斜し、水面から離れるように構成されている。そして、回収口42は、貯留された水素を効率よく回収するために、電解水溶液AQの水面の位置より少し上側、即ち、供給口38a及び排出口40aの位置より少し上側となるように取り付けられている。
Both the supply port 38a and the discharge port 40a can flow water in the electrolysis chamber 16a so that hydrogen generated in the transparent protective film 34 of the pn junction element 24 (group of sub elements 24a) does not stay on the surface. As described above, the transparent protective film 34 is attached so as to be slightly above the position of the transparent protective film 34. For this reason, the surface of the transparent protective film 34 can be always kept in contact with the electrolytic aqueous solution AQ, and hydrogen can be generated efficiently. Of course, the positions of the supply port 38a and the discharge port 40a become the water surface of the electrolytic aqueous solution AQ in the electrolytic chamber 16a.
On the other hand, both the supply port 38b and the discharge port 40b are attached so as to be positioned on the back surface of the conductive plate 26 that is inclined upward toward the downstream which becomes the ceiling of the electrolysis chamber 16b.
Since hydrogen is stored above the water surface of the electrolytic aqueous solution AQ in the electrolysis chamber 16a, the ceiling of the electrolysis chamber 16a is inclined upward toward the downstream and away from the water surface, similarly to the back surface of the conductive plate 26. It is configured. The recovery port 42 is attached so as to be slightly above the position of the water surface of the electrolytic aqueous solution AQ, that is, slightly above the positions of the supply port 38a and the discharge port 40a in order to efficiently recover the stored hydrogen. ing.

なお、供給口38a、排出口40a及び回収口42の数は、特に制限的ではなく、水素が水素ガス生成表面で滞留しないような水の流れができれば、いくつでも良いが、pn接合素子24(副素子24aの群)の表面上に確実に水の流れができる位置に必要な数だけ設けるのが好ましい。
また、供給口38b及び排出口40bの数も、特に制限的ではなく、酸素が酸素ガス生成表面で滞留しないような水の流れができれば、いくつでも良いが、pn接合素子22の導電板26の裏面上に確実に水の流れができる位置に必要な数だけ設けるのが好ましい。
The number of the supply ports 38a, the discharge ports 40a, and the recovery ports 42 is not particularly limited, and any number may be used as long as the water flow can be performed so that hydrogen does not stay on the hydrogen gas generation surface, but the pn junction element 24 ( It is preferable to provide as many as necessary at a position where water can flow reliably on the surface of the sub-element 24a group).
Further, the number of the supply ports 38b and the discharge ports 40b is not particularly limited, and any number may be used as long as the water can flow so that oxygen does not stay on the oxygen gas generation surface. However, the number of the conductive plates 26 of the pn junction element 22 is not limited. It is preferable to provide as many as necessary at a position where water can flow reliably on the back surface.

隔膜20は、電解室16a内で生成された水素と電解室16b内で生成された酸素とを分離して高い純度で回収すると共に、電解室16a内での水素の生成によって増加した水酸イオン(pHも増加)、及び電解室16b内での酸素の生成によって増加した水素イオン(pHは減少)を中和させるために、水酸イオン及び水素イオンを通過させるために、容器18内の電解室16を、電解室16aと電解室16bと分離するためのもので、イオン透過性、かつガス非透過性を持つ膜である。
隔膜20は、上述したように、上側の電解室16a及び下側の電解室16bを、容器18の外面に沿って、素子積層体12の外周を囲み、かつ上下に繋ぐ領域に配置され、容器18の内表面と素子積層体12の外壁面とに隙間なく密着させて取り付けられる。こうして、隔膜20は、上側のpn接合素子24と接する電解室16aの領域と、pn接合素子22と接する電解室16bの領域とを、ガスの透過が無く、イオンの透過は起こるように分離することができる。
隔膜20は、例えば、イオン交換膜、セラミックフィルタ、バイコールガラス等により構成される。また、隔膜20の厚さは、特に制限されるものではなく、10〜1000μmが好ましい。
本発明のガス製造装置は、基本的に以上のように構成される。
The diaphragm 20 separates the hydrogen generated in the electrolysis chamber 16a and the oxygen generated in the electrolysis chamber 16b and collects them with high purity, and also increases the hydroxide ions generated by the generation of hydrogen in the electrolysis chamber 16a. (The pH also increases), and in order to allow the hydroxide ions and hydrogen ions to pass through in order to neutralize hydrogen ions (pH decreases) due to the generation of oxygen in the electrolysis chamber 16b, The chamber 16 is for separating the electrolytic chamber 16a and the electrolytic chamber 16b, and is a membrane having ion permeability and gas non-permeability.
As described above, the diaphragm 20 is disposed in a region that surrounds the outer periphery of the element stack 12 and connects the upper electrolytic chamber 16a and the lower electrolytic chamber 16b along the outer surface of the container 18 and vertically. mounted in close contact without any gap and 18 the inner front and the outer wall surface of the element stack 12. Thus, the diaphragm 20 separates the region of the electrolysis chamber 16a in contact with the upper pn junction element 24 and the region of the electrolysis chamber 16b in contact with the pn junction element 22 so that there is no gas permeation and ion permeation occurs. be able to.
The diaphragm 20 is made of, for example, an ion exchange membrane, a ceramic filter, Vycor glass, or the like. The thickness of the diaphragm 20 is not particularly limited, and is preferably 10 to 1000 μm.
The gas production apparatus of the present invention is basically configured as described above.

以上、本発明のガス製造装置について詳細に説明したが、本発明は、上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、勿論である。   As mentioned above, although the gas manufacturing apparatus of this invention was demonstrated in detail, this invention is not limited to the above-mentioned example, In the range which does not deviate from the summary of this invention, it is possible to perform various improvements and changes. Of course.

以下、本発明のガス製造装置を実施例に基づいて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
まず、実施例1として、以下に示す構成の図1に示すガス製造装置10を作製し、電解室16に電解水溶液を満たして、光照射を行い、水素及び酸素の発生ガス量を評価した。
その結果を表1に示す。
なお、実施例1のガス製造装置10の素子積層体12は、図3のフローチャートに示す作製フローに従って製作した。
Hereinafter, the gas production apparatus of the present invention will be specifically described based on examples. The present invention is not limited to these examples.
Example 1
First, as Example 1, the gas production apparatus 10 shown in FIG. 1 having the following configuration was manufactured, and the electrolytic chamber 16 was filled with an electrolytic aqueous solution, irradiated with light, and the amounts of generated gas of hydrogen and oxygen were evaluated.
The results are shown in Table 1.
In addition, the element laminated body 12 of the gas manufacturing apparatus 10 of Example 1 was manufactured according to the manufacturing flow shown to the flowchart of FIG.

1.水素発生素子(pn接合素子24(副素子24a))の構成
透明導電膜:IMO(Mo添加In)、1000nm厚
P型半導体薄膜:CIGS、500nm厚
N型半導体薄膜:CdS、50nm厚
保護膜:ITO(Sn添加In)、50nm厚
助触媒:Pt
2.酸素発生素子(pn接合素子22)の構成
導電板:Mo、1mm厚
P型半導体薄膜:CIGS、2000nm厚
N型半導体薄膜:CdS、50nm厚
3.導電板の形態
酸素ガス発生側の形状:酸素ガス流出方向に向かって、傾斜加工(酸素ガスの気泡が滞留しない)
4.酸素発生素子の形態
サイズ:15cm×20cm
5.水素発生素子の形態
サイズ:1辺が3cm〜5cm
素子の個数:9個(複数個)
素子の配置:各素子が離散的に配置
6.その他
隔膜:ナフィオン(イオン透過性かつガス非透過性の物質)
電解水溶液:0.1M NaSO溶液(pH9.5)
助触媒:Pt粒子(サイズ:〜φ20nm)
容器(モジュール)を構成する部材:ガラス
照射光源:AM1.5の擬似太陽光を照射
1. Structure of hydrogen generating element (pn junction element 24 (subelement 24a)) Transparent conductive film: IMO (Mo-added In 2 O 3 ), 1000 nm thick P-type semiconductor thin film: CIGS, 500 nm thick N-type semiconductor thin film: CdS, 50 nm thick Protective film: ITO (Sn-added In 2 O 3 ), 50 nm thickness Cocatalyst: Pt
2. 2. Configuration of oxygen generation element (pn junction element 22) Conductive plate: Mo, 1 mm thick P-type semiconductor thin film: CIGS, 2000 nm thick N-type semiconductor thin film: CdS, 50 nm thick Conductive plate shape Oxygen gas generating side shape: Inclined machining toward oxygen gas outflow direction (no bubbles of oxygen gas stay)
4). Form of oxygen generating element Size: 15cm x 20cm
5. Form of the hydrogen generating element Size: 1 to 3 cm on a side
Number of elements: 9 (multiple)
5. Arrangement of elements: Each element is arranged discretely. Others Diaphragm: Nafion (Ion-permeable and gas-impermeable substance)
Electrolytic aqueous solution: 0.1 M Na 2 SO 4 solution (pH 9.5)
Cocatalyst: Pt particles (size: ~ φ20nm)
Materials constituting the container (module): Glass Irradiation light source: AM1.5 simulated sunlight

(比較例1)
比較例1として、水素生成部と酸素生成部が同一の素子に形成されていること以外は、実施例1と同じ構成のガス製造装置を作製し、製作されたガス製造装置に対して、実施例1と同様にして、光照射を行い、発生ガス量を評価した。
その結果を表1に示す。
(Comparative Example 1)
As Comparative Example 1, a gas production apparatus having the same configuration as that of Example 1 was produced except that the hydrogen production unit and the oxygen production unit were formed in the same element, and the implementation was performed on the produced gas production apparatus. In the same manner as in Example 1, light irradiation was performed to evaluate the amount of generated gas.
The results are shown in Table 1.

(比較例2)
次に、比較例2として、水素生成素子と酸素生成素子のサイズ(15cm×20cm)が同一で、かつ各素子が1つずつで構成されていること以外は、実施例1と同じ構成のガス製造装置を作製し、製作されたガス製造装置に対して、実施例1と同様にして、光照射を行い、発生ガス量を評価した。
その結果を表1に示す。
(Comparative Example 2)
Next, as Comparative Example 2, the gas having the same configuration as that of Example 1 except that the hydrogen generation element and the oxygen generation element have the same size (15 cm × 20 cm) and each element is configured by one. A production apparatus was produced, and the produced gas production apparatus was irradiated with light in the same manner as in Example 1 to evaluate the amount of generated gas.
The results are shown in Table 1.

なお、評価は以下のように行った。
ガス生成量(初期)として、光照射直後のガス生成量を求めた。
ガス生成量(経時)として、光照射から24時間経過後のガス生成量を求めた。
表1の総合判断の欄の「A」は、水素ガスのガス生成量(初期)、及びガス生成量(経時)が共に50ml/min・mを超えた場合であり、総合判断の欄の「B」は、水素ガスのガス生成量(初期)、及びガス生成量(経時)のどちらか1つでも50ml/min・mを下回る判断基準の下に判定を行った。なお、50ml/min・m以上という基準は、太陽光変換効率1%を基に換算した数値である。
Evaluation was performed as follows.
As the gas generation amount (initial), the gas generation amount immediately after light irradiation was determined.
As a gas generation amount (time), a gas generation amount after 24 hours from light irradiation was obtained.
“A” in the column of comprehensive judgment in Table 1 is a case where the gas generation amount (initial) of hydrogen gas and the gas generation amount (timed) both exceed 50 ml / min · m 2 . “B” was determined on the basis of a determination criterion of less than 50 ml / min · m 2 for any one of the hydrogen gas generation amount (initial) and the gas generation amount (time). In addition, the reference value of 50 ml / min · m 2 or more is a numerical value converted based on a solar conversion efficiency of 1%.

Figure 0005993768
Figure 0005993768

表1に示すように、本発明の実施例1では、光照射直後の水素ガス生成量は、65ml/min・mであった。また、24時間経過後の水素ガス生成量は、55ml/min・mであった。初期に対してガス生成量が減少した理由は、発生した水素ガスの気泡が受光面側の水素発生部の一部に付着してしまい、その気泡によって溶液との接触面積が低下したことで、ガス生成効率が低下してしまったためである。ただし、水素発生素子を離散的に配置したことで、装置内部に導入した水が乱流となり、大部分の気泡を除去することが出来ている。 As shown in Table 1, in Example 1 of the present invention, the amount of hydrogen gas generated immediately after light irradiation was 65 ml / min · m 2 . Moreover, the hydrogen gas production amount after the lapse of 24 hours was 55 ml / min · m 2 . The reason why the gas generation amount decreased with respect to the initial stage is that the generated hydrogen gas bubbles adhere to a part of the hydrogen generating part on the light receiving surface side, and the contact area with the solution is reduced by the bubbles. This is because the gas generation efficiency has decreased. However, by disposing the hydrogen generating elements discretely, the water introduced into the apparatus becomes a turbulent flow, and most of the bubbles can be removed.

比較例1では、光照射直後の水素ガス生成量は、0ml/min・mであり、ガスの発生を検知できなかった。また、24時間経過後も同様に水素ガス生成量は0ml/min・mであり、ガスの発生を検知できなかった。
比較例2では、光照射直後の水素ガス生成量は55ml/min・mであった。水素ガス生成用の素子が、酸素ガス生成用の素子の全てを覆うため、酸素ガス生成用の素子に到達する光量が減少し、系トータルでのガス生成能が低下したためである。また、24時間経過後の水素ガス生成量は30ml/min・mであった。これは、発生した水素ガスの気泡が受光面全面を覆ってしまい、気泡によって光が散乱される事で、入射光量が減少したためガス生成効率が著しく減少したためである。
In Comparative Example 1, the amount of hydrogen gas generated immediately after light irradiation was 0 ml / min · m 2 , and gas generation could not be detected. Similarly, after 24 hours, the amount of hydrogen gas produced was 0 ml / min · m 2 , and gas generation could not be detected.
In Comparative Example 2, the amount of hydrogen gas produced immediately after light irradiation was 55 ml / min · m 2 . This is because the element for generating hydrogen gas covers all the elements for generating oxygen gas, the amount of light reaching the element for generating oxygen gas is reduced, and the total gas generating ability is reduced. The amount of hydrogen gas produced after the lapse of 24 hours was 30 ml / min · m 2 . This is because the generated hydrogen gas bubbles cover the entire light receiving surface, and the light is scattered by the bubbles, so that the amount of incident light is reduced and the gas generation efficiency is significantly reduced.

以上の結果から明らかなように、本発明の実施例1では、光照射直後も、高いガス生成量を示し、時間経過後も、高いガス生成量を維持でき、安定したガス発生を達成することができることが分かる。
一方、比較例1では、水を水素と酸素に分解するために必要なポテンシャル(起電力)が得られなかったことが分かる。
また、比較例2では、光照射直後は、高いガス生成量を示すが、時間経過後は、ガス生成量の低下が著しく、安定したガス発生を達成できないことが分かる。
以上により、本発明の実施例1の優位性が示された。
以上の結果から、本発明の効果は明らかである。
As is clear from the above results, in Example 1 of the present invention, a high gas generation amount is exhibited even immediately after light irradiation, and a high gas generation amount can be maintained even after a lapse of time, thereby achieving stable gas generation. You can see that
On the other hand, in Comparative Example 1, it can be seen that the potential (electromotive force) required for decomposing water into hydrogen and oxygen was not obtained.
Further, in Comparative Example 2, a high gas generation amount is shown immediately after the light irradiation, but it can be seen that after a lapse of time, the gas generation amount is remarkably reduced and stable gas generation cannot be achieved.
Thus, the superiority of Example 1 of the present invention was shown.
From the above results, the effect of the present invention is clear.

10 ガス製造装置
12 素子積層体
14a,14b ガス生成部
16,16a,16b 電解室
18 容器
20 隔膜
22、24、24a pn接合素子
26 導電板
28 光電変換層
30 バッファ層
32 透明導電膜
34 透明保護膜
36 助触媒
37 透明絶縁膜
DESCRIPTION OF SYMBOLS 10 Gas production apparatus 12 Element laminated body 14a, 14b Gas production | generation part 16, 16a, 16b Electrolytic chamber 18 Container 20 Diaphragm 22, 24, 24a pn junction element 26 Conductive plate 28 Photoelectric conversion layer 30 Buffer layer 32 Transparent conductive film 34 Transparent protection Membrane 36 Cocatalyst 37 Transparent insulating film

Claims (9)

それぞれ、受光部を有し、pn接合を有する半導体薄膜が形成された複数の素子が直列に連なるように積層された素子積層体と、
前記複数の素子の中の、前記素子積層体の一方の端部にある第1の素子の表面に形成され、水素ガスを生成する水素ガス生成部と、
前記水素ガス生成部を含み、前記水素ガス生成部と接触する電解水溶液、及び生成される水素ガスを収容する第1の電解室と、
前記複数の素子の中の、前記素子積層体の他方の端部にある第2の素子の前記半導体薄膜が形成されている導電性基板の裏面に形成され、酸素ガスを生成する酸素ガス生成部と、
前記酸素ガス生成部を含み、前記酸素ガス生成部と接触する電解水溶液、及び生成される酸素ガスを収容する第2の電解室と、
前記第1の電解室と前記第2の電解室との間に設けられるイオン透過性、かつガス非透過性の隔膜とを有し、
前記第1の素子は、複数の副素子からなり、これらの複数の副素子は、前記第2の素子上に、この第2の素子に対して離散的に配置されていることを特徴とするガス製造装置。
An element stack in which a plurality of elements each having a light receiving portion and having a pn junction formed thereon are connected in series;
A hydrogen gas generating part that is formed on the surface of the first element at one end of the element stack of the plurality of elements and generates hydrogen gas;
An electrolytic aqueous solution that includes the hydrogen gas generation unit and is in contact with the hydrogen gas generation unit; and a first electrolytic chamber that stores the generated hydrogen gas;
Of the plurality of elements, an oxygen gas generation unit that generates oxygen gas formed on the back surface of the conductive substrate on which the semiconductor thin film of the second element at the other end of the element stack is formed. When,
An electrolytic aqueous solution that includes the oxygen gas generation unit and is in contact with the oxygen gas generation unit; and a second electrolytic chamber that stores the generated oxygen gas;
Ion permeability is provided between the second electrolytic chamber and said first electrolytic chamber, and have a gas-impermeable membrane,
The first element includes a plurality of subelements, and the plurality of subelements are discretely arranged on the second element with respect to the second element. Gas production equipment.
前記水素ガス生成部は、水素生成面を備え、この水素生成面は、前記第1素子の前記半導体薄膜の表面に形成される請求項1に記載のガス製造装置。   The gas production apparatus according to claim 1, wherein the hydrogen gas generation unit includes a hydrogen generation surface, and the hydrogen generation surface is formed on a surface of the semiconductor thin film of the first element. 前記複数の副素子は、前記第2の素子に対して、素子面積が小さいものである請求項1または2に記載のガス製造装置。 Wherein the plurality of sub-elements, to the second element, the gas production apparatus according to claim 1 or 2 is intended element area is small. 前記酸素ガス生成部は、酸素生成面を備え、この酸素生成面は、前記導電性基板の裏面に形成され、
前記酸素生成面は、前記第2の電解室内の前記電解水溶液の流動方向に沿って上側に傾斜している請求項1〜のいずれか1項に記載のガス製造装置。
The oxygen gas generation unit includes an oxygen generation surface, and the oxygen generation surface is formed on the back surface of the conductive substrate.
It said oxygen generating surface, gas production apparatus according to any one of claims 1 to 3 is inclined upward along the flow direction of the electrolytic solution of the second electrolytic chamber.
前記半導体薄膜が、CIGS系化合物半導体を含む請求項1〜のいずれか1項に記載のガス製造装置。 The gas manufacturing apparatus according to any one of claims 1 to 4 , wherein the semiconductor thin film includes a CIGS compound semiconductor. 前記半導体薄膜が、CZTS系化合物半導体を含む請求項1〜のいずれか1項に記載のガス製造装置。 Said semiconductor thin film, gas production apparatus according to any one of claims 1 to 5 including the CZTS based compound semiconductor. 前記半導体薄膜の吸収波長端が、800nm以上である請求項1〜のいずれか1項に記載のガス製造装置。 The absorption wavelength edge of the semiconductor thin film, gas production apparatus according to any one of claims 1 to 6 at 800nm or more. さらに、前記水素ガス生成部が備える水素生成面に設けられる水素生成助触媒を有する請求項1〜のいずれか1項に記載のガス製造装置。 Furthermore, gas production apparatus according to any one of claims 1 to 7 having a hydrogen generating cocatalyst provided on the hydrogen generation plane in which the hydrogen gas generator is provided. 前記水素生成触媒は、白金である請求項に記載のガス製造装置。 The gas production apparatus according to claim 8 , wherein the hydrogen generation co- catalyst is platinum.
JP2013068993A 2013-03-28 2013-03-28 Gas production equipment Active JP5993768B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013068993A JP5993768B2 (en) 2013-03-28 2013-03-28 Gas production equipment
CN201480018716.2A CN105102683B (en) 2013-03-28 2014-03-19 Gas manufacturing plants
AU2014246142A AU2014246142B2 (en) 2013-03-28 2014-03-19 Gas production apparatus
PCT/JP2014/057583 WO2014156899A1 (en) 2013-03-28 2014-03-19 Gas production apparatus
US14/866,387 US20160017506A1 (en) 2013-03-28 2015-09-25 Gas production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068993A JP5993768B2 (en) 2013-03-28 2013-03-28 Gas production equipment

Publications (3)

Publication Number Publication Date
JP2014189883A JP2014189883A (en) 2014-10-06
JP2014189883A5 JP2014189883A5 (en) 2015-07-09
JP5993768B2 true JP5993768B2 (en) 2016-09-14

Family

ID=51623878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068993A Active JP5993768B2 (en) 2013-03-28 2013-03-28 Gas production equipment

Country Status (5)

Country Link
US (1) US20160017506A1 (en)
JP (1) JP5993768B2 (en)
CN (1) CN105102683B (en)
AU (1) AU2014246142B2 (en)
WO (1) WO2014156899A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184312B2 (en) * 2013-12-13 2017-08-23 富士フイルム株式会社 Artificial photosynthetic array
JP6239733B2 (en) 2014-03-24 2017-11-29 株式会社東芝 Photoelectrochemical cell, method for producing photoelectrochemical cell, and photoelectrochemical reaction apparatus
JP6258124B2 (en) * 2014-05-20 2018-01-10 株式会社東芝 Photoelectrochemical reactor
JP6412417B2 (en) * 2014-11-27 2018-10-24 富士フイルム株式会社 Hydrogen generating electrode and manufacturing method thereof
JP2016104897A (en) * 2014-12-01 2016-06-09 株式会社東芝 Photoelectrode, method of manufacturing the same, and photoelectrochemical reactor using the same
WO2016114063A1 (en) * 2015-01-13 2016-07-21 富士フイルム株式会社 Hydrogen generating electrode
JPWO2017110217A1 (en) * 2015-12-22 2018-09-13 富士フイルム株式会社 Photocatalytic electrode and artificial photosynthesis module
CN105441972B (en) * 2015-12-28 2018-08-10 深圳市赫拉铂氢时代科技有限公司 Cavity-separating hydrogen-oxygen detaches electrolysis unit and its method
KR101984408B1 (en) * 2017-11-30 2019-05-30 전남대학교산학협력단 Cathode for Water Electrolysis and Manufacturing Method Thereof
WO2019172014A1 (en) * 2018-03-06 2019-09-12 富士フイルム株式会社 Photocatalytic electrode for electrolysis and electrolysis device
CN108922927B (en) * 2018-06-21 2020-07-14 华南师范大学 Stable compound semiconductor sunlight decomposition water hydrogen production electronic device, electrode system and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288955A (en) * 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth Method and apparatus for producing hydrogen utilizing sunlight
US7052587B2 (en) * 2003-06-27 2006-05-30 General Motors Corporation Photoelectrochemical device and electrode
AU2005245663A1 (en) * 2004-05-18 2005-12-01 Hydrogen Solar Limited Photoelectrochemical system
KR20090052696A (en) * 2007-11-21 2009-05-26 한국전자통신연구원 Dye-sensitized solar cells having substrate including p-n junction diode
JPWO2010010956A1 (en) * 2008-07-25 2012-01-05 株式会社アルバック Thin-film solar cell manufacturing apparatus and manufacturing method, and thin-film solar cell
JP4761327B2 (en) * 2010-01-12 2011-08-31 シャープ株式会社 Wet solar cell and wet solar cell module
JP5663254B2 (en) * 2010-02-08 2015-02-04 シャープ株式会社 Hydrogen production apparatus and hydrogen production method
JP5802374B2 (en) * 2010-05-19 2015-10-28 シャープ株式会社 Solar cell integrated gas production system
WO2012003416A1 (en) * 2010-07-02 2012-01-05 3M Innovative Properties Company Barrier assembly
JP5676218B2 (en) * 2010-11-16 2015-02-25 シャープ株式会社 Gas production apparatus, gas production method, and gas production apparatus array
US20120216854A1 (en) * 2011-02-25 2012-08-30 Chidsey Christopher E D Surface-Passivated Regenerative Photovoltaic and Hybrid Regenerative Photovoltaic/Photosynthetic Electrochemical Cell
JP5118233B2 (en) * 2011-06-08 2013-01-16 シャープ株式会社 Photoelectric conversion element and photoelectric conversion element module
JP5292549B2 (en) * 2011-07-06 2013-09-18 ペクセル・テクノロジーズ株式会社 Dye-sensitized solar cell module and manufacturing method thereof

Also Published As

Publication number Publication date
CN105102683B (en) 2017-08-25
AU2014246142A1 (en) 2015-10-22
JP2014189883A (en) 2014-10-06
WO2014156899A1 (en) 2014-10-02
AU2014246142B2 (en) 2016-06-23
US20160017506A1 (en) 2016-01-21
CN105102683A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5993768B2 (en) Gas production equipment
JP6333235B2 (en) Photoelectrochemical cell, photo-driven generation system and generation method of hydrogen and oxygen using the photoelectrochemical cell, and method for producing the photoelectrochemical cell
JP6184312B2 (en) Artificial photosynthetic array
WO2016024452A1 (en) Hydrogen generating electrode and artificial photosynthesis module
US20170191172A1 (en) Artificial photosynthesis module
US10258971B2 (en) Photocatalyst electrode and artificial photosynthesis module
JP2014189883A5 (en)
JPWO2017212842A1 (en) Photocatalytic electrode, artificial photosynthesis module and artificial photosynthesis device
WO2015087828A1 (en) Water electrolysis system
US10351961B2 (en) Water decomposition apparatus and water decomposition method
JP6247924B2 (en) Artificial photosynthesis module
JP6470868B2 (en) Artificial photosynthesis module
US10465299B2 (en) Gas production apparatus
JP6559710B2 (en) Hydrogen generation electrode
KR102307338B1 (en) A water electrolysis system and hydrogen generating device comprising the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5993768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160815

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250