JP2014189883A5 - - Google Patents

Download PDF

Info

Publication number
JP2014189883A5
JP2014189883A5 JP2013068993A JP2013068993A JP2014189883A5 JP 2014189883 A5 JP2014189883 A5 JP 2014189883A5 JP 2013068993 A JP2013068993 A JP 2013068993A JP 2013068993 A JP2013068993 A JP 2013068993A JP 2014189883 A5 JP2014189883 A5 JP 2014189883A5
Authority
JP
Japan
Prior art keywords
gas
hydrogen
oxygen
generation
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013068993A
Other languages
Japanese (ja)
Other versions
JP2014189883A (en
JP5993768B2 (en
Filing date
Publication date
Priority claimed from JP2013068993A external-priority patent/JP5993768B2/en
Priority to JP2013068993A priority Critical patent/JP5993768B2/en
Application filed filed Critical
Priority to PCT/JP2014/057583 priority patent/WO2014156899A1/en
Priority to AU2014246142A priority patent/AU2014246142B2/en
Priority to CN201480018716.2A priority patent/CN105102683B/en
Publication of JP2014189883A publication Critical patent/JP2014189883A/en
Publication of JP2014189883A5 publication Critical patent/JP2014189883A5/ja
Priority to US14/866,387 priority patent/US20160017506A1/en
Publication of JP5993768B2 publication Critical patent/JP5993768B2/en
Application granted granted Critical
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

また、半導体薄膜が、CIGS系化合物半導体を含むことが好ましい。
また、半導体薄膜が、CZTS系化合物半導体を含むことが好ましい。
また、半導体薄膜の吸収波長端が、800nm以上であることが好ましい。
また、さらに、水素ガス生成部が備える水素生成面に設けられる水素生成助触媒を有することが好ましい。
また、水素生成触媒は、白金であることが好ましい。
Moreover, it is preferable that a semiconductor thin film contains a CIGS type compound semiconductor.
Moreover, it is preferable that a semiconductor thin film contains a CZTS type compound semiconductor.
Moreover, it is preferable that the absorption wavelength edge of a semiconductor thin film is 800 nm or more.
Furthermore, it is preferable to have a hydrogen generation co-catalyst provided on the hydrogen generation surface provided in the hydrogen gas generation unit.
The hydrogen generation catalyst is preferably platinum.

まず、従来技術の装置に対する本発明に係るガス製造装置の特徴について説明する。
上述したように、従来技術ではガスを生成する電解用電極の表面(ガス生成面)が全て太陽光を受光する受光面とは逆側の光電変換部の裏面側に設けられているのに対し、本発明の特徴は、水素生成面が太陽光を受光する受光面と同じ側に設けられている点にある。このように、水素生成面を受光面側に配置することにより、時間経過によらず、高いガス生成効率を維持することができ、水素及び酸素のガスを安定して製造することができるという所望の効果が得られる。
First, the characteristics of the gas production apparatus according to the present invention with respect to the conventional apparatus will be described.
As described above, in the prior art, the surface of the electrode for electrolysis that generates gas (gas generation surface) is all provided on the back side of the photoelectric conversion unit opposite to the light receiving surface that receives sunlight. The feature of the present invention is that the hydrogen generating surface is provided on the same side as the light receiving surface that receives sunlight. Thus, by arranging the hydrogen generation surface on the light receiving surface side, high gas generation efficiency can be maintained regardless of the passage of time, and hydrogen and oxygen gas can be stably manufactured. The desired effect is obtained.

図1は、本発明の一実施形態に係るガス製造装置の一例を模式的に示す断面図であり、図2は、図1に示すガス製造装置の上面図である。
まず、これらの図に示すように、ガス製造装置10は、pn接合を有する半導体薄膜が形成された複数の素子が上下に直列に積層され素子積層体12と、素子積層体12の上下両端の素子の開放端にそれぞれ設けられる水素のガス生成部14a及び酸素のガス生成部14bと、この2つのガス生成部14a及び14bと接触する電解水溶液AQ、及びガス生成部14a及び14bでそれぞれ生成される水素及び酸素のガスを収容する電解室16を構成する容器18と、この電解室16を、それぞれガス生成部14a及び14bの1つを含む2つの電解室16a及び16bに仕切る隔膜20とを有する。
FIG. 1 is a cross-sectional view schematically showing an example of a gas production apparatus according to an embodiment of the present invention, and FIG. 2 is a top view of the gas production apparatus shown in FIG.
First, as shown in these drawings, the gas production apparatus 10 includes an element laminated body 12 in which a plurality of elements semiconductor thin film is formed is Ru are stacked in series in the vertical having a pn junction, the upper and lower ends of the element stack 12 The hydrogen gas generation unit 14a and the oxygen gas generation unit 14b, the electrolytic aqueous solution AQ that is in contact with the two gas generation units 14a and 14b, and the gas generation units 14a and 14b, respectively, are provided at the open ends of the elements. A container 18 that constitutes an electrolysis chamber 16 that accommodates hydrogen and oxygen gas, and a diaphragm 20 that partitions the electrolysis chamber 16 into two electrolysis chambers 16a and 16b each including one of the gas generation units 14a and 14b, respectively. Have

素子積層体12は、受光面から太陽光などの光を受光して水を光分解反応により分解して、水素及び酸素を生成させるためのもので、図中上下に積層された複数(図示例では2つ)のpn接合素子22及び24を有する。なお、直列に接続されるpn接合素子の数は、以下では2つを代表例として説明するが、複数のpn接合素子の起電力の和が水の電解開始電圧以上であれば、図示例の2つに限定されず、幾つであっても良いのは勿論である。
pn接合素子22及び24は、太陽電池として用いられる太陽電池セルと同様の構成を有する積層構造を有する光電変換素子であって、受光面から太陽光などの光を受光し、光電変換して電子及び正孔を生成し、生成した電子及び正孔をそれぞれガス生成部14a及び14bに送るためのものである。
Element laminate 12, the water receiving light such as sunlight from the light-receiving surface is decomposed by photolysis reaction, intended to produce hydrogen and oxygen, a plurality (shown example stacked vertically in the drawing in having a pn junction element 22 and 2 4 for two). The number of pn junction elements connected in series will be described below as two representative examples. However, if the sum of electromotive forces of a plurality of pn junction elements is equal to or higher than the electrolysis start voltage of water, Of course, the number is not limited to two and may be any number.
The pn junction elements 22 and 24 are photoelectric conversion elements having a stacked structure having the same configuration as that of a solar battery cell used as a solar battery. The pn junction elements 22 and 24 receive light such as sunlight from a light receiving surface, and perform photoelectric conversion to generate electrons. And holes are generated, and the generated electrons and holes are sent to the gas generators 14a and 14b, respectively.

こうすることにより、発生した酸素を、酸素ガス生成面となる導電板26の裏面から滞留させること無く速やかに移動させて、電解水溶液AQと共に排出口40bから排出できるので、常に、導電板26の裏面を電解水溶液AQと接触させておくことができ、導電板26の裏面全面で、水の光分解反応を生じさせ、酸素を効率よく発生させることができる。
なお、水の光分解反応による酸素の生成を促進するために、酸素ガス生成面となる導電板26の裏面に、IrO、CoO等の酸素生成助触媒を、点在するように島状に形成しても良い。
By doing so, the generated oxygen can be quickly moved without staying from the back surface of the conductive plate 26 serving as the oxygen gas generation surface and discharged from the discharge port 40b together with the electrolytic aqueous solution AQ. The back surface can be kept in contact with the electrolytic aqueous solution AQ, and a photodecomposition reaction of water can be caused on the entire back surface of the conductive plate 26, so that oxygen can be generated efficiently.
In order to promote the generation of oxygen by water photolysis reaction, the rear surface of the conductive plate 26 serving as oxygen gas generating surface, the oxygen generation auxiliary catalysts such as IrO 2, CoO x, as scattered islands You may form in a shape.

素子積層体12は、以下の製造方法により製造することができるが、これに限定されない。
図3は、図1及び図2に示すガス製造装置を製造するプロセスの一例を示すフローチャートである。
まず、ステップS100において、支持基板として機能する導電板26として、例えば、Mo基板等を用意する。
次に、ステップS102で、導電板26の片面上に、光電変換層28として、例えば、CIGS系化合物半導体膜(P型半導体層)を、セレン化/硫化法又は多源同時蒸着法等の公知の方法により形成する。
次に、ステップS104で、こうして形成された光電変換層28上に、バッファ層30として、例えばCdS膜(N型半導体層)をCBD(ケミカルバス)法等の公知の方法により形成する。
次に、ステップS106で、こうして形成されたバッファ層30上に、透明導電膜32として、例えば、透明導電層となるITO膜を、MOCVD法又はRFスパッタ法等の公知の方法により形成する。
The element laminate 12 can be manufactured by the following manufacturing method, but is not limited thereto.
FIG. 3 is a flowchart illustrating an example of a process for manufacturing the gas manufacturing apparatus illustrated in FIGS. 1 and 2.
First, in step S100, for example, a Mo substrate or the like is prepared as the conductive plate 26 that functions as a support substrate.
Next, in step S102, for example, a CIGS compound semiconductor film (P-type semiconductor layer) is formed on one surface of the conductive plate 26 as a photoelectric conversion layer 28, such as a selenization / sulfurization method or a multi-source co-evaporation method. It forms by the method of.
Next, in step S104, thus on the formed photoelectric conversion layer 28, as a buffer layer 30, for example, more form CdS film (N-type semiconductor layer) in CBD (chemical bath) methods known ways, such as.
Next, in step S106, an ITO film serving as a transparent conductive layer, for example, is formed on the buffer layer 30 thus formed by a known method such as an MOCVD method or an RF sputtering method.

電解水溶液AQを電解室16a内に供給するための複数(図2に例では3つ)の供給口38aが、容器18内の電解室16aの図1中の右上側面(装置の右上側)に、電解室16a内の電解水溶液AQを排出するための複数(図2に例では4つ)の排出口40a、及び電解室16a内で生成された水素を回収するための複数(図2に例ではつ)の回収口42が、共に、容器内18の電解室16aの図1中の左上側面(装置の左上側)に設けられている。
電解水溶液AQを電解室16b内に供給するための複数(図2に例では2つ)の供給口38bが、容器18内の電解室16bの図1中の右下側面(装置の右下側)に、電解室16b内で生成された酸素と共に電解室16b内の電解水溶液AQを排出するための複数(図2に例では2つ)の排出口40bが、容器18内の電解室16bの図1中の左下側面(装置の左下側)に設けられている。排出口40bから電解水溶液AQと共に排出された酸素は、図示しない回収部により回収される。
Supply port 38a of the plurality for supplying electrolytic solution AQ to the electrolytic chamber 16a (3 one in shown to Example 2) is the upper right side of the right upper side (apparatus in FIG. 1 of the electrolytic chamber 16a in the container 18 a) a plurality of to recover hydrogen plurality (in shown to example 2 produced in the outlet 40a, and the electrolysis chamber 16a of the four) for discharging the electrolytic solution AQ electrolytic chamber 16a ( recovery port 42 of the shown three in to example) in FIG. 2 are both provided on the upper left side in FIG. 1 of the electrolysis chamber 16a of the container 18 (the upper left side of the device).
Supply ports 38b of the plurality for supplying electrolytic solution AQ in the electrolyte chamber 16b (2 one in shown to Example 2) is right in the lower right side (apparatus in FIG. 1 of the electrolysis chamber 16b in the container 18 the lower side), the discharge port 40b of the plurality for exhausting electrolytic solution AQ electrolysis chamber electrolysis chamber 16b together with the generated oxygen within 16b (2 one in shown to example 2) are, inside the container 18 of The electrolytic chamber 16b is provided on the lower left side surface (lower left side of the apparatus) in FIG. The oxygen discharged together with the electrolytic aqueous solution AQ from the discharge port 40b is recovered by a recovery unit (not shown).

隔膜20は、電解室16a内で生成された水素と電解室16b内で生成された酸素とを分離して高い純度で回収すると共に、電解室16a内での水素の生成によって増加した水酸イオン(pHも増加)、及び電解室16b内での酸素の生成によって増加した水素イオン(pHは減少)を中和させるために、水酸イオン及び水素イオンを通過させるために、容器18内の電解室16を、電解室16aと電解室16bと分離するためのもので、イオン透過性、かつガス非透過性を持つ膜である。
隔膜20は、上述したように、上側の電解室16a及び下側の電解室16bを、容器18の外面に沿って、素子積層体12の外周を囲み、かつ上下に繋ぐ領域に配置され、容器18の内壁面と素子積層体12の外壁面とに隙間なく密着させて取り付けられる。こうして、隔膜20は、上側のpn接合素子24と接する電解室16aの領域と、pn接合素子22と接する電解室16bの領域とを、ガスの透過が無く、イオンの透過は起こるように分離することができる。
隔膜20は、例えば、イオン交換膜、セラミックフィルタ、バイコールガラス等により構成される。また、隔膜20の厚さは、特に制限されるものではなく、10〜1000μmが好ましい。
本発明のガス製造装置は、基本的に以上のように構成される。
The diaphragm 20 separates the hydrogen generated in the electrolysis chamber 16a and the oxygen generated in the electrolysis chamber 16b and collects them with high purity, and also increases the hydroxide ions generated by the generation of hydrogen in the electrolysis chamber 16a. (The pH also increases), and in order to allow the hydroxide ions and hydrogen ions to pass through in order to neutralize hydrogen ions (pH decreases) due to the generation of oxygen in the electrolysis chamber 16b, The chamber 16 is for separating the electrolytic chamber 16a and the electrolytic chamber 16b, and is a membrane having ion permeability and gas non-permeability.
Diaphragm 20, as described above, the electrolysis chamber 16 b of the upper electrolysis chamber 16a and a lower, along the outer surface of the container 18, surrounds the outer periphery of the element stack 12, and arranged in the region connecting the upper and lower, The container 18 is attached in close contact with the inner wall surface of the container 18 and the outer wall surface of the element stack 12 without any gap. Thus, the diaphragm 20 separates the region of the electrolysis chamber 16a in contact with the upper pn junction element 24 and the region of the electrolysis chamber 16b in contact with the pn junction element 22 so that there is no gas permeation and ion permeation occurs. be able to.
Diaphragm 20 is, for example, ion exchange membranes, cell la Mick filter composed of Vycor glass. The thickness of the diaphragm 20 is not particularly limited, and is preferably 10 to 1000 μm.
The gas production apparatus of the present invention is basically configured as described above.

表1に示すように、本発明の実施例1では、光照射直後の水素ガス生成量は、65ml/min・mであった。また、24時間経過後の水素ガス生成量は、55ml/min・mであった。初期に対してガス生成量が減少した理由は、発生した水素ガスの気泡が受光面側の水素発生部の一部に付着してしまい、その気泡によって溶液との接触面積が低下したことで、ガス生成効率が低下してしまったためである。ただし、水素発生素子を離散的に配置したことで、装置内部に導入した水が乱流となり、大部分の気泡を除去することが出来ている。 As shown in Table 1, in Example 1 of the present invention, the amount of hydrogen gas generated immediately after light irradiation was 65 ml / min · m 2 . Moreover, the hydrogen gas production amount after the lapse of 24 hours was 55 ml / min · m 2 . The reason why the gas generation amount decreased with respect to the initial stage is that the generated hydrogen gas bubbles adhere to a part of the hydrogen generating part on the light receiving surface side, and the contact area with the solution is reduced by the bubbles. This is because the gas generation efficiency has decreased. However, by disposing the hydrogen generating elements discretely, the water introduced into the apparatus becomes a turbulent flow, and most of the bubbles can be removed.

比較例1では、光照射直後の水素ガス生成量は、0ml/min・mであり、ガスの発生を検知できなかった。また、24時間経過後も同様に水素ガス生成量は0ml/min・mであり、ガスの発生を検知できなかった。
比較例2では、光照射直後の水素ガス生成量は55ml/min・mであった。水素ガス生成用の素子が、酸素ガス生成用の素子の全てを覆うため、酸素ガス生成用の素子に到達する光量が減少し、系トータルでのガス生成能が低下したためである。また、24時間経過後の水素ガス生成量は40ml/min・mであった。これは、発生した水素ガスの気泡が受光面全面を覆ってしまい、気泡によって光が散乱される事で、入射光量が減少したためガス生成効率が著しく減少したためである。
In Comparative Example 1, the amount of hydrogen gas generated immediately after light irradiation was 0 ml / min · m 2 , and gas generation could not be detected. Similarly, after 24 hours, the amount of hydrogen gas produced was 0 ml / min · m 2 , and gas generation could not be detected.
In Comparative Example 2, the amount of hydrogen gas produced immediately after light irradiation was 55 ml / min · m 2 . This is because the element for generating hydrogen gas covers all the elements for generating oxygen gas, the amount of light reaching the element for generating oxygen gas is reduced, and the total gas generating ability is reduced. The amount of hydrogen gas produced after 24 hours was 40 ml / min · m 2 . This is because the generated hydrogen gas bubbles cover the entire light receiving surface, and the light is scattered by the bubbles, so that the amount of incident light is reduced and the gas generation efficiency is significantly reduced.

Claims (10)

それぞれ、受光部を有し、pn接合を有する半導体薄膜が形成された複数の素子が直列に連なるように積層された素子積層体と、
前記複数の素子の中の、前記素子積層体の一方の端部にある第1の素子の表面に形成され、水素ガスを生成する水素ガス生成部と、
前記水素ガス生成部を含み、前記水素ガス生成部と接触する電解水溶液、及び生成される水素ガスを収容する第1の電解室と、
前記複数の素子の中の、前記素子積層体の他方の端部にある第2の素子の前記半導体薄膜が形成されている導電性基板の裏面に形成され、酸素ガスを生成する酸素ガス生成部と、
前記酸素ガス生成部を含み、前記酸素ガス生成部と接触する電解水溶液、及び生成される酸素ガスを収容する第2の電解室と、
前記第1の電解室と前記第2の電解室との間に設けられるイオン透過性、かつガス非透過性の隔膜とを有することを特徴とするガス製造装置。
An element stack in which a plurality of elements each having a light receiving portion and having a pn junction formed thereon are connected in series;
A hydrogen gas generating part that is formed on the surface of the first element at one end of the element stack of the plurality of elements and generates hydrogen gas;
An electrolytic aqueous solution that includes the hydrogen gas generation unit and is in contact with the hydrogen gas generation unit; and a first electrolytic chamber that stores the generated hydrogen gas;
Of the plurality of elements, an oxygen gas generation unit that generates oxygen gas formed on the back surface of the conductive substrate on which the semiconductor thin film of the second element at the other end of the element stack is formed. When,
An electrolytic aqueous solution that includes the oxygen gas generation unit and is in contact with the oxygen gas generation unit; and a second electrolytic chamber that stores the generated oxygen gas;
A gas production apparatus comprising an ion permeable and gas impermeable diaphragm provided between the first electrolysis chamber and the second electrolysis chamber.
前記水素ガス生成部は、水素生成面を備え、この水素生成面は、前記第1素子の前記半導体薄膜の表面に形成される請求項1に記載のガス製造装置。   The gas production apparatus according to claim 1, wherein the hydrogen gas generation unit includes a hydrogen generation surface, and the hydrogen generation surface is formed on a surface of the semiconductor thin film of the first element. 前記第1の素子は、複数の副素子からなり、これらの複数の副素子は、前記第2の素子上に、この第2の素子に対して離散的に配置されている請求項1又は2に記載のガス製造装置。   The first element includes a plurality of subelements, and the plurality of subelements are discretely arranged on the second element with respect to the second element. The gas production apparatus described in 1. 前記複数の副素子は、前記第2の素子に対して、素子面積が小さいものである請求項3に記載のガス製造装置。   The gas manufacturing apparatus according to claim 3, wherein the plurality of sub-elements have an element area smaller than that of the second element. 前記酸素ガス生成部は、酸素生成面を備え、この酸素生成面は、前記導電性基板の裏面に形成され、
前記酸素生成面は、前記第2の電解室内の前記電解水溶液の流動方向に沿って上側に傾斜している請求項1〜4のいずれか1項に記載のガス製造装置。
The oxygen gas generation unit includes an oxygen generation surface, and the oxygen generation surface is formed on the back surface of the conductive substrate.
The gas production apparatus according to any one of claims 1 to 4, wherein the oxygen generation surface is inclined upward along a flow direction of the electrolytic aqueous solution in the second electrolytic chamber.
前記半導体薄膜が、CIGS系化合物半導体を含む請求項1〜5のいずれか1項に記載のガス製造装置。 The gas manufacturing apparatus of any one of Claims 1-5 in which the said semiconductor thin film contains a CIGS type compound semiconductor. 前記半導体薄膜が、CZTS系化合物半導体を含む請求項1〜5のいずれか1項に記載のガス製造装置。 The gas manufacturing apparatus according to claim 1, wherein the semiconductor thin film includes a CZTS-based compound semiconductor. 前記半導体薄膜の吸収波長端が、800nm以上である請求項1〜7のいずれか1項に記載のガス製造装置。 The absorption wavelength edge of the semiconductor thin film, gas production apparatus according to any one of claims 1 to 7 is 800nm or more. さらに、前記水素ガス生成部が備える水素生成面に設けられる水素生成助触媒を有する請求項1〜8のいずれか1項に記載のガス製造装置。   Furthermore, the gas manufacturing apparatus of any one of Claims 1-8 which have a hydrogen production co-catalyst provided in the hydrogen production surface with which the said hydrogen gas production | generation part is provided. 前記水素生成触媒は、白金である請求項9に記載のガス製造装置。   The gas production apparatus according to claim 9, wherein the hydrogen generation catalyst is platinum.
JP2013068993A 2013-03-28 2013-03-28 Gas production equipment Expired - Fee Related JP5993768B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013068993A JP5993768B2 (en) 2013-03-28 2013-03-28 Gas production equipment
PCT/JP2014/057583 WO2014156899A1 (en) 2013-03-28 2014-03-19 Gas production apparatus
AU2014246142A AU2014246142B2 (en) 2013-03-28 2014-03-19 Gas production apparatus
CN201480018716.2A CN105102683B (en) 2013-03-28 2014-03-19 Gas manufacturing plants
US14/866,387 US20160017506A1 (en) 2013-03-28 2015-09-25 Gas production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013068993A JP5993768B2 (en) 2013-03-28 2013-03-28 Gas production equipment

Publications (3)

Publication Number Publication Date
JP2014189883A JP2014189883A (en) 2014-10-06
JP2014189883A5 true JP2014189883A5 (en) 2015-07-09
JP5993768B2 JP5993768B2 (en) 2016-09-14

Family

ID=51623878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013068993A Expired - Fee Related JP5993768B2 (en) 2013-03-28 2013-03-28 Gas production equipment

Country Status (5)

Country Link
US (1) US20160017506A1 (en)
JP (1) JP5993768B2 (en)
CN (1) CN105102683B (en)
AU (1) AU2014246142B2 (en)
WO (1) WO2014156899A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6184312B2 (en) * 2013-12-13 2017-08-23 富士フイルム株式会社 Artificial photosynthetic array
JP6239733B2 (en) 2014-03-24 2017-11-29 株式会社東芝 Photoelectrochemical cell, method for producing photoelectrochemical cell, and photoelectrochemical reaction apparatus
JP6258124B2 (en) * 2014-05-20 2018-01-10 株式会社東芝 Photoelectrochemical reactor
JP6412417B2 (en) * 2014-11-27 2018-10-24 富士フイルム株式会社 Hydrogen generating electrode and manufacturing method thereof
JP2016104897A (en) * 2014-12-01 2016-06-09 株式会社東芝 Photoelectrode, method of manufacturing the same, and photoelectrochemical reactor using the same
WO2016114063A1 (en) * 2015-01-13 2016-07-21 富士フイルム株式会社 Hydrogen generating electrode
JPWO2017110217A1 (en) 2015-12-22 2018-09-13 富士フイルム株式会社 Photocatalytic electrode and artificial photosynthesis module
CN105441972B (en) * 2015-12-28 2018-08-10 深圳市赫拉铂氢时代科技有限公司 Cavity-separating hydrogen-oxygen detaches electrolysis unit and its method
KR101984408B1 (en) * 2017-11-30 2019-05-30 전남대학교산학협력단 Cathode for Water Electrolysis and Manufacturing Method Thereof
JP7026773B2 (en) * 2018-03-06 2022-02-28 富士フイルム株式会社 Photocatalytic electrode for water splitting and water splitting device
CN108922927B (en) * 2018-06-21 2020-07-14 华南师范大学 Stable compound semiconductor sunlight decomposition water hydrogen production electronic device, electrode system and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003288955A (en) * 2002-03-27 2003-10-10 Research Institute Of Innovative Technology For The Earth Method and apparatus for producing hydrogen utilizing sunlight
US7052587B2 (en) * 2003-06-27 2006-05-30 General Motors Corporation Photoelectrochemical device and electrode
EP1774060A2 (en) * 2004-05-18 2007-04-18 Hydrogen Solar Ltd. Photoelectrochemical system
KR20090052696A (en) * 2007-11-21 2009-05-26 한국전자통신연구원 Dye-sensitized solar cells having substrate including p-n junction diode
WO2010010956A1 (en) * 2008-07-25 2010-01-28 株式会社 アルバック Apparatus and method for manufacturing thin film solar cell, and thin film solar cell
JP4761327B2 (en) * 2010-01-12 2011-08-31 シャープ株式会社 Wet solar cell and wet solar cell module
JP5663254B2 (en) * 2010-02-08 2015-02-04 シャープ株式会社 Hydrogen production apparatus and hydrogen production method
JP5802374B2 (en) * 2010-05-19 2015-10-28 シャープ株式会社 Solar cell integrated gas production system
JP5990164B2 (en) * 2010-07-02 2016-09-07 スリーエム イノベイティブ プロパティズ カンパニー Barrier assembly with encapsulant and photovoltaic cell
JP5676218B2 (en) * 2010-11-16 2015-02-25 シャープ株式会社 Gas production apparatus, gas production method, and gas production apparatus array
US20120216854A1 (en) * 2011-02-25 2012-08-30 Chidsey Christopher E D Surface-Passivated Regenerative Photovoltaic and Hybrid Regenerative Photovoltaic/Photosynthetic Electrochemical Cell
JP5118233B2 (en) * 2011-06-08 2013-01-16 シャープ株式会社 Photoelectric conversion element and photoelectric conversion element module
JP5292549B2 (en) * 2011-07-06 2013-09-18 ペクセル・テクノロジーズ株式会社 Dye-sensitized solar cell module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2014189883A5 (en)
JP5993768B2 (en) Gas production equipment
Minggu et al. An overview of photocells and photoreactors for photoelectrochemical water splitting
JP6333235B2 (en) Photoelectrochemical cell, photo-driven generation system and generation method of hydrogen and oxygen using the photoelectrochemical cell, and method for producing the photoelectrochemical cell
US8388818B1 (en) Photoelectrochemical generation of hydrogen
JP6184312B2 (en) Artificial photosynthetic array
JP6371854B2 (en) Artificial photosynthesis module
JP2009274891A (en) Semiconductor oxide film, production method thereof, and hydrogen generation apparatus using the semiconductor oxide film
WO1999038215A1 (en) Solar battery module for optical electrolysis device and optical electrolysis device
US9790602B2 (en) Techniques for photocatalytic hydrogen generation
AU2016374872B2 (en) Substrate-electrode (SE) interface illuminated photoelectrodes and photoelectrochemical cells
JP2019507240A5 (en)
JP6495630B2 (en) Photoelectrochemical reactor
JP6311024B2 (en) Water splitting apparatus and water splitting method
JP2015113516A (en) Water electrolysis system
JP6224226B2 (en) Photoelectrochemical reaction system
JP5427653B2 (en) Gas production apparatus and gas production method
US10465299B2 (en) Gas production apparatus
KR102307338B1 (en) A water electrolysis system and hydrogen generating device comprising the same
JP2014189882A5 (en)
JPWO2015146008A1 (en) Photoelectrochemical reaction system
KR101596250B1 (en) Large Scale Photo-chemical Water Splitting Unit, Scalable Hydrogen Gas Generating Appatratus Comprising The Same, And Photo-chemical Electrode Used Therin
JP2008214122A (en) Semiconductor oxide film, its production method, and hydrogen generating apparatus using the semiconductor oxide film
JP2009050827A (en) Semiconductor oxide film, its manufacturing method and hydrogen generation apparatus using semiconductor oxide film
JP2013213251A (en) Water electrolysis apparatus