WO2016075931A1 - 避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体 - Google Patents

避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
WO2016075931A1
WO2016075931A1 PCT/JP2015/005612 JP2015005612W WO2016075931A1 WO 2016075931 A1 WO2016075931 A1 WO 2016075931A1 JP 2015005612 W JP2015005612 W JP 2015005612W WO 2016075931 A1 WO2016075931 A1 WO 2016075931A1
Authority
WO
WIPO (PCT)
Prior art keywords
evacuation
model
recovery
submodel
information
Prior art date
Application number
PCT/JP2015/005612
Other languages
English (en)
French (fr)
Inventor
紅美子 但野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/526,352 priority Critical patent/US20170322039A1/en
Priority to JP2016558890A priority patent/JP6665785B2/ja
Priority to EP15858256.9A priority patent/EP3220325B1/en
Publication of WO2016075931A1 publication Critical patent/WO2016075931A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • G01C21/3415Dynamic re-routing, e.g. recalculating the route when the user deviates from calculated route or after detecting real-time traffic data or accidents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/22Design optimisation, verification or simulation using Petri net models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/047Optimisation of routes or paths, e.g. travelling salesman problem
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q90/00Systems or methods specially adapted for administrative, commercial, financial, managerial or supervisory purposes, not involving significant data processing
    • G06Q90/20Destination assistance within a business structure or complex
    • G06Q90/205Building evacuation
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B7/00Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00
    • G08B7/06Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources
    • G08B7/066Signalling systems according to more than one of groups G08B3/00 - G08B6/00; Personal calling systems according to more than one of groups G08B3/00 - G08B6/00 using electric transmission, e.g. involving audible and visible signalling through the use of sound and light sources guiding along a path, e.g. evacuation path lighting strip
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096833Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route
    • G08G1/096844Systems involving transmission of navigation instructions to the vehicle where different aspects are considered when computing the route where the complete route is dynamically recomputed based on new data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the present invention relates to an evacuation prediction system, an evacuation prediction method, and a computer-readable recording medium.
  • the road network as an evacuation route may be damaged and a failure may occur.
  • the evacuation passage cannot pass. Therefore, when an evacuation plan for an evacuee is drawn up, it may be necessary to consider the disaster situation and recovery plan regarding the evacuation route.
  • a recovery plan for a failure that has occurred in the road network or the like may need to be designed so that the time required for evacuation of the victim is shortened. Then, it is desirable that a recovery plan for a failure occurring in the road network or the like is made according to the situation of individual victims and the recovery status of the location where the failure occurred.
  • Patent Document 1 describes an evacuation plan evaluation system and the like.
  • the number of persons requiring assistance calculates the number of persons requiring assistance during evacuation based on the attribute information of the user of the mobile device.
  • the number-of-evacuation destination calculation unit calculates the number of evacuees who evacuate to their homes and evacuation centers.
  • the simulation unit performs a simulation when an evacuee evacuates from each polygon area to the home and evacuation site.
  • a score calculation part calculates the score for an evacuation plan based on the number of persons requiring assistance, the number of evacuees, and a simulation result.
  • Patent Document 2 describes a data processing device that can predict a destination even when there is a lack in data on the current location acquired in real time.
  • Patent Document 3 describes an evacuation time predicting device that predicts an evacuation time from a multi-level building having stairs.
  • the readability, reusability, expandability, etc. of the model used in the simulation are not necessarily considered. That is, in the evacuation plan evaluation system described in Patent Document 1, it may be difficult to cope with various situations related to evacuation when estimating the time required for evacuation of a disaster victim.
  • the present invention has been made to solve the above-described problem, and provides an evacuation prediction system that can cope with various situations related to evacuation when estimating the time required for evacuation of a disaster victim. Main purpose.
  • the evacuation prediction system provides an evacuation route and an evacuation for each refugee based on information on an evacuee's evacuation route and information on a restoration time of the failure location that is a location where the failure occurred in the evacuation route.
  • An evacuation submodel representing the position of the refugee on the route, a restoration submodel representing the restoration status at each failure location, and model generation means for producing relationship information representing the relationship between the evacuation submodel and the restoration submodel; Analyzing means for predicting the time required for the evacuation of the evacuees to finish by analyzing the evacuation submodel, the recovery submodel and the related information.
  • the evacuation prediction method provides an evacuation route for each refugee based on information on an evacuee's evacuation route and information on the recovery time of the failure location that is a location where the failure occurred in the evacuation route.
  • Evacuation sub-model that represents the location of the refugee in the evacuation route
  • a recovery sub-model that represents the recovery status at each failure location
  • relationship information that represents the relationship between the evacuation sub-model and the recovery sub-model.
  • the computer-readable recording medium is a computer-readable recording medium based on information on an evacuation route of an evacuee and information on a recovery time of a failure occurrence location that is a location where the failure occurred on the evacuation route.
  • An evacuation sub-model representing the evacuation route and the position of the refugee in the evacuation route, a restoration sub-model representing the restoration status at each failure location, and relationship information representing the relationship between the evacuation sub-model and the restoration sub-model
  • an evacuation prediction system that can cope with various situations related to evacuation when estimating the time required for evacuation of a disaster victim.
  • each component of each device represents a functional unit block.
  • Each component of each device can be realized by any combination of an information processing device 500 and software as shown in FIG. 13, for example.
  • the information processing apparatus 500 includes the following configuration as an example.
  • each device can be realized as a dedicated device.
  • Each device can be realized by a combination of a plurality of devices.
  • the direction of the arrow in a drawing shows an example and does not limit the direction of the signal between components.
  • FIG. 1 is a diagram showing a configuration of an evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of evacuation information and recovery information used in the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of evacuation information and recovery information used in the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating another example of the evacuation information and the recovery information used in the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of an evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of evacuation information and recovery information used in the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of evacuation information and recovery information used in the model generation unit of the evacuation prediction system according to the first embodiment of the present
  • FIG. 5 is a diagram illustrating another example of the evacuation information and the recovery information used in the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating an example of the evacuation submodel and the recovery submodel generated by the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of relation information generated by the model generation unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 8 is an example of the time required for evacuation of the evacuees predicted by the analysis unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 9 is an example of the time required for evacuation of the evacuees predicted by the analysis unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 10 is another example of the time required for evacuation of the evacuees predicted by the analysis unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 11 is another example of the time required for evacuation of the evacuees predicted by the analysis unit of the evacuation prediction system according to the first embodiment of the present invention.
  • FIG. 12 is a flowchart showing the operation of the evacuation prediction system in the first embodiment of the present invention.
  • the evacuation prediction system 100 includes a model generation unit 110 and an analysis unit 120.
  • the model generation unit 110 generates the evacuation submodel, the recovery submodel, and the relationship information based on the evacuation information about the evacuee's evacuation route and the restoration information about the restoration timing of the location where the failure occurred in the evacuation route.
  • the analysis unit 120 predicts the time required for the evacuee to evacuate by analyzing the evacuation submodel, the recovery submodel, and the relationship information.
  • the evacuation sub-model represents an evacuation route that is a road network or the like through which an evacuee may pass during evacuation, and the position of the evacuee in the evacuation route.
  • the recovery sub-model represents a recovery plan at a failure location and a recovery status at each failure location.
  • the relationship information represents the relationship between the evacuation submodel and the recovery submodel.
  • sTPN probability time Petri net
  • STPN is represented as a set of ⁇ P, T, A-, A +, A ⁇ , m0, EFT, LFT, F, C, E, L> as an example. Each of these elements is represented by a predetermined figure (not shown).
  • P is a set of places.
  • the place is represented by a white circle.
  • T is a set of transitions.
  • transitions are represented by white squares or bars.
  • A- is an input arc that connects a place and a transition in the direction from the place to the transition.
  • a + is an output arc that connects the place and the transition in the direction from the transition to the place.
  • the input arc and the output arc may be simply referred to as an arc.
  • the arc In the diagram representing sTPN, the arc is represented by an arrow.
  • A. is an inhibitor arc that connects places and transitions in the direction from place to transition.
  • the inhibitor arc In the diagram representing sTPN, the inhibitor arc is represented by an arrow with a round tip.
  • M0 is an initial marking that represents the number of non-negative tokens in each place.
  • the token is represented by a black circle arranged inside the place.
  • EFT and LFT are the minimum and maximum firing times for each transition included in T.
  • EFT is a non-negative real number including zero.
  • LFT is a non-negative real number including zero and infinity. Further, the value of LFT is equal to or greater than the value of EFT.
  • F is a cumulative distribution function relating to the firing time between EFT and LFT for each transition included in T.
  • C is a weight representing the ease of firing for each of a plurality of transitions that can be fired when a plurality of transitions can fire simultaneously.
  • C is assigned for transitions that can be fired simultaneously.
  • E is an enabling function associated with the marking for each transition included in T.
  • L (flushed function) is assigned to the transition. When the transition to which L is assigned is ignited, the token on the place associated with L is erased regardless of the connection relationship by arc with the transition.
  • a transition can be ignited in the following cases.
  • the transition fires, one token is reduced from the places connected via the input arc, and one token is added to the place connected via the output arc.
  • the time is larger than the EFT value and smaller than the LFT value. • The enabling function is true.
  • sTPN The details of sTPN are, for example, “Vicario, E., Sassoli, L., and Carnevali, L. (2009) 'Using stativate esthenate sensible efficiencies. 35, No. 5, pp. 703-719.
  • An example of generating a sub model or the like by the model generation unit 110 is shown below. First, an example of generating an evacuation submodel by the model generation unit 110 will be described. As an example, the model generation unit 110 generates an evacuation submodel using sTPN as follows.
  • the model generation unit 110 generates, for example, an evacuation submodel for each individual who needs evacuation.
  • the model generation unit 110 can generate an evacuation sub-model by using a different refugee as a unit.
  • the model generation unit 110 generates an evacuation submodel for each group of persons who need evacuation in a certain area.
  • the model generation unit 110 can generate an evacuation submodel for each group of evacuees having an arbitrary attribute such as an injured person, a sick person, or a person engaged in a specific occupation. That is, the model generation unit 110 can generate an evacuation submodel for each evacuee who has the predetermined condition as described above.
  • the model generation unit 110 receives evacuation information regarding the evacuation route of the refugee when generating the evacuation submodel. That is, when the evacuation submodel is generated, the input to the model generation unit 110 is the evacuation information.
  • the evacuation information includes, for example, geographical information related to an evacuation route, information on an evacuation route that is a route through which an evacuee passes according to an evacuation source, an evacuation destination, and a recovery status of the evacuation route.
  • the geographical information related to the evacuation route is represented in a form such as a directed graph shown in FIG.
  • areas and places where evacuees may stay are represented as nodes.
  • an area indicated by a node indicated by a circle with a number 1 or 2 is a disaster area.
  • the area indicated by the node with the number 6 or 7 is an area that is a candidate for an evacuation destination.
  • the road network that connects the areas where evacuees may stay and can serve as an evacuation route is represented as an arrow as a link.
  • the direction of the arrow is determined according to the direction in which the evacuees evacuate.
  • the location where the fault has occurred when there is a location where a fault has occurred in the road network (hereinafter referred to as “the location where the fault has occurred”), information indicating that is located at the position corresponding to the location where the fault has occurred as necessary. Attached.
  • FIG. 2 (A) it is assumed that a road network is faulty at two locations f1 and f2 and cannot pass.
  • FIG. 2B shows information regarding the evacuation source, the evacuation destination, and the evacuation route regarding the evacuee E1.
  • the evacuee E1 evacuates from the area corresponding to the node assigned number 1 in FIG. 2A to the area corresponding to the node assigned number 6.
  • evacuation takes place on the evacuation route indicated by (i) to (iv) in FIG. 2 (B) in accordance with the restoration status of f1 and f2, which are the locations where the failure has occurred.
  • the evacuation information requires transit time when passing through the evacuation route, the number of people accommodated in each area, the capacity of the evacuation route (for example, the number of people who can pass per unit time), etc. Contains information about time.
  • FIG. 3 correspond to the positions of the numbers given to the nodes of the graph indicating the evacuation route in FIG.
  • geographic information is the same as in the example of FIG.
  • the evacuee E2 evacuates from the area corresponding to the node numbered 3 in FIG. 4A to the area corresponding to the node numbered 7. It is assumed that Then, it is assumed that evacuation takes place on the evacuation route indicated by (i) to (iv) in FIG. 4B according to the restoration status of f1 and f2, which are the places where the failure occurred.
  • the information on the evacuation source, the evacuation destination, and the evacuation route shown in FIG. 4 is also expressed in a format as shown in FIG.
  • the model generation unit 110 generates an evacuation submodel based on the evacuation information as follows, for example.
  • the model generation unit 110 generates a model representing an area or the like corresponding to a node in geographic information serving as an evacuation route in an evacuation submodel.
  • the model generation unit 110 represents this model as a place.
  • the model generation unit 110 may generate information on areas corresponding to all nodes included in the geographic information in the evacuation submodel.
  • the model of the region generated by the evacuation submodel (the region represented by a place when using sTPN) is appropriately determined according to the region represented by the geographic information, the evacuation route, and the like.
  • the model generation unit 110 generates information representing the connection relationship in the geographic information serving as an evacuation route in the evacuation submodel.
  • the model generation unit 110 represents this information as an arc connecting a transition and a place corresponding to a connection source and a transition, and an arc connecting a transition and a place corresponding to a connection destination.
  • the direction of the arc is the same as the direction in the evacuation route, for example.
  • the model generation unit 110 generates a model related to the travel time on the evacuation route and its probability distribution as elements of the evacuation sub-model according to the characteristics of the travel time.
  • the model generation unit 110 can represent this information by assigning the minimum ignition time, the maximum ignition time, the cumulative distribution function, and the like to the corresponding transition.
  • the model generation unit 110 generates a model representing the initial position of the refugee as an element of the evacuation submodel.
  • the model generation unit 110 represents this model by placing a token in a place corresponding to the initial position of the evacuee.
  • the model generation unit 110 can generate an evacuation sub-model by selecting a region and a road network that are necessary when obtaining the time required for the evacuee to evacuate from information included in the geographic information. In other words, if the area or road network that the evacuee may pass through during evacuation is limited, the model generation unit 110 excludes information about the area or road network that is out of the evacuee's evacuation route. And an evacuation submodel can be generated.
  • Examples of areas and road networks that are excluded from the evacuation submodel include areas and road networks that are away from the evacuation route and are not evacuation routes for evacuees.
  • areas and road networks that are away from the evacuation route and are not evacuation routes for evacuees include areas and road networks that are away from the evacuation route and are not evacuation routes for evacuees.
  • a road network that is relatively thin and requires time to pass may be excluded from the evacuation submodel.
  • a road network or the like that takes time to recover and is expected to be difficult to recover within the time required to complete evacuation may be excluded from the evacuation submodel. Note that these pieces of information may be excluded from evacuation information input to the model generation unit 110 in advance.
  • model generation unit 110 can store the above-described generation rules in a storage unit (not shown) in advance and generate a model with reference to the generation rules when generating the model.
  • the model generation unit 110 may generate the model by acquiring the generation rule from the outside as necessary.
  • the model generation unit 110 generates the evacuation submodel of FIG. 6A for the refugee E1 in FIG.
  • the model generation unit 110 generates the evacuation submodel of FIG. 6B for the refugee E2 in FIG.
  • model generation unit 110 generates a recovery submodel using sTPN as follows.
  • the model generation unit 110 generates, for example, a recovery submodel for each recovery plan.
  • the model generation unit 110 may generate a recovery submodel for each of the plurality of recovery plans. .
  • the model generation unit 110 receives the recovery information regarding the evacuation route of the evacuees when generating the recovery submodel. That is, when a recovery submodel is generated, the input to the model generation unit 110 becomes this recovery information.
  • the recovery information includes, for example, operations for recovery and their order.
  • the operation for restoration includes, for example, the restoration work itself at the location where the failure occurred and the movement of the restoration resource for restoration.
  • the order of recovery includes a case where one recovery resource performs recovery in order, and a case where a plurality of recovery resources perform recovery in parallel.
  • the recovery information includes information related to a change in time required for evacuation (not shown) such as a change in time required for passing through the evacuation route and a change in capacity of the evacuation route in accordance with the failure information.
  • the model generation unit 110 generates a recovery submodel based on the recovery information as follows, for example.
  • the model generation unit 110 generates a model representing an initial state in the recovery plan as a recovery submodel.
  • the model generation unit 110 creates a place representing the initial state in this case, and places one token in the place.
  • the model generation unit 110 generates a model representing each operation for recovery as an element of the recovery submodel.
  • the model generation unit 110 When sTPN is used for the restoration sub-model, the model generation unit 110 generates and represents an arc that connects the transition and the place, and the transition and the place. In this case, the progress of the corresponding operation for recovery is represented by the firing of the transition.
  • the model generation unit 110 generates a recovery submodel so as to indicate the recovery order.
  • the model generation unit 110 connects the place representing the initial state and the transition, place, and arc representing the operation for restoration described above according to the order of restoration. Represented by In this case, transitions, places, and arcs for connection are generated as necessary.
  • the model generation unit 110 displays the recovery sub time so as to indicate the time required for recovery at each failure location, the reliability of the time required for the recovery (possibility of reworking, etc.), and the movement time of the recovery resource. Generate a model.
  • the model generation unit 110 may generate a recovery submodel so that these times are represented as a probability distribution.
  • the model generation unit 110 can represent this information by assigning the minimum firing time, the maximum firing time, the cumulative distribution function, and the like to the corresponding transition.
  • the model generation unit 110 generates a recovery submodel so as to indicate a state indicating the recovery status of each part indicating the recovery work at each of the failed locations in the generated recovery submodel.
  • the model generation unit 110 indicates a state where the failure has not been recovered (failure state) and a state where the failure has been recovered (recovery state) at the location indicating each recovery operation.
  • the model generation unit 110 can configure the recovery submodel so as to express explicitly the completion of the last step in the recovery plan (that is, the completion of the recovery work).
  • the model generation unit 110 generates, as an example, a model that connects an inhibitor arc to a transition that is connected with a place that represents the completion of the last step in the recovery plan and an input arc. .
  • model generation unit 110 may not generate the elements as described above.
  • the model generation unit 110 When sTPN is used for the recovery submodel, the model generation unit 110 generates a model so that, for example, a place indicating completion of the last step is not connected to another transition.
  • FIG. 6C is an example of a recovery submodel when sTPN is used.
  • the model generation unit 110 generates the recovery submodel of FIG. 6C regarding the recovery of the evacuation route of the refugee E1 in FIG. 2 and the refugee E2 shown in FIG.
  • the evacuation submodel shown in FIG. 6C the evacuation submodel is generated assuming that f2 is restored first and then f1 is restored for the failure locations f1 and f2 shown in FIG. 2 or FIG. ing.
  • transitions t10 and t11 are transitions indicating work for recovery for each of the fault occurrence locations f1 and f2.
  • the transition t9 is a transition that indicates the movement of the recovery resource between the failure locations f1 and f2.
  • Each of transitions t9 to t11 is assigned a minimum ignition time, a maximum ignition time, a cumulative distribution function, and the like according to the time required for the recovery.
  • places p8 and p15 are places indicating that there is a failure state for each of the failure occurrence locations f1 and f2.
  • the places p16 and p19 are places indicating that the fault occurrence locations f1 and f2 are in a recovery state.
  • model generation unit 110 generates relationship information using sTPN as follows.
  • the relationship information represents the relationship between the evacuation submodel and the recovery submodel. Therefore, the model generation unit 110 generates relation information according to the number of generated evacuation submodels and restoration submodels.
  • the model generation unit 110 When generating the relationship information, the model generation unit 110 accepts information related to the recovery operation included in the above-described recovery information and the target failure location. That is, when the recovery submodel is generated, the input to the model generation unit 110 is such information.
  • the relationship information defines the relationship between the route of evacuees in the evacuation submodel and the status of restoration relating to the failure location in the restoration submodel.
  • the evacuation route of the evacuees is selected according to the recovery status of the fault location.
  • relational information can fire the transition corresponding to the selected route when multiple transitions are connected to one place via the output arc. It is expressed as As an example in this case, the model generation unit 110 represents the relationship information as an sTPN enabling function.
  • the model generation unit 110 can determine the order of passage of the plurality of evacuees on the evacuation route as the related information. That is, the model generation unit 110 can generate a model that indicates that when a certain refugee is passing the evacuation route, another refugee cannot pass the evacuation route. In this case, the model generation unit 110 can represent such information by an sTPN enabling function.
  • FIG. 7 is an example of relationship information when sTPN is used for the evacuation submodel and the recovery submodel.
  • the model generation unit 110 generates the relationship information shown in FIG. 7 for the refugee E1 in FIG. 2 and the refugee E2 shown in FIG. Regarding the evacuee E1, this relation information is generated so that the transition that can be ignited in the recovery sub-model changes depending on the recovery status of f1 and f2, which are the locations where the failure occurred.
  • this relationship information is generated so that the transition that can be ignited in the recovery sub-model changes according to the recovery status of f1, which is the location of the failure.
  • the analysis unit 120 predicts the time required for the evacuees to evacuate using the model generated by the model generation unit 110.
  • the analysis unit 120 evacuates the refugee by searching for the evacuation submodel, the recovery submodel, and the related information generated by the model generation unit 110 from the initial state until the refugee reaches the evacuation destination. Estimate how long it will take.
  • the analysis unit 120 determines the time required for the evacuee to evacuate the time until the token in the evacuation submodel reaches the place representing the evacuation destination from the initial state. can do. In obtaining this time, the analysis unit 120 can use any state search algorithm of sTPN including a known method.
  • the time required for the evacuation of the evacuees predicted by the analysis unit 120 is output in an arbitrary method or format.
  • the time required for the evacuation of the evacuees is represented by, for example, a cumulative distribution function of the time for the evacuation to be completed.
  • FIG. 8 shows an example of a cumulative distribution function relating to the time required for the evacuation of the refugee E1 or E2 described above.
  • SQ1 to SQ5 represent the order of recovery at f1 and f2, which are the locations of failure.
  • ⁇ SQ1: f1 and f2 are not restored
  • ⁇ SQ4: f1 is restored first, then f2 is restored
  • FIG. 8 shows an example of a cumulative distribution function related to the time required for the evacuation of the evacuees E1. It can be seen that the time required for evacuation of the evacuees E1 changes according to the order of restoration.
  • FIG. 9 shows an example of the cumulative distribution function relating to the time required for the evacuation of the evacuees E2.
  • the cumulative distribution functions relating to the time required for the evacuation of the evacuee E2 are the same for the restoration orders SQ3 and SQ4.
  • the cumulative distribution functions related to the time required for the evacuation of the evacuees E2 are the same for the restoration orders SQ1 and SQ2. This is because, as shown in FIG. 4, the restoration of the failure location f2 does not affect the evacuation route of the refugee E2.
  • FIG. 10 is an example in which, for each of the restoration orders SQ1 to SQ5, one of the refugees E1 or E2 having the longer distribution of time required for evacuation is selected and shown. According to FIG. 10, it can be seen that the selection of the restoration order SQ5 is preferable when the distribution of time required for evacuation is shortened.
  • FIG. 11 shows a cumulative distribution function related to the time required for the evacuees E1 and E2 to evacuate when both of the failure locations f1 and f2 are restored.
  • the time required for evacuation may be the longest when SQ5 is selected as the restoration order.
  • the evacuee E2 when the recovery order SQ5 is selected, the time required for evacuation is shortened.
  • the restoration order when there is a difference in evacuation priority between the refugees E1 and E2, the time required for evacuation of the refugees with high priority is shortened. It can be seen that it is possible.
  • the evacuation prediction system 100 can predict the time required for the evacuee to evacuate for each of the plurality of restoration orders. And, based on the prediction result of the time required for the evacuee to evacuate regarding each of the plurality of restoration orders, it is possible to devise a restoration plan according to the situation of the evacuee including, for example, the priority of evacuation I understand.
  • the model generation unit 110 first receives evacuation information and recovery information (step S101).
  • the model generation unit 110 receives the evacuation information and the recovery information, for example, in the format shown in FIG.
  • the model generation unit 110 can receive such information via any input means or the like.
  • the model generation unit 110 may use information stored in advance in an arbitrary storage unit such as a memory or a disk.
  • the prediction unit 110 may accept these pieces of information via a communication network.
  • the model generation unit 110 generates an evacuation submodel, a recovery submodel, and evacuation information based on the accepted evacuation information and recovery (step S102).
  • the generated submodels and the like are appropriately stored in a storage unit (not shown) such as a memory or a disk so that the analysis unit 120 can refer to them.
  • the analysis unit 120 analyzes the generated model and predicts the time required for the evacuee to evacuate (step S103).
  • the predicted result is represented, for example, as shown in FIGS.
  • the result predicted by the analysis unit 120 is output from any output means including a display device and a communication network, for example.
  • the result predicted by the prediction unit 110 may be stored in an arbitrary storage unit so as to be referred to when necessary.
  • the evacuation prediction system 100 uses the evacuation submodel, the restoration submodel, and the restoration based on the evacuation information on the evacuation route of the refugee and the restoration information on the restoration timing of the place where the failure occurred in the evacuation route. Generate information. And the evacuation prediction system 100 in this embodiment estimates the time required for an evacuee to evacuate using the produced
  • the model generation unit 110 generates a plurality of submodels according to the contents. Therefore, the model generated by the model generation unit 110 has higher model readability than a case where an integrated model representing the contents included in each of the submodels is generated. In addition, by generating a plurality of sub-models according to the contents in the model generation unit 110, it is possible to easily correct the model when the recovery plan of the refugee or the failure location changes. . That is, the model generated in the model generation unit 110 has high extensibility of the generated model. Therefore, the evacuation prediction system 100 according to the present embodiment can cope with various situations related to evacuation when estimating the time required for evacuation of a disaster victim.
  • the evacuation prediction system 100 can predict the time required for evacuation of evacuees in each case for each of different recovery plans. Therefore, the evacuation prediction system 100 according to the present embodiment obtains a recovery plan that satisfies the predetermined time by evacuating the refugee by predicting the evacuation time of the refugee in each case of different restoration plans. be able to.
  • the predetermined conditions in this case include, for example, finishing evacuation within a predetermined time, or minimizing the time required for evacuation in an executable recovery plan. That is, the evacuation prediction system 100 in this embodiment is also used as a system for determining a recovery plan.
  • the evacuation prediction system 100 uses sTPN as a model.
  • the model used in the evacuation prediction system 100 is not limited to sTPN.
  • the model generation unit 110 in the evacuation prediction system 100 can generate a model in a format other than sTPN.
  • the model generation unit 110 can appropriately generate a model of the evacuation information and the recovery information including the capacity of the evacuation route, for example, by a method different from the method described above according to the model used.
  • the analysis part 120 can estimate the time which an evacuee needs to evacuate by analyzing the model produced
  • the model generation unit 110 can generate a model according to a rule different from the above generation rule.
  • the model generation unit 110 may represent a model according to a rule different from the above generation rule, such as not using an inhibitor arc when expressing the possibility of road traffic according to the progress stage of recovery related to the failure location. It may be generated.
  • the evacuation information and the recovery information received by the model generation unit 110 may be different from the above-described example.
  • the model generation unit 110 can appropriately accept any information necessary for generating each submodel and the like.
  • the model generation unit 110 and the analysis unit 120 may be realized as a single device, or may be realized as a single device.
  • the model generation unit 110 and the analysis unit 120 are each realized as a single device, the model generation unit 110 and the analysis unit 120 are connected via, for example, a wired or wireless communication network.
  • data representing each sub model or the like may be exchanged between the model generation unit 110 and the analysis unit 120 via a file.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Automation & Control Theory (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Architecture (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Alarm Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 被災者の避難に要する時間を推定する際に、避難に関する様々な状況に対応することができる避難予測システムを提供する。 本発明の一態様における避難予測システムは、避難者の避難経路に関する情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、避難者の各々に対する避難経路と避難経路における避難者の位置とを表す避難サブモデル、障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、避難サブモデルと復旧サブモデルとの関係を表す関係情報を生成するモデル生成手段と、避難サブモデル、復旧サブモデル及び関係情報を解析することによって、避難者の避難が終わるまでに要する時間を予測する解析手段とを備える。

Description

避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体
 本発明は、避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体に関する。
 災害が発生した場合には、災害が発生した地域から当該災害により被災した被災者が避難する必要が生じる可能性がある。この場合において、避難を必要とする被災者(以下「避難者」とする)が避難を完了するまでに要する時間は、できるだけ短いことが望まれる。
 一方、災害が生じた場合には、避難経路となる道路網等が被災して障害が発生することがある。この場合には、当該避難通路が通行できない可能性がある。したがって、避難者に対する避難計画が立案される際には、避難経路に関する被災状況や復旧計画が考慮される必要が生じる場合がある。また、避難経路となる道路網等が被災した場合、当該道路網等に発生した障害の復旧計画は、被災者の避難に要する時間が短くなるように立案される必要が生じる場合がある。そして、当該道路網等に発生した障害の復旧計画は、個々の被災者の状況や、障害が発生した個所の復旧状況に応じて立案されることが望まれる。
 特許文献1には、避難計画評価システム等が記載されている。特許文献1に記載の避難計画評価システムにおいては、要援護者人数算出部が、移動機のユーザの属性情報に基づいて避難時における要援護者の人数を算出する。また、避難先別人数算出部が、帰宅先及び避難所へ避難する避難者の人数を算出する。更に、シミュレーション部が、各ポリゴン領域から、帰宅先及び避難所へ避難者が避難する場合のシミュレーションを行う。そして、点数算出部が、要援護者数、避難者の人数、及びシミュレーション結果に基づいて避難計画のための点数を算出する。
 また、特許文献2には、リアルタイムに取得される現在地のデータに欠落があった場合でも、目的地の予測ができるデータ処理装置が記載されている。
 また、特許文献3には、階段を有する複数階層の建物からの避難時間を予測する避難時間予測装置が記載されている。
特開2012-83908号公報 特開2012-108748号公報 特開2012-27560号公報
 特許文献1に記載の避難計画評価システム等では、シミュレーションにて用いられるモデルの可読性、再利用性、拡張性等が必ずしも考慮されていない。すなわち、特許文献1に記載の避難計画評価システムでは、被災者の避難に要する時間を推定する際に、避難に関する様々な状況に対応することが困難な場合がある。
 本発明は、上記課題を解決するためになされたものであって、被災者の避難に要する時間を推定する際に、避難に関する様々な状況に対応することができる避難予測システムを提供することを主たる目的とする。
 本発明の一態様における避難予測システムは、避難者の避難経路に関する情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、避難者の各々に対する避難経路と避難経路における避難者の位置とを表す避難サブモデル、障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、避難サブモデルと復旧サブモデルとの関係を表す関係情報を生成するモデル生成手段と、避難サブモデル、復旧サブモデル及び関係情報を解析することによって、避難者の避難が終わるまでに要する時間を予測する解析手段を備える。
 また、本発明の一態様における避難予測方法は、避難者の避難経路に関する情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、避難者の各々に対する避難経路と避難経路における避難者の位置とを表す避難サブモデル、障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、避難サブモデルと復旧サブモデルとの関係を表す関係情報を生成し、避難サブモデル、復旧サブモデル及び関係情報を解析することによって、避難者の避難に要する時間を予測する。
 また、本発明の一態様におけるコンピュータ読み取り可能記録媒体は、コンピュータに、避難者の避難経路に関する情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、避難者の各々に対する避難経路と避難経路における避難者の位置とを表す避難サブモデル、障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、避難サブモデルと復旧サブモデルとの関係を表す関係情報を生成する処理と、避難サブモデル、復旧サブモデル及び関係情報を解析することによって、避難者の避難に要する時間を予測する処理とを実行させるプログラムを非一時的に格納する。
 本発明によると、被災者の避難に要する時間を推定する際に、避難に関する様々な状況に対応することができる避難予測システムを提供することができる。
本発明の第1の実施形態における避難予測システムの構成を示す図である。 本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の一例を示す図である。 本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の一例を示す図である。 本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の別の一例を示す図である。 本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の別の一例を示す図である。 本発明の第1の実施形態における避難予測システムのモデル生成部にて生成される避難サブモデル及び復旧サブモデルの例を示す図である。 本発明の第1の実施形態における避難予測システムのモデル生成部にて生成される関係情報の例を示す図である。 本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の例である。 本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の例である。 本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の別の例である。 本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の別の例である。 本発明の第1の実施形態における避難予測システムの動作を示すフローチャートである。 本発明の各実施形態における避難予測システム等を実現する情報処理装置の一例を示す図である。
 本発明の各実施形態について、添付の図面を参照して説明する。なお、本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。各装置の各構成要素は、例えば図13に示すような情報処理装置500とソフトウェアとの任意の組み合わせにより実現することができる。情報処理装置500は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)501
  ・ROM(Read Only Memory)502
  ・RAM(Random Access Memory)503
  ・RAM503にロードされるプログラム504
  ・プログラム504を格納する記憶装置505
  ・記憶媒体506の読み書きを行うドライブ装置507
  ・通信ネットワーク509と接続する通信インターフェース508
  ・データの入出力を行う入出力インターフェース510
  ・各構成要素を接続するバス511
各装置の実現方法には様々な変形例がある。例えば、各装置は、専用の装置として実現することができる。各装置は、複数の装置の組み合わせにより実現することができる。
 また、各装置や各システム等の構成を示す図において、図面中の矢印の方向は一例を示すものであり、構成要素間の信号の向きを限定するものではない。
 (第1の実施形態)
 まず、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態における避難予測システムの構成を示す図である。図2は、本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の一例を示す図である。図3は、本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の一例を示す図である。図4は、本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の別の一例を示す図である。図5は、本発明の第1の実施形態における避難予測システムのモデル生成部にて用いられる避難情報及び復旧情報の別の一例を示す図である。図6は、本発明の第1の実施形態における避難予測システムのモデル生成部にて生成される避難サブモデル及び復旧サブモデルの例を示す図である。図7は、本発明の第1の実施形態における避難予測システムのモデル生成部にて生成される関係情報の例を示す図である。図8は、本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の例である。図9は、本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の例である。図10は、本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の別の例である。図11は、本発明の第1の実施形態における避難予測システムの解析部にて予測された避難者の避難に要する時間の別の例である。図12は、本発明の第1の実施形態における避難予測システムの動作を示すフローチャートである。
 図1に示すとおり、本発明の第1の実施形態における避難予測システム100は、モデル生成部110と、解析部120とを備える。モデル生成部110は、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、避難サブモデル、復旧サブモデル及び関係情報を生成する。解析部120は、避難サブモデル、復旧サブモデル及び関係情報を解析することによって、避難者の避難に要する時間を予測する。
 なお、避難サブモデルは、避難者が避難の際に通過する可能性がある道路網等である避難経路と、避難経路における避難者の位置とを表す。復旧サブモデルは、障害発生個所の復旧計画や、障害発生個所の各々における復旧状況を表す。関係情報は、避難サブモデルと復旧サブモデルとの関係を表す。
 最初に、モデル生成部110に関して説明する。本実施形態の避難予測システム100では、モデル生成部110において生成される各々のモデルの一例として、確率時間ペトリネット(stochastic time Petri net、以下「sTPN」とする)が用いられる。
 sTPNは、一例として、<P,T,A-,A+,A・,m0,EFT,LFT,F,C,E,L>という組として表される。これらの各要素は、所定の図(不図示)によって表される。Pはプレースの集合である。sTPNを表す図においては、プレースは白い丸にて表される。Tはトランジションの集合である。sTPNを表す図においては、トランジションは白い四角または棒にて表される。A-は、プレースとトランジションとを、プレースからトランジションへの方向に向かって接続する入力アークである。A+は、プレースとトランジションとを、トランジションからプレースへの方向に向かって接続する出力アークである。以下の説明においては、入力アーク及び出力アークを併せて単にアークと呼ぶ場合がある。sTPNを表す図においては、アークは矢印にて表される。A・は、プレースとトランジションとを、プレースからトランジションへの方向に向かって接続するインヒビター・アークである。sTPNを表す図においては、インヒビター・アークは、先端が丸印である矢印にて表される。
 m0は各々のプレースにおける非負のトークンの数を表す初期マーキングである。sTPNを表す図においては、トークンは、プレースの内部に配置される黒丸にて表される。EFT及びLFTは、Tに含まれる各々のトランジションにおける最小及び最大発火時間である。EFTは、零を含む非負の実数である。また、LFTは、零及び無限大を含む非負の実数である。また、LFTの値はEFTの値と等しいか、又はEFTより大きい。Fは、Tに含まれる各々のトランジションに対するEFTからLFTの間における発火時刻に関する累積分布関数である。
 Cは、複数のトランジションが同時発火可能となった場合に、当該発火可能となった複数のトランジションの各々に関する発火のしやすさを表す重みである。Cは、同時に発火可能になる可能性があるトランジションに対して割り当てられる。Eは、Tに含まれる各々のトランジションに対するマーキングと関連付けられたエネーブリングファンクションである。L(flushing function)は、トランジションに割り当てられる。Lが割り当てられたトランジションが発火した場合に、Lにて関係付けられたプレース上のトークンを、当該トランジションとのアークによる接続関係に関わらず消去する。
 また、トランジションは、以下の場合に発火可能であるとされる。トランジションが発火すると、入力アークを介して接続されたプレースからトークンが1つ減り、出力アークを介して接続されたプレースにトークンが一つ増える。
・入力アークを介して接続されるプレースの全てに1つ以上のトークンが存在する。
・インヒビタ―・アークを介して接続されるプレースの全てにトークンが存在しない。
・時刻がEFTの値より大きく、LFTの値より小さい。
・エネーブリングファンクションが真となる。
 なお、sTPNの詳細は、例えば「Vicario, E., Sassoli, L., and Carnevali, L. (2009) ‘Using stochastic state classes in quantitative evaluation of dense-time reactive systems’, IEEE Transactions on Software Engineering, Vol. 35, No. 5, pp. 703-719.」等に記載されている。
 (避難サブモデルの生成)
 モデル生成部110によるサブモデル等の生成例を以下に示す。最初に、モデル生成部110による避難サブモデルの生成例を説明する。モデル生成部110は、一例として、sTPNを用いて、避難サブモデルを以下のように生成する。
 この場合において、モデル生成部110は、例えば、避難を必要とする個人を単位として避難サブモデルを生成する。ただし、モデル生成部110は、これとは異なる避難者を単位として避難サブモデルを生成することができる。例えば、モデル生成部110は、ある地域において避難を必要とする者のグループ毎に避難サブモデルを生成する。また、モデル生成部110は、負傷者、病人、特定の職業に従事する者など任意の属性を有する避難者のグループ毎に、避難サブモデルを生成することができる。すなわち、モデル生成部110は、上述したような所定の条件にある避難者毎に、避難サブモデルを生成することができる。
 モデル生成部110は、避難サブモデルの生成に際し、避難者の避難経路に関する避難情報を受付ける。すなわち、避難サブモデルが生成される場合に、モデル生成部110への入力は、この避難情報となる。避難情報には、例えば、避難経路等に関連する地理情報、避難元や避難先、避難経路の復旧状況に応じて避難者が通過するルートである避難ルートに関する情報が含まれる。
 避難情報のうち、避難経路に関連する地理情報は、例えば図2(A)に示す有向グラフのような形で表される。このグラフにおいては、避難者が滞留する可能性のある地域や場所がノードとして表される。例えば、番号1又は2が付された丸印であるノードにて示されるエリアが被災地である。また、番号6又は7が付されたノードにて示されるエリアが避難先の候補となる地域である。
 このグラフにおいては、避難者が滞留する可能性のある地域を接続し、避難経路となり得る道路網がリンクとして矢印として表される。この矢印は、避難者が避難する方向等に応じて向きが定められている。また、道路網に障害が発生している個所(以下、「障害発生個所」とする)がある場合には、その旨を表す情報が必要に応じて矢印の当該障害発生個所に対応する位置に付される。図2(A)に示す例では、f1及びf2の2か所において道路網に障害が発生し、通行ができない状態であるとする。
 また、避難情報のうち、避難元や避難先や、避難ルートに関する情報は、図2(B)のように表される。図2(B)は、避難者E1に関して、避難元や避難先、避難ルートに関する情報を表す。この例において、避難者E1は、図2(A)の番号1が付されたノードに対応する地域から、番号6が付されたノードに対応する地域へ避難することが想定されている。そして、障害発生個所であるf1及びf2の復旧状況に応じて、図2(B)の(i)から(iv)にて示される避難ルートにて避難することが想定されている。
 この他に、避難情報には、避難経路を通過する際の通過時間や、各々の地域における収容人数、避難経路の容量(例えば、単位時間あたりに通行可能な人数)等、図示しない避難に要する時間に関する情報が含まれる。
 なお、避難情報のうち、避難元や避難先、避難ルートに関する情報は、図3のような形でも表される。図3における番号は、図2における避難経路を示すグラフのノードに付された番号の位置に対応する。
 また、別の避難情報の例が図4及び図5に示されている。図4(A)に示すように、この例において、地理情報は図2(A)の例と同様である。また、図4(B)に示されるように、避難者E2は、図4(A)の番号3が付されたノードに対応する地域から、番号7が付されたノードに対応する地域へ避難することが想定されている。そして、障害発生個所であるf1及びf2の復旧状況に応じて、図4(B)の(i)から(iv)にて示される避難ルートにて避難することが想定されている。
 また、図3と同様に、図4に示される避難元や避難先、避難ルートに関する情報は、図5のような形式でも表される。
 モデル生成部110は、避難情報に基づいて、例えば次のように避難サブモデルを生成する。モデル生成部110は、避難経路となる地理情報におけるノードに対応する地域等を表すモデルを避難サブモデルに生成する。sTPNを用いる場合、モデル生成部110は、このモデルをプレースとして表す。なお、モデル生成部110は、地理情報に含まれるすべてのノードに対応する地域の情報を避難サブモデルに生成してもよい。避難サブモデルにて生成される地域(sTPNを用いる場合においては、プレースにて表される地域)のモデルは、地理情報が表す領域や、避難ルート等に応じて適宜定められる。
 モデル生成部110は、避難経路となる地理情報における接続関係を表す情報を避難サブモデルに生成する。sTPNを用いる場合、モデル生成部110は、この情報を、トランジションと接続元に対応するプレースとトランジションとを結ぶアーク、トランジションと接続先に対応するプレースとを結ぶアークとして表す。アークの向きは、例えば、避難ルートにおける向きと同じである。
 また、モデル生成部110は、避難ルートにおける移動時間やその確率分布に関するモデルを、移動時間の特性に応じて避難サブモデルの要素として生成する。避難サブモデルにsTPNが用いられる場合、モデル生成部110は、この情報を、最小発火時間、最大発火時間、累積分布関数等を、対応するトランジションに割り当てることで表すことができる。
 最後に、モデル生成部110は、避難者の初期位置を表すモデルを避難サブモデルの要素として生成する。sTPNを用いる場合、モデル生成部110は、このモデルを避難者の初期位置に対応するプレースにトークンを置くことで表す。
 なお、モデル生成部110は、地理情報に含まれる情報のうち、避難者の避難に要する時間を求める際に必要となる地域や道路網を選択して避難サブモデルを生成することができる。すなわち、避難者が避難の際に通る可能性がある地域や道路網が限られている場合には、モデル生成部110は、避難者の避難経路から外れた地域や道路網に関する情報を除外して避難サブモデルを生成することができる。
 避難サブモデルから除外される地域や道路網等の例として、避難経路から離れており、避難者の避難経路とならない地域や道路網等がある。また、避難者数が多い場合や、避難先までの距離が長い場合等には、相対的に細くて通過に時間を要する道路網等が、避難サブモデルから除外される場合がある。これ以外にも、復旧に時間を要し、避難完了に要する時間内に復旧が難しいと予想される道路網等が、避難サブモデルから除外される場合がある。なお、これらの情報は、モデル生成部110に入力される避難情報から予め除外されていてもよい。
 なお、モデル生成部110は、上述した生成規則を、図示しない記憶部に予め格納しておき、モデルの生成時に当該生成規則を参照してモデルを生成することができる。また、モデル生成部110は、モデルを生成する際に、必要に応じて外部から当該生成規則を取得してモデルを生成してもよい。
 図6(A)及び(B)は、sTPNを用いる場合における避難サブモデルの例である。モデル生成部110は、図2における避難者E1に関して、図6(A)の避難サブモデルを生成する。モデル生成部110は、図4における避難者E2に関して、図6(B)の避難サブモデルを生成する。
 図6(A)及び(B)に示す避難サブモデルにおいて、プレースp1からp7は、図2又は図4に示される同じ番号のノード1から7にそれぞれ対応する。また、図6(A)及び(B)に示す避難サブモデルにおいて、トランジションt0からt6及び当該トランジションに接続されるアークは、図2又は図4に示される矢印に対応する。なお、図6(A)又は(B)に示す避難サブモデルでは、避難経路になり得る地域及び道路網のみがモデルとして表されている。
 (復旧サブモデルの生成)
 次に、モデル生成部110による復旧サブモデルの生成例を説明する。モデル生成部110は、一例として、sTPNを用いて、復旧サブモデルを以下のように生成する。
 この場合において、モデル生成部110は、例えば、復旧計画毎に復旧サブモデルを生成する。復旧の順序や復旧対象となる障害発生個所の違いに応じて複数の復旧計画が考えられる場合には、モデル生成部110は、複数の復旧計画の各々について、復旧サブモデルを生成してもよい。
 モデル生成部110は、復旧サブモデルの生成に際し、避難者の避難経路に関する復旧情報を受付ける。すなわち、復旧サブモデルが生成される場合に、モデル生成部110への入力は、この復旧情報となる。復旧情報には、例えば、復旧のための操作とその順序が含まれる。復旧のための操作には、例えば、障害発生個所における復旧作業そのものや、復旧を行う復旧リソースの移動が含まれる。また、復旧の順序は、一つの復旧リソースが順番に復旧を行う場合や、複数の復旧リソースが並行して復旧を行う場合が含まれる。また、復旧情報には、障害の情報に応じて、避難経路を通過する際に要する時間の変化や、避難経路の容量の変化等、図示しない避難に要する時間の変化に関する情報が含まれる。
 モデル生成部110は、復旧情報に基づいて、例えば次のように復旧サブモデルを生成する。モデル生成部110は、復旧計画における初期状態を表すモデルを復旧サブモデルに生成する。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、この場合に、初期状態を表すプレースを作成し、当該プレースに一つのトークンを置く。
 モデル生成部110は、復旧のための操作の各々を表すモデルを復旧サブモデルの要素として生成する。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、これらをトランジションとプレース、当該トランジションと当該プレースとを接続するアークを生成して表す。この場合において、当該トランジションの発火によって、対応する復旧のための操作の進捗が表される。
 モデル生成部110は、復旧の順序を表すように復旧サブモデルを生成する。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、これらを、初期状態を表すプレースと、上述した復旧のための操作を表すトランジション、プレース及びアークを復旧の順序に応じて接続することにて表す。この場合に、必要に応じて接続のためのトランジション、プレース及びアークが生成される。
 なお、初期状態を表すプレースに置かれたトークンは、接続先のトランジションが発火した場合に、そのトランジションから出力アークにて接続されるプレースに移動する。この動作は、当該復旧のための操作等が行われたことを表す。
 また、モデル生成部110は、障害発生個所の各々における復旧に要する時間や、当該復旧に要する時間の信頼性(作業のやり直しが生じる可能性等)、復旧リソースの移動時間を表すように復旧サブモデルを生成する。モデル生成部110は、これらの時間を確率分布として表すように復旧サブモデルを生成してもよい。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、この情報を、最小発火時間、最大発火時間、累積分布関数等を対応するトランジションに割り当てることで表すことができる。
 モデル生成部110は、生成される復旧サブモデルにおける障害発生個所の各々の復旧作業を示す箇所について、その復旧状況を表す状態を示すように復旧サブモデルを生成する。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、各々の復旧操作を示す箇所に、障害が未復旧である状態(障害状態)と、障害が復旧した状態(復旧状態)とを示すプレースをそれぞれ生成する。それぞれのプレースは、復旧のための操作を表すトランジションに接続される。また、初期状態では、障害状態を表すプレースにトークンが置かれる。そして、新たに生成されたプレースと接続されたトランジションが発火することによって、当該トークンが、障害状態を表すプレースから復旧状態を表すプレースへと移動する。
 また、モデル生成部110は、復旧計画における最後のステップの完了(すなわち復旧作業の完了)を明示的に表すように復旧サブモデルを構成することができる。このように復旧サブモデルを生成することで、解析部120において復旧サブモデルが解析される際に、誤って解析されることが防止され、また、解析が終了したことが容易に判別される。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、一例として、復旧計画における最後のステップの完了を表すプレースと入力アークで接続されるトランジションにインヒビタ―・アークを接続するモデルを生成する。
 なお、モデル生成部110は、上述のような要素を生成しなくてもよい。復旧サブモデルにsTPNが用いられる場合、モデル生成部110は、例えば、最後のステップの完了を表すプレースを他のトランジションと接続しないようにモデルを生成する。
 図6(C)は、sTPNを用いる場合における復旧サブモデルの例である。モデル生成部110は、図2における避難者E1及び図4に示す避難者E2の避難経路の復旧に関して、図6(C)の復旧サブモデルを生成する。図6(C)に示す避難サブモデルにおいては、図2又は図4に示される障害発生個所f1及びf2について、f2が先に復旧され、続いてf1が復旧されるとして避難サブモデルが生成されている。
 図6(C)に示す復旧サブモデルにおいて、トランジションt10及びt11は、障害発生個所f1及びf2のそれぞれについて、復旧のための作業を示すトランジションである。また、トランジションt9は、障害発生個所f1とf2との間の復旧リソースの移動を示すトランジションである。トランジションt9からt11の各々には、それぞれの復旧に要する時間等に応じて、最小発火時間、最大発火時間、累積分布関数等が割り当てられている。また、プレースp8及びp15は、障害発生個所f1及びf2のそれぞれについて、障害状態にあることを示すプレースである。プレースp16及びp19は、障害発生個所f1及びf2のそれぞれについて、復旧状態にあることを示すプレースである。
 (関係情報の生成)
 次に、モデル生成部110による関係情報の生成例を説明する。モデル生成部110は、一例として、sTPNを用いて、関係情報を以下のように生成する。
 先に説明したとおり、関係情報は、避難サブモデルと復旧サブモデルとの関係を表す。したがって、モデル生成部110は、生成された避難サブモデル及び復旧サブモデルの数に応じて関係情報を生成する。
 モデル生成部110は、関係情報の生成に際し、上述した復旧情報に含まれる復旧のための操作とその対象となる障害発生個所に関する情報を受付ける。すなわち、復旧サブモデルが生成される場合に、モデル生成部110への入力は、これらの情報となる。
 関係情報は、一例として、避難サブモデルにおける避難者のルートと、復旧サブモデルにおける障害発生個所に関する復旧の状況との関係を定める。すなわち、関係情報は、複数の避難ルートの候補があり、障害発生個所の復旧状況に応じて避難ルートが変わる場合において、避難者の避難ルートが障害発生個所の復旧状況に応じて選択されるように設定される。各サブモデルがsTPNにて表される場合では、関係情報は、ひとつのプレースに対して複数のトランジションが出力アークを介して接続されている場合に、選択された経路に対応するトランジションを発火可能にするように表される。この場合の一例として、モデル生成部110は、関係情報を、sTPNのエネーブリングファンクションとして表す。
 また、別の例として、複数の避難者が同時に通行できない避難経路が存在する場合、モデル生成部110は、関係情報として、当該避難経路における複数の避難者の通行順序を定めることができる。すなわち、モデル生成部110は、ある避難者が当該避難経路を通行している場合に、他の避難者が当該避難経路を通行できないことを表すモデルを生成することができる。この場合に、モデル生成部110は、このような情報をsTPNのエネーブリングファンクションにて表すことができる。
 図7は、避難サブモデル及び復旧サブモデルにsTPNを用いる場合における関係情報の例である。モデル生成部110は、図2における避難者E1及び図4に示す避難者E2に関して、図7に示す関係情報を生成する。避難者E1に関して、この関係情報は、障害発生個所であるf1及びf2の復旧状況に応じて、復旧サブモデルにて発火可能になるトランジションが変わるように生成されている。また、避難者E2に関して、この関係情報は、障害発生個所であるf1の復旧状況に応じて、復旧サブモデルにて発火可能になるトランジションが変わるように生成されている。
 続いて、解析部120に関して説明する。解析部120は、モデル生成部110にて生成されたモデルを用いて避難者の避難に要する時間を予測する。解析部120は、モデル生成部110にて生成された避難サブモデル、復旧サブモデル及び関係情報について、初期状態から避難者が避難先に到達するまでを状態探索すること等によって、避難者の避難に要する時間を予測する。
 モデルとしてsTPNを用いたモデルが生成された場合には、解析部120は、例えば、避難サブモデルにおけるトークンが初期状態から避難先を表すプレースへ達するまでの時間を避難者の避難に要する時間とすることができる。この時間を求める際に、解析部120は、公知の手法を含むsTPNの任意の状態探索アルゴリズムを用いることができる。
 解析部120によって予測された避難者の避難に要する時間は、任意の方法や形式で出力される。モデルとしてsTPNを用いた場合には、避難者の避難に要する時間は、例えば、避難が完了する時間の累積分布関数にて表される。
 図8から図11は、上述した避難者E1又はE2の避難に要する時間に関する累積分布関数の一例を示す。これらの図において、SQ1からSQ5は、障害発生個所であるf1及びf2における復旧の順序を表す。
・SQ1:f1及びf2が未復旧
・SQ2:f2のみが復旧完了
・SQ3:f1のみが復旧完了
・SQ4:f1が先に復旧し、続いてf2が復旧
・SQ5:f2が先に復旧し、続いてf1が復旧
 図8は、避難者E1の避難に要する時間に関する累積分布関数の一例を示す。復旧の順序に応じて、避難者E1の避難に要する時間が変化することが分かる。
 図9は、避難者E2の避難に要する時間に関する累積分布関数の一例を示す。この場合において、復旧順序SQ3及びSQ4について、避難者E2の避難に要する時間に関する累積分布関数は同じである。また、復旧順序SQ1及びSQ2について、避難者E2の避難に要する時間に関する累積分布関数は同じである。これは、図4にも示されるように、障害発生個所f2の復旧は、避難者E2の避難ルートに影響しないためである。
 図10は、復旧順序SQ1からSQ5のそれぞれについて、避難者E1又はE2のうち、避難に要する時間の分布が長い方を選択して示した例である。図10によると、復旧順序SQ5を選択することが、避難に要する時間の分布を短くする場合に好ましいことが分かる。
 図11は、障害発生個所であるf1及びf2の両方が復旧される場合における避難者E1及びE2の避難に要する時間に関する累積分布関数を示す。図11によると、避難に要する時間が最も長くなる可能性があるのは、復旧順序としてSQ5が選択される場合である。しかしながら、避難者E2については、復旧順序SQ5が選択される場合に、避難に要する時間が短くなる。このように、図11によると、復旧順序を適切に選択することで、避難者E1及びE2の避難の優先度に差がある場合に、優先度の高い避難者の避難に要する時間を短くすることが可能であることが分かる。
 すなわち、複数の復旧順序が考えられる場合に、本実施形態における避難予測システム100は、複数の復旧順序の各々に関して避難者の避難に要する時間を予測することができる。そして、複数の復旧順序の各々に関する避難者の避難に要する時間の予測結果に基づいて、例えば避難の優先度を含む、避難者の状況に応じた復旧計画を立案することが可能であることが分かる。
 続いて、図12を用いて、本実施形態における避難予測システム100の動作の一例を説明する。モデル生成部110は、まず、避難情報及び復旧情報を受付ける(ステップS101)。モデル生成部110は、避難情報及び復旧情報を、例えば上述した図3のような形式にて受付ける。また、モデル生成部110は、任意の入力手段等を介してこれらの情報を受付けることができる。また、モデル生成部110は、予めメモリやディスク等の任意の記憶手段に記憶された情報を用いてもよい。予測部110は、通信ネットワークを介してこれらの情報を受付けてもよい。
 続いて、モデル生成部110は、受付けた避難情報及び復旧に基づいて、避難サブモデル、復旧サブモデル及び避難情報を生成する(ステップS102)。生成された各サブモデル等は、解析部120にて参照できるように、メモリやディスク等の図示しない記憶手段等に適宜記憶される。
 各サブモデル等が生成されると、解析部120は、生成されたモデルを解析して避難者の避難に要する時間を予測する(ステップS103)。予測された結果は、例えば、上述した図8から図11のように表される。解析部120にて予測された結果は、例えば、表示装置等や通信ネットワークを含む任意の出力手段から出力される。また、予測部110にて予測された結果は、必要とされる時点で参照されるように、任意の記憶手段に保存されてもよい。
 以上のとおり、本実施形態における避難予測システム100は、避難者の避難経路に関する避難情報及び避難経路において障害が発生した個所の復旧時期に関する復旧情報に基づいて、避難サブモデル、復旧サブモデル及び復旧情報を生成する。そして、本実施形態における避難予測システム100は、生成されたモデルを用いて、避難者の避難に要する時間を予測する。
 本実施形態においては、モデル生成部110において、内容に応じて複数のサブモデルが生成される。従って、モデル生成部110において生成されるモデルは、当該サブモデルの各々に含まれる内容を表す一体のモデルが生成される場合と比較して、モデルの可読性が高い。また、モデル生成部110において、内容に応じて複数のサブモデルが生成されることによって、避難者や障害発生個所の復旧計画が変化した場合に、モデルを容易に修正して対応することができる。すなわち、モデル生成部110において生成されるモデルは、生成モデルの拡張性が高い。したがって、本実施形態における避難予測システム100は、被災者の避難に要する時間を推定する際に、避難に関する様々な状況に対応することができる。
 なお、災害が発生した際には、障害発生個所に対する復旧の順番や、同時に複数の障害発生個所の復旧作業を行う等、様々な復旧計画が想定される。本実施形態における避難予測システム100は、異なる復旧計画の各々に対して、それぞれの場合における避難者の避難に要する時間を予測することができる。そのため、本実施形態における避難予測システム100は、異なる復旧計画の各々の場合における避難者の避難に要する時間を予測することで、避難者の避難に要する時間が所定の条件を満たす復旧計画を求めることができる。この場合における所定の条件は例えば、所定の時間内に避難を終える、実行可能な復旧計画の中で避難に要する時間が最短となる、等がある。すなわち、本実施形態における避難予測システム100は、復旧計画を決定するシステムとしても用いられる。
 (第1の実施形態の変形例)
 なお、本実施形態においては、種々の変形例が考えられる。例えば、避難予測システム100は、モデルとしてsTPNを用いた。しかしながら、避難予測システム100にて用いられるモデルは、sTPNに限られない。上述した生成規則に基づいてモデルを生成することが可能であれば、避難予測システム100におけるモデル生成部110は、sTPN以外の形式にてモデルを生成することができる。この場合においては、モデル生成部110は、例えば避難経路の容量等を含む避難情報や復旧情報を、用いられるモデルに応じて、上述した方法と異なる方法にて適宜モデルを生成することができる。そして、解析部120は、sTPN以外の形式にて生成されたモデルをそれぞれのモデルに適した手法にて解析することで、避難者の避難に要する時間を予測することができる。
 また、本実施形態において、モデルとしてsTPNが用いられる場合であっても、モデル生成部110は、上記の生成規則と異なる規則にてモデルを生成することができる。一例として、モデル生成部110は、障害発生個所に関する復旧の進捗段階に応じた道路の通行可能性を表す場合に、インヒビタ―・アークを用いないなど、上記の生成規則と異なる規則にてモデルを生成してもよい。
 また、本実施形態において、モデル生成部110が受付ける避難情報及び復旧情報は、上述した例と異なっていてもよい。モデル生成部110は、各サブモデル等を生成する際に必要となる任意の情報を適宜受付けることができる。
 また、本実施形態において、モデル生成部110及び解析部120は、一つの装置として実現してもよいし、それぞれ単体の装置として実現してもよい。モデル生成部110及び解析部120がそれぞれ単体の装置として実現される場合には、モデル生成部110と解析部120との間は、例えば有線や無線の通信ネットワークを介して接続される。また、モデル生成部110と解析部120との間は、ファイルを介して各サブモデル等を表すデータがやり取りされてもよい。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、各実施形態における構成は、本発明のスコープを逸脱しない限りにおいて、互いに組み合わせることが可能である。
 この出願は、2014年11月14日に出願された日本出願特願2014-231390を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100  避難予測システム
 110  モデル生成部
 120  解析部
 500  情報処理装置
 501  CPU
 502  ROM
 503  RAM
 504  プログラム
 505  記憶装置
 506  記憶媒体
 507  ドライブ装置
 508  通信インターフェース
 509  通信ネットワーク
 510  入出力インターフェース
 511  バス

Claims (11)

  1.  避難者の避難経路に関する避難情報及び前記避難経路において障害が発生した個所である障害発生個所の復旧時期に関する復旧情報に基づいて、前記避難者の各々に対する前記避難経路と前記避難経路における前記避難者の位置とを表す避難サブモデル、前記障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、前記避難サブモデルと前記復旧サブモデルとの関係を表す関係情報を生成するモデル生成手段と、
     前記避難サブモデル、前記復旧サブモデル及び前記関係情報を解析することによって、前記避難者の避難に要する時間を予測する解析手段を備える、避難予測システム。
  2.  前記モデル生成手段は、所定の関係にある前記避難者毎に前記避難サブモデルを生成する、請求項1に記載の避難予測システム。
  3.  前記モデル生成手段は、前記障害発生個所の復旧計画毎に前記復旧サブモデルを生成する、請求項1又は2に記載の避難予測システム。
  4.  前記モデル生成手段は、前記復旧サブモデルにおける前記障害発生個所の復旧状況に応じて、前記避難サブモデルにおける前記避難者の移動に関する状態遷移を制御するように前記関係情報を生成する、請求項1から3のいずれか一項に記載の避難予測システム。
  5.  前記モデル生成手段は、前記避難者の移動に要する時間又は前記障害発生個所の復旧に関連する時間の少なくとも一方を確率分布にて表す前記モデルを生成する、
    請求項1から4のいずれか一項に記載の避難予測システム。
  6.  前記予測手段は、前記避難者の避難に要する時間の分布を予測する、請求項1から5のいずれか一項に記載の避難予測システム。
  7.  前記避難サブモデル、前記復旧サブモデル及び前記関係情報は、確率時間ペトリネットにて表されている、請求項1から6のいずれか一項に記載の避難予測システム。
  8.  避難者の避難経路に関する情報及び避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、前記避難者の各々に対する前記避難経路と前記避難経路における前記避難者の位置とを表す避難サブモデル、前記障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、前記避難サブモデルと前記復旧サブモデルとの関係を表す関係情報を生成するモデル生成手段を備える、モデル生成装置。
  9. 避難者の各々に対する避難経路と前記避難経路における前記避難者の位置とを表す避難サブモデル、前記において障害が発生した個所である障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、前記避難サブモデルと前記復旧サブモデルとの関係を表す関係情報を解析することによって、前記避難者の避難に要する時間を予測する解析手段を備える、モデル解析装置。
  10.  避難者の避難経路に関する情報及び前記避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、前記避難者の各々に対する前記避難経路と前記避難経路における前記避難者の位置とを表す避難サブモデル、前記障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、前記避難サブモデルと前記復旧サブモデルとの関係を表す関係情報を生成し、
     前記避難サブモデル、前記復旧サブモデル及び前記関係情報を解析することによって、前記避難者の避難に要する時間を予測する、避難予測方法。
  11.  コンピュータに、
     避難者の避難経路に関する情報及び前記避難経路において障害が発生した個所である障害発生個所の復旧時期に関する情報に基づいて、前記避難者の各々に対する前記避難経路と前記避難経路における前記避難者の位置とを表す避難サブモデル、前記障害発生個所の各々における復旧状況を表す復旧サブモデル、及び、前記避難サブモデルと前記復旧サブモデルとの関係を表す関係情報を生成する処理と、
     前記避難サブモデル、前記復旧サブモデル及び前記関係情報を解析することによって、前記避難者の避難に要する時間を予測する処理とを実行させるプログラムを格納したコンピュータ読み取り可能記録媒体。
PCT/JP2015/005612 2014-11-14 2015-11-10 避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体 WO2016075931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/526,352 US20170322039A1 (en) 2014-11-14 2015-11-10 Evacuation prediction system, evacuation prediction method, and computer-readable recording medium
JP2016558890A JP6665785B2 (ja) 2014-11-14 2015-11-10 避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体
EP15858256.9A EP3220325B1 (en) 2014-11-14 2015-11-10 Evacuation prediction system, evacuation prediction method, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014231390 2014-11-14
JP2014-231390 2014-11-14

Publications (1)

Publication Number Publication Date
WO2016075931A1 true WO2016075931A1 (ja) 2016-05-19

Family

ID=55954034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005612 WO2016075931A1 (ja) 2014-11-14 2015-11-10 避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体

Country Status (4)

Country Link
US (1) US20170322039A1 (ja)
EP (1) EP3220325B1 (ja)
JP (1) JP6665785B2 (ja)
WO (1) WO2016075931A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425663B2 (ja) 2020-04-22 2024-01-31 株式会社日立製作所 被災者推計装置、被災者推計方法及び被災者推計システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10769855B2 (en) * 2017-07-21 2020-09-08 Accenture Global Solutions Limited Personnel movement simulation and control
CN114818360B (zh) * 2022-05-10 2022-11-01 煤炭科学研究总院有限公司 人群应急疏散场景下的疏散出口设置方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164540A (ja) * 2013-02-26 2014-09-08 Shimizu Corp 避難行動予測システム及び避難行動予測プログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349768B2 (en) * 2005-04-25 2008-03-25 The Boeing Company Evacuation route planning tool
JP2013089224A (ja) * 2012-03-26 2013-05-13 Ism Corp 津波避難支援システム、津波避難支援方法、津波避難支援装置およびその制御方法と制御プログラム
EP2736027B8 (en) * 2012-11-26 2018-06-27 AGT International GmbH Method and system for evacuation support

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164540A (ja) * 2013-02-26 2014-09-08 Shimizu Corp 避難行動予測システム及び避難行動予測プログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3220325A4 *
TAKASHI MINAMOTO ET AL.: "DEVELOPMENT OF TSUNAMI EVACUATION SIMULATION SYSTEM AND ITS APPLICATION TO ASSESSMENT OF AREA REFUGE SAFETY", JOURNAL OF THE JAPAN SOCIETY OF CIVIL ENGINEERS A1 (STRUCTURAL ENGINEERING & EARTHQUAKE ENGINEERING, vol. 65, no. 1, 28 June 2009 (2009-06-28), pages 757 - 767, XP003034338, ISSN: 2185-4653 *
TORU FUTAGAMI ET AL.: "Application Study of Petri Net Simulator for Human Evacuation Behavior Simulation", 2002, XP003034339, Retrieved from the Internet <URL:http://www.jsce.or.jp/library/open/proc/maglist2/00039/200211_no26/pdf/330.pdf> [retrieved on 20150115] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7425663B2 (ja) 2020-04-22 2024-01-31 株式会社日立製作所 被災者推計装置、被災者推計方法及び被災者推計システム

Also Published As

Publication number Publication date
EP3220325A1 (en) 2017-09-20
US20170322039A1 (en) 2017-11-09
EP3220325A4 (en) 2018-07-18
JP6665785B2 (ja) 2020-03-13
JPWO2016075931A1 (ja) 2017-08-31
EP3220325B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
Wang et al. Evacuation planning for disaster responses: A stochastic programming framework
EP3133550A1 (en) Methods and systems for planning evacuation paths
Yan et al. Optimal scheduling for highway emergency repairs under large-scale supply–demand perturbations
WO2016075933A1 (ja) 避難予測システム、モデル生成装置、予測装置、避難予測方法及びコンピュータ読み取り可能記録媒体
WO2016075931A1 (ja) 避難予測システム、避難予測方法及びコンピュータ読み取り可能記録媒体
WO2022142013A1 (zh) 基于人工智能的ab测试方法、装置、计算机设备及介质
US20220129802A1 (en) Computer system and plan evaluation method
JP2007334627A (ja) サービスベースソフトウェア設計支援方法及びそのための装置
JP6959975B2 (ja) 計算機システム及びリソースの配置の決定方法
US10467888B2 (en) System and method for dynamically adjusting an emergency coordination simulation system
Chen et al. Betweenness Centrality-Based seismic risk management for bridge transportation networks
EP3968202A1 (en) Customizable reinforcement of learning column placement in structural design
JP6410965B2 (ja) 計算機システムの管理システム及び管理方法
JP2006092053A (ja) システム使用率管理装置及びそれに用いるシステム使用率管理方法並びにそのプログラム
JP6665786B2 (ja) モデル集約装置、避難予測システム、集約モデル生成装置、集約方法及びコンピュータ読み取り可能記録媒体
JP2008001223A (ja) スケジュール修正装置、方法、及びプログラム
US11838186B2 (en) Topology design apparatus, topology design method and program
CN111836274B (zh) 一种业务处理的方法及装置
JP2003242300A (ja) ミッションプランニング方法およびミッションプランニングシステム
CN113918513B (zh) 一种基于区块链的数据迁移方法、装置、设备及存储介质
Abdin et al. An optimization model for planning testing and control strategies to limit the spread of a pandemic-The case of COVID-19
WO2022054205A1 (ja) 維持管理計画立案システムおよび維持管理計画立案方法
WO2024127508A1 (ja) 配置最適化装置、配置最適化方法、および配置最適化プログラム
JP4403157B2 (ja) エリア分割装置、エリア分割方法及びプログラム
JP2006221047A (ja) 地図情報システムを異なる電子地図に移行する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558890

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15526352

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015858256

Country of ref document: EP