WO2016075920A1 - Method for manufacturing galvanized steel sheet - Google Patents

Method for manufacturing galvanized steel sheet Download PDF

Info

Publication number
WO2016075920A1
WO2016075920A1 PCT/JP2015/005583 JP2015005583W WO2016075920A1 WO 2016075920 A1 WO2016075920 A1 WO 2016075920A1 JP 2015005583 W JP2015005583 W JP 2015005583W WO 2016075920 A1 WO2016075920 A1 WO 2016075920A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
aqueous solution
alkaline aqueous
zinc
galvanized steel
Prior art date
Application number
PCT/JP2015/005583
Other languages
French (fr)
Japanese (ja)
Inventor
克弥 星野
平 章一郎
古谷 真一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580061436.4A priority Critical patent/CN107109660A/en
Priority to EP15858294.0A priority patent/EP3219826A4/en
Priority to KR1020177012379A priority patent/KR102007103B1/en
Priority to US15/526,140 priority patent/US20170314138A1/en
Priority to JP2016512140A priority patent/JPWO2016075920A1/en
Priority to MX2017006133A priority patent/MX2017006133A/en
Publication of WO2016075920A1 publication Critical patent/WO2016075920A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/20Other heavy metals

Definitions

  • the present invention relates to a method for producing a galvanized steel sheet having a reaction layer.
  • Zinc-based plated steel sheets are used in a wide range of applications, mainly in automobile bodies, home appliances, and building materials. With respect to galvanized steel sheets for such applications, a technique is known in which a reaction layer is provided on the surface of the steel sheet to improve properties such as press molding, corrosion resistance, and appearance.
  • the galvanized steel sheet before forming the reaction layer conventionally has an unnecessary oxide layer such as Zn having a thickness of less than 10 nm and Al being an impurity element in the outermost layer.
  • This unnecessary oxide layer hinders the reactivity of chemical conversion treatment such as zinc phosphate treatment and chromate treatment, and it is necessary to set a long reaction time in order to form a sufficient reaction layer.
  • the increase in reaction time is accompanied by an increase in equipment costs and line length, and an increase in running costs such as electricity and gas.
  • Patent Document 1 describes a technique in which a hot-dip galvanized steel sheet is contacted with an alkaline aqueous solution and then treated with a SiO 2 -containing chromate solution.
  • Patent Documents 2 and 3 describe techniques for forming an oxide layer after contacting a hot-dip galvanized steel sheet with an alkaline aqueous solution.
  • Patent Document 4 describes a technique for forming an oxide layer after bringing the surface of an alloyed hot-dip galvanized steel sheet into contact with an alkaline aqueous solution.
  • Patent Document 5 discloses a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O after contacting the surface of a hot dip galvanized steel sheet with an alkaline aqueous solution. A technique for forming an oxide layer containing an object is described.
  • the present invention has been made in view of such circumstances.
  • Zinc-based plated steel sheet that can remove unnecessary oxide layers on the surface of the zinc-based plating layer by contact with an alkaline aqueous solution, and can avoid appearance problems due to precipitates that precipitate in the alkaline aqueous solution. It aims at providing the manufacturing method of.
  • the present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problem can be solved by adding a specific chelating agent to the alkaline aqueous solution used before forming the reaction layer, and have completed the present invention. More specifically, the present invention provides the following.
  • the method for producing a zinc-based plated steel sheet according to the first invention for solving the above-mentioned problem is a method for producing a zinc-based plated steel sheet having a reaction layer on the surface of the steel sheet, and the reaction layer is Zn 4 (SO 4 ).
  • X (CO 3 ) X (OH) 6 ⁇ nH 2 O is an oxide layer containing a crystal structure, and as a pretreatment for forming the reaction layer, sodium gluconate, sodium glucoheptonate, Contains at least 0.050 mass% of a total of one or more chelating agents selected from sodium acid, tartaric acid, arabonic acid, galactonic acid, sorbit, mannitol, glycerin, EDTA, sodium tripolyphosphate, and has a pH of 10.0 or more
  • the zinc-based plated steel sheet is brought into contact with an alkaline aqueous solution for 1.0 second or longer.
  • the method for producing a zinc-based plated steel sheet according to the second invention for solving the above problem is the method for producing a zinc-based plated steel sheet according to the first invention, wherein the pH of the alkaline aqueous solution is 12.6 or more. It is characterized by that.
  • the oxide on the surface of the zinc-based plating layer can be satisfactorily removed by contact with an alkaline aqueous solution.
  • precipitates of Al and Zn and the like can be reduced, and a galvanized steel sheet having a reaction layer with a good appearance can be obtained.
  • FIG. 1 is a schematic diagram showing evaluation criteria for evaluating appearance unevenness.
  • the zinc-based plated steel sheet is a steel sheet having a coating mainly composed of zinc on the surface of the steel sheet regardless of the production method, such as a zinc-plated steel sheet, a zinc alloy-plated steel sheet, and a plated steel sheet in which particles are dispersed in zinc.
  • the zinc-based plating layer includes a zinc plating layer, a zinc alloy plating layer, a plating layer in which particles are dispersed in zinc, and the like.
  • the present invention provides a reaction layer that can satisfactorily remove an unnecessary oxide layer present on the surface of a zinc-based plating layer, that is, Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2
  • the present invention includes, for example, a step of applying zinc plating, a step of contacting with an alkaline aqueous solution, and a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O Forming an oxide layer containing an object.
  • each step will be described.
  • the process of applying zinc-based plating will be described.
  • the method of applying zinc plating is not particularly limited, and general methods such as hot dip galvanizing and electrogalvanizing can be employed.
  • the process conditions of electrogalvanization and hot dip galvanization are not specifically limited, What is necessary is just to employ
  • elemental components other than Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained in addition to Al, the effect of the present invention is not impaired.
  • the steel type of the steel sheet to be galvanized is not particularly limited, and various steel sheets such as a low carbon steel, an ultra low carbon steel, an IF steel, and a high strength steel sheet added with various alloy elements should be used. Can do. Moreover, both a hot-rolled steel plate and a cold-rolled steel plate can be used as the steel plate.
  • the thickness of the steel plate is not particularly limited. From the viewpoint of use in applications such as automobile bodies, home appliances, and building materials, 0.4 to 5.0 mm is preferable.
  • an alloyed hot-dip galvanized steel sheet that has been subjected to alloying treatment after hot-dip galvanizing may be used.
  • the conditions for the alloying treatment are not particularly limited, and preferable conditions may be adopted as appropriate.
  • a contact treatment using an alkaline aqueous solution is performed.
  • the alkaline aqueous solution used in this contact treatment has a pH of 10.0 or higher. If the pH is less than 10.0, the removal of the oxide layer becomes insufficient. When the pH is 12.6 or more, the contact time with the alkaline aqueous solution can be shortened, which is effective and preferable. On the other hand, pH of 14.0 or less is preferable from the viewpoint of preventing dissolution of the zinc-based plating layer and preventing blackening of the surface appearance.
  • the alkaline aqueous solution contains a total of 0.050 mass% or more of a specific chelating agent.
  • a specific chelating agent When the deposits of Al and Zn increase in the alkaline aqueous solution, the appearance of the liquid becomes a suspension.
  • 0.055 mass% or more of a chelating agent is contained in an alkaline aqueous solution, and precipitates of Al and Zn are reduced.
  • the chelating agent is at least one selected from sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabonic acid, galactonic acid, sorbit, mannitol, glycerin, EDTA, and sodium tripolyphosphate. From the viewpoint of being able to chelate Al and Zn and being inexpensive, the chelating agent is preferably sodium gluconate.
  • the amount of the chelating agent contained in the alkaline aqueous solution is preferably 0.100 mass% or more.
  • the amount of chelating agent contained in the alkaline aqueous solution is preferably 10.0 mass% or less.
  • the temperature of the alkaline aqueous solution is preferably in the range of 20 ° C. to 70 ° C., more preferably 40 ° C. to 70 ° C.
  • the type of alkali builder is not limited. It is preferable to use chemicals such as NaOH from the viewpoint of cost reduction. In order to achieve the desired pH of the alkaline aqueous solution, the amount of alkali builder is appropriately adjusted. Further, the alkaline aqueous solution may contain substances other than the elements contained in the zinc-based plating solution such as Zn, Al, Fe, and other components.
  • the time for contacting the galvanized steel sheet with the alkaline aqueous solution is 1.0 second or more.
  • the contact time is less than 1.0 second, the oxide on the surface of the zinc-based plating layer cannot be sufficiently removed, and thus the reaction time for providing the reaction layer is not sufficiently shortened.
  • the time for contacting the zinc-based plated steel sheet with the alkaline aqueous solution is preferably 10.0 seconds or less.
  • temper rolling may be performed either after the step of applying zinc-based plating and before or after the alkaline aqueous solution treatment. Since the site
  • reaction layer Usually, the steel sheet is brought into contact with an alkaline aqueous solution and then washed and dried, and then the reaction layer, that is, Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O A treatment for providing an oxide layer containing a crystalline structure is performed.
  • the oxide layer containing a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O is a zinc-based plating and chemical treatment solution. Is a layer of a reaction product formed on the surface of the steel sheet due to contact and chemical reaction.
  • a treatment for forming an oxide layer containing a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O for example, a zinc-based plated steel sheet is treated with sulfuric acid. Contact with an acidic solution containing ions, hold for 1 to 60 seconds, and then wash with water.
  • the neutralization process process which carries out washing
  • the alkaline aqueous solution may contain 0.01 g / L or more of P ions as a P concentration and 0.1 g / L or more of carbonate ions as a carbonate ion concentration.
  • the present invention is not limited to this treatment method as long as the crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O exists on the surface of the steel sheet. is not.
  • Temper rolling was performed on a steel sheet obtained by subjecting a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1100 mm to a hot dip galvanizing treatment. Subsequently, as a treatment for removing the oxide layer, the steel sheet was contacted with an alkaline aqueous solution adjusted to the conditions shown in Tables 1-1 and 1-2 for a specified time, washed with water, and dried.
  • the cold-rolled steel sheet subjected to electrogalvanization treatment was brought into contact with an alkaline aqueous solution in the same procedure, then washed with water and dried.
  • the thickness of the unnecessary oxide layer on the surface of the zinc-based plating layer after the alkaline aqueous solution treatment and the appearance unevenness after the formation of the reaction layer are evaluated and included in the alkaline aqueous solution.
  • Suspension material (SS) was measured.
  • pH of alkaline aqueous solution was measured with the commercially available glass electrode.
  • an oxide layer forming treatment including a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O
  • 30 g of sodium acetate trihydrate was added.
  • the steel sheet was immersed in a sulfuric acid solution containing / L and adjusted to pH 1.5, squeezed with a roll, and held for 10 seconds. Next, it was washed with water and dried. Subsequently, neutralization was performed with a treatment solution containing sodium pyrophosphate 9.8 g / L and sodium carbonate decahydrate 0.48 g / L.
  • a fluorescent X-ray analyzer was used to measure the thickness of the unnecessary oxide layer formed on the galvanized steel sheet. If the thickness (oxide film thickness) of the oxide layer is 4 nm or less, it can be evaluated that the reaction time for providing the reaction layer is shortened. If it is 2 nm or less, it can be evaluated that the reaction time is further shortened.
  • the voltage and current of the tube at the time of measurement were 30 kV and 100 mA, the spectroscopic crystal was set to TAP, and the O-K ⁇ ray was detected.
  • the intensity at the background position was also measured so that the net intensity of the O—K ⁇ ray could be calculated.
  • the integration time at the peak position and the background position was 20 seconds, respectively.
  • the various plated steel sheets were applied to a thickness of 3 ⁇ m, held for 10 seconds, then washed with water and dried to form an oxide layer.
  • the observation area is 70 mm ⁇ 150 mm.
  • 1 to 5 points were assigned for evaluation. Four points indicate that it is good, and five points indicate that it is even better.
  • Table 1-1 and 1-2 show the following matters.
  • No. 1 to 57 were subjected to surface analysis after removing an unnecessary oxide layer with an alkaline aqueous solution.
  • No. 4 and 11 are examples (comparative examples) in which the concentration of the chelating agent is insufficient, although the contact with the alkaline aqueous solution containing the chelating agent is performed.
  • the oxide layer can be sufficiently removed.
  • suspended substances are generated in the alkaline aqueous solution.
  • No. 19 and 23 are examples (comparative examples) in which the contact time is short although the contact with the alkaline aqueous solution containing the chelating agent is carried out.
  • the oxide layer has a thickness of 6 to 7 nm and cannot be removed sufficiently.
  • No. Nos. 27 and 34 are examples (comparative examples) in which the pH is low although contact with an alkaline aqueous solution containing a chelating agent is carried out.
  • the thickness of the oxide layer is 7 nm and cannot be removed sufficiently.
  • No. 24 and 28 to 33 are examples of the present invention in which the influence of pH was confirmed at a contact time of 1.0 second.
  • the pH is 12.6 or more, the oxide film can be removed to 2 nm or less even when the contact time is 1.0 second, and the reaction time for providing the reaction layer can be further shortened.
  • Presence form of C Similarly, the coating component collected by pulverization was analyzed using gas chromatography bluff mass spectrometry, and the presence form of C was analyzed.
  • Presence form of Zn, S, O, H The presence form of S, Zn, O was analyzed using an X-ray photoelectron spectrometer. Using an Al Ka monochromatic radiation source, narrow measurement of the spectrum corresponding to Zn LMM, S 2p was performed.
  • Presence form of P was analyzed using an X-ray absorption fine structure apparatus. Measurement of ZAFS (X-ray absorption fine structure) was carried out at room temperature in the beam line BL27A of Photon Factory of the High Energy Accelerator Research Organization. The degreased sample surface was irradiated with monochromated synchrotron radiation, and the absorption edge XANES (structure near the X-ray absorption edge) spectrum of the PK shell was measured by the total electron yield method (TEY) based on the sample absorption current measurement.
  • TEY total electron yield method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention addresses the problem of providing a method for manufacturing a galvanized steel sheet, by which it is possible to remove oxides in the surface of the galvanized layer by contact with an alkaline aqueous solution, and prevent appearance issues caused by deposits deposited in the alkaline aqueous solution. In the method for manufacturing a galvanized steel sheet according to the first invention for solving said problem, the galvanized steel sheet has a reaction layer on the surface of the steel sheet. The reaction layer is an oxide layer containing a crystal structure represented by Zn4(SO4)1-X (CO3) X(OH)6∙nH2O. As a pretreatment for forming the reaction layer, the galvanized steel sheet is brought into contact for 1.0 or more seconds with an alkaline aqueous solution that has a pH of at least 10.0 and contains a total of at least 0.050 mass% of one or more chelating agents selected from among sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabonic acid, galactonic acid, sorbitol, mannitol, glycerin, EDTA, and sodium tripolyphosphate.

Description

亜鉛系めっき鋼板の製造方法Method for producing galvanized steel sheet
 本発明は、反応層を有する亜鉛系めっき鋼板の製造方法に関する。 The present invention relates to a method for producing a galvanized steel sheet having a reaction layer.
 亜鉛系めっき鋼板は、自動車車体、家電、建材を中心に広範な用途で利用されている。そのような用途での亜鉛系めっき鋼板に関して、鋼板表面に反応層を設け、プレス成形、耐食性、外観などの特性を向上する技術が知られている。 Zinc-based plated steel sheets are used in a wide range of applications, mainly in automobile bodies, home appliances, and building materials. With respect to galvanized steel sheets for such applications, a technique is known in which a reaction layer is provided on the surface of the steel sheet to improve properties such as press molding, corrosion resistance, and appearance.
 しかし、反応層を形成する前の亜鉛系めっき鋼板は、従来、最表層に厚さが10nmに満たないZnや不純物元素であるAlなどの不要な酸化物層を有している。この不要な酸化物層は例えばリン酸亜鉛処理やクロメート処理等化成処理の反応性を阻害し、十分な反応層を形成させるためには長い反応時間を設定する必要があった。 However, the galvanized steel sheet before forming the reaction layer conventionally has an unnecessary oxide layer such as Zn having a thickness of less than 10 nm and Al being an impurity element in the outermost layer. This unnecessary oxide layer hinders the reactivity of chemical conversion treatment such as zinc phosphate treatment and chromate treatment, and it is necessary to set a long reaction time in order to form a sufficient reaction layer.
 反応時間の増加は、設備費やライン長の増加を伴い、また電気、ガス等のランニングコストの増加を招く。 The increase in reaction time is accompanied by an increase in equipment costs and line length, and an increase in running costs such as electricity and gas.
 これに対して、反応層を形成する前にアルカリ性水溶液に接触させることで、亜鉛系めっき鋼板の表層に存在する不要な酸化物層を除去し反応時間を短縮する技術が知られている。 On the other hand, a technique is known in which an unnecessary oxide layer present on the surface layer of a galvanized steel sheet is removed to reduce the reaction time by contacting with an alkaline aqueous solution before forming the reaction layer.
 特許文献1には、溶融亜鉛めっき鋼板をアルカリ性水溶液に接触させた後SiO含有クロメート液で処理する技術が記載されている。 Patent Document 1 describes a technique in which a hot-dip galvanized steel sheet is contacted with an alkaline aqueous solution and then treated with a SiO 2 -containing chromate solution.
 また、アルカリ性水溶液で処理した後に、意図的に酸化膜を形成する技術も知られている。 Also known is a technique for intentionally forming an oxide film after treatment with an alkaline aqueous solution.
 特許文献2、3には溶融亜鉛めっき鋼板をアルカリ性水溶液に接触させた後、酸化物層を形成させる技術が記載されている。 Patent Documents 2 and 3 describe techniques for forming an oxide layer after contacting a hot-dip galvanized steel sheet with an alkaline aqueous solution.
 特許文献4には、合金化溶融亜鉛めっき鋼板の表面を、アルカリ性水溶液に接触させた後、酸化物層を形成させる技術が記載されている。 Patent Document 4 describes a technique for forming an oxide layer after bringing the surface of an alloyed hot-dip galvanized steel sheet into contact with an alkaline aqueous solution.
 特許文献5には、溶融亜鉛めっき鋼板の表面を、アルカリ性水溶液に接触させた後、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層を形成させる技術が記載されている。 Patent Document 5 discloses a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O after contacting the surface of a hot dip galvanized steel sheet with an alkaline aqueous solution. A technique for forming an oxide layer containing an object is described.
特開平5-279868号公報JP-A-5-279868 特開2006-183074号公報JP 2006-183074 A 特開2006-233280号公報JP 2006-233280 A 特開2005-97741号公報Japanese Patent Laying-Open No. 2005-97741 特願2015-530230号Japanese Patent Application No. 2015-530230
 特許文献1~5の技術では、アルカリ性水溶液との接触により反応層を設けるための反応時間の短縮が可能である。しかし、通常使用される連続処理装置ではアルカリ性水溶液中に析出したZnやAlの析出物がデフレクターロールやサポートロールに付着し、鋼板表面に押しキズが発生し、ひいては反応層形成後に外観ムラが生じるなど外観上のトラブルを招くことがあった。 In the techniques of Patent Documents 1 to 5, the reaction time for providing a reaction layer by contact with an alkaline aqueous solution can be shortened. However, in a continuous processing apparatus that is normally used, Zn and Al precipitates deposited in an alkaline aqueous solution adhere to the deflector roll and the support roll, and the surface of the steel sheet is scratched, resulting in uneven appearance after the reaction layer is formed. It sometimes caused troubles in appearance.
 本発明は、かかる事情に鑑みてなされたものである。アルカリ性水溶液との接触によって亜鉛系めっき層表面の不要な酸化物層を除去することが可能であり、且つ、アルカリ性水溶液中に析出する析出物による外観上のトラブルを回避可能な、亜鉛系めっき鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances. Zinc-based plated steel sheet that can remove unnecessary oxide layers on the surface of the zinc-based plating layer by contact with an alkaline aqueous solution, and can avoid appearance problems due to precipitates that precipitate in the alkaline aqueous solution. It aims at providing the manufacturing method of.
 本発明者らは前記課題を解決するために鋭意研究を重ねた。その結果、反応層を形成する前に使用されるアルカリ性水溶液中に特定のキレート剤を添加することにより前記課題を解決できることを見出し、本発明を完成するにいたった。より具体的には本発明は以下のものを提供する。 The present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problem can be solved by adding a specific chelating agent to the alkaline aqueous solution used before forming the reaction layer, and have completed the present invention. More specifically, the present invention provides the following.
 前記課題を解決するための第1発明に係る亜鉛系めっき鋼板の製造方法は、鋼板の表面に反応層を有する亜鉛系めっき鋼板の製造方法であって、前記反応層はZn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層であり、前記反応層形成の前処理として、グルコン酸ナトリウム、グルコヘプトン酸ナトリウム、クエン酸ナトリウム、酒石酸、アラボン酸、ガラクトン酸、ソルビット、マンニット、グリセリン、EDTA、トリポリリン酸ナトリウムの中から選ばれる1種以上のキレート剤を合計0.050mass%以上含有しpHが10.0以上のアルカリ性水溶液に亜鉛系めっき鋼板を1.0秒以上接触させることを特徴とする。 The method for producing a zinc-based plated steel sheet according to the first invention for solving the above-mentioned problem is a method for producing a zinc-based plated steel sheet having a reaction layer on the surface of the steel sheet, and the reaction layer is Zn 4 (SO 4 ). 1-X (CO 3 ) X (OH) 6 · nH 2 O is an oxide layer containing a crystal structure, and as a pretreatment for forming the reaction layer, sodium gluconate, sodium glucoheptonate, Contains at least 0.050 mass% of a total of one or more chelating agents selected from sodium acid, tartaric acid, arabonic acid, galactonic acid, sorbit, mannitol, glycerin, EDTA, sodium tripolyphosphate, and has a pH of 10.0 or more The zinc-based plated steel sheet is brought into contact with an alkaline aqueous solution for 1.0 second or longer.
 前記課題を解決するための第2発明に係る亜鉛系めっき鋼板の製造方法は、第1発明に記載の亜鉛系めっき鋼板の製造方法であって、前記アルカリ性水溶液のpHが12.6以上であることを特徴とする。 The method for producing a zinc-based plated steel sheet according to the second invention for solving the above problem is the method for producing a zinc-based plated steel sheet according to the first invention, wherein the pH of the alkaline aqueous solution is 12.6 or more. It is characterized by that.
 本発明によれば、アルカリ性水溶液との接触によって亜鉛系めっき層表面の酸化物を良好に除去することが可能である。かつ、反応層形成時間を短縮化するためのアルカリ処理においてAlやZnの析出物等を減少でき、外観が良好な反応層を有する亜鉛系めっき鋼板が得られる。 According to the present invention, the oxide on the surface of the zinc-based plating layer can be satisfactorily removed by contact with an alkaline aqueous solution. In addition, in the alkali treatment for shortening the reaction layer formation time, precipitates of Al and Zn and the like can be reduced, and a galvanized steel sheet having a reaction layer with a good appearance can be obtained.
図1は、外観ムラを評価するための評価基準を示した模式図である。FIG. 1 is a schematic diagram showing evaluation criteria for evaluating appearance unevenness.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。本発明において、亜鉛系めっき鋼板とは、製造方法を問わず鋼板表面に亜鉛を主体とする皮膜を有する鋼板であり、亜鉛めっき鋼板、亜鉛合金めっき鋼板、亜鉛に粒子を分散させためっき鋼板等が含まれる。即ち、亜鉛系めっき層には、亜鉛めっき層、亜鉛合金めっき層、亜鉛に粒子を分散させためっき層等が含まれる。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment. In the present invention, the zinc-based plated steel sheet is a steel sheet having a coating mainly composed of zinc on the surface of the steel sheet regardless of the production method, such as a zinc-plated steel sheet, a zinc alloy-plated steel sheet, and a plated steel sheet in which particles are dispersed in zinc. Is included. That is, the zinc-based plating layer includes a zinc plating layer, a zinc alloy plating layer, a plating layer in which particles are dispersed in zinc, and the like.
 本発明は、亜鉛系めっき層の表面に存在する不要な酸化物層を良好に除去可能な反応層、すなわち、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層を有する亜鉛系めっき鋼板の製造方法である。本発明は、例えば、亜鉛系めっきを施す工程と、アルカリ性水溶液と接触させる工程と、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層を形成する工程と、を備える。以下、各工程について説明する。 The present invention provides a reaction layer that can satisfactorily remove an unnecessary oxide layer present on the surface of a zinc-based plating layer, that is, Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 It is a method for producing a zinc-based plated steel sheet having an oxide layer containing a crystal structure represented by O. The present invention includes, for example, a step of applying zinc plating, a step of contacting with an alkaline aqueous solution, and a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O Forming an oxide layer containing an object. Hereinafter, each step will be described.
 -亜鉛系めっきを施す工程-
 先ず、亜鉛系めっきを施す工程について説明する。亜鉛系めっきを施す工程において、亜鉛めっきを施す方法は特に限定されず、溶融亜鉛めっき、電気亜鉛めっき等の一般的な方法を採用可能である。また、電気亜鉛めっき、溶融亜鉛めっきの処理条件は、特に限定されず、適宜好ましい条件を採用すればよい。なお、溶融亜鉛めっきを行う場合、めっき浴中にAlが添加されていることがドロス対策の観点から好ましい。この場合Al以外の元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有されていても、本発明の効果が損なわれるものではない。
-Zinc-based plating process-
First, the process of applying zinc-based plating will be described. In the step of applying zinc-based plating, the method of applying zinc plating is not particularly limited, and general methods such as hot dip galvanizing and electrogalvanizing can be employed. Moreover, the process conditions of electrogalvanization and hot dip galvanization are not specifically limited, What is necessary is just to employ | adopt preferable conditions suitably. In addition, when performing hot dip galvanization, it is preferable from the viewpoint of dross countermeasure that Al is added in the plating bath. In this case, elemental components other than Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained in addition to Al, the effect of the present invention is not impaired.
 ここで、亜鉛めっきが施される鋼板の鋼種は特に限定されるものではなく、低炭素鋼、極低炭素鋼、IF鋼、各種合金元素を添加した高張力鋼板等の種々の鋼板を用いることができる。また、前記鋼板は、熱延鋼板、冷延鋼板のいずれも用いることができる。鋼板の厚さは特に限定されない。なお、自動車車体、家電、建材等の用途に用いる観点から、0.4~5.0mmが好ましい。 Here, the steel type of the steel sheet to be galvanized is not particularly limited, and various steel sheets such as a low carbon steel, an ultra low carbon steel, an IF steel, and a high strength steel sheet added with various alloy elements should be used. Can do. Moreover, both a hot-rolled steel plate and a cold-rolled steel plate can be used as the steel plate. The thickness of the steel plate is not particularly limited. From the viewpoint of use in applications such as automobile bodies, home appliances, and building materials, 0.4 to 5.0 mm is preferable.
 更には、亜鉛系めっきを施す工程において、溶融亜鉛めっきを施した後に、合金化処理を施した合金化溶融亜鉛めっき鋼板としても良い。本発明においては、合金化処理の条件は特に限定されず、適宜好ましい条件を採用すればよい。 Furthermore, in the step of applying zinc-based plating, an alloyed hot-dip galvanized steel sheet that has been subjected to alloying treatment after hot-dip galvanizing may be used. In the present invention, the conditions for the alloying treatment are not particularly limited, and preferable conditions may be adopted as appropriate.
 -アルカリ性水溶液と接触させる工程-
 亜鉛系めっき処理を施した後、アルカリ性水溶液を用いた接触処理を行う。この接触処理で用いるアルカリ性水溶液はpH10.0以上である。pH10.0未満では、酸化物層の除去が不十分となる。pHが12.6以上だとアルカリ水溶液との接触時間を短縮することができ効果的であり、好ましい。
一方、亜鉛系めっき層の溶解防止、表面外観の黒化防止の観点から、pH14.0以下が好ましい。
-Step of contact with alkaline aqueous solution-
After the zinc plating treatment is performed, a contact treatment using an alkaline aqueous solution is performed. The alkaline aqueous solution used in this contact treatment has a pH of 10.0 or higher. If the pH is less than 10.0, the removal of the oxide layer becomes insufficient. When the pH is 12.6 or more, the contact time with the alkaline aqueous solution can be shortened, which is effective and preferable.
On the other hand, pH of 14.0 or less is preferable from the viewpoint of preventing dissolution of the zinc-based plating layer and preventing blackening of the surface appearance.
 アルカリ性水溶液には特定のキレート剤が合計0.050mass%以上含有される。アルカリ性水溶液中にAlやZnの析出物等が増加すると、液の外観が懸濁液状になる。本発明は、アルカリ性水溶液に0.050mass%以上キレート剤を含有させ、AlやZnの析出物等を減少させる。 The alkaline aqueous solution contains a total of 0.050 mass% or more of a specific chelating agent. When the deposits of Al and Zn increase in the alkaline aqueous solution, the appearance of the liquid becomes a suspension. In the present invention, 0.055 mass% or more of a chelating agent is contained in an alkaline aqueous solution, and precipitates of Al and Zn are reduced.
 前記キレート剤は、グルコン酸ナトリウム、グルコヘプトン酸ナトリウム、クエン酸ナトリウム、酒石酸、アラボン酸、ガラクトン酸、ソルビット、マンニット、グリセリン、EDTA、トリポリリン酸ナトリウムの中から選ばれる1種以上である。AlとZnをキレートすることが可能であり、安価である観点から、前記キレート剤はグルコン酸ナトリウムが好ましい。 The chelating agent is at least one selected from sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabonic acid, galactonic acid, sorbit, mannitol, glycerin, EDTA, and sodium tripolyphosphate. From the viewpoint of being able to chelate Al and Zn and being inexpensive, the chelating agent is preferably sodium gluconate.
 アルカリ性水溶液におけるキレート剤の含有量が合計0.050mass%未満であると、アルカリ性水溶液中のAlやZnの溶解度増加が不十分となる。アルカリ性水溶液における析出物低減の観点から、アルカリ性水溶液に含有されるキレート剤の量は好ましくは0.100mass%以上である。一方、薬剤コストの観点から、アルカリ性水溶液に含有されるキレート剤の量は好ましくは10.0mass%以下である。 If the total content of chelating agents in the alkaline aqueous solution is less than 0.050 mass%, the increase in the solubility of Al or Zn in the alkaline aqueous solution becomes insufficient. From the viewpoint of reducing precipitates in the alkaline aqueous solution, the amount of the chelating agent contained in the alkaline aqueous solution is preferably 0.100 mass% or more. On the other hand, from the viewpoint of drug cost, the amount of chelating agent contained in the alkaline aqueous solution is preferably 10.0 mass% or less.
 アルカリ性水溶液と鋼板の接触時間を短縮する観点から、アルカリ性水溶液の温度は20℃~70℃の範囲であることが好ましく、40℃~70℃がより好ましい。 From the viewpoint of shortening the contact time between the alkaline aqueous solution and the steel sheet, the temperature of the alkaline aqueous solution is preferably in the range of 20 ° C. to 70 ° C., more preferably 40 ° C. to 70 ° C.
 アルカリビルダーの種類は限定されない。なお、コスト低減の観点からNaOHなどの薬品を用いることが好ましい。所望のアルカリ性水溶液のpHを実現するために、アルカリビルダー量は適宜調整される。また、アルカリ性水溶液には、Zn、Al、Feなどの亜鉛系めっき液に含まれる元素以外の物質やその他の成分を含んでもよい。 ¡The type of alkali builder is not limited. It is preferable to use chemicals such as NaOH from the viewpoint of cost reduction. In order to achieve the desired pH of the alkaline aqueous solution, the amount of alkali builder is appropriately adjusted. Further, the alkaline aqueous solution may contain substances other than the elements contained in the zinc-based plating solution such as Zn, Al, Fe, and other components.
 アルカリ性水溶液を亜鉛系めっき鋼板(特に、その表層の酸化物層)に接触させる方法は特に限定されず、アルカリ性水溶液に亜鉛系めっき鋼板を浸漬させて接触させる方法、アルカリ性水溶液をスプレーして亜鉛系めっき鋼板に接触させる方法等がある。 There is no particular limitation on the method of bringing the alkaline aqueous solution into contact with the zinc-based plated steel sheet (particularly, the oxide layer on the surface layer thereof). There is a method of contacting a plated steel sheet.
 アルカリ性水溶液に亜鉛系めっき鋼板を接触させる時間は1.0秒以上である。該接触時間が1.0秒未満であると亜鉛系めっき層表面の酸化物を十分に除去できないため、反応層を設けるための反応時間の短縮が不十分となる。設備コスト、生産性の観点から、アルカリ性水溶液に亜鉛系めっき鋼板を接触させる時間は10.0秒以下が好ましい。 The time for contacting the galvanized steel sheet with the alkaline aqueous solution is 1.0 second or more. When the contact time is less than 1.0 second, the oxide on the surface of the zinc-based plating layer cannot be sufficiently removed, and thus the reaction time for providing the reaction layer is not sufficiently shortened. From the viewpoint of equipment cost and productivity, the time for contacting the zinc-based plated steel sheet with the alkaline aqueous solution is preferably 10.0 seconds or less.
 本発明では、亜鉛系めっきを施す工程の後であって、アルカリ性水溶液処理の前後どちらかに調質圧延を行ってもよい。鋼板における調質圧延ロールと接触した部位は、ロールとの接触により、亜鉛系めっき層の表面に存在するAlやZnの不要な酸化物層が除去されるため、反応性が高くなる。 In the present invention, temper rolling may be performed either after the step of applying zinc-based plating and before or after the alkaline aqueous solution treatment. Since the site | part which contacted the temper rolling roll in a steel plate removes the unnecessary oxide layer of Al and Zn which exists in the surface of a zinc-type plating layer by contact with a roll, the reactivity becomes high.
 -反応層を形成する工程-
 通常は、鋼板をアルカリ性水溶液と接触させた後に水洗・乾燥を行い、その後に反応層、すなわち、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層を設けるための処理を実施する。
-Process of forming reaction layer-
Usually, the steel sheet is brought into contact with an alkaline aqueous solution and then washed and dried, and then the reaction layer, that is, Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O A treatment for providing an oxide layer containing a crystalline structure is performed.
 本発明において、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層とは、亜鉛系めっきと化学的処理液が接触して化学的反応が起こり、これにより鋼板表面に形成される反応生成物の層である。Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層の形成処理としては、例えば、亜鉛系めっき鋼板を、硫酸イオンを含有する酸性溶液に接触させた後1~60秒間保持し、その後水洗を行う酸化物層形成工程と、前記酸化物層形成工程で形成された酸化物層の表面を、アルカリ性水溶液に接触させた状態で0.5秒以上保持し、その後水洗、乾燥を行う中和処理工程を行う。アルカリ性水溶液は、PイオンをP濃度として0.01g/L以上、炭酸イオンを炭酸イオン濃度として0.1g/L以上含有すればよい。本発明は、鋼板の表面にZn(SO1-X(CO(OH)・nHOで表される結晶構造物が存在すれば良く、この処理方法に限られるものではない。 In the present invention, the oxide layer containing a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O is a zinc-based plating and chemical treatment solution. Is a layer of a reaction product formed on the surface of the steel sheet due to contact and chemical reaction. As a treatment for forming an oxide layer containing a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O, for example, a zinc-based plated steel sheet is treated with sulfuric acid. Contact with an acidic solution containing ions, hold for 1 to 60 seconds, and then wash with water. Contact the surface of the oxide layer formed in the oxide layer forming step with an alkaline aqueous solution. The neutralization process process which carries out washing | cleaning and drying after that for 0.5 second or more in the state made to carry out is performed. The alkaline aqueous solution may contain 0.01 g / L or more of P ions as a P concentration and 0.1 g / L or more of carbonate ions as a carbonate ion concentration. The present invention is not limited to this treatment method as long as the crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O exists on the surface of the steel sheet. is not.
 以下、実施例により本発明を説明する。本発明の技術的範囲は以下の実施例に限定されない。 Hereinafter, the present invention will be described with reference to examples. The technical scope of the present invention is not limited to the following examples.
 板厚0.7mm、幅1100mmの冷延鋼板に溶融亜鉛めっき処理を施してなる鋼板に対して調質圧延を行った。引き続き、酸化物層の除去処理として、表1-1、1-2に示す条件に調整したアルカリ性水溶液に鋼板を指定時間接触した後、水洗を行い、乾燥した。 Temper rolling was performed on a steel sheet obtained by subjecting a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1100 mm to a hot dip galvanizing treatment. Subsequently, as a treatment for removing the oxide layer, the steel sheet was contacted with an alkaline aqueous solution adjusted to the conditions shown in Tables 1-1 and 1-2 for a specified time, washed with water, and dried.
 板厚0.7mm、幅1100mmの冷延鋼板に対して溶融亜鉛めっき処理及び合金化処理を施してなる鋼板に対して調質圧延を行ったもの、並びに、板厚0.7mm、幅1100mmの冷延鋼板に対して電気亜鉛めっき処理したものも同様の手順でアルカリ性水溶液と接触させ、その後、水洗を行い、乾燥した。 A steel sheet obtained by subjecting a cold-rolled steel sheet having a thickness of 0.7 mm and a width of 1100 mm to hot dip galvanization and alloying, and a temper rolling of the steel sheet, and a thickness of 0.7 mm and a width of 1100 mm The cold-rolled steel sheet subjected to electrogalvanization treatment was brought into contact with an alkaline aqueous solution in the same procedure, then washed with water and dried.
 上記により得られた亜鉛系めっき鋼板に対して、アルカリ性水溶液処理後における亜鉛系めっき層の表面の不要な酸化物層の厚み、反応層形成後の外観ムラを評価し、アルカリ性水溶液中に含まれる懸濁物質(SS)の測定を実施した。なお、アルカリ性水溶液のpHは市販のガラス電極で測定した。 For the zinc-based plated steel sheet obtained as described above, the thickness of the unnecessary oxide layer on the surface of the zinc-based plating layer after the alkaline aqueous solution treatment and the appearance unevenness after the formation of the reaction layer are evaluated and included in the alkaline aqueous solution. Suspension material (SS) was measured. In addition, pH of alkaline aqueous solution was measured with the commercially available glass electrode.
 引き続き、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層形成処理として、酢酸ナトリウム・3水和物を30g/L含有しpH1.5に調整した硫酸酸性溶液に鋼板を浸漬し、ロールで絞った後、10秒間保持した。次に、水洗を行った後、乾燥した。引き続きピロリン酸ナトリウム9.8g/Lおよび炭酸ナトリウム・10水和物を0.48g/Lを含有した処理液で中和処理を行った。 Subsequently, as an oxide layer forming treatment including a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O, 30 g of sodium acetate trihydrate was added. The steel sheet was immersed in a sulfuric acid solution containing / L and adjusted to pH 1.5, squeezed with a roll, and held for 10 seconds. Next, it was washed with water and dried. Subsequently, neutralization was performed with a treatment solution containing sodium pyrophosphate 9.8 g / L and sodium carbonate decahydrate 0.48 g / L.
 (1)不要な酸化物層の厚さの測定
 アルカリ性水溶液との接触後、亜鉛系めっき鋼板に形成された不要な酸化物層の厚さの測定には蛍光X線分析装置を使用した。酸化物層の厚さ(酸化膜厚)が4nm以下であれば、反応層を設けるための反応時間を短縮化したと評価できる。2nm以下であれば更に反応時間を短縮したと評価できる。
(1) Measurement of unnecessary oxide layer thickness After contact with the alkaline aqueous solution, a fluorescent X-ray analyzer was used to measure the thickness of the unnecessary oxide layer formed on the galvanized steel sheet. If the thickness (oxide film thickness) of the oxide layer is 4 nm or less, it can be evaluated that the reaction time for providing the reaction layer is shortened. If it is 2 nm or less, it can be evaluated that the reaction time is further shortened.
 測定時の管球の電圧および電流は30kVおよび100mAとし、分光結晶はTAPに設定してO-Kα線を検出した。O-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。 The voltage and current of the tube at the time of measurement were 30 kV and 100 mA, the spectroscopic crystal was set to TAP, and the O-Kα ray was detected. When measuring the O—Kα ray, in addition to the peak position, the intensity at the background position was also measured so that the net intensity of the O—Kα ray could be calculated. The integration time at the peak position and the background position was 20 seconds, respectively.
 また、試料ステージには、これら一連の試料と一緒に、適当な大きさに劈開した膜厚96nm、54nmおよび24nmの酸化シリコン皮膜を形成したシリコンウエハーをセットし、これらの酸化シリコン皮膜からもO-Kα線の強度を算出できるようにした。これらのデータを用いて酸化物層厚さとO-Kα線強度との検量線を作成し、供試材の酸化物層の厚さを酸化シリコン皮膜換算での酸化物層厚さとして算出するようにした。 A silicon wafer on which a silicon oxide film having a thickness of 96 nm, 54 nm, and 24 nm, which has been cleaved to an appropriate size, is set on the sample stage together with these series of samples. -The intensity of Kα rays can be calculated. Using these data, a calibration curve between the oxide layer thickness and the OKα line intensity is created, and the oxide layer thickness of the test material is calculated as the oxide layer thickness in terms of silicon oxide film. I made it.
 (2)表面酸化処理後外観ムラと酸化膜厚の評価
 アルカリ性水溶液で接触処理した溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板に対して、表面に酸化物層を形成する処理を実施した後、外観ムラを目視及び顕微鏡観察により評価した。即ち、硫酸第1鉄を5.0g/L、酢酸ナトリウム・7水和物を50g/L含有する水溶液を硫酸でpH2.0に調整した液を準備し、この処理液をアルカリ性水溶液で接触処理した各種めっき鋼板に3μmの厚さになるように塗布し、10秒間保持した後、水洗・乾燥を行い、酸化物層を形成する処理を実施した。なお、観察面積は70mm×150mmである。図1に示す外観見本を基準として、評点を1~5点で付与し評価した。4点が良好であることを示し、5点は更に良好であることを示している。
(2) Evaluation of appearance unevenness and oxide film thickness after surface oxidation treatment Treatment for forming an oxide layer on the surface of hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and electrogalvanized steel sheet contact-treated with an alkaline aqueous solution Then, the appearance unevenness was evaluated by visual observation and microscopic observation. That is, a solution in which an aqueous solution containing ferrous sulfate 5.0 g / L and sodium acetate heptahydrate 50 g / L was adjusted to pH 2.0 with sulfuric acid was prepared, and this treatment solution was contact-treated with an alkaline aqueous solution. The various plated steel sheets were applied to a thickness of 3 μm, held for 10 seconds, then washed with water and dried to form an oxide layer. The observation area is 70 mm × 150 mm. Based on the appearance sample shown in FIG. 1, 1 to 5 points were assigned for evaluation. Four points indicate that it is good, and five points indicate that it is even better.
 (3)懸濁物質(SS)の測定
 亜鉛系めっき鋼板100t処理以降のアルカリ性水溶液を採取し、孔径1μmのメンブレンフィルターを用いて吸引ろ過した。ろ過物質を110℃で乾燥した後重量を測定し、mg/Lに換算した。この値が10mg/Lを超えた製造量を記録した。10mg/Lを超える鋼板処理量が3000t以上であれば、生産性の点から良好と評価できる。また、5000t処理後も、10mg/Lを超えなかったものについては、懸濁物質なし(表1-1、1-2中では「>5000」と表記)と評価した。アルカリ水溶液処理を行っていないNo.1、54及び56はこの測定を実施しなかった。
(3) Measurement of suspended solids (SS) An alkaline aqueous solution after the treatment of the zinc-based plated steel sheet 100t was collected and suction filtered using a membrane filter having a pore diameter of 1 μm. The filtered material was dried at 110 ° C., and the weight was measured and converted to mg / L. The production amount at which this value exceeded 10 mg / L was recorded. If the amount of steel sheet processing exceeding 10 mg / L is 3000 t or more, it can be evaluated as favorable from the viewpoint of productivity. Those that did not exceed 10 mg / L even after 5000 t treatment were evaluated as having no suspended solids (denoted as “> 5000” in Tables 1-1 and 1-2). No. No treatment with alkaline aqueous solution. 1, 54 and 56 did not make this measurement.
 以上より得られた結果を表1-1、1-2に示す。なお、No.15とNo.41は同じ試験条件であり、No.20とNo.28は同じ試験条件である。 The results obtained from the above are shown in Tables 1-1 and 1-2. In addition, No. 15 and No. No. 41 is the same test condition. 20 and no. 28 is the same test condition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1-1、1-2より以下の事項がわかる。 Table 1-1 and 1-2 show the following matters.
 No.1~57について、アルカリ水溶液による不要な酸化物層除去後の表面分析を実施した。 No. 1 to 57 were subjected to surface analysis after removing an unnecessary oxide layer with an alkaline aqueous solution.
 アルカリ性水溶液との接触処理を行わなかったNo.1、54及び56の比較例は、酸化物層の厚さが7~10nmであり十分に除去できていない。 No. No contact treatment with alkaline aqueous solution. In Comparative Examples 1, 54 and 56, the thickness of the oxide layer is 7 to 10 nm, and it cannot be removed sufficiently.
 No.2及び3はアルカリ性水溶液との接触を実施しているものの、アルカリ性水溶液中にキレート剤が添加されていない点で不十分な例(比較例)である。酸化物層は十分に除去可能である。しかしながら、鋼板の生産量が増加するとアルカリ性水溶液中に懸濁物質が生成し、外観を劣化させる。 No. Although 2 and 3 are performing contact with alkaline aqueous solution, they are insufficient examples (comparative examples) in that no chelating agent is added to the alkaline aqueous solution. The oxide layer can be sufficiently removed. However, when the production amount of the steel sheet increases, suspended substances are generated in the alkaline aqueous solution and the appearance is deteriorated.
 No.4及び11はキレート剤を含有するアルカリ性水溶液との接触を実施しているものの、キレート剤の濃度が不十分な例(比較例)である。酸化物層は十分に除去可能である。しかしながら、鋼板の生産量が増加するとアルカリ性水溶液中に懸濁物質が生成する。 No. 4 and 11 are examples (comparative examples) in which the concentration of the chelating agent is insufficient, although the contact with the alkaline aqueous solution containing the chelating agent is performed. The oxide layer can be sufficiently removed. However, when the production amount of the steel sheet increases, suspended substances are generated in the alkaline aqueous solution.
 No.19及び23はキレート剤を含有するアルカリ性水溶液との接触を実施しているものの、接触時間が短い例(比較例)である。酸化物層の厚さが6~7nmであり十分に除去できていない。 No. 19 and 23 are examples (comparative examples) in which the contact time is short although the contact with the alkaline aqueous solution containing the chelating agent is carried out. The oxide layer has a thickness of 6 to 7 nm and cannot be removed sufficiently.
 No.27及び34はキレート剤を含有するアルカリ性水溶液との接触を実施しているものの、pHが低い例(比較例)である。酸化物層の厚さが7nmであり十分に除去できていない。 No. Nos. 27 and 34 are examples (comparative examples) in which the pH is low although contact with an alkaline aqueous solution containing a chelating agent is carried out. The thickness of the oxide layer is 7 nm and cannot be removed sufficiently.
 No.24及び28~33はpHの影響を接触時間1.0秒で確認した本発明例である。pH12.6以上であると、接触時間1.0秒でも酸化膜を2nm以下に除去することができており、反応層を設けるための反応時間を更に短縮することができる。 No. 24 and 28 to 33 are examples of the present invention in which the influence of pH was confirmed at a contact time of 1.0 second. When the pH is 12.6 or more, the oxide film can be removed to 2 nm or less even when the contact time is 1.0 second, and the reaction time for providing the reaction layer can be further shortened.
 No.2~53、55、57について、Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層の分析を行った。 No. With respect to 2 to 53, 55, and 57, an oxide layer including a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O was analyzed.
 (4)Zn(SO1-X(CO(OH)・nHOの確認
 Zn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層を、直径0.15mm、長さ45mmのステンレスブラシとエタノールを用いて表面をこすり、得られたエタノール液を吸引ろ過することで、皮膜成分を粉末成分として抽出した。粉末として採取した皮膜成分を、ガスクロマトグラフ質量分析計を用いて昇温分析することでCの定量分析を実施した。ガスクロマトグラフ質量分析計の前段に熱分解炉を接続した。熱分解炉内に採取した粉末試料を約2mg挿入し、熱分解炉の温度を30℃から500℃まで、昇温速度5℃/minで昇温させた、熱分解炉内で発生するガスをヘリウムでガスクロマトグラフ質量分析計内に搬送し、ガス組成を分析した。GC/MS測定時のカラム温度は300℃に設定した。
(4) Zn 4 (SO 4 ) in 1-X (CO 3) X (OH) 6 · nH 2 O Checking Zn 4 (SO 4) 1- X (CO 3) X (OH) 6 · nH 2 O The surface of the oxide layer containing the crystal structure represented is rubbed with a stainless steel brush with a diameter of 0.15 mm and a length of 45 mm and ethanol, and the resulting ethanol solution is suction filtered to powder the film components. Extracted as a component. The film component collected as a powder was subjected to temperature analysis using a gas chromatograph mass spectrometer to perform quantitative analysis of C. A pyrolysis furnace was connected to the front stage of the gas chromatograph mass spectrometer. About 2 mg of the powder sample collected in the pyrolysis furnace was inserted, and the gas generated in the pyrolysis furnace was raised from 30 ° C to 500 ° C at a heating rate of 5 ° C / min. Helium was transported into a gas chromatograph mass spectrometer and analyzed for gas composition. The column temperature at the time of GC / MS measurement was set to 300 ° C.
 Cの存在形態
 同様に粉末化し採取した皮膜成分、ガスクロマトブラフ質量分析を用いて分析しCの存在形態について分析を実施した。
Presence form of C Similarly, the coating component collected by pulverization was analyzed using gas chromatography bluff mass spectrometry, and the presence form of C was analyzed.
 Zn、S、O、Hの存在形態
 X線光電子分光装置を用いて、S、Zn、Oの存在形態について分析した。Al Ka モノクロ線源を使用し、Zn LMM、 S 2pに相当するスペクトルのナロー測定を実施した。
Presence form of Zn, S, O, H The presence form of S, Zn, O was analyzed using an X-ray photoelectron spectrometer. Using an Al Ka monochromatic radiation source, narrow measurement of the spectrum corresponding to Zn LMM, S 2p was performed.
 Pの存在形態
 X線吸収微細構造装置を用いてPの存在状態について分析した。高エネルギー加速器研究機構Photon Factoryのビームライン BL27Aにて、ZAFS(X線吸収端微細構造)の測定を室温で実施した。脱脂した試料表面に単色化した放射光を照射し、P-K殻の吸収端XANES(X線吸収端近傍構造)スペクトルを、試料吸収電流計測による全電子収量法(TEY)で測定した。
Presence form of P The presence state of P was analyzed using an X-ray absorption fine structure apparatus. Measurement of ZAFS (X-ray absorption fine structure) was carried out at room temperature in the beam line BL27A of Photon Factory of the High Energy Accelerator Research Organization. The degreased sample surface was irradiated with monochromated synchrotron radiation, and the absorption edge XANES (structure near the X-ray absorption edge) spectrum of the PK shell was measured by the total electron yield method (TEY) based on the sample absorption current measurement.
[規則91に基づく訂正 26.11.2015] 
 結晶水の定量
 示差熱天秤を用いて100℃以下の重量減少量を測定した。測定には粉末試料約15mgを用いた。試料を装置内に導入後、室温(約25℃)から1000℃まで、昇温速度10℃/minで昇温させ、昇温時の熱重量変化を記録した。
[Correction based on Rule 91 26.11.2015]
Determination of water of crystallization The weight loss of 100 ° C. or less was measured using a differential thermobalance. About 15 mg of powder sample was used for the measurement. After the sample was introduced into the apparatus, the temperature was raised from room temperature (about 25 ° C.) to 1000 ° C. at a rate of temperature rise of 10 ° C./min, and the thermogravimetric change at the time of temperature rise was recorded.
 結晶構造の特定
 同様に粉末化し採取した皮膜成分のX線回折を実施し、結晶構造を推定した。ターゲットにはCuを用い、加速電圧40kV、管電流50mA、スキャン速度4deg/min、スキャン範囲2~90°の条件で測定を実施した。
Identification of Crystal Structure X-ray diffraction was performed on the film components collected by pulverization in the same manner, and the crystal structure was estimated. Cu was used as a target, and measurement was performed under the conditions of an acceleration voltage of 40 kV, a tube current of 50 mA, a scan speed of 4 deg / min, and a scan range of 2 to 90 °.
 以下、No.2~38、40~53、55、57について、得られた結果を述べる。 Hereafter, No. The results obtained for 2 to 38, 40 to 53, 55 and 57 will be described.
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。 As a result of gas chromatograph mass spectrometry, it was confirmed that CO 2 was released between 150 ° C. and 500 ° C., and C was present as a carbonate.
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。 As a result of analysis using an X-ray photoelectron spectrometer, a peak corresponding to Zn LMM was observed in the vicinity of 987 eV, and it was found that Zn was present as zinc hydroxide. Similarly, a peak corresponding to S 2p was observed in the vicinity of 171 eV, indicating that S exists as a sulfate.
 X線吸収微細構造装置を用いて分析した結果、2153、2158、2170eV付近にピークが観察され、Pはピロリン酸塩として存在することが分かった。 As a result of analysis using an X-ray absorption fine structure apparatus, peaks were observed in the vicinity of 2153, 2158, 2170 eV, and it was found that P was present as pyrophosphate.
[規則91に基づく訂正 26.11.2015] 
 示差熱天秤の結果から、100℃以下に11.2%の重量減少が認められ、結晶水を含有していることが分かった。
[Correction based on Rule 91 26.11.2015]
From the results of the differential thermal balance, it was found that a weight loss of 11.2% was observed at 100 ° C. or lower, and it contained crystal water.
 X線回折の結果、2θが8.5°、15.0°、17.4°、21.3°、23.2°、26.3°、27.7°、28.7°、32.8°、34.1°、58.6°、59.4°付近に回折ピークが観察される。 As a result of X-ray diffraction, 2θ is 8.5 °, 15.0 °, 17.4 °, 21.3 °, 23.2 °, 26.3 °, 27.7 °, 28.7 °, 32. Diffraction peaks are observed around 8 °, 34.1 °, 58.6 °, and 59.4 °.
 以上の結果と組成比率、電荷バランスから、Zn(SO0.95(CO0.05(OH)・3.3HOで示される結晶構造物質を含有していることが分かる。 To contain the above results and the composition ratio, the crystal structure material from a charge balance, represented by Zn 4 (SO 4) 0.95 ( CO 3) 0.05 (OH) 6 · 3.3H 2 O I understand.
 No.39について詳細な皮膜分析を行った。 No. A detailed film analysis of No. 39 was conducted.
 ガスクロマトグラフ質量分析の結果、150℃~500℃の間にCOの放出が確認でき、Cは炭酸塩として存在することが分かった。 As a result of gas chromatograph mass spectrometry, it was confirmed that CO 2 was released between 150 ° C. and 500 ° C., and C was present as a carbonate.
 X線光電子分光装置を用いて、分析した結果、Zn LMMに相当するピークが987eV付近に観察され、Znは水酸化亜鉛の状態として存在していることが分かった。同様に、S 2pに相当するピークが171eV付近に観察され、Sは硫酸塩として存在していることが分かった。 As a result of analysis using an X-ray photoelectron spectrometer, a peak corresponding to Zn LMM was observed in the vicinity of 987 eV, and it was found that Zn was present as zinc hydroxide. Similarly, a peak corresponding to S 2p was observed in the vicinity of 171 eV, indicating that S exists as a sulfate.
 X線吸収微細構造装置を用いて分析した結果、2153、2158、2170eV付近にピークが観察され、Pはピロリン酸塩として存在することが分かった。 As a result of analysis using an X-ray absorption fine structure apparatus, peaks were observed in the vicinity of 2153, 2158, 2170 eV, and it was found that P was present as pyrophosphate.
[規則91に基づく訂正 26.11.2015] 
 示差熱天秤の結果から、100℃以下に9.4%の重量減少が認められ、結晶水を含有していることが分かった。
[Correction based on Rule 91 26.11.2015]
From the results of the differential thermobalance, it was found that a weight loss of 9.4% was observed at 100 ° C. or lower, and it contained crystal water.
 X線回折の結果、2θが8.8°、15.0°、17.9°、21.3°、23.2°、27.0°、29.2°、32.9°、34.7°、58.9°付近に回折ピークが観察される。 As a result of X-ray diffraction, 2θ is 8.8 °, 15.0 °, 17.9 °, 21.3 °, 23.2 °, 27.0 °, 29.2 °, 32.9 °, 34. A diffraction peak is observed around 7 ° and 58.9 °.
 以上の結果と組成比率、電荷バランスから、Zn(SO0.8(CO0.2(OH)・2.7HOで示される結晶構造物質を含有していることが分かる。 To contain the above results and the composition ratio, the crystal structure material from a charge balance, the Zn 4 (SO 4) 0.8 ( CO 3) represented by 0.2 (OH) 6 · 2.7H 2 O I understand.

Claims (2)

  1.  鋼板の表面に反応層を有する亜鉛系めっき鋼板の製造方法であって、前記反応層はZn(SO1-X(CO(OH)・nHOで表される結晶構造物が含まれる酸化物層であり、前記反応層形成の前処理として、グルコン酸ナトリウム、グルコヘプトン酸ナトリウム、クエン酸ナトリウム、酒石酸、アラボン酸、ガラクトン酸、ソルビット、マンニット、グリセリン、EDTA、トリポリリン酸ナトリウムの中から選ばれる1種以上のキレート剤を合計0.050mass%以上含有しpHが10.0以上のアルカリ性水溶液に亜鉛系めっき鋼板を1.0秒以上接触させることを特徴とする亜鉛系めっき鋼板の製造方法。 A method for producing a zinc-based plated steel sheet having a reaction layer on the surface of the steel sheet, wherein the reaction layer is a crystal represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O An oxide layer containing a structure, and as a pretreatment for forming the reaction layer, sodium gluconate, sodium glucoheptate, sodium citrate, tartaric acid, arabonic acid, galactonic acid, sorbit, mannitol, glycerin, EDTA, tripolylin Zinc, characterized by bringing a zinc-based plated steel sheet into contact with an alkaline aqueous solution containing 0.050 mass% or more of a total of one or more chelating agents selected from sodium acid and having a pH of 10.0 or more for 1.0 second or more Manufacturing method of a galvanized steel sheet.
  2.  前記アルカリ性水溶液のpHが12.6以上であることを特徴とする請求項1に記載の亜鉛系めっき鋼板の製造方法。 The method for producing a galvanized steel sheet according to claim 1, wherein the pH of the alkaline aqueous solution is 12.6 or more.
PCT/JP2015/005583 2014-11-12 2015-11-09 Method for manufacturing galvanized steel sheet WO2016075920A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201580061436.4A CN107109660A (en) 2014-11-12 2015-11-09 The manufacture method of zinc-based metal plated steel sheet
EP15858294.0A EP3219826A4 (en) 2014-11-12 2015-11-09 Method for manufacturing galvanized steel sheet
KR1020177012379A KR102007103B1 (en) 2014-11-12 2015-11-09 Method for manufacturing steel sheet coated with zinc-based coating layer
US15/526,140 US20170314138A1 (en) 2014-11-12 2015-11-09 Method for manufacturing steel sheet coated with zinc-based coating layer (as amended)
JP2016512140A JPWO2016075920A1 (en) 2014-11-12 2015-11-09 Method for producing galvanized steel sheet
MX2017006133A MX2017006133A (en) 2014-11-12 2015-11-09 Method for manufacturing galvanized steel sheet.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-229484 2014-11-12
JP2014229484 2014-11-12

Publications (1)

Publication Number Publication Date
WO2016075920A1 true WO2016075920A1 (en) 2016-05-19

Family

ID=55954023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005583 WO2016075920A1 (en) 2014-11-12 2015-11-09 Method for manufacturing galvanized steel sheet

Country Status (7)

Country Link
US (1) US20170314138A1 (en)
EP (1) EP3219826A4 (en)
JP (1) JPWO2016075920A1 (en)
KR (1) KR102007103B1 (en)
CN (1) CN107109660A (en)
MX (1) MX2017006133A (en)
WO (1) WO2016075920A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11661666B2 (en) 2019-10-10 2023-05-30 The Boeing Company Electrodeposited zinc and iron coatings for corrosion resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213682A (en) * 1987-03-02 1988-09-06 Nisshin Steel Co Ltd Surface treatment of galvanized steel sheet
JP2007169772A (en) * 2005-12-20 2007-07-05 Nippon Denro Kk Coloring treatment method for hot dip galvanizing surface
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915444A (en) * 1955-12-09 1959-12-01 Enthone Process for cleaning and plating ferrous metals
SE316668B (en) * 1963-09-23 1969-10-27 Parker Ste Continentale
JPH05279868A (en) 1992-04-01 1993-10-26 Sumitomo Metal Ind Ltd Treatment for surface of galvanized steel sheet
JP4525252B2 (en) 2003-08-29 2010-08-18 Jfeスチール株式会社 Method for producing galvannealed steel sheet
KR20050022264A (en) * 2003-08-29 2005-03-07 제이에프이 스틸 가부시키가이샤 Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP4604712B2 (en) 2004-12-27 2011-01-05 Jfeスチール株式会社 Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP4517887B2 (en) 2005-02-25 2010-08-04 Jfeスチール株式会社 Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
KR101106516B1 (en) * 2006-10-31 2012-01-20 제이에프이 스틸 가부시키가이샤 Phosphate-treated galvanized steel sheet and method for producing the same
TWI394863B (en) * 2007-12-27 2013-05-01 Kansai Paint Co Ltd Metal surface treatment composition, and surface-treated metal material with metal surface treatment layer obtained from the metal surface treatment composition
JP5338226B2 (en) * 2008-09-26 2013-11-13 Jfeスチール株式会社 Galvanized steel sheet for hot pressing
DE102012213089A1 (en) 2012-07-25 2014-01-30 Hamilton Bonaduz Ag Coupling formation of a pipetting channel of a pipetting device for coupling a pipette tip thereto
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same
JP7013305B2 (en) * 2018-03-29 2022-01-31 株式会社Lixil Faucet device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213682A (en) * 1987-03-02 1988-09-06 Nisshin Steel Co Ltd Surface treatment of galvanized steel sheet
JP2007169772A (en) * 2005-12-20 2007-07-05 Nippon Denro Kk Coloring treatment method for hot dip galvanizing surface
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3219826A4 *

Also Published As

Publication number Publication date
KR20170067834A (en) 2017-06-16
EP3219826A4 (en) 2017-11-22
US20170314138A1 (en) 2017-11-02
JPWO2016075920A1 (en) 2017-04-27
KR102007103B1 (en) 2019-08-02
EP3219826A1 (en) 2017-09-20
CN107109660A (en) 2017-08-29
MX2017006133A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5884207B2 (en) Zinc-based plated steel sheet and method for producing the same
EP3112500B1 (en) Galvanized steel sheet and method for manufacturing same
KR20200079574A (en) Steel sheet for cans and production method for steel sheet for cans
JPWO2017098994A1 (en) Steel plate for can and manufacturing method thereof
JP2009203547A (en) Galvanized steel sheet and manufacturing method therefor
WO2016075920A1 (en) Method for manufacturing galvanized steel sheet
KR102150365B1 (en) Manufacturing method of galvanized steel sheet
WO2010070943A1 (en) Galvanized steel sheet and method for manufacturing the same
JP2005248262A (en) Electrogalvanized steel sheet, and method and apparatus for producing the same
JP7036137B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP5332543B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5354166B2 (en) Method for producing galvanized steel sheet
JP3686472B2 (en) Surface-treated steel material excellent in corrosion resistance and its surface treatment method
JP6361628B2 (en) Manufacturing method of steel plate for containers
TWI541380B (en) A metal surface treatment agent, a metal surface treatment method, and a metal material containing the metal surface treatment agent
JP5927995B2 (en) Method for producing galvanized steel sheet
WO2015020053A1 (en) Steel sheet for container
JP2020019999A (en) Metallic material with film, and manufacturing method thereof
JP2015140468A (en) Steel sheet for vessel, and production method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016512140

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858294

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015858294

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177012379

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/006133

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15526140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE