WO2015020053A1 - Steel sheet for container - Google Patents

Steel sheet for container Download PDF

Info

Publication number
WO2015020053A1
WO2015020053A1 PCT/JP2014/070620 JP2014070620W WO2015020053A1 WO 2015020053 A1 WO2015020053 A1 WO 2015020053A1 JP 2014070620 W JP2014070620 W JP 2014070620W WO 2015020053 A1 WO2015020053 A1 WO 2015020053A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
steel plate
steel sheet
coating
Prior art date
Application number
PCT/JP2014/070620
Other languages
French (fr)
Japanese (ja)
Inventor
幹人 須藤
中村 紀彦
安秀 大島
智文 重國
威 鈴木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020167003343A priority Critical patent/KR101760729B1/en
Priority to JP2014557637A priority patent/JP6052305B2/en
Priority to CN201480044226.XA priority patent/CN105452531B/en
Publication of WO2015020053A1 publication Critical patent/WO2015020053A1/en
Priority to PH12016500254A priority patent/PH12016500254A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present invention relates to a steel plate for containers.
  • Patent Document 1 discloses that “at least one surface of a steel sheet is Ni layer, Sn layer, Fe—Ni alloy layer, Fe—Sn alloy layer and Fe— It has a corrosion-resistant film composed of at least one layer selected from Ni—Sn alloy layers, includes Ti on the corrosion-resistant film, and further selected from Co, Fe, Ni, V, Cu, Mn, and Zn.
  • a surface-treated steel sheet having an adhesive film containing 0.01 to 10 in total as a mass ratio with respect to at least one of these is disclosed ([Claim 1]).
  • the present inventors have formed a film containing a specific amount of Ti and Ni, so that the film adhesion and paint adhesion of the resulting steel plate for containers can be improved. As a result, the present invention was completed.
  • the present invention provides the following (I) to (VI).
  • a plating layer comprising at least one layer selected from a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer covering at least a part of the surface of the steel sheet
  • a steel plate for containers having a plated steel plate and a coating disposed on the surface of the plated steel plate on the plating layer side, wherein the coating has Ti and Ni, and Ni and Ti of the coating the weight ratio of (Ni / Ti) is less than 1.0, the coating deposition amount of Ti converted per one surface of the plated steel sheet is less than 5.0 mg / m 2 or more 60.0 mg / m 2
  • the steel plate for containers whose nickel conversion amount per one side of the said plated steel plate is more than 3.0 mg / m ⁇ 2 >, and whose S value defined by Formula (1) mentioned later is 1.00 or less.
  • the said steel film is a steel plate for containers as described in said (I) whose said S value is less than 0.30.
  • the said steel film is a steel plate for containers as described in said (I) whose said S value is 0.30 or more and 1.00 or less.
  • a steel plate for containers having excellent film adhesion and paint adhesion can be provided.
  • the steel plate for containers of the present invention generally has a plated steel plate and a film disposed on the surface of the plated steel plate on the plating layer side. Then, the inventors of the present invention contain a specific amount of Ti and Ni, and further satisfy the S value defined by the formula (1) described later satisfying 1.00 or less, whereby the film adhesion and It has been found that the paint adhesion is excellent.
  • the S value defined by the formula (1) is an index indicating the amount of Ni existing on the surface side of the film, but the present inventors need a certain amount of Ni in the film.
  • the plated steel sheet is at least one layer selected from a steel sheet and a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer covering at least a part of the surface of the steel sheet. And a plating layer.
  • a raw steel plate a general steel plate for cans can be used.
  • a plating layer is a layer which covers at least one part on the steel plate surface, A continuous layer may be sufficient and a discontinuous island shape may be sufficient as it.
  • the plating layer should just be provided in the at least single side
  • the plating layer can be formed by a known method according to the contained element. Below, the suitable aspect of a steel plate and a plating layer is explained in full detail.
  • the kind of steel plate is not particularly limited, and a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) that is usually used as a container material can be used.
  • the manufacturing method and material of the steel plate are not particularly limited, and the steel plate is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from a normal slab manufacturing process.
  • a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a tin plating layer to be described later may be formed on the Ni-containing layer.
  • a tin plating layer containing island-shaped Sn can be formed, and weldability is improved.
  • the Ni-containing layer only needs to contain nickel, and examples thereof include a Ni plating layer (Ni layer) and a Ni—Fe alloy layer.
  • the method for applying the Ni-containing layer to the steel sheet is not particularly limited, and examples thereof include a known method such as electroplating.
  • the Ni diffusion layer can be coordinated by forming Ni on the steel sheet surface by electroplating and then annealing, thereby forming a Ni—Fe alloy layer.
  • the amount of Ni in the Ni-containing layer is not particularly limited, and is preferably 50 to 2000 mg / m 2 as the Ni conversion amount per side. If it is in the above-mentioned range, it is more excellent in resistance to sulfur blackening and is advantageous in terms of cost.
  • a tin plating layer containing Sn As a plating layer which a plated steel plate has on the steel plate surface, a tin plating layer containing Sn is preferable.
  • the tin plating layer only needs to be provided on at least one side of the steel plate, and may be provided on both sides.
  • the Sn adhesion amount per one surface of the steel sheet in the tin plating layer is preferably 0.1 to 15.0 g / m 2 .
  • the Sn adhesion amount is within the above range, the outer appearance characteristics and corrosion resistance of the steel plate for containers are excellent.
  • 0.2 to 15.0 g / m 2 is more preferable in terms of these characteristics being more excellent, and 1.0 to 15.0 g / m 2 is further preferable in terms of excellent workability.
  • the Sn adhesion amount can be measured by surface analysis by a coulometric method or fluorescent X-ray.
  • fluorescent X-rays a calibration curve relating to the Sn amount is specified in advance using a Sn deposition amount sample with a known Sn amount, and the Sn deposition amount is relatively identified using the calibration curve.
  • the tin plating layer is a layer covering at least a part on the surface of the steel plate, and may be a continuous layer or a discontinuous island shape.
  • the tin plating layer in addition to the tin plating layer composed of the Sn layer obtained by plating tin, the lowermost layer of the Sn layer (Sn layer / steel sheet interface) obtained by heating and melting tin by electric heating after tin plating, etc. ) Includes a tin plating layer in which a part of the Fe—Sn alloy layer is formed, or a tin plating layer in which all of the Sn layers are alloyed to form an Fe—Sn alloy layer.
  • the tin plating layer the lowermost layer of the Sn layer (Sn layer / steel plate interface) obtained by tin-plating a steel plate having a Ni-containing layer on the surface and further heating and melting tin by electric heating or the like
  • a tin plating layer in which an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like is partially formed, or a tin plating layer in which all Sn of the Sn layer is alloyed to form an Fe—Sn alloy layer is also included.
  • a known method for example, an electroplating method or a method of plating by immersing in molten Sn
  • a phenol sulfonic acid tin plating bath, a methane sulfonic acid tin plating bath, or a halogen-based tin plating bath is used, and the adhesion amount per one surface is adjusted to a predetermined amount (for example, 2.8 g / m 2 ) on the steel plate surface.
  • a reflow process is performed at a temperature equal to or higher than the melting point of Sn (231.9 ° C.) to alloy all Sn in the bottom layer of the Sn plating layer (Sn layer) or the Sn layer.
  • a tin plating layer on which an alloy layer is formed can be manufactured. When the reflow process is omitted, a tin plating layer can be produced.
  • the steel sheet has a Ni-containing layer on its surface
  • tin plating is performed on the Ni-containing layer to form a Sn layer
  • the lowermost layer (Sn layer) of the tin simple plating layer (Sn layer) Layer / steel interface) or all Sn in the Sn layer is alloyed to form an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like.
  • the film membrane arrange
  • the film is roughly a film containing Ti (titanium element) and Ni (nickel element) as its components, and is formed using a treatment liquid described later.
  • the coating has a Ti-equivalent adhesion amount (hereinafter also referred to as “Ti adhesion amount”) per side of the plated steel sheet of 5.0 mg / m 2 or more and less than 60 mg / m 2 . If the Ti adhesion amount is less than 5.0 mg / m 2 or 60 mg / m 2 or more, the film adhesion and paint adhesion are inferior, but if it is 5.0 mg / m 2 or more and less than 60 mg / m 2 , the film adhesion and Excellent paint adhesion.
  • Ti adhesion amount for the reason that the film adhesion and coating adhesion more excellent, preferably 10 ⁇ 30mg / m 2, more preferably 15 ⁇ 25mg / m 2.
  • the coating has an Ni conversion amount (hereinafter also referred to as “Ni adhesion amount”) per side of the plated steel sheet of more than 3.0 mg / m 2 .
  • Ni adhesion amount an Ni conversion amount per side of the plated steel sheet of more than 3.0 mg / m 2 .
  • the Ni adhesion amount is preferably more than 3.0 mg / m 2 and 10.0 mg / m 2 or less, more preferably more than 3.0 mg / m 2 and 5.0 mg / m 2 or less because the adhesion between the film and the plated steel sheet is excellent. Is more preferable.
  • the amount of Ti adhesion and the amount of Ni adhesion are measured by surface analysis using fluorescent X-rays.
  • Ti, Ni, and the like in the film are included as various titanium compounds and nickel compounds, respectively, and the types and aspects of these compounds are not particularly limited.
  • the amount of Ni deposited in the film can be determined by combining cross-sectional observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and glow discharge emission analysis. The amount of Ni contained in the plating layer can be distinguished.
  • the cross section of the film and the plating layer is exposed by focused ion beam (FIB) processing, and the thickness of the film layer is calculated from cross-sectional observation by SEM or TEM.
  • FIB focused ion beam
  • the relationship between the sputtering depth and the sputtering time by glow discharge emission analysis is obtained.
  • the integrated emission count value by Ni element of the glow discharge emission analysis up to the sputtering time corresponding to the film thickness is obtained.
  • the Ni adhesion amount can be obtained using a calibration curve obtained in advance.
  • the calibration curve is created by the following method.
  • glow discharge emission analysis is performed on a plurality of samples having a coating film containing Ni on a plating layer not containing Ni and having different Ni adhesion amounts, and a count integrated value up to a sputtering time at which no emission count due to Ni element is detected is obtained. .
  • the Ni adhesion amount of these samples is obtained by surface analysis using fluorescent X-rays. In this way, a calibration curve between the Ni count integrated value and the Ni adhesion amount by glow discharge emission analysis is created.
  • the mass ratio (Ni / Ti) of Ni and Ti in the coating is less than 1.0.
  • Ni is likely to be present on the surface side of the film, and Ni is precipitated in a particulate form to prevent adhesion between the film and the film or paint.
  • the mass ratio (Ni / Ti) is preferably less than 0.9 and more preferably less than 0.8 because film adhesion and paint adhesion are more excellent.
  • a lower limit is not specifically limited, For example, 0.1 or more is mentioned.
  • the film has an S value defined by the following formula (1) of 1.00 or less.
  • S [Is (Ni) / It (Ti)] / C 2 (1)
  • Is (Ni) is the amount of Ni per one side of the plated steel sheet calculated from the glow discharge emission analysis of Ni from the surface of the coating (surface opposite to the plated steel sheet) to a depth of 10 nm ( (Unit: mg / m 2 ) (hereinafter also simply referred to as “Ni amount”).
  • It (Ti) represents the Ti amount (unit: mg / m 2 ) (hereinafter also simply referred to as “Ti amount”) per one side of the plated steel sheet calculated from the glow discharge emission analysis of Ti of the entire coating.
  • the S value defined by equation (1) is an index indicating the amount of Ni existing on the surface side of the film, and the smaller the value, the smaller the amount of Ni on the film surface side and the greater the amount of Ti.
  • the inventors have found that the film adhesion and paint adhesion of the resulting steel plate for containers is excellent when the S value is 1.00 or less, as shown in [Example] described later. It was.
  • the S value is not particularly limited as long as it is 1.00 or less. However, when the S value is less than 0.30 and the S value is 0.30 or more and 1.00 or less, the former is The reason is that the paint adhesion is better than the latter, and the latter is preferred because the film adhesion is better than the former.
  • Ni amount from the glow discharge emission analysis of Ni up to a depth of 10 nm from the surface of the film separately obtain the relationship between the sputtering depth and the sputtering time by glow discharge emission analysis, and obtain the glow discharge up to the sputtering time corresponding to 10 nm. What is necessary is just to obtain a count integrated value of emission analysis, measure a sample with a known adhesion amount, and create a calibration curve.
  • Ti amount from the glow discharge emission analysis of Ti of the entire film the count integrated value until the sputtering time when the count of the glow discharge emission analysis by Ti in the film is not detected is obtained, and a sample with a known adhesion amount is obtained. Measure and create a calibration curve.
  • the thickness of the film is preferably 10 to 120 nm, more preferably 20 to 60 nm.
  • the thickness of the film can be measured from a cross-sectional profile obtained by observation with a transmission electron microscope (TEM) after exposing the cross section of the film by focused ion beam (FIB) processing.
  • TEM transmission electron microscope
  • FIB focused ion beam
  • the film preferably has a T value defined by the following formula (2) of 0.50 or less.
  • T [Ii (F) ⁇ Ib (F)] / Ib (F) (2)
  • Ii (F) represents the F peak count number of fluorescent X-ray analysis of the film before dipping the steel plate for containers of the present invention in boiling water for 30 minutes
  • Ib (F) represents the present invention.
  • membrane after immersing the steel plate for containers of for 30 minutes in boiling water is represented.
  • [Ii (F) ⁇ Ib (F)] indicates the amount of F eluted by immersion in boiling water
  • the T value defined by the equation (2) obtained by dividing this by Ib (F) is: It becomes an index indicating the ratio of the soluble F amount in the film.
  • the present inventors have found that the film adhesion of the obtained steel sheet for containers is more excellent when the T value is 0.50 or less, as shown in [Example] described later.
  • the X-ray fluorescence analysis was performed under the following conditions. Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation ⁇ Measurement diameter: 30mm ⁇ Measurement atmosphere: Vacuum ⁇ Spectrum: F-K ⁇ ⁇ Slit: COARSE -Spectral crystal: TAP The peak count of F-K ⁇ in the fluorescent X-ray analysis of the film measured under the above conditions was used.
  • the coating preferably contains a Ni—Sn alloy phase.
  • Ni—Sn alloy phase is derived from Ni in the film
  • Sn is derived from Sn in the tin plating layer.
  • Such a Ni—Sn alloy phase may be deposited as a continuous layer in the film at the interface between the film and the tin plating layer, or may be intermittently deposited as particles dispersed in the film. Or both.
  • Sn in the tin plating layer enters the film and reaches near the surface, the color tone of the film may be inferior.
  • the Ni—Sn alloy phase is precipitated in the film, the penetration of Sn is suppressed and the color tone is reduced. It becomes good.
  • film adhesion and paint adhesion are also superior.
  • TEM transmission electron microscope
  • Energy dispersive X-ray spectrometry Energy dispersive X-ray spectrometry
  • FIB focused ion beam
  • the film forming step is a step of forming the above-described film on the surface of the plated steel sheet on the plating layer side, and immersing the plated steel sheet in the treatment liquid of the present invention described later (immersion process) or dipping.
  • the steel sheet is subjected to cathodic electrolysis.
  • Cathodic electrolytic treatment is preferable because a uniform film can be obtained at a higher speed than immersion treatment.
  • the treatment liquid of the present invention used, conditions for the cathodic electrolysis, and the like will be described in detail.
  • the treatment liquid of the present invention contains a Ti component (Ti compound) for supplying Ti (titanium element) to the film.
  • Ti component is not particularly limited.
  • titanium alkoxide, titanyl ammonium oxalate, potassium titanyl oxalate dihydrate, titanium sulfate, titanium lactate, titanium hydrofluoric acid (H 2 TiF 6 ) and / or its Examples include salt.
  • the salt of titanium hydrofluoric acid include potassium hexafluorotitanate (K 2 TiF 6 ), sodium hexafluorotitanate (Na 2 TiF 6 ), and ammonium hexafluorotitanate ((NH 4 ).
  • titanium hydrofluoric acid and / or a salt thereof is preferable from the viewpoints of stability of the treatment liquid, availability, and the like.
  • the content of the Ti component in the treatment liquid of the present invention is not particularly limited, but when using titanium hydrofluoric acid and / or a salt thereof, the amount converted to hexafluorotitanate ion (TiF 6 2 ⁇ ), The amount is preferably 0.004 to 0.4 mol / L, more preferably 0.02 to 0.2 mol / L.
  • the treatment liquid of the present invention contains a Ni component (Ni compound) for supplying Ni (nickel element) to the coating.
  • Ni component is not particularly limited, nickel sulfate (NiSO 4), nickel sulfate hexahydrate, nickel chloride (NiCl 2), etc. nickel chloride hexahydrate and the like.
  • the content of the Ni component in the treatment liquid of the present invention is not particularly limited, but the amount converted to Ni ions (Ni 2+ ) is preferably 0.002 to 0.04 mol / L, preferably 0.004 to 0 0.02 mol / L is more preferable.
  • the pH of the treatment liquid of the present invention is not particularly limited, but is preferably pH 2.0 to 5.0. Within this range, the treatment time can be shortened and the stability of the treatment liquid is excellent.
  • a known acid component for example, phosphoric acid, sulfuric acid
  • alkali component for example, sodium hydroxide, aqueous ammonia
  • the treatment liquid of the present invention may contain a surfactant such as sodium lauryl sulfate or acetylene glycol as necessary.
  • the treatment liquid may contain a condensed phosphate such as pyrophosphate.
  • the liquid temperature of the treatment liquid during the treatment is preferably 20 to 80 ° C., more preferably 40 to 60 ° C.
  • the electrolysis current density at the time of carrying out the cathodic electrolysis treatment is 1.0 because Ti and Ni in the formed film are appropriate amounts, and the film adhesion and paint adhesion are more excellent. ⁇ 20.0 A / dm 2 is preferred, 3.0 to 15.0 A / dm 2 is more preferred, and 6.0 to 10.0 A / dm 2 is even more preferred.
  • the energization time of the cathodic electrolysis treatment is preferably 0.1 to 5 seconds and more preferably 0.3 to 2 seconds for the same reason.
  • the quantity of electricity at the time of cathodic electrolysis is the product of the current density and the energization time, and is appropriately set.
  • the method of the water washing treatment is not particularly limited.
  • a method of providing a water washing tank after the film treatment tank and continuously immersing in water after the film treatment is exemplified.
  • the temperature of water used for the water washing treatment is preferably 40 to 90 ° C.
  • the washing time is preferably more than 0.5 seconds, and more preferably 1.0 to 5.0 seconds, because the effect of the washing treatment is more excellent.
  • drying may be performed instead of or after the washing process.
  • the temperature and method during drying are not particularly limited, and for example, a normal dryer or an electric furnace drying method can be applied.
  • the temperature during the drying treatment is preferably 100 ° C. or lower. If it is in the said range, the oxidation of a film
  • the lower limit is not particularly limited, but is usually about room temperature.
  • Ni—Sn alloy phase described above is formed in the film by subjecting the plated steel sheet having the tin plating layer to the film forming process described above using the treatment liquid of the present invention.
  • the manufacturing method of this invention may be equipped with the pre-processing process demonstrated below before the film formation process mentioned above.
  • the pretreatment step is a step of subjecting the plated steel plate to cathodic electrolysis in an alkaline aqueous solution (particularly, an aqueous sodium carbonate solution).
  • the plating layer is a tin plating layer
  • the surface is usually oxidized during the production of the tin plating layer to form tin oxide.
  • unnecessary tin oxide can be removed and the amount of tin oxide can be adjusted.
  • Examples of the solution used for the cathodic electrolysis in the pretreatment step include an alkaline aqueous solution (for example, an aqueous sodium carbonate solution).
  • concentration of the alkali component (for example, sodium carbonate) in the alkaline aqueous solution is not particularly limited, but is preferably 5 to 15 g / L, more preferably 8 to 12 g / L from the viewpoint of more efficient removal of tin oxide. preferable.
  • the temperature of the alkaline aqueous solution during cathodic electrolysis is not particularly limited, but is preferably 40 to 60 ° C.
  • the electrolysis conditions (current density, electrolysis time) of the cathodic electrolysis are appropriately adjusted. In addition, you may perform a water washing process after a cathode electrolytic process as needed.
  • the steel plate for containers of the present invention obtained by the manufacturing method of the present invention is used for manufacturing various containers such as DI cans, food cans and beverage cans.
  • a plated steel sheet was produced by the following method. First, a steel plate (T4 original plate) having a thickness of 0.22 mm is electrolytically degreased, and a nickel plating layer is formed on both sides with a Ni adhesion amount per one side shown in Table 3 using a Watt bath, and then 10 vol.% H 2 +90 vol. An Fe—Ni alloy layer (Ni-containing layer) (showing Ni adhesion amount in Table 3) was formed on both sides by annealing at 700 ° C. in a .N 2 atmosphere to diffuse and infiltrate the nickel plating.
  • a steel plate having a Ni-containing layer as the surface layer was formed using a tin plating bath, Sn layers were formed on both sides with the Sn adhesion amount per one side shown in Table 3, and a reflow treatment was performed at a melting point of Sn or higher. Tin plating layers were formed on both sides of the T4 original plate. In this way, a tin plating layer composed of Ni—Fe alloy layer / Fe—Sn—Ni alloy layer / Sn layer was formed in this order from the lower layer side.
  • the plated steel sheet was immersed in an aqueous sodium carbonate solution having a bath temperature of 50 ° C. and 10 g / L, and cathodic electrolytic treatment was performed under the conditions shown in Table 2 (pretreatment step).
  • the obtained steel sheet was washed with water, and the treatment liquid (solvent: water) having the composition shown in Table 1 with the pH adjusted to 4.0 was used, and the bath temperature (treatment temperature) and electrolysis conditions shown in Table 2 ( Cathodic electrolysis treatment was performed at current density, energization time, and electric density.
  • the obtained steel plate was washed with water, dried at room temperature using a blower, and a film was formed on both sides (film formation process). Thereby, the test material of the steel plate for containers was produced.
  • the washing treatment was performed by immersing the obtained steel sheet in a water bath at 85 ° C. for the washing time shown in Table 3.
  • the film adhesion was evaluated by the following method with respect to the test material of the produced steel plate for containers.
  • the amount of each component and the evaluation results are summarized in Table 3.
  • Ti adhesion amount and Ni adhesion amount of film, Is (Ni), Is (Ti) and S, Ii (F), Ib (F) and T, film thickness, and Ni-Sn alloy phase in the film The presence or absence was measured or calculated by the method described above.
  • the 180 degree peel test uses a test piece (size: 30 mm ⁇ 100 mm) obtained by cutting a part 3 of the steel plate 1 while leaving the film 2 as shown in FIG. 1A, as shown in FIG.
  • a film peeling test performed by attaching a weight 4 (100 g) to one end of the test piece, turning it 180 degrees to the film 2 side, and allowing it to stand for 30 minutes.
  • the peeling length 5 shown in FIG.1 (c) was measured.
  • the unprocessed film adhesion was evaluated according to the following criteria.
  • a commercially available PET film (Melinex 850: manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was carried out, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.

Abstract

 Provided is a steel sheet for a container, said steel sheet having excellent film adhesion properties and paint adhesion properties. The steel sheet for a container has: a plated steel sheet having a plating layer that comprises at least one layer selected from among an Ni layer, an Sn layer, an Ni-Fe alloy layer, an Fe-Sn-Ni alloy layer, and an Fe-Sn alloy layer, and covers at least a portion of the surface of the steel sheet; and a coating film arranged on the plating layer-side surface of the plated steel sheet. The coating film has Ti and Ni, and the mass ratio (Ni/Ti) of Ni to Ti in the coating film is less than 1.0. The coating film deposition amount in terms of Ti is at least 5.0 mg/m2 but less than 60.0 mg/m2 per surface of the plated steel sheet, and the deposition amount in terms of Ni is more than 3.0 mg/m2 per surface of the plated steel sheet. The S value as defined in a specific formula (1) is 1.00 or less.

Description

容器用鋼板Steel plate for containers
 本発明は、容器用鋼板に関する。 The present invention relates to a steel plate for containers.
 缶等の容器に用いられる鋼板(容器用鋼板)として、例えば、特許文献1には、「鋼板の少なくとも片面に、Ni層、Sn層、Fe-Ni合金層、Fe-Sn合金層およびFe-Ni-Sn合金層のうちから選ばれた少なくとも1層からなる耐食性皮膜を有し、該耐食性皮膜上に、Tiを含み、さらにCo、Fe、Ni、V、Cu、MnおよびZnのうちから選ばれた少なくとも1種をその合計でTiに対する質量比として0.01~10含有する密着性皮膜を有することを特徴とする表面処理鋼板」が開示されている([請求項1])。 As a steel sheet (container steel sheet) used for containers such as cans, for example, Patent Document 1 discloses that “at least one surface of a steel sheet is Ni layer, Sn layer, Fe—Ni alloy layer, Fe—Sn alloy layer and Fe— It has a corrosion-resistant film composed of at least one layer selected from Ni—Sn alloy layers, includes Ti on the corrosion-resistant film, and further selected from Co, Fe, Ni, V, Cu, Mn, and Zn. A surface-treated steel sheet having an adhesive film containing 0.01 to 10 in total as a mass ratio with respect to at least one of these is disclosed ([Claim 1]).
特開2010-031348号公報JP 2010-031348 A
 本発明者らが、特許文献1に記載された容器用鋼板(表面処理鋼板)について検討した結果、特定の試験条件下では、PETフィルムに対する密着性(以下、「フィルム密着性」ともいう)および塗料に対する密着性(以下、「塗料密着性」ともいう)が不十分となる場合があることが分かった。
 本発明は、以上の点を鑑みてなされたものであり、フィルム密着性および塗料密着性に優れる容器用鋼板を提供することを目的とする。
As a result of studying the steel plate for containers (surface-treated steel plate) described in Patent Document 1, the present inventors have found that under specific test conditions, adhesion to a PET film (hereinafter also referred to as “film adhesion”) and It was found that the adhesion to the paint (hereinafter also referred to as “paint adhesion”) may be insufficient.
This invention is made | formed in view of the above point, and it aims at providing the steel plate for containers which is excellent in film adhesiveness and paint adhesiveness.
 本発明者らは、上記目的を達成するために鋭意検討を行なった結果、TiとNiとを特定量で含む皮膜を形成することで、得られる容器用鋼板のフィルム密着性および塗料密着性が優れることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have formed a film containing a specific amount of Ti and Ni, so that the film adhesion and paint adhesion of the resulting steel plate for containers can be improved. As a result, the present invention was completed.
 すなわち、本発明は、以下の(I)~(VI)を提供する。
 (I)鋼板の表面の少なくとも一部を覆うNi層、Sn層、Ni-Fe合金層、Fe-Sn-Ni合金層およびFe-Sn合金層のうちから選ばれた少なくとも1層からなるめっき層を有するめっき鋼板と、上記めっき鋼板の上記めっき層側の表面上に配置された皮膜とを有する容器用鋼板であって、上記皮膜が、TiおよびNiを有し、上記皮膜のNiとTiとの質量比(Ni/Ti)が1.0未満であり、上記皮膜は、上記めっき鋼板の片面あたりのTi換算の付着量が5.0mg/m2以上60.0mg/m2未満であって、上記めっき鋼板の片面あたりのNi換算の付着量が3.0mg/m2超であり、かつ、後述する式(1)で定義されるS値が1.00以下である、容器用鋼板。
 (II)上記皮膜は、上記S値が0.30未満である、上記(I)に記載の容器用鋼板。
 (III)上記皮膜は、上記S値が0.30以上1.00以下である、上記(I)に記載の容器用鋼板。
 (IV)上記皮膜は、上記めっき鋼板の片面あたりのTi換算の付着量が10.0~30.0mg/m2である、上記(I)~(III)のいずれかに記載の容器用鋼板。
 (V)後述する式(2)で定義されるT値が0.50以下である、上記(I)~(IV)のいずれかに記載の容器用鋼板。
 (VI)上記めっき層が錫めっき層であり、上記皮膜がNi-Sn合金相を含む、上記(I)~(V)のいずれかに記載の容器用鋼板。
That is, the present invention provides the following (I) to (VI).
(I) A plating layer comprising at least one layer selected from a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer covering at least a part of the surface of the steel sheet A steel plate for containers having a plated steel plate and a coating disposed on the surface of the plated steel plate on the plating layer side, wherein the coating has Ti and Ni, and Ni and Ti of the coating the weight ratio of (Ni / Ti) is less than 1.0, the coating deposition amount of Ti converted per one surface of the plated steel sheet is less than 5.0 mg / m 2 or more 60.0 mg / m 2 The steel plate for containers whose nickel conversion amount per one side of the said plated steel plate is more than 3.0 mg / m < 2 >, and whose S value defined by Formula (1) mentioned later is 1.00 or less.
(II) The said steel film is a steel plate for containers as described in said (I) whose said S value is less than 0.30.
(III) The said steel film is a steel plate for containers as described in said (I) whose said S value is 0.30 or more and 1.00 or less.
(IV) The steel sheet for containers according to any one of the above (I) to (III), wherein the coating film has an amount of adhesion in terms of Ti per side of the plated steel sheet of 10.0 to 30.0 mg / m 2. .
(V) The steel plate for containers according to any one of (I) to (IV) above, wherein the T value defined by the formula (2) described later is 0.50 or less.
(VI) The steel plate for containers according to any one of (I) to (V) above, wherein the plating layer is a tin plating layer, and the coating contains a Ni—Sn alloy phase.
 本発明によれば、フィルム密着性および塗料密着性に優れる容器用鋼板を提供できる。 According to the present invention, a steel plate for containers having excellent film adhesion and paint adhesion can be provided.
180度ピール試験を説明する模式図である。It is a schematic diagram explaining a 180 degree | times peel test.
[容器用鋼板]
 本発明の容器用鋼板は、概略的には、めっき鋼板と、めっき鋼板のめっき層側の表面上に配置された皮膜とを有する。
 そして、本発明者らは、この皮膜が、TiおよびNiを特定量で含有し、さらに、後述する式(1)で定義されるS値が1.00以下を満たすことにより、フィルム密着性および塗料密着性が優れることを見出した。
 ここで、式(1)で定義されるS値は、後述するように、皮膜の表面側に存在するNi量を示す指標となるが、本発明者らは、皮膜中にNiは一定量必要であるが、皮膜の表面側にNiが過剰に存在すると、フィルム密着性および塗料密着性が低下することを見出した。このメカニズム(理由)は明らかではないが、Tiを含む皮膜中にある程度のNiが存在(ただし、質量比(Ni/Ti)が1.0未満)しないと皮膜形成や皮膜と鋼板との接着などが不十分となるが、その一方で、皮膜表面側に過剰のNiが存在すると、Niが粒子状に析出して、皮膜とフィルムまたは塗料との密着を妨げるためと考えられる。
 なお、上記メカニズムは推測であり、上記メカニズム以外であっても本発明の範囲内であるとする。
[Steel plate for containers]
The steel plate for containers of the present invention generally has a plated steel plate and a film disposed on the surface of the plated steel plate on the plating layer side.
Then, the inventors of the present invention contain a specific amount of Ti and Ni, and further satisfy the S value defined by the formula (1) described later satisfying 1.00 or less, whereby the film adhesion and It has been found that the paint adhesion is excellent.
Here, as will be described later, the S value defined by the formula (1) is an index indicating the amount of Ni existing on the surface side of the film, but the present inventors need a certain amount of Ni in the film. However, it has been found that when Ni is excessively present on the surface side of the film, film adhesion and paint adhesion are deteriorated. The mechanism (reason) is not clear, but if a certain amount of Ni is present in the film containing Ti (however, the mass ratio (Ni / Ti) is less than 1.0), the film is formed or the film is bonded to the steel sheet. On the other hand, if excessive Ni is present on the surface side of the film, it is considered that Ni precipitates in the form of particles and prevents adhesion between the film and the film or paint.
Note that the above mechanism is speculative, and it is assumed that the mechanism other than the above mechanism is within the scope of the present invention.
 以下に、めっき鋼板、および、皮膜の具体的な態様について詳述する。まず、めっき鋼板の態様について詳述する。 Hereinafter, specific aspects of the plated steel sheet and the coating will be described in detail. First, the aspect of a plated steel plate is explained in full detail.
 〔めっき鋼板〕
 めっき鋼板は、鋼板と、鋼板の表面の少なくとも一部を覆うNi層、Sn層、Ni-Fe合金層、Fe-Sn-Ni合金層およびFe-Sn合金層のうちから選ばれた少なくとも1層からなるめっき層とを有する。
 素材の鋼板としては、一般的な缶用の鋼板を使用できる。めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。また、めっき層は、鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。めっき層の形成は、含有される元素に応じた公知の方法で行える。
 以下に、鋼板およびめっき層の好適態様について詳述する。
[Plated steel sheet]
The plated steel sheet is at least one layer selected from a steel sheet and a Ni layer, a Sn layer, a Ni—Fe alloy layer, a Fe—Sn—Ni alloy layer, and a Fe—Sn alloy layer covering at least a part of the surface of the steel sheet. And a plating layer.
As a raw steel plate, a general steel plate for cans can be used. A plating layer is a layer which covers at least one part on the steel plate surface, A continuous layer may be sufficient and a discontinuous island shape may be sufficient as it. Moreover, the plating layer should just be provided in the at least single side | surface of the steel plate, and may be provided in both surfaces. The plating layer can be formed by a known method according to the contained element.
Below, the suitable aspect of a steel plate and a plating layer is explained in full detail.
 〈鋼板〉
 鋼板の種類は特に限定されるものではなく、通常、容器材料として使用される鋼板(例えば、低炭素鋼板、極低炭素鋼板)を用いることができる。この鋼板の製造方法、材質なども特に限定されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
<steel sheet>
The kind of steel plate is not particularly limited, and a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) that is usually used as a container material can be used. The manufacturing method and material of the steel plate are not particularly limited, and the steel plate is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from a normal slab manufacturing process.
 鋼板は、必要に応じて、その表面にニッケル(Ni)含有層を形成したものを用い、該Ni含有層上に後述する錫めっき層を形成してもよい。Ni含有層を有する鋼板を用いて錫めっきを施すことにより、島状Snを含む錫めっき層を形成することでき、溶接性が向上する。
 Ni含有層としてはニッケルが含まれていればよく、例えば、Niめっき層(Ni層)、Ni-Fe合金層などが挙げられる。
 鋼板にNi含有層を付与する方法は特に限定されず、例えば、公知の電気めっきなどの方法が挙げられる。また、Ni含有層としてNi-Fe合金層を付与する場合、電気めっきなどにより鋼板表面上にNi付与後、焼鈍することにより、Ni拡散層を配位させ、Ni-Fe合金層を形成できる。
 Ni含有層中のNi量は特に限定されず、片面当たりのNi換算量として50~2000mg/m2が好ましい。上記範囲内であれば、耐硫化黒変性により優れ、コスト面でも有利となる。
If necessary, a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a tin plating layer to be described later may be formed on the Ni-containing layer. By performing tin plating using a steel sheet having a Ni-containing layer, a tin plating layer containing island-shaped Sn can be formed, and weldability is improved.
The Ni-containing layer only needs to contain nickel, and examples thereof include a Ni plating layer (Ni layer) and a Ni—Fe alloy layer.
The method for applying the Ni-containing layer to the steel sheet is not particularly limited, and examples thereof include a known method such as electroplating. Further, when a Ni—Fe alloy layer is applied as the Ni-containing layer, the Ni diffusion layer can be coordinated by forming Ni on the steel sheet surface by electroplating and then annealing, thereby forming a Ni—Fe alloy layer.
The amount of Ni in the Ni-containing layer is not particularly limited, and is preferably 50 to 2000 mg / m 2 as the Ni conversion amount per side. If it is in the above-mentioned range, it is more excellent in resistance to sulfur blackening and is advantageous in terms of cost.
 〈めっき層〉
 めっき鋼板が鋼板表面上に有するめっき層としては、Snを含有する錫めっき層が好ましい。該錫めっき層は鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。
 錫めっき層中における鋼板片面当たりのSn付着量は、0.1~15.0g/m2が好ましい。Sn付着量が上記範囲内であれば、容器用鋼板の外観特性と耐食性に優れる。なかでも、これらの特性がより優れる点で、0.2~15.0g/m2がより好ましく、加工性がより優れる点で、1.0~15.0g/m2がさらに好ましい。
<Plating layer>
As a plating layer which a plated steel plate has on the steel plate surface, a tin plating layer containing Sn is preferable. The tin plating layer only needs to be provided on at least one side of the steel plate, and may be provided on both sides.
The Sn adhesion amount per one surface of the steel sheet in the tin plating layer is preferably 0.1 to 15.0 g / m 2 . When the Sn adhesion amount is within the above range, the outer appearance characteristics and corrosion resistance of the steel plate for containers are excellent. Among these, 0.2 to 15.0 g / m 2 is more preferable in terms of these characteristics being more excellent, and 1.0 to 15.0 g / m 2 is further preferable in terms of excellent workability.
 なお、Sn付着量は、電量法または蛍光X線により表面分析して測定できる。蛍光X線の場合、Sn量既知のSn付着量サンプルを用いて、Sn量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にSn付着量を特定する。 Note that the Sn adhesion amount can be measured by surface analysis by a coulometric method or fluorescent X-ray. In the case of fluorescent X-rays, a calibration curve relating to the Sn amount is specified in advance using a Sn deposition amount sample with a known Sn amount, and the Sn deposition amount is relatively identified using the calibration curve.
 錫めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。 The tin plating layer is a layer covering at least a part on the surface of the steel plate, and may be a continuous layer or a discontinuous island shape.
 錫めっき層としては、錫をめっきして得られるSn層からなる錫めっき層のほか、錫めっき後通電加熱などにより錫を加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe-Sn合金層が一部形成した錫めっき層、または、Sn層の全Snが合金化しFe-Sn合金層を形成した錫めっき層も含む。
 また、錫めっき層としては、Ni含有層を表面に有する鋼板に対して錫めっきを行い、さらに通電加熱などにより錫を加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe-Sn-Ni合金層、Fe-Sn合金層などが一部形成した錫めっき層、または、Sn層の全Snが合金化しFe-Sn合金層を形成した錫めっき層も含む。
As the tin plating layer, in addition to the tin plating layer composed of the Sn layer obtained by plating tin, the lowermost layer of the Sn layer (Sn layer / steel sheet interface) obtained by heating and melting tin by electric heating after tin plating, etc. ) Includes a tin plating layer in which a part of the Fe—Sn alloy layer is formed, or a tin plating layer in which all of the Sn layers are alloyed to form an Fe—Sn alloy layer.
In addition, as the tin plating layer, the lowermost layer of the Sn layer (Sn layer / steel plate interface) obtained by tin-plating a steel plate having a Ni-containing layer on the surface and further heating and melting tin by electric heating or the like In addition, a tin plating layer in which an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like is partially formed, or a tin plating layer in which all Sn of the Sn layer is alloyed to form an Fe—Sn alloy layer is also included.
 錫めっき層の製造方法としては、周知の方法(例えば、電気めっき法や溶融したSnに浸漬してめっきする方法)が挙げられる。
 例えば、フェノールスルフォン酸錫めっき浴、メタンスルフォン酸錫めっき浴、またはハロゲン系錫めっき浴を用い、片面あたりの付着量が所定量(例えば、2.8g/m2)となるように鋼板表面にSnを電気めっきした後、Snの融点(231.9℃)以上の温度でリフロー処理を行って、錫単体のめっき層(Sn層)の最下層またはSn層の全Snを合金化しFe-Sn合金層を形成した錫めっき層を製造できる。リフロー処理は省略した場合、錫単体のめっき層を製造できる。
As a manufacturing method of a tin plating layer, a known method (for example, an electroplating method or a method of plating by immersing in molten Sn) may be mentioned.
For example, a phenol sulfonic acid tin plating bath, a methane sulfonic acid tin plating bath, or a halogen-based tin plating bath is used, and the adhesion amount per one surface is adjusted to a predetermined amount (for example, 2.8 g / m 2 ) on the steel plate surface. After electroplating Sn, a reflow process is performed at a temperature equal to or higher than the melting point of Sn (231.9 ° C.) to alloy all Sn in the bottom layer of the Sn plating layer (Sn layer) or the Sn layer. A tin plating layer on which an alloy layer is formed can be manufactured. When the reflow process is omitted, a tin plating layer can be produced.
 また、鋼板がその表面上にNi含有層を有する場合、Ni含有層上に錫めっきを施しSn層を形成させ、リフロー処理を行うと、錫単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)またはSn層の全Snが合金化しFe-Sn-Ni合金層、Fe-Sn合金層などが形成される。 When the steel sheet has a Ni-containing layer on its surface, tin plating is performed on the Ni-containing layer to form a Sn layer, and when reflow treatment is performed, the lowermost layer (Sn layer) of the tin simple plating layer (Sn layer) Layer / steel interface) or all Sn in the Sn layer is alloyed to form an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like.
 〔皮膜〕
 次に、上述しためっき鋼板のめっき層側の表面上に配置される皮膜について説明する。皮膜は、概略的には、その成分として、Ti(チタニウム元素)およびNi(ニッケル元素)を含有する皮膜であり、後述する処理液を用いて形成される。
[Coating]
Next, the film | membrane arrange | positioned on the surface by the side of the plating layer of the plated steel plate mentioned above is demonstrated. The film is roughly a film containing Ti (titanium element) and Ni (nickel element) as its components, and is formed using a treatment liquid described later.
 皮膜は、めっき鋼板の片面あたりのTi換算の付着量(以下、「Ti付着量」ともいう)が5.0mg/m2以上60mg/m2未満である。Ti付着量が5.0mg/m2未満または60mg/m2以上であるとフィルム密着性および塗料密着性は劣るが、5.0mg/m2以上60mg/m2未満であればフィルム密着性および塗料密着性に優れる。Ti付着量は、フィルム密着性および塗料密着性がより優れるという理由から、10~30mg/m2が好ましく、15~25mg/m2がより好ましい。 The coating has a Ti-equivalent adhesion amount (hereinafter also referred to as “Ti adhesion amount”) per side of the plated steel sheet of 5.0 mg / m 2 or more and less than 60 mg / m 2 . If the Ti adhesion amount is less than 5.0 mg / m 2 or 60 mg / m 2 or more, the film adhesion and paint adhesion are inferior, but if it is 5.0 mg / m 2 or more and less than 60 mg / m 2 , the film adhesion and Excellent paint adhesion. Ti adhesion amount, for the reason that the film adhesion and coating adhesion more excellent, preferably 10 ~ 30mg / m 2, more preferably 15 ~ 25mg / m 2.
 また、皮膜は、めっき鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が3.0mg/m2超である。Ni付着量が3.0mg/m2以下であるとフィルム密着性に劣るが、3.0mg/m2超であればフィルム密着性に優れる。Ni付着量は、皮膜とめっき鋼板との密着性が優れるという理由から、3.0mg/m2超10.0mg/m2以下が好ましく、3.0mg/m2超5.0mg/m2以下がより好ましい。 In addition, the coating has an Ni conversion amount (hereinafter also referred to as “Ni adhesion amount”) per side of the plated steel sheet of more than 3.0 mg / m 2 . When the Ni adhesion amount is 3.0 mg / m 2 or less, the film adhesion is inferior, but when it exceeds 3.0 mg / m 2 , the film adhesion is excellent. The Ni adhesion amount is preferably more than 3.0 mg / m 2 and 10.0 mg / m 2 or less, more preferably more than 3.0 mg / m 2 and 5.0 mg / m 2 or less because the adhesion between the film and the plated steel sheet is excellent. Is more preferable.
 なお、Ti付着量およびNi付着量は、蛍光X線による表面分析により測定する。
 皮膜中のTi、Ni等は、それぞれ、各種のチタン化合物、ニッケル化合物として含まれ、これら化合物の種類や態様は特に限定されない。
 ただし、めっき層としてNiを含む場合は、上記の蛍光X線による表面分析により皮膜中に含まれるNi付着量のみを測定することは困難である。その場合は、走査型電子顕微鏡(Scanning Electron Microscope;SEM)や透過型電子顕微鏡(Transmission Electron Microscope;TEM)による断面観察とグロー放電発光分析とを併用することで皮膜中に含まれるNi付着量とめっき層中に含まれるNi量とを区別できる。
 具体的には、皮膜およびめっき層の断面を収束イオンビーム(Focused Ion Beam;FIB)加工により露出させ、SEMまたはTEMによる断面観察から皮膜層の厚さを算出する。
 次いで、グロー放電発光分析によるスパッタリング深さとスパッタリング時間との関係を求める。その後、皮膜厚さに相当するスパッタリング時間までのグロー放電発光分析のNi元素による発光カウント積算値を求める。このNi元素による発光カウント積算値から、あらかじめ求めておいた検量線を用いて、Ni付着量を求めることができる。
 ここで、検量線は以下の方法で作成する。
 まず、Niを含まないめっき層上にNiを含む皮膜を有する、Ni付着量の異なる複数のサンプルについてグロー放電発光分析し、Ni元素による発光カウントが検出されなくなるスパッタリング時間までのカウント積算値を求める。次いでこれらのサンプルのNi付着量を蛍光X線による表面分析により求める。このようにして、グロー放電発光分析によるNiカウント積算値とNi付着量との検量線を作成する。
The amount of Ti adhesion and the amount of Ni adhesion are measured by surface analysis using fluorescent X-rays.
Ti, Ni, and the like in the film are included as various titanium compounds and nickel compounds, respectively, and the types and aspects of these compounds are not particularly limited.
However, when Ni is included as the plating layer, it is difficult to measure only the amount of Ni deposited in the film by the surface analysis using the fluorescent X-ray. In that case, the amount of Ni deposited in the film can be determined by combining cross-sectional observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and glow discharge emission analysis. The amount of Ni contained in the plating layer can be distinguished.
Specifically, the cross section of the film and the plating layer is exposed by focused ion beam (FIB) processing, and the thickness of the film layer is calculated from cross-sectional observation by SEM or TEM.
Next, the relationship between the sputtering depth and the sputtering time by glow discharge emission analysis is obtained. Thereafter, the integrated emission count value by Ni element of the glow discharge emission analysis up to the sputtering time corresponding to the film thickness is obtained. From the integrated emission count value of the Ni element, the Ni adhesion amount can be obtained using a calibration curve obtained in advance.
Here, the calibration curve is created by the following method.
First, glow discharge emission analysis is performed on a plurality of samples having a coating film containing Ni on a plating layer not containing Ni and having different Ni adhesion amounts, and a count integrated value up to a sputtering time at which no emission count due to Ni element is detected is obtained. . Next, the Ni adhesion amount of these samples is obtained by surface analysis using fluorescent X-rays. In this way, a calibration curve between the Ni count integrated value and the Ni adhesion amount by glow discharge emission analysis is created.
 皮膜のNiとTiとの質量比(Ni/Ti)は、1.0未満である。上記質量比(Ni/Ti)が1.0以上である場合、皮膜の表面側にNiが存在しやすくなり、Niが粒子状に析出して、皮膜とフィルムまたは塗料との密着を妨げるが、上記質量比(Ni/Ti)が1.0未満であれば、フィルム密着性および塗料密着性に優れる。
 上記質量比(Ni/Ti)は、フィルム密着性および塗料密着性がより優れるという理由から、0.9未満が好ましく、0.8未満がより好ましい。なお、下限値は特に限定されないが、例えば、0.1以上が挙げられる。
The mass ratio (Ni / Ti) of Ni and Ti in the coating is less than 1.0. When the mass ratio (Ni / Ti) is 1.0 or more, Ni is likely to be present on the surface side of the film, and Ni is precipitated in a particulate form to prevent adhesion between the film and the film or paint, If the said mass ratio (Ni / Ti) is less than 1.0, it is excellent in film adhesiveness and paint adhesiveness.
The mass ratio (Ni / Ti) is preferably less than 0.9 and more preferably less than 0.8 because film adhesion and paint adhesion are more excellent. In addition, although a lower limit is not specifically limited, For example, 0.1 or more is mentioned.
 そして、皮膜は、下記式(1)で定義されるS値が1.00以下である。
S=[Is(Ni)/It(Ti)]/C2 ・・・(1)
 式(1)中、Is(Ni)は、皮膜の表面(めっき鋼板側とは反対側の面)から10nmの深さまでのNiのグロー放電発光分析から算出しためっき鋼板の片面あたりのNi量(単位:mg/m2)(以下、単に「Ni量」ともいう)を表す。
 It(Ti)は、皮膜の全体のTiのグロー放電発光分析から算出しためっき鋼板の片面あたりのTi量(単位:mg/m2)(以下、単に「Ti量」ともいう)を表す。
The film has an S value defined by the following formula (1) of 1.00 or less.
S = [Is (Ni) / It (Ti)] / C 2 (1)
In the formula (1), Is (Ni) is the amount of Ni per one side of the plated steel sheet calculated from the glow discharge emission analysis of Ni from the surface of the coating (surface opposite to the plated steel sheet) to a depth of 10 nm ( (Unit: mg / m 2 ) (hereinafter also simply referred to as “Ni amount”).
It (Ti) represents the Ti amount (unit: mg / m 2 ) (hereinafter also simply referred to as “Ti amount”) per one side of the plated steel sheet calculated from the glow discharge emission analysis of Ti of the entire coating.
 このような式(1)で定義されるS値は、皮膜の表面側に存在するNi量を示す指標となり、この値が小さいほど皮膜表面側がNi量が少なくTi量が多いことを示す。そして、本発明者らは、後述する[実施例]で示すように、このS値が1.00以下である場合に、得られる容器用鋼板のフィルム密着性および塗料密着性が優れることを見出した。 The S value defined by equation (1) is an index indicating the amount of Ni existing on the surface side of the film, and the smaller the value, the smaller the amount of Ni on the film surface side and the greater the amount of Ti. The inventors have found that the film adhesion and paint adhesion of the resulting steel plate for containers is excellent when the S value is 1.00 or less, as shown in [Example] described later. It was.
 上記S値は、1.00以下であれば特に限定されないが、S値が0.30未満である場合と、S値が0.30以上1.00以下である場合とを対比すると、前者は後者よりも塗料密着性がより優れるという理由から好ましく、後者は前者よりもフィルム密着性がより優れるという理由から好ましい。 The S value is not particularly limited as long as it is 1.00 or less. However, when the S value is less than 0.30 and the S value is 0.30 or more and 1.00 or less, the former is The reason is that the paint adhesion is better than the latter, and the latter is preferred because the film adhesion is better than the former.
 なお、グロー放電発光分析は、下記条件により実施したものである。
 ・装置:リガク社製GDA750
 ・陽極内径:4mm
 ・分析モード:高周波低電圧モード
 ・放電電力:40W
 ・制御圧力:2.9hPa
 ・検出器:フォトマル
 ・検出波長:Ni=341.4nm、Ti=365.4nm
The glow discharge emission analysis was conducted under the following conditions.
・ Device: GDA750 manufactured by Rigaku Corporation
・ Anode inner diameter: 4mm
・ Analysis mode: High frequency low voltage mode ・ Discharge power: 40W
・ Control pressure: 2.9 hPa
Detector: Photomultiplier Detection wavelength: Ni = 341.4 nm, Ti = 365.4 nm
 皮膜表面から10nmの深さまでのNiのグロー放電発光分析からNi量を求めるには、別途、グロー放電発光分析によるスパッタリング深さとスパッタリング時間との関係を求め、10nmに相当するスパッタリング時間までのグロー放電発光分析のカウント積算値を求め、さらに、付着量既知のサンプルを測定し、検量線を作成すればよい。
 また、皮膜全体のTiのグロー放電発光分析からTi量を求めるには、皮膜中のTiによるグロー放電発光分析のカウントが検出されなくなるスパッタリング時間までのカウント積算値を求め、付着量既知のサンプルを測定し、検量線を作成すればよい。
In order to obtain the Ni amount from the glow discharge emission analysis of Ni up to a depth of 10 nm from the surface of the film, separately obtain the relationship between the sputtering depth and the sputtering time by glow discharge emission analysis, and obtain the glow discharge up to the sputtering time corresponding to 10 nm. What is necessary is just to obtain a count integrated value of emission analysis, measure a sample with a known adhesion amount, and create a calibration curve.
In addition, in order to obtain the Ti amount from the glow discharge emission analysis of Ti of the entire film, the count integrated value until the sputtering time when the count of the glow discharge emission analysis by Ti in the film is not detected is obtained, and a sample with a known adhesion amount is obtained. Measure and create a calibration curve.
 なお、皮膜の厚さは、10~120nmが好ましく、20~60nmがより好ましい。皮膜の厚さは、皮膜の断面を収束イオンビーム(FIB)加工により露出させ、透過型電子顕微鏡(TEM)観察による断面プロファイルから測定できる。 The thickness of the film is preferably 10 to 120 nm, more preferably 20 to 60 nm. The thickness of the film can be measured from a cross-sectional profile obtained by observation with a transmission electron microscope (TEM) after exposing the cross section of the film by focused ion beam (FIB) processing.
 また、皮膜は、下記式(2)で定義されるT値が0.50以下であるのが好ましい。
T=[Ii(F)-Ib(F)]/Ib(F)・・・(2)
 式(2)中、Ii(F)は、本発明の容器用鋼板を30分間沸騰水中で浸漬する前の皮膜の蛍光X線分析のFピークカウント数を表し、Ib(F)は、本発明の容器用鋼板を30分間沸騰水中で浸漬した後の皮膜の蛍光X線分析のFピークカウント数を表す。
Further, the film preferably has a T value defined by the following formula (2) of 0.50 or less.
T = [Ii (F) −Ib (F)] / Ib (F) (2)
In formula (2), Ii (F) represents the F peak count number of fluorescent X-ray analysis of the film before dipping the steel plate for containers of the present invention in boiling water for 30 minutes, and Ib (F) represents the present invention. The F peak count number of the fluorescent X-ray analysis of the film | membrane after immersing the steel plate for containers of for 30 minutes in boiling water is represented.
 ここで、[Ii(F)-Ib(F)]は、沸騰水中への浸漬により溶出するF量を示し、これをIb(F)で除する式(2)で定義されるT値は、皮膜中の可溶性F量の割合を示す指標となる。本発明者らは、後述する[実施例]で示すように、このT値が0.50以下である場合に、得られる容器用鋼板のフィルム密着性がより優れることを見出した。 Here, [Ii (F) −Ib (F)] indicates the amount of F eluted by immersion in boiling water, and the T value defined by the equation (2) obtained by dividing this by Ib (F) is: It becomes an index indicating the ratio of the soluble F amount in the film. The present inventors have found that the film adhesion of the obtained steel sheet for containers is more excellent when the T value is 0.50 or less, as shown in [Example] described later.
 なお、蛍光X線分析は、下記条件により実施したものである。
 ・装置:リガク社製蛍光X線分析装置System3270
 ・測定径:30mm
 ・測定雰囲気:真空
 ・スペクトル:F-Kα
 ・スリット:COARSE
 ・分光結晶:TAP
 上記条件により測定した皮膜の蛍光X線分析のF-Kαのピークカウント数を用いた。
The X-ray fluorescence analysis was performed under the following conditions.
Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation
・ Measurement diameter: 30mm
・ Measurement atmosphere: Vacuum ・ Spectrum: F-Kα
・ Slit: COARSE
-Spectral crystal: TAP
The peak count of F-Kα in the fluorescent X-ray analysis of the film measured under the above conditions was used.
 また、めっき層が上述した錫めっき層である場合において、皮膜は、Ni-Sn合金相を含むのが好ましい。
 Ni-Sn合金相における「Ni」は皮膜中のNiに由来し、「Sn」は錫めっき層中のSnに由来する。このようなNi-Sn合金相は、皮膜中において、皮膜と錫めっき層との界面に連続的な層として析出していてもよいし、皮膜中に分散した粒子として断続的に析出していてもよいし、その両方であってもよい。
 錫めっき層のSnが皮膜中に入り込み表面近くまで到達すると、皮膜の色調などが劣る場合があるが、皮膜中にNi-Sn合金相が析出しているとSnの入り込みが抑制され、色調が良好となる。また、フィルム密着性および塗料密着性もより優れる。
In the case where the plating layer is the above-described tin plating layer, the coating preferably contains a Ni—Sn alloy phase.
“Ni” in the Ni—Sn alloy phase is derived from Ni in the film, and “Sn” is derived from Sn in the tin plating layer. Such a Ni—Sn alloy phase may be deposited as a continuous layer in the film at the interface between the film and the tin plating layer, or may be intermittently deposited as particles dispersed in the film. Or both.
When Sn in the tin plating layer enters the film and reaches near the surface, the color tone of the film may be inferior. However, if the Ni—Sn alloy phase is precipitated in the film, the penetration of Sn is suppressed and the color tone is reduced. It becomes good. In addition, film adhesion and paint adhesion are also superior.
 なお、皮膜中におけるNi-Sn合金相の有無を確認する方法としては、例えば、透過型電子顕微鏡(Transmission Electron Microscope;TEM)の電子線回折またはエネルギー分散型X線分析(Energy dispersive X-ray spectrometry;EDX)を用いて、抽出レプリカ法または収束イオンビーム(Focused Ion Beam;FIB)加工により作製したサンプルの表面または断面について、点分析または線分析する方法が挙げられる。 In addition, as a method for confirming the presence or absence of the Ni—Sn alloy phase in the film, for example, transmission electron microscope (TEM) electron diffraction or energy dispersive X-ray analysis (Energy dispersive X-ray spectrometry) And EDX), a point analysis or a line analysis method may be used for the surface or cross section of a sample produced by an extraction replica method or a focused ion beam (Focused Ion Beam; FIB) process.
[容器用鋼板の製造方法および処理液]
 上述した本発明の容器用鋼板を製造する方法としては、特に限定されないが、後述する処理液(以下、「本発明の処理液」ともいう)中にめっき鋼板を浸漬する、または、本発明の処理液中に浸漬しためっき鋼板に陰極電解処理を施すことにより、上述した皮膜を形成する皮膜形成工程を少なくとも備える方法(以下、「本発明の製造方法」ともいう)が好ましい。
 以下、本発明の製造方法について説明を行い、この説明の中で、併せて本発明の処理液についても説明する。
[Manufacturing method and processing solution for steel plate for containers]
Although it does not specifically limit as a method to manufacture the steel plate for containers of this invention mentioned above, A plating steel plate is immersed in the processing liquid (henceforth "the processing liquid of this invention") mentioned later, or of this invention A method (hereinafter also referred to as “the production method of the present invention”) including at least a film forming step for forming the above-described film by performing cathodic electrolysis treatment on the plated steel sheet immersed in the treatment liquid is preferable.
Hereinafter, the production method of the present invention will be described, and in this description, the treatment liquid of the present invention will also be described.
 〔皮膜形成工程〕
 皮膜形成工程は、めっき鋼板のめっき層側の表面上に、上述した皮膜を形成する工程であって、後述する本発明の処理液中にめっき鋼板を浸漬する(浸漬処理)、または、浸漬した鋼板に陰極電解処理を施す工程である。陰極電解処理は、浸漬処理よりも、より高速に、均一な皮膜を得ることができるという理由から好ましい。なお、陰極電解処理と陽極電解処理とを交互に行う交番電解を実施してもよい。
 以下に、使用される本発明の処理液や陰極電解処理の条件などについて詳述する。
[Film formation process]
The film forming step is a step of forming the above-described film on the surface of the plated steel sheet on the plating layer side, and immersing the plated steel sheet in the treatment liquid of the present invention described later (immersion process) or dipping. In this step, the steel sheet is subjected to cathodic electrolysis. Cathodic electrolytic treatment is preferable because a uniform film can be obtained at a higher speed than immersion treatment. In addition, you may implement the alternating electrolysis which performs a cathode electrolytic treatment and an anodic electrolytic treatment alternately.
Hereinafter, the treatment liquid of the present invention used, conditions for the cathodic electrolysis, and the like will be described in detail.
 〈処理液〉
 本発明の処理液は、上記皮膜にTi(チタニウム元素)を供給するためのTi成分(Ti化合物)を含有する。
 このTi成分としては、特に限定されないが、例えば、チタンアルコキシド、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム二水和物、硫酸チタン、チタンラクテート、チタンフッ化水素酸(H2TiF6)および/またはその塩などが挙げられる。なお、チタンフッ化水素酸の塩としては、例えば、六フッ化チタン酸カリウム(K2TiF6)、六フッ化チタン酸ナトリウム(Na2TiF6)、六フッ化チタン酸アンモニウム((NH42TiF6)等が挙げられる。
 これらのうち、処理液の安定性、入手の容易性などの観点から、チタンフッ化水素酸および/またはその塩が好ましい。
 本発明の処理液におけるTi成分の含有量は、特に限定されないが、チタンフッ化水素酸および/またはその塩を使用する場合、六フッ化チタン酸イオン(TiF6 2-)に換算した量が、0.004~0.4mol/Lであるのが好ましく、0.02~0.2mol/Lがより好ましい。
<Processing liquid>
The treatment liquid of the present invention contains a Ti component (Ti compound) for supplying Ti (titanium element) to the film.
The Ti component is not particularly limited. For example, titanium alkoxide, titanyl ammonium oxalate, potassium titanyl oxalate dihydrate, titanium sulfate, titanium lactate, titanium hydrofluoric acid (H 2 TiF 6 ) and / or its Examples include salt. Examples of the salt of titanium hydrofluoric acid include potassium hexafluorotitanate (K 2 TiF 6 ), sodium hexafluorotitanate (Na 2 TiF 6 ), and ammonium hexafluorotitanate ((NH 4 ). 2 TiF 6 ) and the like.
Of these, titanium hydrofluoric acid and / or a salt thereof is preferable from the viewpoints of stability of the treatment liquid, availability, and the like.
The content of the Ti component in the treatment liquid of the present invention is not particularly limited, but when using titanium hydrofluoric acid and / or a salt thereof, the amount converted to hexafluorotitanate ion (TiF 6 2− ), The amount is preferably 0.004 to 0.4 mol / L, more preferably 0.02 to 0.2 mol / L.
 また、本発明の処理液は、上記皮膜にNi(ニッケル元素)を供給するためのNi成分(Ni化合物)を含有する。
 このNi成分としては、特に限定されないが、硫酸ニッケル(NiSO4)、硫酸ニッケル六水和物、塩化ニッケル(NiCl2)、塩化ニッケル六水和物などが挙げられる。
 本発明の処理液におけるNi成分の含有量は、特に限定されないが、Niイオン(Ni2+)に換算した量が、0.002~0.04mol/Lであるのが好ましく、0.004~0.02mol/Lがより好ましい。
The treatment liquid of the present invention contains a Ni component (Ni compound) for supplying Ni (nickel element) to the coating.
As the Ni component is not particularly limited, nickel sulfate (NiSO 4), nickel sulfate hexahydrate, nickel chloride (NiCl 2), etc. nickel chloride hexahydrate and the like.
The content of the Ni component in the treatment liquid of the present invention is not particularly limited, but the amount converted to Ni ions (Ni 2+ ) is preferably 0.002 to 0.04 mol / L, preferably 0.004 to 0 0.02 mol / L is more preferable.
 なお、本発明の処理液中の溶媒としては、通常水が使用されるが、有機溶媒を併用してもよい。
 本発明の処理液のpHは、特に限定されないが、pH2.0~5.0が好ましい。該範囲内であれば、処理時間を短くでき、かつ、処理液の安定性に優れる。pHの調整には公知の酸成分(例えば、リン酸、硫酸)・アルカリ成分(例えば、水酸化ナトリウム、アンモニア水)を使用できる。
 また、本発明の処理液には、必要に応じて、ラウリル硫酸ナトリウム、アセチレングリコールなどの界面活性剤が含まれていてもよい。また、付着挙動の経時的な安定性の観点から、処理液には、ピロリン酸塩などの縮合リン酸塩が含まれていてもよい。
In addition, although water is normally used as a solvent in the processing liquid of this invention, you may use an organic solvent together.
The pH of the treatment liquid of the present invention is not particularly limited, but is preferably pH 2.0 to 5.0. Within this range, the treatment time can be shortened and the stability of the treatment liquid is excellent. A known acid component (for example, phosphoric acid, sulfuric acid) / alkali component (for example, sodium hydroxide, aqueous ammonia) can be used to adjust the pH.
Further, the treatment liquid of the present invention may contain a surfactant such as sodium lauryl sulfate or acetylene glycol as necessary. Further, from the viewpoint of the stability of the adhesion behavior over time, the treatment liquid may contain a condensed phosphate such as pyrophosphate.
 ここで、再び皮膜形成工程の説明に戻る。皮膜形成行程において、処理を実施する際の処理液の液温は、20~80℃が好ましく、40~60℃がより好ましい。 Here, we return to the description of the film formation process. In the film formation step, the liquid temperature of the treatment liquid during the treatment is preferably 20 to 80 ° C., more preferably 40 to 60 ° C.
 皮膜形成工程において、陰極電解処理を実施する際の電解電流密度は、形成される皮膜中のTiおよびNiが適量となって、フィルム密着性および塗料密着性がより優れるという理由から、1.0~20.0A/dm2が好ましく、3.0~15.0A/dm2がより好ましく、6.0~10.0A/dm2がさらに好ましい。
 このとき、陰極電解処理の通電時間は、同様の理由から、0.1~5秒が好ましく、0.3~2秒がより好ましい。
 なお、陰極電解処理の際の電気量密度は、電流密度と通電時間との積であり、適宜設定される。
In the film formation step, the electrolysis current density at the time of carrying out the cathodic electrolysis treatment is 1.0 because Ti and Ni in the formed film are appropriate amounts, and the film adhesion and paint adhesion are more excellent. ˜20.0 A / dm 2 is preferred, 3.0 to 15.0 A / dm 2 is more preferred, and 6.0 to 10.0 A / dm 2 is even more preferred.
At this time, the energization time of the cathodic electrolysis treatment is preferably 0.1 to 5 seconds and more preferably 0.3 to 2 seconds for the same reason.
The quantity of electricity at the time of cathodic electrolysis is the product of the current density and the energization time, and is appropriately set.
 なお、皮膜中に含まれるFを低減させるという理由から、陰極電解処理の後、得られた鋼板の水洗処理を行うのが好ましい。
 水洗処理の方法は特に限定されず、例えば、連続ラインで製造を行う場合、皮膜処理タンクの後に水洗タンクを設け、皮膜処理後に連続して水に浸漬する方法などが挙げられる。水洗処理に用いる水の温度は、40~90℃が好ましい。
 このとき、水洗時間は、水洗処理による効果がより優れるという理由から、0.5秒超が好ましく、1.0~5.0秒が好ましい。
In addition, it is preferable to perform the water-washing process of the obtained steel plate after a cathodic electrolysis process for the reason of reducing F contained in a film | membrane.
The method of the water washing treatment is not particularly limited. For example, when the production is performed on a continuous line, a method of providing a water washing tank after the film treatment tank and continuously immersing in water after the film treatment is exemplified. The temperature of water used for the water washing treatment is preferably 40 to 90 ° C.
At this time, the washing time is preferably more than 0.5 seconds, and more preferably 1.0 to 5.0 seconds, because the effect of the washing treatment is more excellent.
 さらに、水洗処理に代えて、または、水洗処理の後に、乾燥を行ってもよい。乾燥の際の温度および方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、皮膜の酸化を抑制でき、皮膜組成の安定性が保たれる。なお、下限は特に限定されないが、通常室温程度である。 Further, drying may be performed instead of or after the washing process. The temperature and method during drying are not particularly limited, and for example, a normal dryer or an electric furnace drying method can be applied. The temperature during the drying treatment is preferably 100 ° C. or lower. If it is in the said range, the oxidation of a film | membrane can be suppressed and stability of a film | membrane composition is maintained. The lower limit is not particularly limited, but is usually about room temperature.
 なお、上述したNi-Sn合金相は、錫めっき層を有するめっき鋼板に対して、本発明の処理液を用いて上述した皮膜形成工程を施すことにより、皮膜中に形成される。 The Ni—Sn alloy phase described above is formed in the film by subjecting the plated steel sheet having the tin plating layer to the film forming process described above using the treatment liquid of the present invention.
 〔前処理工程〕
 本発明の製造方法は、上述した皮膜形成工程の前に、以下に説明する前処理工程を備えていてもよい。
 前処理工程は、アルカリ性水溶液(特に、炭酸ナトリウム水溶液)中で、めっき鋼板に陰極電解処理を施す工程である。
 めっき層が錫めっき層である場合、通常、錫めっき層の作製時にその表面は酸化されて、錫酸化物が形成される。該鋼板に対して、陰極電解処理を施すことにより、不要な錫酸化物を除去して、錫酸化物量を調整できる。
 前処理工程の陰極電解処理の際に使用される溶液としては、アルカリ性水溶液(例えば、炭酸ナトリウム水溶液)が挙げられる。アルカリ性水溶液中のアルカリ成分(例えば、炭酸ナトリウム)の濃度は特に限定されないが、錫酸化物の除去がより効率的に進行する点から、5~15g/Lが好ましく、8~12g/Lがより好ましい。
 陰極電解処理の際のアルカリ性水溶液の液温は特に限定されないが、40~60℃が好ましい。陰極電解処理の電解条件(電流密度、電解時間)は、適宜調整される。なお、陰極電解処理の後に、必要に応じて、水洗処理を施してもよい。
[Pretreatment process]
The manufacturing method of this invention may be equipped with the pre-processing process demonstrated below before the film formation process mentioned above.
The pretreatment step is a step of subjecting the plated steel plate to cathodic electrolysis in an alkaline aqueous solution (particularly, an aqueous sodium carbonate solution).
When the plating layer is a tin plating layer, the surface is usually oxidized during the production of the tin plating layer to form tin oxide. By subjecting the steel plate to cathodic electrolysis, unnecessary tin oxide can be removed and the amount of tin oxide can be adjusted.
Examples of the solution used for the cathodic electrolysis in the pretreatment step include an alkaline aqueous solution (for example, an aqueous sodium carbonate solution). The concentration of the alkali component (for example, sodium carbonate) in the alkaline aqueous solution is not particularly limited, but is preferably 5 to 15 g / L, more preferably 8 to 12 g / L from the viewpoint of more efficient removal of tin oxide. preferable.
The temperature of the alkaline aqueous solution during cathodic electrolysis is not particularly limited, but is preferably 40 to 60 ° C. The electrolysis conditions (current density, electrolysis time) of the cathodic electrolysis are appropriately adjusted. In addition, you may perform a water washing process after a cathode electrolytic process as needed.
 本発明の製造方法によって得られる本発明の容器用鋼板は、DI缶、食缶、飲料缶など種々の容器の製造に使用される。 The steel plate for containers of the present invention obtained by the manufacturing method of the present invention is used for manufacturing various containers such as DI cans, food cans and beverage cans.
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 〈めっき鋼板の製造〉
 以下の方法によって、めっき鋼板を製造した。
 まず、板厚0.22mmの鋼板(T4原板)を電解脱脂し、ワット浴を用いて第3表に示す片面当たりのNi付着量でニッケルめっき層を両面に形成後、10vol.%H2+90vol.%N2雰囲気中にて700℃で焼鈍してニッケルめっきを拡散浸透させることによりFe-Ni合金層(Ni含有層)(第3表にNi付着量を示す)を両面に形成した。
 引き続き、上記表層にNi含有層を有する鋼板を、錫めっき浴を用い、第3表中に示す片面当たりのSn付着量でSn層を両面に形成後、Snの融点以上でリフロー処理を施し、錫めっき層をT4原板の両面に形成した。このようにして、下層側から順に、Ni-Fe合金層/Fe-Sn-Ni合金層/Sn層からなる錫めっき層が形成された。
<Manufacture of plated steel sheets>
A plated steel sheet was produced by the following method.
First, a steel plate (T4 original plate) having a thickness of 0.22 mm is electrolytically degreased, and a nickel plating layer is formed on both sides with a Ni adhesion amount per one side shown in Table 3 using a Watt bath, and then 10 vol.% H 2 +90 vol. An Fe—Ni alloy layer (Ni-containing layer) (showing Ni adhesion amount in Table 3) was formed on both sides by annealing at 700 ° C. in a .N 2 atmosphere to diffuse and infiltrate the nickel plating.
Subsequently, a steel plate having a Ni-containing layer as the surface layer was formed using a tin plating bath, Sn layers were formed on both sides with the Sn adhesion amount per one side shown in Table 3, and a reflow treatment was performed at a melting point of Sn or higher. Tin plating layers were formed on both sides of the T4 original plate. In this way, a tin plating layer composed of Ni—Fe alloy layer / Fe—Sn—Ni alloy layer / Sn layer was formed in this order from the lower layer side.
 〈皮膜の形成〉
 浴温50℃、10g/Lの炭酸ナトリウム水溶液中に上記めっき鋼板を浸漬し、第2表に示す条件にて、陰極電解処理を行った(前処理工程)。
 次いで、得られた鋼板を水洗し、pHを4.0に調整した第1表に示す組成の処理液(溶媒:水)を用い、第2表に示す浴温(処理温度)および電解条件(電流密度、通電時間、電気量密度)で陰極電解処理を施した。その後、得られた鋼板を水洗処理して、ブロアを用いて室温で乾燥を行い、皮膜を両面に形成した(皮膜形成工程)。これにより、容器用鋼板の試験材を作製した。なお、水洗処理は、得られた鋼板を、85℃の水槽に、第3表に示す水洗時間だけ浸漬させることにより行なった。
<Film formation>
The plated steel sheet was immersed in an aqueous sodium carbonate solution having a bath temperature of 50 ° C. and 10 g / L, and cathodic electrolytic treatment was performed under the conditions shown in Table 2 (pretreatment step).
Next, the obtained steel sheet was washed with water, and the treatment liquid (solvent: water) having the composition shown in Table 1 with the pH adjusted to 4.0 was used, and the bath temperature (treatment temperature) and electrolysis conditions shown in Table 2 ( Cathodic electrolysis treatment was performed at current density, energization time, and electric density. Then, the obtained steel plate was washed with water, dried at room temperature using a blower, and a film was formed on both sides (film formation process). Thereby, the test material of the steel plate for containers was produced. The washing treatment was performed by immersing the obtained steel sheet in a water bath at 85 ° C. for the washing time shown in Table 3.
 その後、作製した容器用鋼板の試験材に対して、以下の方法で、フィルム密着性を評価した。各成分量、および、評価結果を第3表にまとめて示す。
 皮膜のTi付着量およびNi付着量、Is(Ni)、Is(Ti)およびS、Ii(F)、Ib(F)およびT、皮膜の厚さ、ならびに、皮膜中のNi-Sn合金相の有無は、上述した方法により測定ないし計算した。
Then, the film adhesion was evaluated by the following method with respect to the test material of the produced steel plate for containers. The amount of each component and the evaluation results are summarized in Table 3.
Ti adhesion amount and Ni adhesion amount of film, Is (Ni), Is (Ti) and S, Ii (F), Ib (F) and T, film thickness, and Ni-Sn alloy phase in the film The presence or absence was measured or calculated by the method described above.
 〈フィルム密着性〉
 フィルム密着性の評価として、以下に示す無加工フィルム密着性および加工後フィルム密着性の評価を行った。
<Film adhesion>
As evaluation of film adhesiveness, the following non-processed film adhesiveness and post-processing film adhesiveness were evaluated.
 《無加工フィルム密着性》
 作製した容器用鋼板の表面に、市販のPETフィルム(Melinex850:デュポン社製)を、ロール加圧4kg/cm、板送り速度40mpm、ロール通過後の板の表面温度が160℃となる条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行ない、ラミネート鋼板を作製した。
 無加工フィルム密着性の評価は、作製したラミネート鋼板を、温度130℃、相対湿度100%のレトルト雰囲気に25分間保持した後、このレトルト雰囲気において180度ピール試験をすることにより行った。
 180度ピール試験とは、図1(a)に示すようなフィルム2を残して鋼板1の一部3を切り取った試験片(サイズ:30mm×100mm)を用い、図1(b)に示すように、試験片の一端に重り4(100g)を付けてフィルム2側に180度折り返して30分間放置して行うフィルム剥離試験のことである。
 そして、図1(c)に示す剥離長5を測定した。下記基準で無加工フィルム密着性を評価した。結果が◎または○であれば無加工フィルム密着性に優れるものとして評価できる。
 ◎:剥離長が1mm未満
 ○:剥離長が1mm以上5mm未満
 △:剥離長が5mm以上10mm未満
 ×:剥離長が10mm以上
《Unprocessed film adhesion》
A commercially available PET film (Melinex 850: manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was carried out, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
Evaluation of unprocessed film adhesion was performed by holding the produced laminated steel sheet in a retort atmosphere having a temperature of 130 ° C. and a relative humidity of 100% for 25 minutes, and then performing a 180 ° peel test in this retort atmosphere.
The 180 degree peel test uses a test piece (size: 30 mm × 100 mm) obtained by cutting a part 3 of the steel plate 1 while leaving the film 2 as shown in FIG. 1A, as shown in FIG. In addition, it is a film peeling test performed by attaching a weight 4 (100 g) to one end of the test piece, turning it 180 degrees to the film 2 side, and allowing it to stand for 30 minutes.
And the peeling length 5 shown in FIG.1 (c) was measured. The unprocessed film adhesion was evaluated according to the following criteria. If a result is (double-circle) or (circle), it can evaluate as what is excellent in unprocessed film adhesiveness.
A: Peel length is less than 1 mm B: Peel length is 1 mm or more and less than 5 mm Δ: Peel length is 5 mm or more and less than 10 mm ×: Peel length is 10 mm or more
 《加工後フィルム密着性》
 作製した容器用鋼板の表面に、市販のPETフィルム(Melinex850:デュポン社製)を、ロール加圧4kg/cm、板送り速度40mpm、ロール通過後の板の表面温度が160℃となる条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行ない、ラミネート鋼板を作製した。
 作製したラミネート鋼板に対し、先端径3/16インチRのポンチを用い、1kgの錘を25cmの高さから落下させ、フィルムを貼った面の側が凸になるようデュポン衝撃加工を行った。このような加工試験片を4つ作成し、レトルト装置内に、凸面が上になるように置き、130℃のレトルト環境で30分間保持後、取り出し、加工部のフィルム剥離の程度を目視で、下記5段階で評価した。4つの試験片の評点の平均値(小数点以下1桁)を用いて、加工後フィルム密着性を評価した。実用上、結果が3.0以上であれば、加工後フィルム密着性に優れるものとして評価できる。
 5:剥離なし
 4:加工部の面積の5%未満で剥離発生
 3:加工部の面積の5%以上20%未満で剥離発生
 2:加工部の面積の20%以上50%未満で剥離発生
 1:加工部の面積の50%以上で剥離発生
<Film adhesion after processing>
A commercially available PET film (Melinex 850: manufactured by DuPont) is applied to the surface of the produced steel plate for containers under the conditions that the roll pressure is 4 kg / cm 2 , the plate feed speed is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was carried out, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
Using a punch with a tip diameter of 3/16 inch R, a 1 kg weight was dropped from a height of 25 cm, and DuPont impact processing was performed on the laminated steel plate thus produced so that the side on which the film was applied became convex. Four such processed test pieces are prepared, placed in the retort device so that the convex surface is on top, held for 30 minutes in a retort environment at 130 ° C., taken out, and visually checked the degree of film peeling of the processed part, Evaluation was made according to the following 5 levels. The film adhesion after processing was evaluated using the average value (one decimal place) of the four test pieces. Practically, if the result is 3.0 or more, it can be evaluated as having excellent film adhesion after processing.
5: No peeling 4: Peeling occurs when less than 5% of the area of the processed part 3: Peeling occurs when the area of the processed part is 5% or more and less than 20% 2: Peeling occurs when the area of the processed part is 20% or more and less than 50% 1 : Peeling occurs at 50% or more of the processed area
 〈塗料密着性〉
 作製した容器用鋼板(幅100mm×長さ150mm)の表面に、エポキシフェノール系塗料を塗布し、210℃で10分間の焼付を行い、付着量が50mg/dm2の塗装を施した。次いで、上記塗装を施した、同一の条件で作製した2枚の容器用鋼板を、ナイロン接着フィルムを挟んで塗装面が向かい合わせになるように積層した後、圧力2.94×105Pa、温度190℃、圧着時間30秒の圧着条件下で貼り合わせた。その後、これを5mm幅の試験片に分割した。分割した試験片の2枚の容器用鋼板を引張試験機で引き剥がし、引き剥がしたときの引張強度を測定した。各条件について2つの分割試験片の平均値を下記基準で評価した。実用上、結果が○または△であれば、塗料密着性に優れるものとして評価できる。
 ○:2.0kgf以上(クロメート処理材同等)
 △:1.0kgf以上2.0kgf未満
 ×:1.0kgf未満
<Paint adhesion>
An epoxy phenol-based paint was applied to the surface of the produced steel plate for containers (width 100 mm × length 150 mm), and baked at 210 ° C. for 10 minutes to give a coating amount of 50 mg / dm 2 . Next, after laminating the two coated steel plates prepared under the same conditions with the above coating so that the coated surfaces face each other across the nylon adhesive film, the pressure is 2.94 × 10 5 Pa, Bonding was performed under pressure bonding conditions of a temperature of 190 ° C. and a pressure bonding time of 30 seconds. Then, this was divided into 5 mm wide test pieces. Two container steel plates of the divided test pieces were peeled off by a tensile tester, and the tensile strength when peeled off was measured. For each condition, the average value of the two divided test pieces was evaluated according to the following criteria. Practically, if the result is ○ or Δ, it can be evaluated as having excellent paint adhesion.
○: 2.0 kgf or more (equivalent to chromate treatment material)
Δ: 1.0 kgf or more and less than 2.0 kgf ×: less than 1.0 kgf
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 上記第1~3表に示す結果から明らかなように、本発明例はいずれもフィルム密着性および塗料密着性に優れることが確認された。
 発明例は、いずれもS値が1.00以下であるが、このとき、S値が0.30未満である発明例と、S値が0.30以上1.00以下である発明例とを対比すると、前者は後者よりも相対的に塗料密着性がより優れ、後者は前者よりも相対的にフィルム密着性がより優れていた。
 これに対して、皮膜のTi付着量が5.0mg/m2以上60.0mg/m2未満でない比較例、または、S値が1.00より大きい比較例は、フィルム密着性および塗料密着性が劣っていた。
 また、T値が0.50を超える試験材No.67~70の発明例と比べて、T値が0.50以下の試験材No.62~65の発明例はフィルム密着性がより優れていた。
As is clear from the results shown in Tables 1 to 3 above, it was confirmed that all of the inventive examples were excellent in film adhesion and paint adhesion.
In all of the inventive examples, the S value is 1.00 or less. At this time, the inventive example in which the S value is less than 0.30 and the inventive example in which the S value is 0.30 or more and 1.00 or less. In contrast, the former was relatively better in paint adhesion than the latter, and the latter was better in film adhesion than the former.
In contrast, Comparative Example Ti coating weight of the coating is not less than 5.0 mg / m 2 or more 60.0 mg / m 2 or greater than Comparative Example S value is 1.00, the film adhesion and coating adhesion Was inferior.
Moreover, test material No. with T value exceeding 0.50. Compared with the inventive examples of Nos. 67 to 70, the test material No. The inventive examples 62 to 65 were more excellent in film adhesion.
 1  容器用鋼板
 2  フィルム
 3  鋼板の切り取った部位
 4  重り
 5  剥離長
DESCRIPTION OF SYMBOLS 1 Steel plate for containers 2 Film 3 Part cut out of steel plate 4 Weight 5 Stripping length

Claims (6)

  1.  鋼板の表面の少なくとも一部を覆うNi層、Sn層、Ni-Fe合金層、Fe-Sn-Ni合金層およびFe-Sn合金層のうちから選ばれた少なくとも1層からなるめっき層を有するめっき鋼板と、前記めっき鋼板の前記めっき層側の表面上に配置された皮膜とを有する容器用鋼板であって、
     前記皮膜が、TiおよびNiを有し、
     前記皮膜のNiとTiとの質量比(Ni/Ti)が1.0未満であり、
     前記皮膜は、前記めっき鋼板の片面あたりのTi換算の付着量が5.0mg/m2以上60.0mg/m2未満であって、前記めっき鋼板の片面あたりのNi換算の付着量が3.0mg/m2超であり、かつ、下記式(1)で定義されるS値が1.00以下である、容器用鋼板。
    S=[Is(Ni)/It(Ti)]・・・(1)
    (式(1)中、Is(Ni)は前記皮膜の表面から10nmの深さまでのNiのグロー放電発光分析から算出した前記めっき鋼板の片面あたりのNi量(単位:mg/m2)を表し、It(Ti)は前記皮膜の全体のTiのグロー放電発光分析から算出した前記めっき鋼板の片面あたりのTi量(単位:mg/m2)を表す。)
    Plating having a plating layer composed of at least one layer selected from Ni layer, Sn layer, Ni—Fe alloy layer, Fe—Sn—Ni alloy layer and Fe—Sn alloy layer covering at least part of the surface of the steel plate A steel plate for containers having a steel plate and a coating disposed on the surface of the plated steel plate on the plating layer side,
    The coating comprises Ti and Ni;
    The mass ratio of Ni and Ti (Ni / Ti) of the coating is less than 1.0,
    The coating, the deposition amount of Ti in terms of per side of coated steel sheet has a 5.0 mg / m 2 or more 60.0 mg / m of less than 2, the amount of deposition of Ni in terms of per side of the plated steel sheet is 3. The steel plate for containers which is 0 mg / m < 2 > and whose S value defined by following formula (1) is 1.00 or less.
    S = [Is (Ni) / It (Ti)] (1)
    (In the formula (1), Is (Ni) represents the amount of Ni (unit: mg / m 2 ) per one side of the plated steel sheet calculated from the glow discharge emission analysis of Ni from the surface of the coating to a depth of 10 nm. , It (Ti) represents the Ti amount (unit: mg / m 2 ) per one side of the plated steel sheet calculated from the glow discharge emission analysis of Ti of the entire coating.)
  2.  前記皮膜は、前記S値が0.30未満である、請求項1に記載の容器用鋼板。 The steel sheet for containers according to claim 1, wherein the coating has an S value of less than 0.30.
  3.  前記皮膜は、前記S値が0.30以上1.00以下である、請求項1に記載の容器用鋼板。 The steel sheet for containers according to claim 1, wherein the coating has an S value of 0.30 or more and 1.00 or less.
  4.  前記皮膜は、前記めっき鋼板の片面あたりのTi換算の付着量が10.0~30.0mg/m2である、請求項1~3のいずれか1項に記載の容器用鋼板。 The steel plate for containers according to any one of claims 1 to 3, wherein the coating has a Ti-equivalent adhesion amount of 10.0 to 30.0 mg / m 2 per one side of the plated steel plate.
  5.  下記式(2)で定義されるT値が0.50以下である、請求項1~4のいずれか1項に記載の容器用鋼板。
    T=[Ii(F)-Ib(F)]/Ib(F)・・・(2)
    (式(2)中、Ii(F)は前記皮膜の蛍光X線分析のFピークカウント数を表し、Ib(F)は前記容器用鋼板を30分間沸騰水中で浸漬した後の前記皮膜の蛍光X線分析のFピークカウント数を表す。)
    The steel plate for containers according to any one of claims 1 to 4, wherein a T value defined by the following formula (2) is 0.50 or less.
    T = [Ii (F) −Ib (F)] / Ib (F) (2)
    (In Formula (2), Ii (F) represents the F peak count number of fluorescent X-ray analysis of the film, and Ib (F) represents the fluorescence of the film after the container steel plate was immersed in boiling water for 30 minutes. Represents the F peak count of X-ray analysis.)
  6.  前記めっき層が錫めっき層であり、前記皮膜がNi-Sn合金相を含む、請求項1~5のいずれか1項に記載の容器用鋼板。 The steel plate for containers according to any one of claims 1 to 5, wherein the plating layer is a tin plating layer, and the coating includes a Ni-Sn alloy phase.
PCT/JP2014/070620 2013-08-08 2014-08-05 Steel sheet for container WO2015020053A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167003343A KR101760729B1 (en) 2013-08-08 2014-08-05 Steel sheet for container
JP2014557637A JP6052305B2 (en) 2013-08-08 2014-08-05 Steel plate for containers
CN201480044226.XA CN105452531B (en) 2013-08-08 2014-08-05 Steel plate for container
PH12016500254A PH12016500254A1 (en) 2013-08-08 2016-02-05 Steel sheet for container

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013164944 2013-08-08
JP2013-164944 2013-08-08
JP2013-221944 2013-10-25
JP2013221944 2013-10-25

Publications (1)

Publication Number Publication Date
WO2015020053A1 true WO2015020053A1 (en) 2015-02-12

Family

ID=52461384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070620 WO2015020053A1 (en) 2013-08-08 2014-08-05 Steel sheet for container

Country Status (6)

Country Link
JP (1) JP6052305B2 (en)
KR (1) KR101760729B1 (en)
CN (1) CN105452531B (en)
PH (1) PH12016500254A1 (en)
TW (1) TWI557273B (en)
WO (1) WO2015020053A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013728A (en) * 2008-06-05 2010-01-21 Nippon Steel Corp Steel sheet for container which has excellent organic coating film performance, and method of manufacturing the same
JP2012062518A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Method for production of steel sheet for container
JP2013127095A (en) * 2011-12-19 2013-06-27 Jfe Steel Corp Method for manufacturing surface-treated steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985889A (en) * 1982-11-10 1984-05-17 Nisshin Steel Co Ltd Production of steel plate plated with zn-ni-ti alloy with excellent adhesion of plating layer
JP5602356B2 (en) * 2007-10-31 2014-10-08 Jfeスチール株式会社 Surface-treated steel sheet and resin-coated steel sheet
JP5467719B2 (en) * 2007-12-25 2014-04-09 Jfeスチール株式会社 Manufacturing method of surface-treated steel sheet
JP2010255065A (en) * 2009-04-28 2010-11-11 Jfe Steel Corp Surface treated steel sheet and method of manufacturing the same
JP6065360B2 (en) * 2011-12-07 2017-01-25 Jfeスチール株式会社 Manufacturing method of surface-treated steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013728A (en) * 2008-06-05 2010-01-21 Nippon Steel Corp Steel sheet for container which has excellent organic coating film performance, and method of manufacturing the same
JP2012062518A (en) * 2010-09-15 2012-03-29 Jfe Steel Corp Method for production of steel sheet for container
JP2013127095A (en) * 2011-12-19 2013-06-27 Jfe Steel Corp Method for manufacturing surface-treated steel sheet

Also Published As

Publication number Publication date
TW201510280A (en) 2015-03-16
JPWO2015020053A1 (en) 2017-03-02
CN105452531A (en) 2016-03-30
JP6052305B2 (en) 2016-12-27
PH12016500254B1 (en) 2016-05-16
KR101760729B1 (en) 2017-07-24
KR20160031508A (en) 2016-03-22
CN105452531B (en) 2018-01-02
PH12016500254A1 (en) 2016-05-16
TWI557273B (en) 2016-11-11

Similar Documents

Publication Publication Date Title
JP5447734B2 (en) Ni-containing surface-treated steel sheet for containers and containers
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
CN106460192B (en) Steel plate for container
JP5365335B2 (en) Tin-plated steel sheet and method for producing the same
JP2014095121A (en) Process liquid, steel sheet for container, and method of producing steel sheet for container
KR101803219B1 (en) Steel sheet for container and manufacturing method therefor
JP6197778B2 (en) Steel plate for container and method for producing the same
JP5895905B2 (en) Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP6052305B2 (en) Steel plate for containers
JP5991140B2 (en) Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
WO2015186827A1 (en) Steel sheet for containers
JP6048441B2 (en) Steel plate for containers
JP6135650B2 (en) Steel plate for containers
JP6146402B2 (en) Steel plate for containers
JP6003912B2 (en) Steel plate for container and method for producing the same
JP6156299B2 (en) Steel plate for container and method for producing the same
JP6003910B2 (en) Steel plate for container and method for producing the same
JP6003553B2 (en) Treatment liquid, steel plate for container, and method for producing steel plate for container
JP6361628B2 (en) Manufacturing method of steel plate for containers
JP6094694B2 (en) Manufacturing method of steel plate for containers
JP6164206B2 (en) Steel plate for container and method for producing the same
JP2016145425A (en) Treatment solution and method for manufacturing vessel steel sheet

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044226.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014557637

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834108

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167003343

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600825

Country of ref document: ID

Ref document number: 12016500254

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834108

Country of ref document: EP

Kind code of ref document: A1