KR102007103B1 - Method for manufacturing steel sheet coated with zinc-based coating layer - Google Patents
Method for manufacturing steel sheet coated with zinc-based coating layer Download PDFInfo
- Publication number
- KR102007103B1 KR102007103B1 KR1020177012379A KR20177012379A KR102007103B1 KR 102007103 B1 KR102007103 B1 KR 102007103B1 KR 1020177012379 A KR1020177012379 A KR 1020177012379A KR 20177012379 A KR20177012379 A KR 20177012379A KR 102007103 B1 KR102007103 B1 KR 102007103B1
- Authority
- KR
- South Korea
- Prior art keywords
- zinc
- steel sheet
- aqueous solution
- alkaline aqueous
- contact
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/53—Treatment of zinc or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23G—CLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
- C23G1/00—Cleaning or pickling metallic material with solutions or molten salts
- C23G1/14—Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
- C23G1/20—Other heavy metals
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
- Detergent Compositions (AREA)
Abstract
알칼리성 수용액과의 접촉에 의해 아연계 도금층 표면의 산화물을 제거할 수 있고, 또한, 알칼리성 수용액 중에 석출되는 석출물에 의한 외관상의 트러블을 회피할 수 있는, 아연계 도금 강판의 제조 방법을 제공하는 것. 상기 과제를 해결하기 위한 제 1 발명에 관련된 아연계 도금 강판의 제조 방법은, 강판의 표면에 반응층을 갖는 아연계 도금 강판의 제조 방법으로서, 상기 반응층은 Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층이고, 상기 반응층 형성의 전처리로서, 글루콘산나트륨, 글루코헵톤산나트륨, 시트르산나트륨, 타르타르산, 아라본산, 갈락톤산, 소르비트, 만니톨, 글리세린, EDTA, 트리폴리인산나트륨 중에서 선택되는 1 종 이상의 킬레이트제를 합계 0.050 mass% 이상 함유하고, pH 가 10.0 이상인 알칼리성 수용액에 아연계 도금 강판을 1.0 초 이상 접촉시킨다.Provided the manufacturing method of a zinc-based plated steel sheet which can remove the oxide on the surface of a zinc-based plating layer by contact with alkaline aqueous solution, and can avoid the external trouble by the precipitate which precipitates in alkaline aqueous solution. Method of manufacturing a zinc-based plated steel sheet according to the first invention for solving the aforementioned problems is a zinc-based method of manufacturing a coated steel strip having the reaction layer on the surface of the steel plate, the reaction layer is Zn 4 (SO 4) 1- X An oxide layer containing a crystal structure represented by (CO 3 ) X (OH) 6 nH 2 O, and as a pretreatment for forming the reaction layer, sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabic acid, galac At least one chelating agent selected from tonic acid, sorbitol, mannitol, glycerin, EDTA, and sodium tripolyphosphate contains 0.050 mass% or more in total, and the zinc-based plated steel sheet is brought into contact with the alkaline aqueous solution having a pH of 10.0 or more for 1.0 second or more.
Description
본 발명은 반응층을 갖는 아연계 도금 강판의 제조 방법에 관한 것이다.The present invention relates to a method for producing a galvanized steel sheet having a reaction layer.
아연계 도금 강판은, 자동차 차체, 가전, 건재를 중심으로 광범위한 용도로 이용되고 있다. 그러한 용도에서의 아연계 도금 강판에 관하여, 강판 표면에 반응층을 형성하여, 프레스 성형, 내식성, 외관 등의 특성을 향상시키는 기술이 알려져 있다.Zinc-based galvanized steel sheet is used for a wide range of applications mainly in automobile bodies, home appliances, and building materials. With respect to a zinc-based galvanized steel sheet in such a use, a technique is known in which a reaction layer is formed on the surface of a steel sheet to improve characteristics such as press molding, corrosion resistance, and appearance.
그러나, 반응층을 형성하기 전의 아연계 도금 강판은, 종래, 최표층에 두께가 10 ㎚ 에 못 미치는 Zn 이나 불순물 원소인 Al 등의 불필요한 산화물층을 가지고 있다. 이 불필요한 산화물층은 예를 들어 인산아연 처리나 크로메이트 처리 등 화성 처리의 반응성을 저해하여, 충분한 반응층을 형성시키기 위해서는 긴 반응 시간을 설정할 필요가 있었다.However, the galvanized steel sheet before forming the reaction layer conventionally has an unnecessary oxide layer such as Zn having a thickness of less than 10 nm and Al which is an impurity element in the outermost layer. This unnecessary oxide layer, for example, inhibited the reactivity of the chemical conversion treatment such as zinc phosphate treatment or chromate treatment, and it was necessary to set a long reaction time in order to form a sufficient reaction layer.
반응 시간의 증가는, 설비비나 라인 길이의 증가를 수반하고, 또 전기, 가스 등의 러닝 코스트의 증가를 초래한다.Increasing the reaction time is accompanied by an increase in equipment costs and line lengths, and also leads to an increase in running costs such as electricity and gas.
이에 대하여, 반응층을 형성하기 전에 알칼리성 수용액에 접촉시킴으로써, 아연계 도금 강판의 표층에 존재하는 불필요한 산화물층을 제거하여 반응 시간을 단축시키는 기술이 알려져 있다.On the other hand, the technique which shortens reaction time by removing the unnecessary oxide layer which exists in the surface layer of a galvanized steel sheet by making it contact with alkaline aqueous solution before forming a reaction layer is known.
특허문헌 1 에는, 용융 아연 도금 강판을 알칼리성 수용액에 접촉시킨 후 SiO2 함유 크로메이트액으로 처리하는 기술이 기재되어 있다.Patent Literature 1 describes a technique of treating a hot dip galvanized steel sheet with an alkaline aqueous solution and then treating the SiO 2 -containing chromate solution.
또, 알칼리성 수용액으로 처리한 후에, 의도적으로 산화막을 형성하는 기술도 알려져 있다.Moreover, the technique of intentionally forming an oxide film after processing with alkaline aqueous solution is also known.
특허문헌 2, 3 에는 용융 아연 도금 강판을 알칼리성 수용액에 접촉시킨 후, 산화물층을 형성시키는 기술이 기재되어 있다.
특허문헌 4 에는, 합금화 용융 아연 도금 강판의 표면을, 알칼리성 수용액에 접촉시킨 후, 산화물층을 형성시키는 기술이 기재되어 있다.Patent Literature 4 describes a technique of forming an oxide layer after bringing the surface of an alloyed hot dip galvanized steel sheet into contact with an alkaline aqueous solution.
특허문헌 5 에는, 용융 아연 도금 강판의 표면을, 알칼리성 수용액에 접촉시킨 후, Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층을 형성시키는 기술이 기재되어 있다.Patent Document 5 discloses an oxide containing a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 nH 2 O after the surface of the hot-dip galvanized steel sheet is brought into contact with an alkaline aqueous solution. Techniques for forming a layer are described.
특허문헌 1 ∼ 5 의 기술에서는, 알칼리성 수용액과의 접촉에 의해 반응층을 형성하기 위한 반응 시간의 단축이 가능하다. 그러나, 통상적으로 사용되는 연속 처리 장치에서는 알칼리성 수용액 중에 석출된 Zn 이나 Al 의 석출물이 디플렉터 롤이나 서포트 롤에 부착되어, 강판 표면에 눌림 흠집이 발생하고, 나아가서는 반응층 형성 후에 외관 불균일이 발생하는 등 외관상의 트러블을 초래하는 경우가 있었다.In the technique of patent documents 1-5, the reaction time for forming a reaction layer by contact with alkaline aqueous solution can be shortened. However, in the conventional continuous processing apparatus, Zn or Al precipitates deposited in alkaline aqueous solution adhere to the deflector rolls or support rolls, resulting in crushing scratches on the surface of the steel sheet, and further, appearance irregularities after reaction layer formation. In other cases, appearance problems may occur.
본 발명은, 이러한 사정을 감안하여 이루어진 것이다. 알칼리성 수용액과의 접촉에 의해 아연계 도금층 표면의 불필요한 산화물층을 제거하는 것이 가능하고, 또한, 알칼리성 수용액 중에 석출되는 석출물에 의한 외관상의 트러블을 회피할 수 있는, 아연계 도금 강판의 제조 방법을 제공하는 것을 목적으로 한다.This invention is made | formed in view of such a situation. It is possible to remove an unnecessary oxide layer on the surface of a zinc-based plating layer by contact with an alkaline aqueous solution, and to provide a method for producing a zinc-based plated steel sheet, which can avoid an external trouble caused by precipitates precipitated in an alkaline aqueous solution. It aims to do it.
본 발명자들은 상기 과제를 해결하기 위해서 예의 연구를 거듭하였다. 그 결과, 반응층을 형성하기 전에 사용되는 알칼리성 수용액 중에 특정한 킬레이트제를 첨가함으로써 상기 과제를 해결할 수 있는 것을 알아내어, 본 발명을 완성하기에 이르렀다. 보다 구체적으로는 본 발명은 이하의 것을 제공한다.The inventors of the present invention have conducted intensive studies in order to solve the above problems. As a result, it was found out that the above problems can be solved by adding a specific chelating agent to the alkaline aqueous solution used before forming the reaction layer, thus completing the present invention. More specifically, the present invention provides the following.
상기 과제를 해결하기 위한 제 1 발명에 관련된 아연계 도금 강판의 제조 방법은, 강판의 표면에 반응층을 갖는 아연계 도금 강판의 제조 방법으로서, 상기 반응층은 Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층이고, 상기 반응층 형성의 전처리로서, 글루콘산나트륨, 글루코헵톤산나트륨, 시트르산나트륨, 타르타르산, 아라본산, 갈락톤산, 소르비트, 만니톨, 글리세린, EDTA, 트리폴리인산나트륨 중에서 선택되는 1 종 이상의 킬레이트제를 합계 0.050 mass% 이상 함유하고, pH 가 10.0 이상인 알칼리성 수용액에 아연계 도금 강판을 1.0 초 이상 접촉시키는 것을 특징으로 한다.Method of manufacturing a zinc-based plated steel sheet according to the first invention for solving the aforementioned problems is a zinc-based method of manufacturing a coated steel strip having the reaction layer on the surface of the steel plate, the reaction layer is Zn 4 (SO 4) 1- X An oxide layer containing a crystal structure represented by (CO 3 ) X (OH) 6 nH 2 O, and as a pretreatment for forming the reaction layer, sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabic acid, galac It contains 0.050 mass% or more of 1 or more chelating agents selected from tonic acid, sorbitol, mannitol, glycerin, EDTA, and sodium tripolyphosphate, and the zinc-based plated steel sheet is brought into contact with the alkaline aqueous solution having a pH of 10.0 or more for at least 1.0 second. It is done.
상기 과제를 해결하기 위한 제 2 발명에 관련된 아연계 도금 강판의 제조 방법은, 제 1 발명에 기재된 아연계 도금 강판의 제조 방법으로서, 상기 알칼리성 수용액의 pH 가 12.6 이상인 것을 특징으로 한다.The manufacturing method of the zinc-based galvanized steel sheet which concerns on the 2nd invention for solving the said subject is a manufacturing method of the zinc-based galvanized steel sheet as described in 1st invention, It is characterized by the pH of the said alkaline aqueous solution being 12.6 or more.
본 발명에 의하면, 알칼리성 수용액과의 접촉에 의해 아연계 도금층 표면의 산화물을 양호하게 제거하는 것이 가능하다. 또한, 반응층 형성 시간을 단축화하기 위한 알칼리 처리에 있어서 Al 이나 Zn 의 석출물 등을 감소시킬 수 있어, 외관이 양호한 반응층을 갖는 아연계 도금 강판이 얻어진다.According to the present invention, it is possible to satisfactorily remove the oxide on the surface of the zinc-based plating layer by contact with an alkaline aqueous solution. In addition, in alkali treatment for shortening the reaction layer formation time, precipitates of Al, Zn, and the like can be reduced, and a zinc-based plated steel sheet having a reaction layer having a good appearance can be obtained.
도 1 은, 외관 불균일을 평가하기 위한 평가 기준을 나타낸 모식도이다.1: is a schematic diagram which showed the evaluation criteria for evaluating appearance nonuniformity.
이하, 본 발명의 실시형태에 대해 설명한다. 또한, 본 발명은 이하의 실시형태에 한정되지 않는다. 본 발명에 있어서, 아연계 도금 강판이란, 제조 방법을 불문하고 강판 표면에 아연을 주체로 하는 피막을 갖는 강판으로, 아연 도금 강판, 아연 합금 도금 강판, 아연에 입자를 분산시킨 도금 강판 등이 포함된다. 즉, 아연계 도금층에는, 아연 도금층, 아연 합금 도금층, 아연에 입자를 분산시킨 도금층 등이 포함된다.Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment. In the present invention, a galvanized steel sheet is a steel sheet having a film mainly composed of zinc on the surface of the steel sheet regardless of the manufacturing method, and includes a galvanized steel sheet, a zinc alloy plated steel sheet, and a plated steel sheet in which particles are dispersed in zinc. do. That is, the zinc-based plating layer includes a zinc plating layer, a zinc alloy plating layer, a plating layer in which particles are dispersed in zinc, and the like.
본 발명은, 아연계 도금층의 표면에 존재하는 불필요한 산화물층을 양호하게 제거할 수 있는 반응층, 즉, Zn4(SO4)1-X(CO3)X(OH)6·nH2O (단, X 는 0<X<1) 로 나타내는 결정 구조물이 함유되는 산화물층을 갖는 아연계 도금 강판의 제조 방법이다. 본 발명은, 예를 들어, 아연계 도금을 실시하는 공정과, 알칼리성 수용액과 접촉시키는 공정과, Zn4(SO4)1-X(CO3)X(OH)6·nH2O (단, X 는 0<X<1)로 나타내는 결정 구조물이 함유되는 산화물층을 형성하는 공정을 구비한다. 이하, 각 공정에 대해 설명한다.The present invention provides a reaction layer capable of satisfactorily removing an unnecessary oxide layer present on the surface of a zinc-based plating layer, that is, Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 nH 2 O ( However, X is a manufacturing method of the galvanized steel plate which has an oxide layer in which the crystal structure represented by 0 <X <1) is contained. The present invention includes, for example, a process of performing zinc-based plating, a process of contacting with an alkaline aqueous solution, and Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 nH 2 O ( X is equipped with the process of forming the oxide layer in which the crystal structure represented by 0 <X <1) is contained. Each step will be described below.
-아연계 도금을 실시하는 공정-Zinc Plating Process
먼저, 아연계 도금을 실시하는 공정에 대해 설명한다. 아연계 도금을 실시하는 공정에 있어서, 아연 도금을 실시하는 방법은 특별히 한정되지 않고, 용융 아연 도금, 전기 아연 도금 등의 일반적인 방법을 채용할 수 있다. 또, 전기 아연 도금, 용융 아연 도금의 처리 조건은 특별히 한정되지 않고, 적절히 바람직한 조건을 채용하면 된다. 또한, 용융 아연 도금을 실시하는 경우, 도금욕 중에 Al 이 첨가되어 있는 것이 드로스 대책의 관점에서 바람직하다. 이 경우 Al 이외의 원소 성분은 특별히 한정되지 않는다. 즉, Al 이외에, Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu 등이 함유되어 있어도, 본 발명의 효과가 저해되는 것은 아니다.First, the process of performing zinc plating is demonstrated. In the process of performing zinc plating, the method of galvanizing is not specifically limited, General methods, such as hot dip galvanization and an electrogalvanization, can be employ | adopted. Moreover, the process conditions of electrogalvanization and hot dip galvanization are not specifically limited, What is necessary is just to employ | adopt appropriate conditions suitably. In the case of performing hot dip galvanizing, it is preferable that Al is added in the plating bath from the viewpoint of the dross countermeasure. In this case, element components other than Al are not specifically limited. That is, even if Al contains Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, etc., the effect of this invention is not impaired.
여기서, 아연 도금이 실시되는 강판의 강 종류는 특별히 한정되는 것이 아니고, 저탄소강, 극저탄소강, IF 강, 각종 합금 원소를 첨가한 고장력 강판 등의 여러 가지 강판을 사용할 수 있다. 또, 상기 강판은, 열연 강판, 냉연 강판 모두 사용할 수 있다. 강판의 두께는 특별히 한정되지 않는다. 또한, 자동차 차체, 가전, 건재 등의 용도에 사용하는 관점에서, 0.4 ∼ 5.0 ㎜ 가 바람직하다.Here, the kind of steel of the steel plate to which zinc plating is given is not specifically limited, Various steel plates, such as a low carbon steel, an ultra low carbon steel, IF steel, and the high tensile steel plate which added various alloying elements, can be used. In addition, a hot rolled sheet steel and a cold rolled sheet steel can be used for the said steel plate. The thickness of the steel sheet is not particularly limited. Moreover, 0.4-5.0 mm is preferable from a viewpoint of using for uses, such as an automobile body, a household appliance, and building materials.
나아가서는, 아연계 도금을 실시하는 공정에 있어서, 용융 아연 도금을 실시한 후에, 합금화 처리를 실시한 합금화 용융 아연 도금 강판으로 해도 된다. 본 발명에 있어서는, 합금화 처리의 조건은 특별히 한정되지 않고, 적절히 바람직한 조건을 채용하면 된다.Furthermore, in the process of galvanizing, after performing hot dip galvanizing, it is good also as an alloying hot dip galvanized steel plate which performed the alloying process. In this invention, the conditions of alloying process are not specifically limited, What is necessary is just to employ | adopt appropriate conditions suitably.
-알칼리성 수용액과 접촉시키는 공정-Contact with alkaline aqueous solution
아연계 도금 처리를 실시한 후, 알칼리성 수용액을 사용한 접촉 처리를 실시한다. 이 접촉 처리에서 사용하는 알칼리성 수용액은 pH 10.0 이상이다. pH 10.0 미만에서는 산화물층의 제거가 불충분해진다. pH 가 12.6 이상이면 알칼리 수용액과의 접촉 시간을 단축시킬 수 있어 효과적이며, 바람직하다.After performing zinc-based plating treatment, contact treatment using an alkaline aqueous solution is performed. The alkaline aqueous solution used by this contact treatment is pH 10.0 or more. Below pH 10.0, the removal of the oxide layer becomes insufficient. If pH is 12.6 or more, contact time with aqueous alkali solution can be shortened and it is effective and preferable.
한편, 아연계 도금층의 용해 방지, 표면 외관의 흑화 방지의 관점에서, pH 14.0 이하가 바람직하다.On the other hand, pH 14.0 or less is preferable from a viewpoint of preventing melt | dissolution of a zinc type plating layer, and blackening of a surface appearance.
알칼리성 수용액에는 특정한 킬레이트제가 합계 0.050 mass% 이상 함유된다. 알칼리성 수용액 중에 Al 이나 Zn 의 석출물 등이 증가하면, 액의 외관이 현탁액상이 된다. 본 발명은, 알칼리성 수용액에 0.050 mass% 이상 킬레이트제를 함유시켜, Al 이나 Zn 의 석출물 등을 감소시킨다.The alkaline aqueous solution contains 0.050 mass% or more of a specific chelating agent in total. When Al, the precipitate of Zn, etc. increase in alkaline aqueous solution, the external appearance of a liquid will become a suspension form. The present invention contains 0.050 mass% or more of a chelating agent in an alkaline aqueous solution to reduce precipitates of Al, Zn, and the like.
상기 킬레이트제는, 글루콘산나트륨, 글루코헵톤산나트륨, 시트르산나트륨, 타르타르산, 아라본산, 갈락톤산, 소르비트, 만니톨, 글리세린, EDTA, 트리폴리인산나트륨 중에서 선택되는 1 종 이상이다. Al 과 Zn 을 킬레이트하는 것이 가능하고 저렴한 관점에서, 상기 킬레이트제는 글루콘산나트륨이 바람직하다.The chelating agent is at least one selected from sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabic acid, galactonic acid, sorbitan, mannitol, glycerin, EDTA and sodium tripolyphosphate. From the viewpoint of being able to chelate Al and Zn and inexpensive, the chelating agent is preferably sodium gluconate.
알칼리성 수용액에 있어서의 킬레이트제의 함유량이 합계 0.050 mass% 미만이면, 알칼리성 수용액 중의 Al 이나 Zn 의 용해도 증가가 불충분해진다. 알칼리성 수용액에 있어서의 석출물 저감의 관점에서, 알칼리성 수용액에 함유되는 킬레이트제의 양은 바람직하게는 0.100 mass% 이상이다. 한편, 약제 비용의 관점에서, 알칼리성 수용액에 함유되는 킬레이트제의 양은 바람직하게는 10.0 mass% 이하이다.When content of the chelating agent in alkaline aqueous solution is less than 0.050 mass% in total, the solubility increase of Al and Zn in alkaline aqueous solution will become inadequate. From the viewpoint of reducing the precipitate in the alkaline aqueous solution, the amount of the chelating agent contained in the alkaline aqueous solution is preferably 0.100 mass% or more. On the other hand, from the viewpoint of the drug cost, the amount of the chelating agent contained in the alkaline aqueous solution is preferably 10.0 mass% or less.
알칼리성 수용액과 강판의 접촉 시간을 단축시키는 관점에서, 알칼리성 수용액의 온도는 20 ℃ ∼ 70 ℃ 의 범위인 것이 바람직하고, 40 ℃ ∼ 70 ℃ 가 보다 바람직하다.From a viewpoint of shortening the contact time of an alkaline aqueous solution and a steel plate, it is preferable that it is the range of 20 degreeC-70 degreeC, and 40 degreeC-70 degreeC is more preferable.
알칼리 빌더의 종류는 한정되지 않는다. 또한, 비용 저감의 관점에서 NaOH 등의 약품을 사용하는 것이 바람직하다. 원하는 알칼리성 수용액의 pH 를 실현하기 위해서, 알칼리 빌더량은 적절히 조정된다. 또, 알칼리성 수용액에는, Zn, Al, Fe 등의 아연계 도금액에 함유되는 원소 이외의 물질이나 그 밖의 성분을 함유해도 된다.The kind of alkali builder is not limited. Moreover, it is preferable to use chemicals, such as NaOH, from a viewpoint of cost reduction. In order to realize the pH of the desired alkaline aqueous solution, the alkali builder amount is appropriately adjusted. The alkaline aqueous solution may contain substances other than elements contained in zinc-based plating solutions such as Zn, Al, Fe, or other components.
알칼리성 수용액을 아연계 도금 강판 (특히, 그 표층의 산화물층) 에 접촉시키는 방법은 특별히 한정되지 않고, 알칼리성 수용액에 아연계 도금 강판을 침지 시켜 접촉시키는 방법, 알칼리성 수용액을 스프레이하여 아연계 도금 강판에 접촉시키는 방법 등이 있다.The method of bringing the alkaline aqueous solution into contact with the zinc-based galvanized steel sheet (particularly, the oxide layer of the surface layer) is not particularly limited, and the method of contacting by dipping the zinc-based galvanized steel sheet into the alkaline aqueous solution, spraying the alkaline aqueous solution to the zinc-based galvanized steel sheet Contact method;
알칼리성 수용액에 아연계 도금 강판을 접촉시키는 시간은 1.0 초 이상이다. 그 접촉 시간이 1.0 초 미만이면 아연계 도금층 표면의 산화물을 충분히 제거할 수 없기 때문에, 반응층을 형성하기 위한 반응 시간의 단축이 불충분해진다. 설비 비용, 생산성의 관점에서, 알칼리성 수용액에 아연계 도금 강판을 접촉시키는 시간은 10.0 초 이하가 바람직하다.The time for bringing the galvanized steel sheet into contact with the alkaline aqueous solution is 1.0 seconds or more. If the contact time is less than 1.0 second, since the oxide on the surface of the zinc-based plating layer cannot be sufficiently removed, the shortening of the reaction time for forming the reaction layer becomes insufficient. In terms of equipment cost and productivity, the time for bringing the galvanized steel sheet into contact with the alkaline aqueous solution is preferably 10.0 seconds or less.
본 발명에서는, 아연계 도금을 실시하는 공정 후로서, 알칼리성 수용액 처리 전후 어딘가에 조질 압연을 실시해도 된다. 강판에 있어서의 조질 압연 롤과 접촉한 부위는, 롤과의 접촉에 의해, 아연계 도금층의 표면에 존재하는 Al 이나 Zn 의 불필요한 산화물층이 제거되기 때문에, 반응성이 높아진다.In the present invention, after the step of performing zinc plating, temper rolling may be performed somewhere before and after the alkaline aqueous solution treatment. Since the site | part which contacted the tempered rolling roll in a steel plate removes unnecessary oxide layers of Al and Zn which exist in the surface of a zinc-based plating layer by contact with a roll, reactivity becomes high.
-반응층을 형성하는 공정- Process of forming reaction layer
통상적으로는 강판을 알칼리성 수용액과 접촉시킨 후에 수세·건조를 실시하고, 그 후에 반응층, 즉, Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층을 형성하기 위한 처리를 실시한다.Typically subjected to water washing and drying after contacting the plate with an alkaline aqueous solution, and then the crystal represented by the reaction layer, i.e., Zn 4 (SO 4) 1 -X (CO 3) X (OH) 6 · nH 2 O The process for forming the oxide layer containing a structure is performed.
본 발명에 있어서, Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층이란, 아연계 도금과 화학적 처리액이 접촉하여 화학적 반응이 일어나고, 이로써 강판 표면에 형성되는 반응 생성물의 층이다. Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층의 형성 처리로는, 예를 들어, 아연계 도금 강판을, 황산 이온을 함유하는 산성 용액에 접촉시킨 후 1 ∼ 60 초간 유지하고, 그 후 수세를 실시하는 산화물층 형성 공정과, 상기 산화물층 형성 공정에서 형성된 산화물층의 표면을, 알칼리성 수용액에 접촉시킨 상태로 0.5 초 이상 유지하고, 그 후 수세, 건조를 실시하는 중화 처리 공정을 실시한다. 알칼리성 수용액은, P 이온을 P 농도로서 0.01 g/ℓ 이상, 탄산 이온을 탄산 이온 농도로서 0.1 g/ℓ 이상 함유하면 된다. 본 발명은, 강판의 표면에 Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 존재하면 되며, 이 처리 방법에 한정되는 것은 아니다.In the present invention, the oxide layer containing the crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O means that the zinc-based plating and the chemical treatment liquid are in contact with each other to react chemically. This takes place, whereby it is a layer of reaction product formed on the steel plate surface. As a formation process of the oxide layer containing the crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O, for example, a zinc-based plated steel sheet is used as a sulfate ion. 0.5 second or more in the state which contacted with the alkaline aqueous solution the oxide layer formation process which carries out contact for the acidic solution to contain, and maintains for 1 to 60 second, and then washes with water, and the surface of the oxide layer formed in the said oxide layer formation process. It carries out, and the neutralization process of washing with water and drying is performed after that. The alkaline aqueous solution may contain 0.01 g / l or more of P ions as P concentration and 0.1 g / l or more as carbonate ion concentration. In the present invention, a crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 nH 2 O may exist on the surface of the steel sheet, and the present invention is not limited to this treatment method.
실시예 1Example 1
이하, 실시예에 의해 본 발명을 설명한다. 본 발명의 기술적 범위는 이하의 실시예에 한정되지 않는다.Hereinafter, the present invention will be described by way of examples. The technical scope of the present invention is not limited to the following examples.
판 두께 0.7 ㎜, 폭 1100 ㎜ 냉연 강판에 용융 아연 도금 처리를 실시하여 이루어지는 강판에 대해 조질 압연을 실시하였다. 계속해서, 산화물층의 제거 처리로서, 표 1-1, 1-2 에 나타내는 조건으로 조정한 알칼리성 수용액에 강판을 지정 시간 접촉시킨 후, 수세를 실시하고 건조시켰다.Temper rolling was performed with respect to the steel plate obtained by performing a hot dip galvanizing process on the plate | board thickness 0.7 mm and the width 1100 mm cold rolled sheet steel. Subsequently, as a removal process of an oxide layer, after making a steel plate contact the alkaline aqueous solution adjusted on the conditions shown to Table 1-1, 1-2 for a predetermined time, it washed with water and dried.
판 두께 0.7 ㎜, 폭 1100 ㎜ 의 냉연 강판에 대해 용융 아연 도금 처리 및 합금화 처리를 실시하여 이루어지는 강판에 대해 조질 압연을 실시한 것, 그리고, 판 두께 0.7 ㎜, 폭 1100 ㎜ 의 냉연 강판에 대해 전기 아연 도금 처리한 것도 동일한 순서로 알칼리성 수용액과 접촉시키고, 그 후, 수세를 실시하고 건조시켰다.Rough rolled steel sheets obtained by performing hot dip galvanizing and alloying treatment on a cold rolled steel sheet having a sheet thickness of 0.7 mm and a width of 1100 mm, and electrolytic zinc to a cold rolled steel sheet having a sheet thickness of 0.7 mm and a width of 1100 mm. The plating treatment was also brought into contact with the alkaline aqueous solution in the same procedure, followed by washing with water and drying.
상기에 의해 얻어진 아연계 도금 강판에 대하여, 알칼리성 수용액 처리 후에 있어서의 아연계 도금층의 표면의 불필요한 산화물층의 두께, 반응층 형성 후의 외관 불균일을 평가하고, 알칼리성 수용액 중에 함유되는 현탁 물질 (SS) 의 측정을 실시하였다. 또한, 알칼리성 수용액의 pH 는 시판되는 유리 전극으로 측정하였다.With respect to the zinc-based plated steel sheet obtained above, the thickness of the unnecessary oxide layer on the surface of the zinc-based plating layer after the alkaline aqueous solution treatment and the appearance unevenness after the reaction layer formation were evaluated, and thus the suspended solids (SS) contained in the alkaline aqueous solution. The measurement was performed. In addition, pH of alkaline aqueous solution was measured with the commercially available glass electrode.
계속해서, Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층 형성 처리로서, 아세트산나트륨·3 수화물을 30 g/ℓ 함유하고 pH 1.5 로 조정한 황산 산성 용액에 강판을 침지하고, 롤로 짠 후, 10 초간 유지하였다. 다음으로, 수세를 실시한 후 건조시켰다. 계속해서 피로인산나트륨 9.8 g/ℓ 및 탄산나트륨·10 수화물을 0.48 g/ℓ 를 함유한 처리액으로 중화 처리를 실시하였다.Subsequently, as an oxide layer formation process in which the crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 nH 2 O is contained, 30 g / L of sodium acetate trihydrate is contained. The steel plate was immersed in a sulfuric acid acid solution adjusted to pH 1.5, woven into a roll, and held for 10 seconds. Next, it washed with water and dried. Subsequently, neutralization treatment was performed with a treatment liquid containing 9.8 g / L sodium pyrophosphate and 0.48 g / L sodium carbonate 10 hydrate.
(1) 불필요한 산화물층의 두께의 측정(1) Measurement of thickness of unnecessary oxide layer
알칼리성 수용액과의 접촉 후, 아연계 도금 강판에 형성된 불필요한 산화물층의 두께의 측정에는 형광 X 선 분석 장치를 사용하였다. 산화물층의 두께 (산화막 두께) 가 4 ㎚ 이하이면, 반응층을 형성하기 위한 반응 시간을 단축화했다고 평가할 수 있다. 2 ㎚ 이하이면 더욱 반응 시간을 단축시켰다고 평가할 수 있다.After contact with the alkaline aqueous solution, a fluorescent X-ray analyzer was used to measure the thickness of the unnecessary oxide layer formed on the galvanized steel sheet. If the thickness (oxide film thickness) of an oxide layer is 4 nm or less, it can be evaluated that the reaction time for forming a reaction layer was shortened. If it is 2 nm or less, it can be evaluated that reaction time was further shortened.
측정시의 관구 (管球) 의 전압 및 전류는 30 ㎸ 및 100 ㎃ 로 하고, 분광 결정은 TAP 로 설정하여 O-Kα 선을 검출하였다. O-Kα 선의 측정시에 있어서는, 그 피크 위치에 추가하여 백그라운드 위치에서의 강도도 측정하여, O-Kα 선의 정미 (正味) 의 강도를 산출할 수 있도록 하였다. 또한, 피크 위치 및 백그라운드 위치에서의 적분 시간은 각각 20 초로 하였다.The voltage and current of the tube at the time of the measurement were set to 30 mA and 100 mA, and the spectral crystal was set to TAP to detect the O-Kα line. In the measurement of the O-Kα line, in addition to the peak position, the intensity at the background position was also measured to calculate the net strength of the O-Kα line. In addition, the integration time in a peak position and a background position was 20 second, respectively.
또, 시료 스테이지에는, 이들 일련의 시료와 함께, 적당한 크기로 벽개한 막 두께 96 ㎚, 54 ㎚ 및 24 ㎚ 의 산화실리콘 피막을 형성한 실리콘 웨이퍼를 세트 하고, 이들 산화실리콘 피막으로부터도 O-Kα 선의 강도를 산출할 수 있도록 하였다. 이들 데이터를 사용하여 산화물층 두께와 O-Kα 선 강도의 검량선을 작성하고, 공시재의 산화물층의 두께를 산화실리콘 피막 환산에 의한 산화물층 두께로서 산출하도록 하였다.In the sample stage, a silicon wafer having a silicon oxide film having a thickness of 96 nm, 54 nm and 24 nm cleaved to an appropriate size is set together with these series of samples, and O-Kα is also obtained from these silicon oxide films. The strength of the line can be calculated. Using these data, calibration curves of oxide layer thickness and O-Kα line strength were prepared, and the thickness of the oxide layer of the specimen was calculated as the oxide layer thickness in terms of silicon oxide film conversion.
(2) 표면 산화 처리 후 외관 불균일과 산화막 두께의 평가(2) Evaluation of appearance unevenness and oxide film thickness after surface oxidation treatment
알칼리성 수용액으로 접촉 처리한 용융 아연 도금 강판, 합금화 용융 아연 도금 강판, 전기 아연 도금 강판에 대하여, 표면에 산화물층을 형성하는 처리를 실시한 후, 외관 불균일을 육안 및 현미경 관찰에 의해 평가하였다. 즉, 황산제1철을 5.0 g/ℓ, 아세트산나트륨·7 수화물을 50 g/ℓ 함유하는 수용액을 황산에 의해 pH 2.0 으로 조정한 액을 준비하고, 이 처리액을 알칼리성 수용액에 접촉 처리한 각종 도금 강판에 3 ㎛ 의 두께가 되도록 도포하고, 10 초간 유지한 후, 수세·건조를 실시하여, 산화물층을 형성하는 처리를 실시하였다. 또한, 관찰 면적은 70 ㎜ × 150 ㎜ 이다. 도 1 에 나타내는 외관 견본을 기준으로 하여, 평점을 1 ∼ 5 점으로 부여하여 평가하였다. 4 점이 양호한 것을 나타내고, 5 점은 더욱 양호한 것을 나타내고 있다.After the treatment of forming an oxide layer on the surface of the hot dip galvanized steel sheet, the alloyed hot dip galvanized steel sheet, and the electrogalvanized steel sheet subjected to contact treatment with an alkaline aqueous solution, the appearance unevenness was evaluated by visual and microscopic observation. That is, a solution prepared by adjusting an aqueous solution containing 5.0 g / l of ferrous sulfate and 50 g / l of sodium acetate / 7 hydrate to pH 2.0 with sulfuric acid was prepared, and various treatments in which the treatment solution was subjected to contact treatment with an alkaline aqueous solution. After apply | coating so that it might become thickness of 3 micrometers to a plated steel plate, and hold | maintained for 10 second, it washed with water and dried, and the process which forms an oxide layer was performed. In addition, an observation area is 70 mm x 150 mm. Based on the external appearance sample shown in FIG. 1, the rating was given to 1-5 points and evaluated. Four points showed the favorable thing and five points showed the further favorable thing.
(3) 현탁 물질 (SS) 의 측정 (3) Determination of Suspended Material (SS)
아연계 도금 강판 100 t 처리 이후의 알칼리성 수용액을 채취하고, 공경 1 ㎛ 의 멤브레인 필터를 사용하여 흡인 여과하였다. 여과 물질을 110 ℃ 에서 건조시킨 후 중량을 측정하여, ㎎/ℓ 로 환산하였다. 이 값이 10 ㎎/ℓ 를 초과한 제조량을 기록하였다. 10 ㎎/ℓ 를 초과하는 강판 처리량이 3000 t 이상이면, 생산성의 면에서 양호하다고 평가할 수 있다. 또, 5000 t 처리 후에도, 10 ㎎/ℓ 를 초과하지 않은 것에 대해서는, 현탁 물질 없음 (표 1-1, 1-2 중에서는 「> 5000」이라고 표기) 이라고 평가하였다. 알칼리 수용액 처리를 실시하지 않은 No.1, 54 및 56 은 이 측정을 실시하지 않았다.The alkaline aqueous solution after 100 tons of zinc-based galvanized steel sheet was collected, and suction filtered using a membrane filter having a pore size of 1 m. The filtered material was dried at 110 ° C. and then weighed, and converted to mg / L. The production amount at which this value exceeded 10 mg / L was recorded. If the steel plate throughput exceeding 10 mg / L is 3000 t or more, it can be evaluated as satisfactory in terms of productivity. Moreover, even after 5000 t process, about the thing which did not exceed 10 mg / L, it evaluated as having no suspension substance (it describes as "> 5000" in Table 1-1, 1-2). Nos. 1, 54 and 56 that did not undergo aqueous alkali solution treatment did not perform this measurement.
이상으로부터 얻어진 결과를 표 1-1, 1-2 에 나타낸다. 또한, No.15 와 No.41 은 동일한 시험 조건이고, No.20 과 No.28 은 동일한 시험 조건이다.The results obtained from the above are shown in Tables 1-1 and 1-2. In addition, No.15 and No.41 are the same test conditions, and No.20 and No.28 are the same test conditions.
[표 1-1][Table 1-1]
[표 1-2][Table 1-2]
표 1-1, 1-2 로부터 하의 사항을 알 수 있다.The following matters can be seen from Tables 1-1 and 1-2.
No.1 ∼ 57 에 대하여, 알칼리 수용액에 의한 불필요한 산화물층 제거 후의 표면 분석을 실시하였다.About No.1-57, the surface analysis after removing unnecessary oxide layer by aqueous alkali solution was performed.
알칼리성 수용액과의 접촉 처리를 실시하지 않은 No.1, 54 및 56 의 비교예는, 산화물층의 두께가 7 ∼ 10 ㎚ 이고 충분히 제거되어 있지 않다.In Comparative Examples Nos. 1, 54 and 56 which did not undergo contact treatment with alkaline aqueous solution, the thickness of the oxide layer was 7 to 10 nm and was not sufficiently removed.
No.2 및 3 은 알칼리성 수용액과의 접촉을 실시하고 있지만, 알칼리성 수용액 중에 킬레이트제가 첨가되어 있지 않은 점에서 불충분한 예 (비교예) 이다. 산화물층은 충분히 제거 가능하다. 그러나, 강판의 생산량이 증가하면 알칼리성 수용액 중에 현탁 물질이 생성되어, 외관을 열화시킨다.Although No.2 and 3 contact with alkaline aqueous solution, it is an insufficient example (comparative example) in that the chelating agent is not added in alkaline aqueous solution. The oxide layer is sufficiently removable. However, when the yield of the steel sheet is increased, a suspended substance is formed in the alkaline aqueous solution, thereby deteriorating the appearance.
No.4 및 11 은 킬레이트제를 함유하는 알칼리성 수용액과의 접촉을 실시하고 있지만, 킬레이트제의 농도가 불충분한 예 (비교예) 이다. 산화물층은 충분히 제거 가능하다. 그러나, 강판의 생산량이 증가하면 알칼리성 수용액 중에 현탁 물질이 생성된다.Nos. 4 and 11 are in contact with an alkaline aqueous solution containing a chelating agent, but are examples where the concentration of the chelating agent is insufficient (comparative example). The oxide layer is sufficiently removable. However, an increase in the yield of the steel sheet produces a suspended substance in the alkaline aqueous solution.
No.19 및 23 은 킬레이트제를 함유하는 알칼리성 수용액과의 접촉을 실시하고 있지만, 접촉 시간이 짧은 예 (비교예) 이다. 산화물층의 두께가 6 ∼ 7 ㎚ 이고 충분히 제거되어 있지 않다.No. 19 and 23 contact with the alkaline aqueous solution containing a chelating agent, but are the example (comparative example) whose contact time is short. The oxide layer has a thickness of 6 to 7 nm and is not sufficiently removed.
No.27 및 34 는 킬레이트제를 함유하는 알칼리성 수용액과의 접촉을 실시하고 있지만, pH 가 낮은 예 (비교예) 이다. 산화물층의 두께가 7 ㎚ 이고 충분히 제거되어 있지 않다.Nos. 27 and 34 are in contact with an alkaline aqueous solution containing a chelating agent, but the pH is low (comparative). The thickness of the oxide layer is 7 nm and has not been sufficiently removed.
No.24 및 28 ∼ 33 은 pH 의 영향을 접촉 시간 1.0 초에 확인한 본 발명예이다. pH 12.6 이상이면, 접촉 시간 1.0 초여도 산화막을 2 ㎚ 이하로 제거할 수 있으며, 반응층을 형성하기 위한 반응 시간을 더욱 단축시킬 수 있다.No. 24 and 28-33 are the examples of this invention which confirmed the influence of pH in 1.0 second of contact time. If the pH is 12.6 or more, the oxide film can be removed to 2 nm or less even with a contact time of 1.0 second, and the reaction time for forming the reaction layer can be further shortened.
실시예 2Example 2
No.2 ∼ 53, 55, 57 에 대하여, Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층의 분석을 실시하였다.With respect to the No.2 ~ 53, 55, 57, was subjected to Zn 4 (SO 4) 1- X (CO 3) X (OH) 6 · analysis of the oxide layer which is a crystal structure containing indicated by the nH 2 O.
(4) Zn4(SO4)1-X(CO3)X(OH)6·nH2O 의 확인(4) Confirmation of Zn 4 (SO 4) 1- X (CO 3) X (OH) 6 · nH 2 O
Zn4(SO4)1-X(CO3)X(OH)6·nH2O 로 나타내는 결정 구조물이 함유되는 산화물층을, 직경 0.15 ㎜, 길이 45 ㎜ 의 스테인리스 브러쉬와 에탄올을 사용하여 표면을 비비고, 얻어진 에탄올액을 흡인 여과함으로써, 피막 성분을 분말 성분으로서 추출하였다. 분말로서 채취한 피막 성분을, 가스 크로마토그래프 질량 분석계를 사용하여 승온 분석함으로써 C 의 정량 분석을 실시하였다. 가스 크로마토그래프 질량 분석계의 전단에 열 분해로를 접속시켰다. 열 분해로 내에 채취한 분말 시료를 약 2 ㎎ 삽입하고, 열 분해로의 온도를 30 ℃ 로부터 500 ℃ 까지, 승온 속도 5 ℃/min 으로 승온시킨, 열 분해로 내에서 발생하는 가스를 헬륨으로 가스 크로마토그래프 질량 분석계 내로 반송하고, 가스 조성을 분석하였다. GC/MS 측정시의 칼럼 온도는 300 ℃ 로 설정하였다.The oxide layer containing the crystal structure represented by Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 .nH 2 O was prepared by using a stainless brush and a ethanol of 0.15 mm in diameter and 45 mm in length. The film component was extracted as a powder component by rubbing and filtering the obtained ethanol liquid. The quantitative analysis of C was performed by carrying out temperature analysis of the film component extract | collected as a powder using the gas chromatograph mass spectrometer. A pyrolysis furnace was connected to the front end of the gas chromatograph mass spectrometer. About 2 mg of the powder sample collected in the pyrolysis furnace was inserted, and the gas generated in the pyrolysis furnace in which the temperature of the pyrolysis furnace was raised from 30 ° C to 500 ° C at a heating rate of 5 ° C / min was converted into helium gas. It returned to the chromatograph mass spectrometer and the gas composition was analyzed. The column temperature at the time of GC / MS measurement was set to 300 degreeC.
C 의 존재 형태The form of C
동일하게 분말화하여 채취한 피막 성분, 가스 크로마토그래프 질량 분석을 사용하여 분석하고 C 의 존재 형태에 대해 분석을 실시하였다.In the same way, the powder component and the gas chromatograph mass spectrometry collected were analyzed, and the presence form of C was analyzed.
Zn, S, O, H 의 존재 형태Presence form of Zn, S, O, H
X 선 광전자 분광 장치를 사용하여, S, Zn, O 의 존재 형태에 대해 분석하였다. Al Ka 모노크롬 선원을 사용하여, Zn LMM, S 2p 에 상당하는 스펙트럼의 내로우 측정을 실시하였다.X-ray photoelectron spectroscopy was used to analyze the presence forms of S, Zn, O. Using an Al Ka monochrome source, narrow measurement of the spectrum corresponding to Zn LMM and S 2p was performed.
P 의 존재 형태 The form of P
X 선 흡수 미세 구조 장치를 사용하여 P 의 존재 상태에 대해 분석하였다. 고에너지 가속기 연구 기구 Photon Factory 의 빔 라인 BL27A 로, ZAFS (X 선 흡수단 미세 구조) 의 측정을 실온에서 실시하였다. 탈지한 시료 표면에 단색화한 방사광을 조사하고, P-K 각의 흡수단 XANES (X 선 흡수단 근방 구조) 스펙트럼을, 시료 흡수 전류 계측에 의한 전체 전자 수량법 (TEY) 으로 측정하였다.The presence of P was analyzed using an X-ray absorbing microstructure device. In the beam line BL27A of the high-energy accelerator research instrument Photon Factory, the measurement of ZAFS (X-ray absorption edge microstructure) was performed at room temperature. Monochromatic radiation was irradiated to the surface of the degreased sample, and the absorption edge XANES (structure near X-ray absorption edge) spectrum of the P-K angle was measured by the total electron quantity method (TEY) by sample absorption current measurement.
결정수의 정량 Quantification of Crystalline Water
시차열저울을 사용하여 100 ℃ 이하의 중량 감소량을 측정하였다. 측정에는 분말 시료 약 15 ㎎ 를 사용하였다. 시료를 장치 내에 도입 후, 실온 (약 25 ℃) 으로부터 1000 ℃ 까지, 승온 속도 10 ℃/min 으로 승온시키고, 승온시의 열중량 변화를 기록하였다.Differential heat balance was used to measure the amount of weight reduction up to 100 ° C. About 15 mg of a powder sample was used for the measurement. After the sample was introduced into the apparatus, the temperature was raised from room temperature (about 25 ° C) to 1000 ° C at a temperature increase rate of 10 ° C / min, and the thermogravimetric change at the time of temperature increase was recorded.
결정 구조의 특정 Specific to crystal structure
동일하게 분말화하여 채취한 피막 성분의 X 선 회절을 실시하여, 결정 구조를 추정하였다. 타깃으로는 Cu 를 사용하여, 가속 전압 40 ㎸, 관전류 50 ㎃, 스캔 속도 4 deg/min, 스캔 범위 2 ∼ 90 ˚의 조건으로 측정을 실시하였다.In the same manner, X-ray diffraction was performed on the powder components obtained by powdering, and the crystal structure was estimated. As a target, measurement was carried out using Cu under conditions of an acceleration voltage of 40 mA, a tube current of 50 mA, a scan speed of 4 deg / min, and a scan range of 2 to 90 degrees.
이하, No.2 ∼ 38, 40 ∼ 53, 55, 57 에 대하여, 얻어진 결과를 서술한다.Hereinafter, the result obtained about No.2-38, 40-53, 55, 57 is described.
가스 크로마토그래프 질량 분석의 결과, 150 ℃ ∼ 500 ℃ 사이에 CO2 의 방출을 확인할 수 있어, C 는 탄산염으로서 존재하는 것을 알 수 있었다.As a result of gas chromatograph mass spectrometry, it was possible to confirm the release of CO 2 between 150 ° C. and 500 ° C., and found that C was present as a carbonate.
X 선 광전자 분광 장치를 사용하여 분석한 결과, Zn LMM 에 상당하는 피크가 987 eV 부근에 관찰되어, Zn 은 수산화아연 상태로서 존재하고 있는 것을 알 수 있었다. 동일하게, S 2p 에 상당하는 피크가 171 eV 부근에 관찰되어, S 는 황산염으로서 존재하고 있는 것을 알 수 있었다.As a result of analysis using an X-ray photoelectron spectrometer, a peak corresponding to Zn LMM was observed around 987 eV, and it was found that Zn exists as a zinc hydroxide state. Similarly, a peak corresponding to S 2p was observed around 171 eV, and it was found that S exists as a sulfate.
X 선 흡수 미세 구조 장치를 사용하여 분석한 결과, 2153, 2158, 2170 eV 부근에 피크가 관찰되어, P 는 피로인산염으로서 존재하는 것을 알 수 있었다.As a result of analysis using an X-ray absorption microstructure device, peaks were observed around 2153, 2158, and 2170 eV, and it was found that P exists as pyrophosphate.
시차열저울의 결과로부터, 100 ℃ 이하로 11.2 % 의 중량 감소가 확인되어, 결정수를 함유하고 있는 것을 알 수 있었다.From the result of the differential thermal balance, the weight loss of 11.2% was confirmed below 100 degreeC, and it turned out that it contains the crystal water.
X 선 회절의 결과, 2θ 가 8.5 ˚, 15.0 ˚, 17.4 ˚, 21.3 ˚, 23.2 ˚, 26.3 ˚, 27.7 ˚, 28.7 ˚, 32.8 ˚, 34.1 ˚, 58.6 ˚, 59.4 ˚부근에 회절 피크가 관찰된다.As a result of the X-ray diffraction, diffraction peaks are observed around 2,5 °, 8.5, 15.0, 17.4, 21.3, 23.2, 26.3, 27.7, 28.7, 32.8, 34.1, 58.6, and 59.4 °. .
이상의 결과와 조성 비율, 전하 밸런스로부터, Zn4(SO4)0.95(CO3)0.05(OH)6·3.3H2O 로 나타내는 결정 구조 물질을 함유하고 있는 것을 알 수 있다.From the above results, composition ratio, and charge balance, it can be seen that the crystal structure material represented by Zn 4 (SO 4 ) 0.95 (CO 3 ) 0.05 (OH) 6 · 3.3H 2 O is contained.
No.39 에 대해 상세한 피막 분석을 실시하였다.No. 39 was subjected to detailed film analysis.
가스 크로마토그래프 질량 분석의 결과, 150 ℃ ∼ 500 ℃ 사이에 CO2 의 방출을 확인할 수 있어, C 는 탄산염으로서 존재하는 것을 알 수 있었다.As a result of gas chromatograph mass spectrometry, it was possible to confirm the release of CO 2 between 150 ° C. and 500 ° C., and found that C was present as a carbonate.
X 선 광전자 분광 장치를 사용하여 분석한 결과, Zn LMM 에 상당하는 피크가 987 eV 부근에 관찰되어, Zn 은 수산화아연 상태로서 존재하고 있는 것을 알 수 있었다. 동일하게, S 2p 에 상당하는 피크가 171 eV 부근에 관찰되어, S 는 황산 염으로서 존재하고 있는 것을 알 수 있었다.As a result of analysis using an X-ray photoelectron spectrometer, a peak corresponding to Zn LMM was observed around 987 eV, and it was found that Zn exists as a zinc hydroxide state. Similarly, a peak corresponding to S 2p was observed around 171 eV, and it was found that S was present as a sulfate.
X 선 흡수 미세 구조 장치를 사용하여 분석한 결과, 2153, 2158, 2170 eV 부근에 피크가 관찰되어, P 는 피로인산염으로서 존재하는 것을 알 수 있었다.As a result of analysis using an X-ray absorption microstructure device, peaks were observed around 2153, 2158, and 2170 eV, and it was found that P exists as pyrophosphate.
시차열저울의 결과로부터, 100 ℃ 이하로 9.4 % 의 중량 감소가 확인되어, 결정수를 함유하고 있는 것을 알 수 있었다.From the result of the differential thermal balance, the weight loss of 9.4% was confirmed at 100 degrees C or less, and it turned out that it contains the crystal water.
X 선 회절의 결과, 2θ 가 8.8 ˚, 15.0 ˚, 17.9˚, 21.3 ˚, 23.2 ˚, 27.0 ˚, 29.2 ˚, 32.9˚, 34.7 ˚, 58.9˚부근에 회절 피크가 관찰된다.As a result of X-ray diffraction, diffraction peaks were observed in the vicinity of 2θ of 8.8 °, 15.0 °, 17.9 °, 21.3 °, 23.2 °, 27.0 °, 29.2 °, 32.9 °, 34.7 °, and 58.9 °.
이상의 결과와 조성 비율, 전하 밸런스로부터, Zn4(SO4)0.8(CO3)0.2(OH)6·2.7H2O 로 나타내는 결정 구조 물질을 함유하고 있는 것을 알 수 있다.From the above results, the composition ratio and the charge balance, it can be seen that the crystal structure substance represented by Zn 4 (SO 4 ) 0.8 (CO 3 ) 0.2 (OH) 6 .2.7H 2 O is contained.
Claims (2)
글루콘산나트륨, 글루코헵톤산나트륨, 시트르산나트륨, 타르타르산, 아라본산, 갈락톤산, 소르비트, 만니톨, 글리세린, EDTA, 트리폴리인산나트륨 중에서 선택되는 1 종 이상의 킬레이트제를 합계 0.050 mass% 이상 10.0 mass% 이하 함유하고, pH 가 12.6 이상인 알칼리성 수용액에 아연계 도금 강판을 1.0 초 이상 접촉시키는 상기 반응층 형성의 전처리 단계; 및
상기 아연계 도금 강판 표면에 Zn4(SO4)1-X(CO3)X(OH)6·nH2O (단, X 는 0<X<1)로 나타내는 결정 구조물이 함유되는 산화물층인 상기 반응층을 형성하는 단계;
를 포함하는 것을 특징으로 하는 아연계 도금 강판의 제조 방법.Method for producing a galvanized steel sheet having a reaction layer on the surface of the steel sheet, the following method steps:
0.050 mass% or more and 10.0 mass% or less of a total of one or more chelating agents selected from sodium gluconate, sodium glucoheptonate, sodium citrate, tartaric acid, arabic acid, galactonic acid, sorbitan, mannitol, glycerin, EDTA, and sodium tripolyphosphate A pre-treatment step of forming the reaction layer, the zinc-plated steel sheet being brought into contact with the alkaline aqueous solution having a pH of 12.6 or more for 1.0 seconds or more; And
Zn 4 (SO 4 ) 1-X (CO 3 ) X (OH) 6 nH 2 O (where X is an oxide layer containing a crystal structure represented by 0 <X <1) on the surface of the zinc-based galvanized steel sheet Forming the reaction layer;
Method for producing a galvanized steel sheet comprising a.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2014-229484 | 2014-11-12 | ||
JP2014229484 | 2014-11-12 | ||
PCT/JP2015/005583 WO2016075920A1 (en) | 2014-11-12 | 2015-11-09 | Method for manufacturing galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170067834A KR20170067834A (en) | 2017-06-16 |
KR102007103B1 true KR102007103B1 (en) | 2019-08-02 |
Family
ID=55954023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177012379A KR102007103B1 (en) | 2014-11-12 | 2015-11-09 | Method for manufacturing steel sheet coated with zinc-based coating layer |
Country Status (7)
Country | Link |
---|---|
US (1) | US20170314138A1 (en) |
EP (1) | EP3219826A4 (en) |
JP (1) | JPWO2016075920A1 (en) |
KR (1) | KR102007103B1 (en) |
CN (1) | CN107109660A (en) |
MX (1) | MX2017006133A (en) |
WO (1) | WO2016075920A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11661666B2 (en) | 2019-10-10 | 2023-05-30 | The Boeing Company | Electrodeposited zinc and iron coatings for corrosion resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169772A (en) | 2005-12-20 | 2007-07-05 | Nippon Denro Kk | Coloring treatment method for hot dip galvanizing surface |
WO2015129283A1 (en) * | 2014-02-27 | 2015-09-03 | Jfeスチール株式会社 | Galvanized steel sheet and method for manufacturing same |
JP7013305B2 (en) * | 2018-03-29 | 2022-01-31 | 株式会社Lixil | Faucet device |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2915444A (en) * | 1955-12-09 | 1959-12-01 | Enthone | Process for cleaning and plating ferrous metals |
SE316668B (en) * | 1963-09-23 | 1969-10-27 | Parker Ste Continentale | |
JPH0713305B2 (en) * | 1987-03-02 | 1995-02-15 | 日新製鋼株式会社 | Surface treatment method for zinc plated steel sheet |
JPH05279868A (en) | 1992-04-01 | 1993-10-26 | Sumitomo Metal Ind Ltd | Treatment for surface of galvanized steel sheet |
JP4525252B2 (en) | 2003-08-29 | 2010-08-18 | Jfeスチール株式会社 | Method for producing galvannealed steel sheet |
KR20050022264A (en) * | 2003-08-29 | 2005-03-07 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing galvannealed steel sheet and galvannealed steel sheet |
JP4604712B2 (en) | 2004-12-27 | 2011-01-05 | Jfeスチール株式会社 | Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet |
JP4517887B2 (en) | 2005-02-25 | 2010-08-04 | Jfeスチール株式会社 | Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet |
KR101106516B1 (en) * | 2006-10-31 | 2012-01-20 | 제이에프이 스틸 가부시키가이샤 | Phosphate-treated galvanized steel sheet and method for producing the same |
TWI394863B (en) * | 2007-12-27 | 2013-05-01 | Kansai Paint Co Ltd | Metal surface treatment composition, and surface-treated metal material with metal surface treatment layer obtained from the metal surface treatment composition |
JP5338226B2 (en) * | 2008-09-26 | 2013-11-13 | Jfeスチール株式会社 | Galvanized steel sheet for hot pressing |
DE102012213089A1 (en) | 2012-07-25 | 2014-01-30 | Hamilton Bonaduz Ag | Coupling formation of a pipetting channel of a pipetting device for coupling a pipette tip thereto |
CN106062249B (en) * | 2014-02-27 | 2019-07-02 | 杰富意钢铁株式会社 | Zinc-based metal plated steel sheet and its manufacturing method |
-
2015
- 2015-11-09 MX MX2017006133A patent/MX2017006133A/en unknown
- 2015-11-09 KR KR1020177012379A patent/KR102007103B1/en active IP Right Grant
- 2015-11-09 EP EP15858294.0A patent/EP3219826A4/en not_active Withdrawn
- 2015-11-09 CN CN201580061436.4A patent/CN107109660A/en active Pending
- 2015-11-09 WO PCT/JP2015/005583 patent/WO2016075920A1/en active Application Filing
- 2015-11-09 US US15/526,140 patent/US20170314138A1/en not_active Abandoned
- 2015-11-09 JP JP2016512140A patent/JPWO2016075920A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169772A (en) | 2005-12-20 | 2007-07-05 | Nippon Denro Kk | Coloring treatment method for hot dip galvanizing surface |
WO2015129283A1 (en) * | 2014-02-27 | 2015-09-03 | Jfeスチール株式会社 | Galvanized steel sheet and method for manufacturing same |
JP7013305B2 (en) * | 2018-03-29 | 2022-01-31 | 株式会社Lixil | Faucet device |
Also Published As
Publication number | Publication date |
---|---|
KR20170067834A (en) | 2017-06-16 |
US20170314138A1 (en) | 2017-11-02 |
JPWO2016075920A1 (en) | 2017-04-27 |
MX2017006133A (en) | 2017-07-27 |
CN107109660A (en) | 2017-08-29 |
WO2016075920A1 (en) | 2016-05-19 |
EP3219826A1 (en) | 2017-09-20 |
EP3219826A4 (en) | 2017-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101878220B1 (en) | Galvanized steel sheet and method for producing the same | |
EP3112500B1 (en) | Galvanized steel sheet and method for manufacturing same | |
KR20200079574A (en) | Steel sheet for cans and production method for steel sheet for cans | |
JP2002012958A (en) | Alloyed hot-dip galvanized steel sheet and its manufacturing method | |
WO2017154495A1 (en) | Method for producing galvanized steel plate | |
KR102007103B1 (en) | Method for manufacturing steel sheet coated with zinc-based coating layer | |
WO2011121910A1 (en) | Method of manufacture for molten zinc-plated sheet steel | |
WO2010070943A1 (en) | Galvanized steel sheet and method for manufacturing the same | |
JP2005248262A (en) | Electrogalvanized steel sheet, and method and apparatus for producing the same | |
JP4604712B2 (en) | Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet | |
JP7036137B2 (en) | Manufacturing method of hot-dip galvanized steel sheet | |
JP5347434B2 (en) | Method for producing galvanized steel sheet | |
JP2009174047A (en) | Galvanized steel sheet, and method for producing the same | |
JP6361628B2 (en) | Manufacturing method of steel plate for containers | |
JP2013181217A (en) | Method for producing galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |