WO2016074602A1 - 一种超低衰减大有效面积的单模光纤 - Google Patents

一种超低衰减大有效面积的单模光纤 Download PDF

Info

Publication number
WO2016074602A1
WO2016074602A1 PCT/CN2015/094159 CN2015094159W WO2016074602A1 WO 2016074602 A1 WO2016074602 A1 WO 2016074602A1 CN 2015094159 W CN2015094159 W CN 2015094159W WO 2016074602 A1 WO2016074602 A1 WO 2016074602A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
effective area
layer
ultra
large effective
Prior art date
Application number
PCT/CN2015/094159
Other languages
English (en)
French (fr)
Inventor
龙胜亚
张磊
朱继红
吴俊�
王瑞春
Original Assignee
长飞光纤光缆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆股份有限公司 filed Critical 长飞光纤光缆股份有限公司
Priority to EP15858860.8A priority Critical patent/EP3220172B1/en
Priority to KR1020167035743A priority patent/KR101941353B1/ko
Priority to JP2017501684A priority patent/JP2017526003A/ja
Publication of WO2016074602A1 publication Critical patent/WO2016074602A1/zh
Priority to US15/448,292 priority patent/US9874687B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03683Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - - + +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers

Definitions

  • the present invention relates to the field of optical fiber transmission technologies, and in particular to a single mode optical fiber having an ultra-low attenuation large effective area.
  • the receiver uses coherent reception and digital signal processing (DSP) to digitally compensate for the dispersion and polarization mode dispersion (PMD) accumulated throughout the transmission.
  • the signal is modulated by polarization.
  • DSP coherent reception and digital signal processing
  • PMD dispersion and polarization mode dispersion
  • the signal is modulated by polarization.
  • DSP coherent reception and digital signal processing
  • PMD dispersion and polarization mode dispersion
  • PMD dispersion and polarization mode dispersion
  • the signal is modulated by polarization.
  • High-order modulation methods to reduce the baud rate of the signal, such as PM-QPSK, PDM-16QAM, PDM-32QAM, and even PDM-64QAM and CO-OFDM.
  • high-order modulation is very sensitive to nonlinear effects, so higher requirements are imposed on optical signal-to-noise ratio (OSNR).
  • OSNR optical signal-to-noise ratio
  • the nonlinear coefficient is a parameter used to evaluate the performance of the system caused by nonlinear effects. Defined as n2/A eff . Where n2 is the nonlinear refractive index of the transmission fiber and A eff is the effective area of the transmission fiber. Increasing the effective area of the transmission fiber can reduce the nonlinear effects in the fiber.
  • the common single-mode fiber used for the land transmission system line has an effective area of only about 80 um 2 .
  • the effective area of the optical fiber is higher, and the general effective area is above 100 um 2 .
  • the effective area of the transmission fiber is preferably above 130 um 2 .
  • a large effective area is often obtained by increasing the diameter of the optical core layer for transmitting the optical signal. There are certain design difficulties in this type of scheme.
  • the core layer of the optical fiber and the cladding near it mainly determine the basic performance of the optical fiber, and occupy a large proportion in the cost of manufacturing the optical fiber. If the radial dimension of the design is too large, the manufacturing cost of the optical fiber is inevitably increased. Raising the price of fiber will become an obstacle to the widespread application of such fibers.
  • the increase of the effective area of the fiber will bring about deterioration of other parameters of the fiber: for example, the cutoff wavelength of the fiber will increase, and if the cutoff wavelength is too large, it is difficult to ensure that the fiber is in the transmission band.
  • the single-mode state of the optical signal in addition, if the fiber refractive index profile is not properly designed, it may cause deterioration of parameters such as bending performance and dispersion.
  • Another type of fiber that limits long-distance and large-capacity transmission is attenuation.
  • the attenuation of conventional G.652.D fiber is generally 0.20 dB/km, and the laser energy is gradually reduced after long-distance transmission, so relay is required. The form is amplified again for the signal.
  • Relative to the cost of fiber optic cable, relay station related equipment and maintenance costs are 70% of the entire link system.
  • the transmission distance can be effectively extended, and construction and maintenance costs can be reduced.
  • the attenuation of the fiber is reduced from 0.20 to 0.16dB/km, the construction cost of the entire link will be reduced by about 30%.
  • Document EP2312350 proposes a large effective area fiber design with a non-pure silicon core design, which adopts a stepped depressed cladding structure design, and a design uses a pure silica outer cladding structure, and the related performance can reach a large effective area fiber G. .654.B and D requirements.
  • the maximum radius of the fluorine-doped cladding portion is 36um.
  • the cutoff wavelength of the optical fiber can be guaranteed to be less than or equal to 1530nm, the microscopic and macroscopic bending properties of the optical fiber are deteriorated due to the influence of the smaller fluorine doping radius. Therefore, in the process of fiber-forming cable, the attenuation is increased, and the relevant bending performance is not mentioned in the literature.
  • Document CN10232392 A describes an optical fiber having a larger effective area.
  • the effective area of the optical fiber of the invention reaches 150 um 2 or more, it is realized by adopting a conventional core layer design of fluorinated fluorine co-doping mode and by sacrificing the performance index of the cutoff wavelength. It allows the cable cut-off wavelength to be above 1450 nm, and in its described embodiment, the cable cut-off wavelength is even above 1800 nm. In practical applications, too high a cutoff wavelength is difficult to ensure that the fiber is cut off in the application band, and the optical signal cannot be guaranteed to be in a single mode state during transmission. Therefore, this type of fiber may face a series of practical problems in its application.
  • the outer diameter r 3 of the depressed cladding layer is at least 16.3 um, which is also excessively large.
  • the invention is not capable of optimally combining fiber parameters (e.g., effective area, cutoff wavelength, etc.) and fiber manufacturing costs.
  • the layer defined as the closest to the axis is the core layer according to the change of the refractive index, and the outermost layer of the fiber, that is, the pure silicon dioxide layer is defined as the outer layer of the fiber.
  • the relative refractive index ⁇ n i of each layer of the fiber is defined by the following equation.
  • n i is the refractive index of the core and n c is the refractive index of the cladding, ie the refractive index of pure silica.
  • E is the electric field associated with propagation and r is the distance from the axis to the distribution point of the electric field.
  • the IEC (International Electrotechnical Commission) standard 60793-1-44 defines: the cable cut-off wavelength ⁇ cc is the wavelength at which the optical signal no longer propagates as a single-mode signal after it has propagated for 22 meters in the fiber. In the test, it is necessary to obtain data by winding a fiber around a circle with a radius of 14 cm and two circles with a radius of 4 cm.
  • the technical problem to be solved by the invention is to design an ultra-low attenuation large effective area optical fiber with lower fiber manufacturing cost, the cable cut-off wavelength is less than 1530 nm, and has better bending loss and dispersion performance.
  • the technical solution adopted by the present invention to solve the above-mentioned problems is to include a core layer and a cladding layer, characterized in that the core layer radius r 1 is 4.8 to 6.5 ⁇ m, and the core layer relative refractive index difference ⁇ n 1 is - 0.06% ⁇ 0.10%, the inner layer is covered from the inside to the outside in the outer layer, the inner cladding layer is submerged, the outer cladding layer and the outer cladding layer are assisted, and the inner cladding radius r 2 of the optical fiber is 9-15 ⁇ m, and the relative refractive index difference ⁇ n 2
  • the ratio of the depressed inner cladding radius r 3 is 12 to 17 ⁇ m, the relative refractive index difference ⁇ n 3 is -0.8% to -0.3, and the auxiliary outer cladding radius r 4 is 37 to 50 ⁇ m.
  • the relative refractive index difference ⁇ n 4 ranges from -0.6% to -0.25%; the outer cladding is a pure si
  • the core layer of the optical fiber is a fluorinated fluorine-doped silica glass layer or an erbium-doped silica glass layer, wherein the doping contribution of germanium is 0.02% to 0.10%.
  • the inner cladding relative refractive index difference ⁇ n 2 is -0.32% to -0.21%.
  • the effective area of the optical fiber at a wavelength of 1550 nm is 100 to 140 ⁇ m 2 , preferably 119 to 140 ⁇ m 2 .
  • the cable cut-off wavelength of the optical fiber is equal to or less than 1530 nm.
  • the dispersion of the optical fiber at a wavelength of 1550 nm is equal to or less than 23 ps/nm*km, and the dispersion of the optical fiber at a wavelength of 1625 nm is equal to or less than 27 ps/nm*km.
  • the attenuation of the optical fiber at a wavelength of 1550 nm is equal to or less than 0.185 dB/km; preferably, it is equal to or less than 0.175 dB/km.
  • the microbend loss of the optical fiber at a wavelength of 1700 nm is equal to or less than 5 dB/km.
  • the optical fiber is bent at a wavelength of 1550 nm, and the bending radius of the R15 mm is bent for 10 times.
  • the macrobend loss of one turn of R10mm bend radius is equal to or less than 0.75dB.
  • the beneficial effects of the invention are as follows: 1. Using the erbium-doped core layer design, the viscosity matching inside the fiber is reasonably designed, the defects in the fiber preparation process are reduced, and the attenuation parameters of the fiber are reduced. 2. A reasonable fiber-fluorine-doped sag structure is designed, and the fiber has an effective area equal to or greater than 100um 2 by reasonable design of the core layers of the fiber. Under the preferred parameter range, it can be equal to or greater than 130um 2 , even larger than the effective area of 140um 2 . 3.
  • the comprehensive performance parameters such as cut-off wavelength, bending loss and dispersion of the present invention are good in the application band, and the cable cut-off wavelength is small enough to ensure the single-mode state of the optical signal of the optical fiber in the C-band transmission application, and the fiber profile
  • the multi-layer stepped depressed cladding structure has a wide depressed trap structure for limiting the leakage of the fundamental mode, and has a better improvement effect on the bending loss of the optical fiber. 4.
  • the outermost layer of the outer layer structure adopts the design of pure silica, which reduces the specific gravity of the fluorine-doped glass in the fiber, thereby reducing the manufacturing cost of the fiber.
  • Figure 1 is a cross-sectional view of a refractive index profile of an embodiment of the present invention.
  • the core layer comprises a core layer and a cladding layer, wherein the core layer is a fluorinated fluorine-doped silica glass layer or an erbium-doped silica glass layer, and the outer layer of the core layer is coated from the inner side to the outer layer, and the inner layer is covered. Layer, auxiliary outer layer and outer layer.
  • Table 1 lists the refractive index profile parameters of a preferred embodiment of the invention wherein ⁇ Ge is the doping amount of Ge in the core layer.
  • Table 2 shows the optical transmission characteristics corresponding to the optical fibers in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种超低衰减大有效面积的单模光纤,包括有芯层和包层,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层。芯层半径r 1为4.8~6.5μm,芯层相对折射率差Δn 1为-0.06%~0.10%;内包层半径r 2为9~15μm,相对折射率差Δn 2为-0.40%~-0.15%;下陷内包层半径r 3为12~17μm,相对折射率差Δn 3为-0.8%~-0.3;辅助外包层半径r 4为37~50μm,相对折射率差Δn 4范围为-0.6%~-0.25%;外包层为纯二氧化硅玻璃层。该单模光纤不仅具有较低衰减系数和较大有效面积,制造成本低,而且光纤的截止波长、弯曲损耗、色散等综合性能参数在应用波段良好。

Description

一种超低衰减大有效面积的单模光纤 技术领域
本发明涉及光纤传输技术领域,具体涉及一种具有超低衰减大有效面积的单模光纤。
背景技术
随着IP网络数据业务的迅速增长,运营商对于传输容量的需求不断提高,现网中单纤容量已逐渐在逼近极限值100Tbps。100G传输系统已开始进入商用元年。如何在100G传输信号的基础上进一步增加传输容量,是各系统设备商和运营商关注的焦点。
在100G和超100G系统中,接收端采用相干接收及数字信号处理技术(DSP),能够在电域中数字补偿整个传输过程中累积的色散和偏振模色散(PMD);信号通过采用偏振模复用和各种高阶调制方式来降低信号的波特率,例如PM-QPSK、PDM-16QAM、PDM-32QAM,甚至PDM-64QAM和CO-OFDM。然而高阶调制方式对非线性效应非常敏感,因此对光信噪比(OSNR)提出了更高的要求。引入低损耗大有效面积光纤,能为系统带来提高OSNR和降低非线性效应的效果当采用高功率密度系统时,非线性系数是用于评估非线性效应造成的系统性能优劣的参数,其定义为n2/Aeff。其中,n2是传输光纤的非线性折射指数,Aeff是传输光纤的有效面积。增加传输光纤的有效面积,能够降低光纤中的非线性效应。
目前,用于陆地传输系统线路的普通单模光纤,其有效面积仅约80um2左右。而在陆地长距离传输系统中,对光纤的有效面积要求更高,一般的有效面积在100um2以上。为了降低铺设成本,尽可能的减少中继器的使用,在无中继传输系统,如海底传输系统,传输光纤的有效面积最好在130um2以上。然而,目前大有效面积光纤的折射率剖面的设计中,往往通过增大用于传输光信号的光学芯层的直径来获得大的有效面积。该类方案存在着一定的设计难点。一方面,光纤的芯层和靠近它的包层主要决定光纤的基本性能,并在光纤制造的成本中占据较大的比重,如果设计的径向尺寸过大,必然会提高光纤的制造成本,抬高光纤价格,将成为此类光纤普遍应用的障碍。另一方面,相比普通单模光纤,光纤有效面积的增大,会带来光纤其它一些参数的恶化:比如,光纤截止波长会增大,如果截止波长过大则难以保证光纤在传输波段中光信号的单模状态;此外,光纤折射率剖面如果设计不当,还会导致弯曲性能、色散等参数的恶化。
另一种限制长距离大容量传输的光纤特性就是衰减,目前常规的G.652.D光纤的衰减一般在0.20dB/km,激光能量在经过长距离传输后逐渐减小,所以需要采用中继的形式对信号再次放大。而相对与光纤光缆的成本,中继站相关设备和维护成本在整个链路系统的70% 以上,所以如果涉及一种低衰减或者超低衰减光纤,就可以有效的延长传输距离,减少建设和维护成本。经过相关计算,如果将光纤的衰减从0.20降低到0.16dB/km,整个链路的建设成本将总体降低30%左右。
综上所述,开发设计一种超低衰减大有效面积光纤成为光纤制造领域的一个重要课题。文献US2010022533提出了一种大有效面积光纤的设计,为了得到更低的瑞利系数,其采用纯硅芯的设计,在芯层中没有进行锗和氟的共掺杂,并且其设计采用掺氟的二氧化硅作为外包层。对于这种纯硅芯的设计,其要求光纤内部必须进行复杂的粘度匹配,并要求在拉丝过程中采用极低的速度,避免高速拉丝造成光纤内部的缺陷引起的衰减增加,制造工艺及其复杂。
文献EP2312350提出了一种非纯硅芯设计的大有效面积光纤设计,其采用阶梯状下陷包层结构设计,且有一种设计采用纯二氧化硅外包层结构,相关性能能够达到大有效面积光纤G.654.B和D的要求。但在其设计中氟掺杂的包层部分最大半径为36um,虽然可以保证光纤的截止波长小于等于1530nm,但受到其较小氟掺杂半径的影响,光纤的微观和宏观弯曲性能变差,所以在光纤成缆过程中,会导致衰减增加,在其文献中也未提及相关弯曲性能。
文献CN10232392 A描述了一种具有更大有效面积的光纤。该发明所述光纤的有效面积虽然达到了150um2以上,但却因为采用了常规的锗氟共掺方式的芯层设计,且通过牺牲了截止波长的性能指标实现的。其允许光缆截止波长在1450nm以上,在其所述实施例中,成缆截止波长甚至达到了1800nm以上。在实际应用当中,过高的截止波长难以保证光纤在应用波段中得到截止,便无法保证光信号在传输时呈单模状态。因此,该类光纤在应用中可能面临一系列实际问题。此外,该发明所列举的实施例中,下陷包层外径r3最小为16.3um,同样有所偏大。该发明没有能够在光纤参数(如,有效面积、截止波长等)和光纤制造成本中得到最优组合。
发明内容
以下为本发明中涉及的一些术语的定义和说明:
相对折射率差折射率差Δni
从光纤纤芯轴线开始算起,根据折射率的变化,定义为最靠近轴线的那层为纤芯层,光纤的最外层即纯二氧化硅层定义为光纤外包层。
光纤各层相对折射率Δni由以下方程式定义,
Figure PCTCN2015094159-appb-000001
其中ni为纤芯的折射率,而nc为包层折射率,即纯二氧化硅的折射率。
光纤的有效面积Aeff
Figure PCTCN2015094159-appb-000002
其中,E是与传播有关的电场,r为轴心到电场分布点之间的距离。
光缆截止波长λcc
IEC(国际电工委员会)标准60793-1-44中定义:光缆截止波长λcc是光信号在光纤中传播了22米之后不再作为单模信号进行传播的波长。在测试时需通过对光纤绕一个半径14cm的圈,两个半径4cm的圈来获取数据。
本发明所要解决的技术问题旨在设计一种具有较低光纤制造成本的超低衰减大有效面积的光纤,其成缆截止波长小于1530nm,并且具有较好的弯曲损耗、色散性能。
本发明为解决上述提出的问题所采用的技术方案为:包括有芯层和包层,其特征在于所述的芯层半径r1为4.8~6.5μm,芯层相对折射率差Δn1为-0.06%~0.10%,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,所述的光纤的内包层半径r2为9~15μm,相对折射率差Δn2为-0.40%~-0.15%,所述的下陷内包层半径r3为12~17μm,相对折射率差Δn3为-0.8%~-0.3,所述的辅助外包层半径r4为37~50μm,相对折射率差Δn4范围为-0.6%~-0.25%;所述外包层为纯二氧化硅玻璃层。
按上述方案,光纤的芯层为锗氟共掺的二氧化硅玻璃层,或为掺锗的二氧化硅玻璃层,其中锗的掺杂贡献量0.02%~0.10%。
按上述方案,所述的内包层相对折射率差Δn2为-0.32%~-0.21%。
按上述方案,所述光纤在1550nm波长的有效面积为100~140μm2,优选条件下为119~140μm2
按上述方案,所述光纤的成缆截止波长等于或小于1530nm。
按上述方案,所述光纤在波长1550nm处的色散等于或小于23ps/nm*km,所述光纤在波长1625nm处的色散等于或小于27ps/nm*km。
按上述方案,所述光纤在波长1550nm处的衰耗等于或小于0.185dB/km;优选条件下等于或小于0.175dB/km。
按上述方案,所述光纤在波长1700nm处的微弯损耗等于或小于5dB/km。
按上述方案,所述光纤在波长1550nm处,R15mm弯曲半径弯曲10圈的宏弯损耗等 于或小于0.25dB,R10mm弯曲半径弯曲1圈的宏弯损耗等于或小于0.75dB.
本发明的有益效果在于:1、采用掺锗的芯层设计,合理的设计了光纤内部的粘度匹配,减少光纤制备过程中缺陷,降低光纤的衰减参数。2、设计了合理的光纤氟掺杂下陷结构,并通过对光纤各纤芯层剖面的合理设计,使光纤具有等于或大于100um2的有效面积,在较佳参数范围下,可以达到等于或大于130um2,甚至大于140um2的有效面积。3、本发明的截止波长、弯曲损耗、色散等综合性能参数在应用波段良好,足够小的的成缆截止波长,以保证该类光纤在C波段传输应用中光信号的单模状态,光纤剖面采用多层阶梯状下陷包层结构,具有较宽的下陷包层结构用于限制基模泄露,对光纤的弯曲损耗具有较好的改进作用。4、最外层的外包层结构采用了纯二氧化硅的设计,降低了氟掺杂玻璃在光纤中比重,从而降低了光纤制造生产成本。
附图说明
图1本发明一个实施例的折射率剖面结构分布图。
具体实施方式
以下结合实施例进行详细描述。
包括有芯层和包层,所述的芯层为锗氟共掺的二氧化硅玻璃层,或为掺锗的二氧化硅玻璃层,芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层。
表一所列为本发明优选的实施例的折射率剖面参数,其中ΔGe为芯层中Ge的掺杂量。表二为表一所述光纤所对应的光传输特性。
表一、本发明实施例的光纤剖面参数
Figure PCTCN2015094159-appb-000003
表二、本发明实施例的光纤参数
Figure PCTCN2015094159-appb-000004

Claims (8)

  1. 一种超低衰减大有效面积的单模光纤,包括有芯层和包层,其特征在于所述的芯层半径r1为4.8~6.5μm,芯层相对折射率差Δn1为-0.06%~0.10%;芯层外从内向外依次包覆内包层,下陷内包层,辅助外包层和外包层,所述的光纤的内包层半径r2为9~15μm,相对折射率差Δn2为-0.40%~-0.15%;所述的下陷内包层半径r3为12~17μm,相对折射率差Δn3为-0.8%~-0.3;所述的辅助外包层半径r4为37~50μm,相对折射率差Δn4范围为-0.6%~-0.25%;所述外包层为纯二氧化硅玻璃层。
  2. 按权利要求1所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤的芯层为锗氟共掺的二氧化硅玻璃层,或为掺锗的二氧化硅玻璃层,其中锗的掺杂贡献量为0.02%~0.10%。
  3. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在1550nm波长的有效面积为100~140μm2
  4. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤的成缆截止波长等于或小于1530nm。
  5. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1550nm处的色散等于或小于23ps/nm*km,所述光纤在波长1625nm处的色散等于或小于27ps/nm*km。
  6. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1550nm处的衰耗等于或小于0.185dB/km。
  7. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1700nm处的微弯损耗等于或小于5dB/km。
  8. 按权利要求1或2所述的超低衰减大有效面积的单模光纤,其特征在于所述光纤在波长1550nm处,R15mm弯曲半径弯曲10圈的宏弯损耗等于或小于0.25dB,R10mm弯曲半径弯曲1圈的宏弯损耗等于或小于0.75dB。
PCT/CN2015/094159 2014-11-12 2015-11-10 一种超低衰减大有效面积的单模光纤 WO2016074602A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15858860.8A EP3220172B1 (en) 2014-11-12 2015-11-10 Single-mode fiber with ultra-low attenuation and large effective area
KR1020167035743A KR101941353B1 (ko) 2014-11-12 2015-11-10 초저감쇠 대유효면적의 단일모드 광섬유
JP2017501684A JP2017526003A (ja) 2014-11-12 2015-11-10 極低損失で大有効面積の単一モード光ファイバ
US15/448,292 US9874687B2 (en) 2014-11-12 2017-03-02 Single-mode fiber with ultralow attenuation and large effective area

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410633787.5A CN104360434B (zh) 2014-11-12 2014-11-12 一种超低衰减大有效面积的单模光纤
CN201410633787.5 2014-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/448,292 Continuation US9874687B2 (en) 2014-11-12 2017-03-02 Single-mode fiber with ultralow attenuation and large effective area

Publications (1)

Publication Number Publication Date
WO2016074602A1 true WO2016074602A1 (zh) 2016-05-19

Family

ID=52527714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094159 WO2016074602A1 (zh) 2014-11-12 2015-11-10 一种超低衰减大有效面积的单模光纤

Country Status (6)

Country Link
US (1) US9874687B2 (zh)
EP (1) EP3220172B1 (zh)
JP (1) JP2017526003A (zh)
KR (1) KR101941353B1 (zh)
CN (1) CN104360434B (zh)
WO (1) WO2016074602A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138848A1 (en) 2018-01-11 2019-07-18 Sumitomo Electric Industries, Ltd. Optical fiber, coated optical fiber, and optical transmission system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104360434B (zh) 2014-11-12 2017-02-01 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104777551B (zh) * 2015-04-28 2018-03-16 长飞光纤光缆股份有限公司 一种低衰减大有效面积的单模光纤
CN104777553B (zh) * 2015-04-28 2017-12-29 长飞光纤光缆股份有限公司 一种超低衰减单模光纤
CN104765098B (zh) * 2015-04-28 2018-03-16 长飞光纤光缆股份有限公司 一种具有较低衰减系数的单模光纤
CN104749691B (zh) * 2015-04-28 2018-05-01 长飞光纤光缆股份有限公司 一种超低衰耗弯曲不敏感单模光纤
CN104898200B (zh) * 2015-06-25 2018-03-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤
CN104991307A (zh) 2015-07-31 2015-10-21 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN105866879B (zh) * 2016-06-14 2017-12-29 长飞光纤光缆股份有限公司 一种超低衰减大有效面积单模光纤
CN107247304B (zh) * 2017-07-21 2020-04-21 长飞光纤光缆股份有限公司 一种用于模分复用系统的超低衰减少模光纤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550802A (zh) * 2003-05-12 2004-12-01 ض� 超大有效面积光纤以及包含这种光纤的通信系统
JP2005195921A (ja) * 2004-01-08 2005-07-21 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
CN102043196A (zh) * 2009-10-13 2011-05-04 德雷卡通信技术公司 具有凹陷槽的单模光纤
CN102933996A (zh) * 2009-09-11 2013-02-13 康宁股份有限公司 低弯曲损耗光纤
CN103380389A (zh) * 2010-12-23 2013-10-30 普睿司曼股份公司 低宏弯曲损耗单模光纤
CN104360434A (zh) * 2014-11-12 2015-02-18 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483975B1 (en) * 2001-04-27 2002-11-19 Fitel Usa Corp. Positive dispersion optical fiber having large effective area
US7043125B2 (en) * 2001-07-30 2006-05-09 Corning Incorporated Optical waveguide fiber for local access
US6711330B1 (en) * 2001-12-07 2004-03-23 Corning Incorporated Optical transmission link with low bending loss
JP4082592B2 (ja) * 2003-06-04 2008-04-30 日本電信電話株式会社 単一モード光ファイバの特性分布評価法及びその装置
CN1300609C (zh) * 2003-10-28 2007-02-14 长飞光纤光缆有限公司 高性能色散补偿光纤及其制造方法
JP4322630B2 (ja) * 2003-11-06 2009-09-02 日本電信電話株式会社 単一モード光ファイバの遮断波長特性の評価方法
FR2863605B1 (fr) * 2003-12-15 2006-04-28 Cit Alcatel Procede de recharge plasma autour d'un tube dope au fluor
JP2006038898A (ja) * 2004-07-22 2006-02-09 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ、及び分布ラマン増幅伝送システム
US7272289B2 (en) * 2005-09-30 2007-09-18 Corning Incorporated Low bend loss optical fiber
US7620282B2 (en) * 2006-08-31 2009-11-17 Corning Incorporated Low bend loss single mode optical fiber
US7450807B2 (en) * 2006-08-31 2008-11-11 Corning Incorporated Low bend loss optical fiber with deep depressed ring
US7526169B2 (en) * 2006-11-29 2009-04-28 Corning Incorporated Low bend loss quasi-single-mode optical fiber and optical fiber line
JP5248977B2 (ja) * 2008-10-24 2013-07-31 日本電信電話株式会社 空孔付与型単一モード光ファイバの製造方法
JP5396468B2 (ja) * 2009-04-21 2014-01-22 株式会社フジクラ 空孔付き単一モード光ファイバ及びこれを用いた光伝送システム
CN101598834B (zh) * 2009-06-26 2011-01-19 长飞光纤光缆有限公司 一种单模光纤及其制造方法
JP5165648B2 (ja) * 2009-07-24 2013-03-21 日本電信電話株式会社 空孔付き単一モード光ファイバの設定方法
EP2352047B1 (en) * 2010-02-01 2019-09-25 Draka Comteq B.V. Non-zero dispersion shifted optical fiber having a large effective area
ES2684474T3 (es) * 2010-02-01 2018-10-03 Draka Comteq B.V. Fibra óptica con dispersión desplazada no nula que tiene una longitud de onda pequeña
US8542969B2 (en) * 2010-02-26 2013-09-24 Corning Incorporated Low bend loss optical fiber
JP5142409B2 (ja) * 2010-03-26 2013-02-13 日本電信電話株式会社 単一モード光ファイバ
US8538219B2 (en) * 2010-10-29 2013-09-17 Corning Incorporated Large effective area optical fiber with low bend loss
US8322166B2 (en) * 2010-11-22 2012-12-04 Corning Incorporated Method of manufacturing optical fiber with selected draw tension
CN102156323B (zh) * 2011-05-05 2012-06-06 长飞光纤光缆有限公司 一种单模光纤
ES2438173T3 (es) * 2011-05-27 2014-01-16 Draka Comteq Bv Fibra óptica de modo único
EP2533082B1 (en) * 2011-06-09 2013-12-25 Draka Comteq BV Single mode optical fiber
KR102038955B1 (ko) * 2011-08-19 2019-10-31 코닝 인코포레이티드 굽힘 손실이 낮은 광 섬유
JP5522696B2 (ja) * 2011-10-13 2014-06-18 日本電信電話株式会社 4芯単一モード光ファイバおよび光ケーブル
JP5660627B2 (ja) * 2011-10-13 2015-01-28 日本電信電話株式会社 多芯単一モード光ファイバおよび光ケーブル
JP5697157B2 (ja) * 2011-10-18 2015-04-08 日本電信電話株式会社 コア拡大単一モード光ファイバおよび光伝送システム
US8849082B2 (en) * 2011-11-29 2014-09-30 Corning Incorporated Low bend loss optical fiber
US8588569B2 (en) * 2011-11-30 2013-11-19 Corning Incorporated Low bend loss optical fiber
US8666214B2 (en) * 2011-11-30 2014-03-04 Corning Incorporated Low bend loss optical fiber
CN102944910B (zh) * 2012-10-30 2015-07-22 长飞光纤光缆股份有限公司 具有大有效面积的单模光纤
US9020316B2 (en) * 2013-02-28 2015-04-28 Corning Incorporated Low attenuation optical fibers with an F-graded index core
WO2017048827A1 (en) * 2015-09-15 2017-03-23 Corning Incorporated Low bend loss single mode optical fiber with chlorine up doped cladding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1550802A (zh) * 2003-05-12 2004-12-01 ض� 超大有效面积光纤以及包含这种光纤的通信系统
JP2005195921A (ja) * 2004-01-08 2005-07-21 Nippon Telegr & Teleph Corp <Ntt> 単一モード光ファイバ
CN102933996A (zh) * 2009-09-11 2013-02-13 康宁股份有限公司 低弯曲损耗光纤
CN102043196A (zh) * 2009-10-13 2011-05-04 德雷卡通信技术公司 具有凹陷槽的单模光纤
CN103380389A (zh) * 2010-12-23 2013-10-30 普睿司曼股份公司 低宏弯曲损耗单模光纤
CN104360434A (zh) * 2014-11-12 2015-02-18 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138848A1 (en) 2018-01-11 2019-07-18 Sumitomo Electric Industries, Ltd. Optical fiber, coated optical fiber, and optical transmission system
JP2019120894A (ja) * 2018-01-11 2019-07-22 住友電気工業株式会社 光ファイバ、光ファイバ心線および光伝送システム
US10989864B2 (en) 2018-01-11 2021-04-27 Sumitomo Electric Industries, Ltd. Optical fiber, coated optical fiber, and optical transmission system

Also Published As

Publication number Publication date
EP3220172A4 (en) 2018-06-13
KR101941353B1 (ko) 2019-01-22
KR20170009956A (ko) 2017-01-25
CN104360434B (zh) 2017-02-01
CN104360434A (zh) 2015-02-18
JP2017526003A (ja) 2017-09-07
EP3220172B1 (en) 2019-08-28
US9874687B2 (en) 2018-01-23
US20170176674A1 (en) 2017-06-22
EP3220172A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2016074602A1 (zh) 一种超低衰减大有效面积的单模光纤
WO2017020457A1 (zh) 一种超低衰减大有效面积的单模光纤
KR101731743B1 (ko) 대유효면적 광섬유
JP6671389B2 (ja) 極低減衰の単一モード光ファイバ
CN107422415B (zh) 一种超低衰减大有效面积的单模光纤
WO2014135054A1 (zh) 一种低衰减单模光纤
CN104459876A (zh) 超低衰减大有效面积的单模光纤
WO2016173253A1 (zh) 一种超低衰耗弯曲不敏感单模光纤
CN107678088A (zh) 低衰减大有效面积的单模光纤
CN107678087A (zh) 一种低衰减大有效面积单模光纤
CN104898201B (zh) 一种超低衰减大有效面积的单模光纤
CN107490819B (zh) 具有超低衰减大有效面积的单模光纤
CN107193079A (zh) 一种低衰减大有效面积的单模光纤
CN104777551B (zh) 一种低衰减大有效面积的单模光纤
CN102768383A (zh) 一种具有大有效面积的单模光纤
WO2023240881A1 (zh) 一种陆地用g.654.e光纤及其制作工艺
CN109683233A (zh) 一种具有超低衰减大有效面积的单模光纤
CN104880766B (zh) 一种超低衰减单模光纤
CN104765098B (zh) 一种具有较低衰减系数的单模光纤
CN109683232A (zh) 具有超低衰减大有效面积的单模光纤
Wang et al. A Single Mode Optical Fiber with Large Effective Area
CN115963596A (zh) 一种适用于电力超长距光传输的单模光纤
CN116908957A (zh) 一种g.654.e光纤及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167035743

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017501684

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015858860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015858860

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE