CN1550802A - 超大有效面积光纤以及包含这种光纤的通信系统 - Google Patents

超大有效面积光纤以及包含这种光纤的通信系统 Download PDF

Info

Publication number
CN1550802A
CN1550802A CNA2004100300197A CN200410030019A CN1550802A CN 1550802 A CN1550802 A CN 1550802A CN A2004100300197 A CNA2004100300197 A CN A2004100300197A CN 200410030019 A CN200410030019 A CN 200410030019A CN 1550802 A CN1550802 A CN 1550802A
Authority
CN
China
Prior art keywords
optical fiber
core region
refraction
sla
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100300197A
Other languages
English (en)
Other versions
CN1278150C (zh
Inventor
孙懿
W��Ƥ�˺�ķ
戴维·W·皮克汉姆
吴凤清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHITEL AMERICAN CO
Original Assignee
PHITEL AMERICAN CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHITEL AMERICAN CO filed Critical PHITEL AMERICAN CO
Publication of CN1550802A publication Critical patent/CN1550802A/zh
Application granted granted Critical
Publication of CN1278150C publication Critical patent/CN1278150C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/0228Characterised by the wavelength dispersion slope properties around 1550 nm

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

提供一种超大有效面积(SLA)的光纤(10),该光纤适于在较宽的波长范围进行通信,并且,由于具有较大的有效面积,可以抑制通常会由信道之间的交互作用引起的非线性效应。本发明的SLA光纤(10)的有效面积Aeff优选在1310nm附近的波长窗口处等于或大于约80μm2。因此,本发明的SLA光纤(10)具有非常大的有效面积和非常低的截止波长。根据本发明,提供各种具有非常大的有效面积和所需的传输性能的SLA光纤。本发明的SLA光纤的大的有效面积使非线性效应以及模拟传输中的受激布里渊散射受到抑制。大的有效面积还降低了衰减。抑制非线性效应和降低衰减可以使得信号在较远的距离和在较宽的带宽上传输。

Description

超大有效面积光纤 以及包含这种光纤的通信系统
技术领域
本发明涉及光纤。更具体地,本发明涉及具有低损耗且具有宽的工作波长范围的超大有效面积(SLA)光纤。
背景技术
光纤是可以远距离且以相对较低的衰减传输包含相对较大量的信息的光信号的玻璃或塑料细线。一般而言,光纤通过这样一种方法制成,即,加热并拉拔包含折射纤芯区的光预制棒的一部分,该折射纤芯区被由玻璃或其它适当的材料制成的保护包层区环绕。通常还用施加在包层区上的一层或多层涂层保护由预制棒拉拔出来的光纤。
利用光纤进行的传输技术的进展已使得光纤可以具有极大的带宽容量。这种带宽使得可以在细如毛发的纤维上同时传输几千个电话会话和几百个电视频道。在波分复用(WDM)系统中增加了光纤的传输容量,其中,在单根光纤上复用若干个信道,而各个信道在不同的波长下进行工作。但是,在WDM系统中,出现信道之间的非线性交互作用,诸如严重降低了系统容量的4光子混合。美国专利No.5327516(′516专利)已大致解决了这个问题。′516专利公开了通过在工作波长下引入少量的色散而降低这些非线性交互作用的光纤。
随着用单根光纤传输的WDM信道的数量增加,由光纤承载的光功率也增加。随着光功率增加,由信道之间的交互作用产生的非线性效应也增加。因此,为了降低信道之间的非线性交互作用,特别是考虑到日益增长的带宽需求,光纤最好是向各WDM信道提供少量的色散。但是,为了可以在传输链路后恢复信号,很重要的是,在不同WDM信道间引入的色散变化要尽可能少。
在用于制作光纤的材质方面已取得重要进展。在1970年,玻璃光纤的可接受的损耗在20分贝/千米(dB/km)的范围内,但现在损耗一般为约0.25dB/km。玻璃光纤在理论上的最小损耗小于0.15dB/km,它出现在约1550纳米(nm)的波长上。由于玻璃光纤中的光速是光的传输波长的函数,所以对于包含一定范围的波长的脉冲,玻璃光纤中的色散导致脉冲扩展。脉冲加宽是光纤色散、光纤长度和光源的光谱宽度的函数。通常用纵轴为色散(单位为皮秒(ps)/纳米(nm)),或ps/nm-km(千米),横轴为波长的图(未示出)表示各光纤的色散。可以同时有正色散和负色散,因此纵轴的范围为诸如-250到+25ps/nm km。在横轴上色散等于零时的波长对应于光纤最高的带宽。但是,该波长一般不与光纤以最小衰减传输光时的波长一致。
例如,典型的第一代单模光纤通常在1550nm下传输时衰减最小,而同一光纤的色散在1310nm时接近于零。并且,玻璃光纤的上述理论最小损耗发生在传输波长为约1550nm时。掺杂铒的放大器是目前应用最普遍的用于放大光纤上传载的光信号的光学放大器,由于它在1530-1565nm的范围内工作,所以正常使用的传输波长为1550nm。由于这种光纤的色散一般在1310nm的波长上而非在1550nm的最佳传输波长上最接近零,因此,为了提供最佳整体系统性能(即,低的光损耗和低色散),人们正在不懈努力以提高传输路径上的色散补偿。
为了提高光谱效率并降低波分复用和密集型波分复用(WDM/DWDM)光传输系统的误码率,最好抑制上述非线性光学效应并降低较宽的带宽上的衰减。已开发了超大有效面积(SLA)光纤以满足这种需要。SLA光纤一般被用作传输光纤且一般同时具有正色散和正色散斜率。这些光纤的大有效面积抑制非线性效应,使得在较宽的波长范围内提高传输性能。但是,目前制作的大多数SLA光纤在接近1450nm处具有截止波长,这具有两个缺点。首先,该截止波长使得在~1300nm波长窗口内的单模工作变得不可能,对于单模光纤,在该波长窗口中色散最小。在城域网络中,在1310nm的SONET/SPH传输还非常广泛。另外,通过降低SLA光纤中受激布里渊散射(SBS)的阈值,可以对在1550nm的较远距离(例如大于20km)的光缆电视传输有利。但是,当前SLA光纤的较高的截止波长将会阻碍1310nm业务在同一光纤路径上的应用,使得该光纤路径灵活性更小,从而被配置的可能性更小。最后,1450nm的截止波长对于S和C波段中的信号的拉曼脉动(Raman pumping)不是优选的。
最好提供这样的SLA光纤,即该SLA光纤与现有SLA光纤相比具有较低的截止波长,且与现有SLA光纤的有关传输性能相比具有相同或更高的传输性能,包括诸如在较宽波长范围上具有较低非线性光学效应和较低的衰减。
发明内容
本发明提供这样一种超大有效面积光纤,它适于在宽波长范围工作,并且,由于它具有较大的有效面积,因此它可以抑制所有类型的非线性效应。在1310nm附近的波长窗口处,本发明的SLA光纤的有效面积Aeff优选地等于或大于约80μm2。因此,本发明的SLA光纤具有非常大的有效面积和较适于1310nm工作的较低的截止波长。根据本发明,提供具有非常大的有效面积和所需的传输性能的各种SLA光纤。本发明的SLA光纤的较大有效面积可以抑制非线性效应。虽然SLA光纤的有效面积非常大,但这些SLA光纤提供强大的光能导引能力和非常优异的对于微弯曲和宏弯曲损耗效应的抵抗能力。抑制非线性效应的结果可以使得信号在较远的距离范围内以较宽的带宽进行传输。通过降低作为模拟光波系统中最普遍的非线性效应的受激布里渊散射(SBS)的阈值,也可以有利于光缆TV系统。SBS阈值限制了放大的CATV传输中在1550nm下的发射功率,限制了放大器之间的距离,对系统的成本产生负面影响。
优选地,SLA光纤包含至少分段为具有正的相对折射率n1a和n1b的第一和第二部分的纤芯区、具有负的相对折射率n2且环绕纤芯区的第一环形区(即,沟槽区)和相对折射率n0为0.0%且环绕第一环形区的包层区。这里所用的术语“分段”用来表示纤芯至少具有两个相对折射率不同的区域。
这里所用的术语“相对折射率”指光纤中除包层区以外的区域的折射率值是相对于包层区的折射率而给出的。这就是为什么认为包层区的相对折射率为0.0%。将纤芯区分段,使得纤芯区的相对折射率在纤芯区的第一部分的边缘与纤芯区的第二部分的边缘一致的位置为最大。纤芯区中与最大相对折射率相对应的位置最好沿径向偏离纤芯区的中心。用这种方式将纤芯区分段(即,使得最大相对折射率出现在纤芯中沿径向偏离纤芯中心的位置),可以使得光纤具有超大有效面积,同时具有非常低的截止波长。并且,在获得这些传输性能时不会导致任何宏弯曲损耗或衰减的增加。
根据另一实施例,本发明的SLA光纤包含未被分段的纤芯。但是,可以将沟槽区分为具有不同相对折射率的第一和第二沟槽部分。
通过以下的说明、附图和权利要求,本发明的这些和其它特征和优点将变得更加明显。
附图说明
图1是根据本发明一个实施例的超大有效面积(SLA)光纤的端面剖面图。
图2-8表示根据本发明的各个实施例的SLA光纤的各种相对折射率分布。
具体实施方式
图1是根据本发明的一个实施例的超大有效面积(SLA)光纤10的端面剖面图。SLA光纤10包含分段的中心纤芯区11、环绕纤芯区11的第一环形区13和环绕沟槽区的外包层14。纤芯区11分段为分别具有不同相对折射率n1a和n1b的第一和第二部分纤芯区部分12A和12B。第一环形区(或沟槽区)13具有标称折射率n2。外包层14具有标称折射率n3。如下面参照图7所详细讨论的那样,根据本发明的SLA光纤还可以具有其它的区,诸如除沟槽区13之外的另一负相对折射率区。
应当注意,图1中所示的光纤10未按比例给出(包层14的外径优选为约125μm,而纤芯区11的直径优选为约7-10μm)。对于光纤10的各区的尺寸,本发明不限于任何特定尺寸。并且,如下详述,由于不同区域的相对折射率的值,以及由于它们的功能,以下,将第一环形区13称为“沟槽”区,而将区域14称为外包层。
还应当注意,虽然图1中所示的各圆环暗示区域11-14的折射率之间的变化是突变的,可能是这种情况,但不是必需的。圆环使得可以很容易地区分各个区域,这有助于对本发明进行说明。
下面参照图2-7说明提供本发明的各种SLA的各种折射率分布。如下面所述,与这些分布的每一个相关的SLA都具有大的有效面积和所需的传输性能。应当注意,这些折射率分布和相关的SLA仅是实例,本发明并不仅限于这些实例。提供这些实例是为了说明具有分段为两个或两个以上的折射率不同的部分的纤芯的SLA光纤可以具有超大有效面积和所需的传输性能,诸如低的截止波长、低的宏弯曲损耗、低的微弯曲损耗和低的衰减。当然,传输性能随分布而改变,并且根据所需的传输性能选择分布。例如,一个分布与另一个分布相比可以提供较大有效面积和较低的截止波长,但可能具有较大的宏弯曲损耗和/或衰减,反之亦然。
图2是根据本发明的一个实施例的SLA光纤的折射率分布20的图解表示,例如,该SLA光纤如图1所示。Y轴对应于以百分比表示的相对折射率,X轴对应于以微米表示的从光纤10的纤芯11的中心沿半径向光纤10的包层14的外边缘延伸的位置。图2中所示的折射率值为相对折射率值,即,它们是相对于外包层14的折射率。因此,应将图2中给出的折射率值看作特定区域的折射率值与外包层14的折射率值之间的差除以外包层14的折射率值。换句话说,给定区域的相对折射率值由公式(nregion-ncladding)/ncladding给出,其中,nregion对应于特定区域的折射率,ncladding对应于包层的折射率。因此,当这里讨论光纤10的各个区域的折射率时,应当理解实际上是用相对折射率对它们进行讨论。
SLA光纤10包含掺杂锗的石英(SiO2)纤芯11(例如,掺杂了适当量的GeO2的SiO2)、环绕纤芯区11的掺杂氟(F)和/或锗(Ge)的沟槽区13(例如,掺杂了适当量的GeO2和F的SiO2)、和环绕沟槽区13的纯石英外包层14。优选地,纤芯区11的部分12A和12B掺杂不同量的锗,以使得这些区域相对于X方向的位置分别具有不同的正的折射率值n1a和n1b。对沟槽区13的掺杂使沟槽区13具有负的相对折射率。图2所示的对应于纤芯区12A和12B的折射率分布的各个部分由下列公式确定:
n 1 a ( 0 ≤ r ≤ a 1 ) = ( r a 1 ) α 1 × n max
n 1 b ( a 1 ≤ r ≤ ( a 1 + a 2 ) ) [ 1 - ( r - a 1 a 2 ) α 2 ] × n max
其中,r为半径位置,单位为微米,nmax是纤芯区11的最大相对折射率,a1是纤芯区的第一部分的半径,a2是纤芯区的第二部分的厚度,n1a是分段纤芯区的第一部分的相对折射率,n1b是分段纤芯区的第二部分的相对折射率,a1+a2是纤芯区的半径r,a3是沟槽区的宽度,a1+a2+a3是向外到达与外包层14的开端邻近的沟槽区13的外边缘的半径。
沟槽区的半径由式子a1+a2≤r≤a1+a2+a3给出。应注意,虽然图2中仅给出外包层14的半径为30μm,但这只是由于图面所限。虽然本发明不把包层限于任何具体半径尺寸,但外包层14的半径一般远大于所示出的尺寸(例如,125μm)。事实上,可能希望更大的包层尺寸。
项a1≥1是规定纤芯区11的形状的幂数。优选地,0≤a1≤2.65,7.1≤a1+a2≤10,和3≤a3≤25,这里,所有值的单位均为微米。优选地,0.25%≤nmax≤0.42%。优选-0.4%≤n2≤0.075%,这里n2是沟槽区13的相对折射率。这里将把包层区的折射率视为n0,其中,n0是0.0%。图2中所示的相对折射率分布20反映了这些值和范围。分段纤芯区的最大相对折射率对应于分布20的点21。最大值点21不位于Y轴上说明了最大值点21偏离了纤芯区11的中心。分别具有上升斜坡和下降斜坡的线22和23使纤芯区11的分布呈现有些三角形状。虽然将纤芯区11分段,但与纤芯区11的部分12A和12B对应的分布20的各部分不必是线性的。例如,与纤芯11对应的分布的该部分可以为抛物线形和椭圆形等。并且,例如,与分段纤芯区的一个部分对应的分布的部分可以为线性的,而与纤芯区的另一部分对应的分布的部分可以为非线性的。
在图2中,由数字标记24表示分布20中对应于沟槽区13的部分。在图2中,由标记25表示分布20中对应于外包层14的部分。图2中所示的分布20对应的传输性能如下:
1)有效面积Aeff(1550nm)≥95μm2;Aeff(1310nm)≥80μm2
2)光缆截止波长≤1310nm;
3)宏弯曲损耗:直径心轴为20mm时小于10dB/m;
4)衰减损耗:在1550nm时小于0.19dB/km;在1310nm时小于0.35dB/km;以及
5)色散(D):在1550nm时D为约20ps/km/nm;
6)色散对色散斜率的比值(RDS):在1550nm时RDS为约0.0031nm-1
图3是根据本发明的另一实施例的SLA光纤的相对折射率分布30。该SLA光纤的传输性能如下:
1)有效面积Aeff(1550nm)≈113.9μm2;Aeff(1310nm)≈100.3μm2
2)光缆截止波长≤1300nm;
3)宏弯曲损耗:直径心轴为20mm时小于10dB/m;
4)D(1550nm):20.55ps/km/nm
5)色散斜率(S)(1550nm):0.064ps/km/nm2
6)衰减损耗:在1550nm时小于0.19dB/km;在1310nm时小于0.35dB/km。
SLA光纤的分段纤芯的第一部分对应于线31。SLA光纤的分段纤芯的第二部分对应于线32。最大相对折射率对应于点33。从折射率最大值点33的位置可以看出,最大值点33沿径向偏离纤芯区的中心,这是优选的。并且,图3的分布30的最大值点33稍稍大于图2中所示的分布20的最大值点21。SLA的沟槽区对应于分布30中由标记34表示的部分。由标记35表示分布30中对应于SLA光纤的外包层的部分。
从分布30和上面所列的传输性能可以看出,根据本发明的本实施例的SLA光纤也具有非常低的截止波长,同时,还具有非常大的有效面积。并且,由分布30表示的光纤具有非常低的宏弯曲损耗和低的衰减损耗。
图4是根据本发明的另一实施例的SLA光纤的相对折射率分布40。该SLA光纤的传输性能如下:
1)有效面积Aeff(1550nm)≈107.3μm2;Aeff(1310nm)≈93.7μm2
2)光缆截止波长≤1300nm;
3)宏弯曲损耗:直径心轴为20mm时小于10dB/m;
4)D(1550nm):20.49ps/km/nm
5)S(1550nm):0.064ps/km/nm2
6)衰减损耗:在1550nm时小于0.19dB/km,在1310nm时小于0.35dB/km;
SLA光纤的分段纤芯的第一部分对应于线41。SLA光纤的分段纤芯的第二部分对应于线42。最大相对折射率对应于点43。从折射率最大值点43的位置可以看出,最大值点沿径向偏离纤芯区的中心。除了分布40的最大值点43明显大于分布30的最大值点33外,图4的分布40与图3的分布30非常相似。同样地,图4中所示的分布40的最大值点43明显大于图2中所示的分布20的最大值点21。
由标记44表示分布40的沟槽区。由标记45表示分布40中对应于SLA光纤的外包层的部分。从分布40和上面所列的传输性能可以看出,根据本发明的本实施例的SLA光纤也具有非常低的截止波长,同时,也具有非常大的有效面积。并且,由分布40表示的光纤具有非常低的宏弯曲损耗和较低的衰减损耗。
图5是根据本发明的另一实施例的SLA光纤的相对折射率分布50。该SLA光纤的传输性能如下:
1)有效面积Aeff(1550nm)≈122.9μm2;Aeff(1310nm)≈102.1μm2
2)光缆截止波长≤1320nm;
3)宏弯曲损耗:直径心轴为20mm时小于10dB/m;
4)D(1550nm):19.60ps/km/nm
5)S(1550nm):0.063ps/km/nm2
6)衰减损耗:在1550nm时小于0.19dB/km,在1310nm时小于0.35dB/km;
最大折射率53处于Y轴上,这意味着在纤芯中出现最大值的点基本上没有偏离纤芯的中心。如其它实例那样,将纤芯分段为具有不同相对折射率的两个部分。分布50的部分52的抛物线形状意味着限定纤芯的分布形状的幂数α大于2。与图2~4中所示的分布的沟槽区部分相比,分布的沟槽区部分54相对较窄。用标记55表示分布中对应于包层区的部分。
图6是根据本发明的另一实施例的SLA光纤的相对折射率分布60。该SLA光纤的传输性能如下:
1)有效面积Aeff(1550nm)≈131.2μm2;Aeff(1310nm)≈112.4μm2
2)光缆截止波长≤1340nm;
3)宏弯曲损耗:直径心轴为20mm时小于10dB/m;
4)D(1550nm):20.08ps/km/nm
5)S(1550nm):0.064ps/km/nm2
6)衰减损耗:在1550nm时小于0.19dB/km,在1310nm时小于0.35dB/km;
除了如线61所示最大相对折射率点63偏离纤芯的中心轴之外,分布60与图5的分布50非常相似。SLA光纤的沟槽区对应于分布60中由标记64表示的部分。如图5的分布50那样,沟槽区的相对折射率大于对应于图2~4的分布的沟槽区的相对折射率。由标记65表示分布60中对应于SLA光纤的外包层的部分。
图7是根据本发明的另一实施例的SLA光纤的相对折射率分布70。该SLA光纤的传输性能为:
1)有效面积Aeff(1550nm)≈106.4μm2;Aeff(1310nm)≈92.5μm2
2)光缆截止波长≤1300nm;
3)宏弯曲损耗:直径心轴为20mm时小于10dB/m;
4)D(1550nm):20.64ps/km/nm
5)S(1550nm):0.063ps/km/nm2
6)衰减损耗:在1550nm时小于0.19dB/km;在1310nm时小于0.35dB/km;
SLA光纤的分段纤芯的第一部分对应于线71。SLA光纤的分段纤芯的第二部分对应于线72。最大相对折射率对应于点73。从折射率最大值点73的位置可以看出,最大值点沿径向偏离纤芯区的中心。SLA光纤的沟槽区对应于分布中由标记74表示的部分。将该分布70与图2-6的实例分布相比较,可以看出,分布中对应于沟槽区的部分74相对较深(即,与图2-6的实例相比其相对折射率较低),并且也相对较窄。在沟槽区后面,相对折射率在分布中由标记76表示的部分上变为0.0%,然后在分布中由标记77表示的部分上变为负值。因此,与图2~6所示的分布不同,图7中所示的分布70具有两个凹陷的区域,即,由分布部分74表示的沟槽区和由分布部分77表示的第二区,该分布部分77具有大于沟槽区的相对折射率的负的相对折射率。分布中由标记78表示的部分对应于包层区。
从以上所列的具有分布70的SLA的传输性能可以看出,根据本发明的本实例的SLA光纤也具有极低的截止波长,同时具有非常大的有效面积。
图8是根据本发明的另一实施例的SLA光纤的相对折射率分布80。与使用上述实施例的光纤一样,该SLA光纤的传输性能也满足需要。例如,光纤的有效面积Aeff(1550nm)≈110μm2,光缆截止波长≤1270nm,宏弯曲损耗在直径心轴为32mm时小于0.810dB/m。色散为D(1550nm):18.57ps/km/nm。色散斜率为S(1550nm):0.061ps/km/nm2。根据该实施例的SLA光纤的相对色散斜率(RDS)为0.0033nm-1
没有将根据本实施例的SLA光纤的纤芯分段,该纤芯具有基本恒定的相对折射率。分布80中对应于纤芯的部分由标记线81表示。最大相对折射率为约0.25%。SLA光纤的沟槽区具有分别由标记82和83表示的第一和第二部分。沟槽区的第一部分82从约6μm延伸到约18μm。沟槽区的第二部分83从约18μm延伸到约33μm。沟槽区83厚度为33μm仅是一个例子,它可在约30μm到约45μm的范围内。在本例子中,分布中对应于包层区的部分从约33μm延伸到约62.5μm。
从以上所列的具有分布80的SLA的传输性能可以看出,根据本发明的本实例的SLA光纤也具有极低的截止波长,同时具有非常大的有效面积和低的光损耗特性。
从以上提供的实例可以看出,本发明的SLA具有超大有效面积和所需的传输性能,诸如相对较低的截止波长。并且,根据本发明的SLA还具有与现有SLA光纤相比相当或更优的其它所需的传输性能,诸如低的宏弯曲损耗、低的微弯曲损耗和低的衰减。
本领域中的技术人员可以理解,在不偏离本发明的范围的情况下,可以对这里所述的光纤的实施例进行多种变化和替换。这些变化和替换包含但不限于下列方面:使用不同的掺杂材料以实现相同或不同的分布形状、在制作光纤时使用塑料材料(而非玻璃)。且如上所述,本发明不限于以上参照图2-8所讨论的分布和传输性能。本领域中的技术人员可以理解,基于本公开内容,除了上述分布和传输性能外,还可以使用本发明的构思和原理获得其它分布和其它相关的传输性能,以提供根据本发明的SLA光纤。

Claims (10)

1.一种光纤通信系统,包括:
至少一个光能源;
包括具有正色散和正色散斜率的光纤(10)的光缆,该光缆与所述至少一个光能源耦合,光纤(10)具有纤芯区(11)和环绕纤芯区的包层区(14),在波长为约1310nm时具有等于或大于约80平方微米(μm2)的有效面积Aeff,并具有小于或等于约1310nm的光缆截止波长,
其中,纤芯区(11)被至少分段为第一(12A)和第二(12B)折射率部分,该第一和第二折射率部分(12A,12B)分别具有彼此不同的第一和第二相对折射率n1a和n1b,并且所述第一和第二相对折射率为正值。
2.根据权利要求1的光纤通信系统,其特征在于,光纤(10)在波长为约1550nm时具有等于或大于约95μm2的有效面积Aeff
3.根据权利要求1的光纤通信系统,其特征在于,光纤(10)还包括位于纤芯区(11)和包层区(14)之间的沟槽区(13),该沟槽区(13)具有负的相对折射率n2
4.根据权利要求3的光纤通信系统,其特征在于,具有第一和第二折射率部分(12A,12B)的纤芯区(11)具有由下式确定的相对折射率分布:
n 1 a ( 0 ≤ r ≤ a 1 ) = ( r a 1 ) α 1 × n max
n 1 b ( a 1 ≤ r ≤ ( a 1 + a 2 ) ) = [ 1 - ( r - a 1 a 2 ) α 2 ] × n max
其中r为半径位置,单位为微米,nmax是纤芯区的最大相对折射率,a1是纤芯区的第一部分(12A)的半径,a2是纤芯区(11)的第二部分(12B)的厚度,n1a是分段纤芯区(11)的第一部分(12A)的相对折射率,n1b是分段纤芯区(11)的第二部分(12B)的相对折射率,a1+a2是纤芯区的半径,a3是沟槽区的宽度,a1+a2+a3是向外到达与包层区(14)的开端邻近的沟槽区(13)的外边缘的半径。
5.根据权利要求4的光纤通信系统,其特征在于,α1≥1是规定纤芯区(11)的折射率分布的形状的幂数。
6.根据权利要求4的光纤通信系统,其特征在于,近似地,0≤a1≤2.65,7.1≤a1+a2≤10,且3≤a3≤25,其中a1、a2和a3的单位是微米。
7.一种超大有效面积SLA光纤(10),该SLA光纤(10)具有正色散和正色散斜率,在波长为约1310nm时具有等于或大于约80μm2的有效面积Aeff,并具有小于或等于约1310nm的光缆截止波长,该光纤(10)具有纤芯区(11)和环绕纤芯区(11)的包层区(14),
其中,纤芯区(11)至少被分段为第一和第二折射率部分(12A,12B),该第一和第二折射率部分(12A,12B)分别具有彼此不同的第一和第二相对折射率n1a和n1b,并且所述第一和第二相对折射率为正值。
8.根据权利要求7的光纤(10),其特征在于,光纤(10)在波长为约1550nm时具有等于或大于约95平方微米(μm2)的有效面积Aeff
9.根据权利要8的光纤(10),其特征在于,光纤(10)还包括位于纤芯区(11)和包层区(14)之间的沟槽区(13),该沟槽区(13)具有负的相对折射率n2
10.根据权利要9的光纤(10),其特征在于,具有第一和第二折射率部分(12A,12B)的纤芯区(11)具有由下式确定的相对折射率分布:
n 1 a ( 0 ≤ r ≤ a 1 ) = ( r a 1 ) α 1 × n max
n 1 b ( a 1 ≤ r ≤ ( a 1 + a 2 ) ) = [ 1 - ( r - a 1 a 2 ) α 2 ] × n max
其中r为半径位置,单位为微米,nmax是纤芯区(11)的最大相对折射率,a1是纤芯区(11)的第一部分(12A)的半径,a2是纤芯区(11)的第二部分(12B)的厚度,n1a是分段纤芯区(11)的第一部分(12A)的相对折射率,n1b是分段纤芯区(11)的第二部分(12B)的相对折射率,a1+a2是纤芯区(11)的半径,a3是沟槽区(13)的宽度,a1+a2+a3是向外到达与包层区(14)的开端邻近的沟槽区(13)的外边缘的半径。
CN200410030019.7A 2003-05-12 2004-03-17 超大有效面积光纤以及包含这种光纤的通信系统 Expired - Lifetime CN1278150C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/435,855 US6904218B2 (en) 2003-05-12 2003-05-12 Super-large-effective-area (SLA) optical fiber and communication system incorporating the same
US10/435,855 2003-05-12

Publications (2)

Publication Number Publication Date
CN1550802A true CN1550802A (zh) 2004-12-01
CN1278150C CN1278150C (zh) 2006-10-04

Family

ID=33029763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200410030019.7A Expired - Lifetime CN1278150C (zh) 2003-05-12 2004-03-17 超大有效面积光纤以及包含这种光纤的通信系统

Country Status (5)

Country Link
US (1) US6904218B2 (zh)
EP (1) EP1477831B1 (zh)
JP (1) JP4163656B2 (zh)
CN (1) CN1278150C (zh)
DE (1) DE602004000279T2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020139A1 (zh) * 2008-08-20 2010-02-25 富通集团有限公司 弯曲损耗不敏感的单模光纤
CN101825739A (zh) * 2009-01-27 2010-09-08 德雷卡通信技术公司 具有扩大的有效面积的单模光纤
WO2016074602A1 (zh) * 2014-11-12 2016-05-19 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN113740968A (zh) * 2020-05-28 2021-12-03 聊城大学 一种低损耗环芯少模复用器
CN116626805A (zh) * 2023-07-24 2023-08-22 中天科技光纤有限公司 超低损耗光纤及其制备方法

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1024015C2 (nl) 2003-07-28 2005-02-01 Draka Fibre Technology Bv Multimode optische vezel voorzien van een brekingsindexprofiel, optisch communicatiesysteem onder toepassing daarvan en werkwijze ter vervaardiging van een dergelijke vezel.
US7187833B2 (en) * 2004-04-29 2007-03-06 Corning Incorporated Low attenuation large effective area optical fiber
WO2006010798A1 (en) * 2004-07-26 2006-02-02 Photonium Oy Multimode optical fiber with low differential mode delay
EP2348344B1 (en) * 2004-08-30 2013-02-20 Fujikura Ltd. Single-mode optical fiber
FR2893149B1 (fr) 2005-11-10 2008-01-11 Draka Comteq France Fibre optique monomode.
FR2899693B1 (fr) * 2006-04-10 2008-08-22 Draka Comteq France Fibre optique monomode.
CN101389989B (zh) * 2006-06-30 2010-08-18 古河电气工业株式会社 光纤
EP1930753B1 (en) * 2006-12-04 2015-02-18 Draka Comteq B.V. Optical fiber with high Brillouin threshold power and low bending losses
US7787731B2 (en) * 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
EP1959292A3 (en) * 2007-02-13 2009-06-17 Olympus Corporation Laser microscope
FR2914751B1 (fr) 2007-04-06 2009-07-03 Draka Comteq France Fibre optique monomode
WO2008136918A2 (en) * 2007-05-07 2008-11-13 Corning Incorporated Large effective area fiber
WO2009050727A2 (en) * 2007-05-31 2009-04-23 Sterlite Technologies Ltd Optical fiber having high sbs threshold
FR2922657B1 (fr) * 2007-10-23 2010-02-12 Draka Comteq France Fibre multimode.
WO2009062131A1 (en) 2007-11-09 2009-05-14 Draka Comteq, B.V. Microbend- resistant optical fiber
US20090169163A1 (en) * 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
US8483533B1 (en) * 2008-04-10 2013-07-09 Nlight Photonics Corporation Fiber-coupled laser diode illumination systems with stable beam propagation
FR2930997B1 (fr) 2008-05-06 2010-08-13 Draka Comteq France Sa Fibre optique monomode
FR2932932B1 (fr) * 2008-06-23 2010-08-13 Draka Comteq France Sa Systeme optique multiplexe en longueur d'ondes avec fibres optiques multimodes
US9063289B1 (en) 2008-06-30 2015-06-23 Nlight Photonics Corporation Multimode fiber combiners
FR2933779B1 (fr) * 2008-07-08 2010-08-27 Draka Comteq France Fibres optiques multimodes
US9285541B2 (en) 2008-08-21 2016-03-15 Nlight Photonics Corporation UV-green converting fiber laser using active tapers
US9158070B2 (en) 2008-08-21 2015-10-13 Nlight Photonics Corporation Active tapers with reduced nonlinearity
US8873134B2 (en) 2008-08-21 2014-10-28 Nlight Photonics Corporation Hybrid laser amplifier system including active taper
US7676129B1 (en) 2008-11-18 2010-03-09 Corning Incorporated Bend-insensitive fiber with two-segment core
FR2940839B1 (fr) 2009-01-08 2012-09-14 Draka Comteq France Fibre optique multimodale a gradient d'indice, procedes de caracterisation et de fabrication d'une telle fibre
FR2941541B1 (fr) * 2009-01-27 2011-02-25 Draka Comteq France Fibre optique monomode
US8218929B2 (en) * 2009-02-26 2012-07-10 Corning Incorporated Large effective area low attenuation optical fiber
US9494738B1 (en) 2009-05-28 2016-11-15 Nlight, Inc. Single mode fiber combiners
FR2946436B1 (fr) 2009-06-05 2011-12-09 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
JP2011039109A (ja) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd 光通信システム
US9014525B2 (en) 2009-09-09 2015-04-21 Draka Comteq, B.V. Trench-assisted multimode optical fiber
FR2949870B1 (fr) * 2009-09-09 2011-12-16 Draka Compteq France Fibre optique multimode presentant des pertes en courbure ameliorees
FR2953605B1 (fr) * 2009-12-03 2011-12-16 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953030B1 (fr) * 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2957153B1 (fr) * 2010-03-02 2012-08-10 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
FR2953029B1 (fr) 2009-11-25 2011-11-18 Draka Comteq France Fibre optique multimode a tres large bande passante avec une interface coeur-gaine optimisee
FR2953606B1 (fr) * 2009-12-03 2012-04-27 Draka Comteq France Fibre optique multimode a large bande passante et a faibles pertes par courbure
US8385701B2 (en) * 2009-09-11 2013-02-26 Corning Incorporated Low bend loss optical fiber
FR2950156B1 (fr) * 2009-09-17 2011-11-18 Draka Comteq France Fibre optique multimode
FR2951282B1 (fr) 2009-10-13 2012-06-15 Draka Comteq France Fibre optique monomode a tranchee enterree
EP3399357A1 (en) * 2010-02-01 2018-11-07 Draka Comteq B.V. Non-zero dispersion shifted optical fiber having a short cutoff wavelength
EP2352047B1 (en) * 2010-02-01 2019-09-25 Draka Comteq B.V. Non-zero dispersion shifted optical fiber having a large effective area
WO2011100333A1 (en) * 2010-02-09 2011-08-18 Ofs Fitel, Llc Improvement of dmd performance in bend optimized multimode fiber
FR2962230B1 (fr) 2010-07-02 2012-07-27 Draka Comteq France Fibre optique monomode
FR2966256B1 (fr) 2010-10-18 2012-11-16 Draka Comteq France Fibre optique multimode insensible aux pertes par
US8538219B2 (en) * 2010-10-29 2013-09-17 Corning Incorporated Large effective area optical fiber with low bend loss
DE102011009242B4 (de) * 2010-11-04 2020-09-03 J-Plasma Gmbh Lichtwellenleiter und Halbzeug zur Herstellung eines Lichtwellenleiters mit biegeoptimierten Eigenschaften
US9481599B2 (en) 2010-12-21 2016-11-01 Corning Incorporated Method of making a multimode optical fiber
ES2494640T3 (es) 2011-01-31 2014-09-15 Draka Comteq B.V. Fibra multimodo
FR2971061B1 (fr) 2011-01-31 2013-02-08 Draka Comteq France Fibre optique a large bande passante et a faibles pertes par courbure
EP2503368A1 (en) 2011-03-24 2012-09-26 Draka Comteq B.V. Multimode optical fiber with improved bend resistance
EP2506044A1 (en) 2011-03-29 2012-10-03 Draka Comteq B.V. Multimode optical fiber
EP2518546B1 (en) 2011-04-27 2018-06-20 Draka Comteq B.V. High-bandwidth, radiation-resistant multimode optical fiber
US8873917B2 (en) 2011-05-20 2014-10-28 Corning Incorporated Low bend loss optical fiber
JP5925307B2 (ja) * 2011-06-30 2016-05-25 オーエフエス ファイテル,エルエルシー 1550nmの波長範囲における使用のためのファイバストレッチャモジュール
DK2541292T3 (en) 2011-07-01 2014-12-01 Draka Comteq Bv A multimode optical fiber
WO2013028513A1 (en) 2011-08-19 2013-02-28 Corning Incorporated Low bend loss optical fiber
US8687932B2 (en) * 2011-09-21 2014-04-01 Ofs Fitel, Llc Optimized ultra large area optical fibers
US9484706B1 (en) 2012-06-12 2016-11-01 Nlight, Inc. Tapered core fiber manufacturing methods
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
WO2014105757A1 (en) 2012-12-31 2014-07-03 Nlight Photonics Corporation All fiber low dynamic pointing high power lma fiber amplifier
WO2014105756A1 (en) 2012-12-31 2014-07-03 Nlight Photonics Corporation Spatially stable high brightness fiber
EP2754524B1 (de) 2013-01-15 2015-11-25 Corning Laser Technologies GmbH Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie
US9002164B2 (en) 2013-02-28 2015-04-07 Fujikura Ltd. Optical fiber and method of manufacturing the same
US9188736B2 (en) 2013-04-08 2015-11-17 Corning Incorporated Low bend loss optical fiber
US9057817B2 (en) * 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US10293436B2 (en) 2013-12-17 2019-05-21 Corning Incorporated Method for rapid laser drilling of holes in glass and products made therefrom
US11556039B2 (en) 2013-12-17 2023-01-17 Corning Incorporated Electrochromic coated glass articles and methods for laser processing the same
CN103955020B (zh) * 2014-04-17 2017-01-18 中天科技精密材料有限公司 一种低损耗大有效面积单模光纤及其制造方法
KR102445217B1 (ko) 2014-07-08 2022-09-20 코닝 인코포레이티드 재료를 레이저 가공하는 방법 및 장치
US9650281B2 (en) 2014-07-09 2017-05-16 Corning Incorporated Optical fiber with reducing hydrogen sensitivity
US9586853B2 (en) 2014-07-09 2017-03-07 Corning Incorporated Method of making optical fibers in a reducing atmosphere
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
CN104459876B (zh) * 2014-12-12 2017-04-12 长飞光纤光缆股份有限公司 超低衰减大有效面积的单模光纤
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
CN104898200B (zh) * 2015-06-25 2018-03-16 长飞光纤光缆股份有限公司 一种掺杂优化的超低衰减单模光纤
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
JP6682826B2 (ja) * 2015-11-27 2020-04-15 住友電気工業株式会社 光ファイバおよび光源装置
US9995873B2 (en) 2016-07-29 2018-06-12 Corning Incorporated Single-mode large effective area optical fibers
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
CN109803786B (zh) 2016-09-30 2021-05-07 康宁股份有限公司 使用非轴对称束斑对透明工件进行激光加工的设备和方法
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
EP3529214B1 (en) 2016-10-24 2020-12-23 Corning Incorporated Substrate processing station for laser-based machining of sheet-like glass substrates
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715346A (en) 1995-12-15 1998-02-03 Corning Incorporated Large effective area single mode optical waveguide
US5781684A (en) 1996-12-20 1998-07-14 Corning Incorporated Single mode optical waveguide having large effective area
ES2313804T3 (es) 1998-12-18 2009-03-01 Prysmian S.P.A. Fibra optica para sistemas de redes de acceso o redes metropolitanas.
AU772900B2 (en) 1999-04-13 2004-05-13 Sumitomo Electric Industries, Ltd. Optical fiber and optical communication system comprising the same
CN100353192C (zh) 1999-07-12 2007-12-05 株式会社藤仓 色散位移光纤
US6546177B1 (en) 1999-09-09 2003-04-08 Fujikura Ltd. Dispersion shifted optical fiber
WO2001038911A1 (en) 1999-11-22 2001-05-31 Corning Incorporated Dispersion shifted large effective area waveguide fiber
US6611647B2 (en) * 2000-12-12 2003-08-26 Corning Incorporated Large effective area optical fiber
JP3845260B2 (ja) 2001-02-16 2006-11-15 古河電気工業株式会社 光ファイバおよび光伝送路
US6901195B2 (en) * 2002-05-30 2005-05-31 The Furukawa Electric Co. Ltd. Optical fiber and an optical transmission system using the optical fiber
US6856743B2 (en) * 2002-12-02 2005-02-15 Corning Incorporated NZDSF optical fiber with low dispersion zero and low slope
US7103251B2 (en) * 2002-12-31 2006-09-05 Corning Incorporated Dispersion flattened NZDSF fiber
US6952519B2 (en) * 2003-05-02 2005-10-04 Corning Incorporated Large effective area high SBS threshold optical fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010020139A1 (zh) * 2008-08-20 2010-02-25 富通集团有限公司 弯曲损耗不敏感的单模光纤
CN101825739A (zh) * 2009-01-27 2010-09-08 德雷卡通信技术公司 具有扩大的有效面积的单模光纤
CN101825739B (zh) * 2009-01-27 2014-04-16 德雷卡通信技术公司 具有扩大的有效面积的单模光纤
CN103969742A (zh) * 2009-01-27 2014-08-06 德雷卡通信技术公司 具有扩大的有效面积的单模光纤
WO2016074602A1 (zh) * 2014-11-12 2016-05-19 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
CN104360434B (zh) * 2014-11-12 2017-02-01 长飞光纤光缆股份有限公司 一种超低衰减大有效面积的单模光纤
US9874687B2 (en) 2014-11-12 2018-01-23 Yangtze Optical Fibre And Cable Joint Stock Limited Company Single-mode fiber with ultralow attenuation and large effective area
CN113740968A (zh) * 2020-05-28 2021-12-03 聊城大学 一种低损耗环芯少模复用器
CN116626805A (zh) * 2023-07-24 2023-08-22 中天科技光纤有限公司 超低损耗光纤及其制备方法
CN116626805B (zh) * 2023-07-24 2023-10-13 中天科技光纤有限公司 超低损耗光纤及其制备方法

Also Published As

Publication number Publication date
EP1477831B1 (en) 2005-12-28
US6904218B2 (en) 2005-06-07
JP2004341525A (ja) 2004-12-02
EP1477831A1 (en) 2004-11-17
CN1278150C (zh) 2006-10-04
DE602004000279T2 (de) 2006-07-20
DE602004000279D1 (de) 2006-02-02
JP4163656B2 (ja) 2008-10-08
US20040228593A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
CN1278150C (zh) 超大有效面积光纤以及包含这种光纤的通信系统
JP3928355B2 (ja) 光ファイバ及びそれを含む光伝送システム
US6483975B1 (en) Positive dispersion optical fiber having large effective area
US6490398B2 (en) Dispersion-compensating fiber having a high figure of merit
CN1178078C (zh) 光纤和使用该光纤的光通信系统
CN1932562A (zh) 具有更小受激布里渊散射的光纤
CN1268949C (zh) 具有负色散、负色散斜率和大的有效面积的光纤
CN1306297C (zh) 大有效面积反色散补偿光纤及使用该光纤的传输线
CN1294432C (zh) 大有效截面的色散位移单模光纤
RU2216029C2 (ru) Оптическое волокно с дисперсионным смещением
CN1492247A (zh) 色散补偿模块
JP4005960B2 (ja) 光ファイバ通信とその光ファイバの製造方法
CN1377469A (zh) 低色散分斜率波导纤维
CN1821822A (zh) 具有光放大功能的传输光纤及其制造方法
CN1258099C (zh) 负色散光纤和包含所述光纤的光学传输线路
CN1134680C (zh) 长距离的单模波导
CN1400764A (zh) 光传输线路
EP1341011A1 (en) Dispersion-compensating fiber
CN1203335C (zh) 超大有效面积低色散斜率非零色散位移光纤
KR100485889B1 (ko) Wdm 방식 광전송시스템용 광섬유
JP2002090567A (ja) 低非線形単一モード光ファイバ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20061004