WO2016074314A1 - 一种金属损伤件激光热力组合再制造方法 - Google Patents

一种金属损伤件激光热力组合再制造方法 Download PDF

Info

Publication number
WO2016074314A1
WO2016074314A1 PCT/CN2014/094057 CN2014094057W WO2016074314A1 WO 2016074314 A1 WO2016074314 A1 WO 2016074314A1 CN 2014094057 W CN2014094057 W CN 2014094057W WO 2016074314 A1 WO2016074314 A1 WO 2016074314A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
layer
cladding
cladding layer
depth
Prior art date
Application number
PCT/CN2014/094057
Other languages
English (en)
French (fr)
Inventor
罗开玉
景祥
鲁金忠
刘波
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US15/307,784 priority Critical patent/US10391587B2/en
Publication of WO2016074314A1 publication Critical patent/WO2016074314A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/144Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing particles, e.g. powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Definitions

  • the invention relates to the field of laser processing, in particular to a laser thermal force combined remanufacturing method for metal damage parts, which is particularly suitable for repairing metal parts with deep damage.
  • Laser cladding is a new surface modification technology. It is formed on the surface of the substrate by adding a cladding material to the surface of the substrate and melting it with a thin layer of the substrate surface with a high energy density laser beam.
  • the metallurgical combined additive cladding layer significantly improves the wear, corrosion, heat, oxidation and electrical properties of the surface of the substrate to achieve surface modification or repair, which not only meets the specific properties of the surface of the material. The requirements have saved a lot of valuable elements.
  • Laser shock peening is a new material surface strengthening technology. It uses high-laser-induced shock wave mechanical effects to process materials. It has high-pressure, high-energy, ultra-fast and ultra-high strain rates, and its high-energy shock wave can be refined.
  • the grain size of the material makes the structure of the material more tightly arranged, reduces the porosity, and can significantly improve the fatigue life and corrosion resistance and wear resistance of metal parts.
  • a large number of studies have proved that the laser impact strengthening technology is to prolong the crack initiation time and reduce the crack growth rate. An effective means of increasing the life of materials.
  • laser shock hardening can only affect the area within 1mm depth below the metal surface. Therefore, when the damage depth of the part exceeds 1mm, the laser impact strengthening in the deeper area can not improve its performance, and its cladding layer Defects due to thermal effects and loose structure can result in poor mechanical properties and fatigue failure.
  • the present invention provides a laser thermal force combined remanufacturing method for a metal damage component, that is, a combination of laser shock peening and laser cladding technology, and damage to a metal damage member having a damaged groove depth of 1 mm or more.
  • the groove is divided into multiple layers according to the depth of influence of laser shock strengthening on the cladding layer.
  • the non-absorptive layer laser impact enhancement to directly treat the bottom surface of the trench, remove surface impurities, and refine the surface grains, then use laser cladding to form a cladding layer of a given thickness;
  • the above-mentioned non-absorptive layer laser shock reinforced is that no absorbing material is applied between the substrate and the constraining layer during the laser shock peening process; instead, the absorbing layer laser shock peening is to apply a layer of absorption between the substrate and the constraining layer.
  • the layer is used for absorbing laser energy to prevent the surface layer of the material from being ablated; the material of the absorbing layer is generally selected from metal aluminum foil.
  • the laser impact strengthening can effectively improve the mechanical properties of the cladding layer, and the depth of influence is the depth of the mechanical properties. Therefore, the depth a of the laser impact cladding layer can be measured by the hardness in the depth direction. Obtained in depth and other ways.
  • the thickness b of a single cladding layer is set to 2a/3, and the value ranges from 0.3 to 0.8 mm.
  • a is the depth of influence of the laser impact enhancement of the cladding layer.
  • N is an integer
  • b is the thickness of a single cladding layer
  • h is the depth of the damage of the damage piece.
  • the process parameters of the non-absorbent layer and the absorbing layer laser shock reinforced are also: laser pulse energy 3-12J, pulse width 5-20 ns, spot diameter 1-3 mm, lateral overlap ratio and longitudinal overlap ratio are 30%- 50%.
  • the parameters of the laser cladding process are as follows: laser power 400-1800W, scanning speed 4-9mm/s, spot diameter 1-3mm, lap rate 30-50%, shielding gas Ar 3-5L/min.
  • the coverage parameters are as follows: laser power 400-1800W, scanning speed 4-9mm/s, spot diameter 1-3mm, lap rate 30-50%, shielding gas Ar 3-5L/min.
  • the upper surface of the cladding layer 1 is subjected to non-absorption layer laser shock strengthening to remove impurities on the surface of the cladding layer 1, refine the surface grains and make the structure closer. Therefore, the bonding effect of the cladding layer 2 and the cladding layer 1 is better; a cladding powder having a thickness b is pre-preposed on the surface of the cladding layer 1 which is not subjected to the laser shock enhancement of the absorption layer, and the fiber laser is also used.
  • the laser cladding is regarded as the cladding layer 2; the parameters of laser shock strengthening and laser cladding in the process are the same as steps (2) and (3), respectively.
  • the cladding layer is covered with aluminum foil as an absorbing layer, and 1-2 mm of running water is used as a constraining layer above the absorbing layer, and the surface of the cladding layer is laser-impedded by large-area overlap, and the horizontal and vertical laps are overlapped.
  • the rate is 30%-50%, and the target damage repair is completed; the process parameters of the absorption layer laser shock enhancement process in this process are consistent with the no-absorption layer laser shock enhancement parameters in step (2).
  • the invention has the beneficial effects that the laser thermal combined remanufacturing of the metal damaged component is carried out by the above method, and the surface metal can be vaporized by the laser shock-free reinforcement without the absorption layer, thereby removing the surface impurities of the bottom surface of the trench and each laser cladding layer.
  • Refine the grain size of the bottom surface of the groove and the surface layer of each laser cladding layer strengthen the bonding strength between the laser cladding layer and the bottom surface of the groove, the laser cladding layer and the laser cladding layer, and make the groove microstructure It is more compact, and the laser impact reinforcement of the surface of the damaged specimen can induce deep residual compressive stress on the surface of the metal damaged part, and refine the surface grain and improve the mechanical properties of the repaired area.
  • FIG. 1 is a schematic view of a laser thermal combined remanufacturing method for a metal damage piece.
  • FIG. 2 is a processing flow chart of a laser thermal combined remanufacturing method for a metal damage piece.
  • Fig. 3 is a cross-sectional metallographic structure of the joint between the base and the cladding layer after repairing the size of the damaged part of 316L stainless steel by multi-pass laser cladding;
  • the laser cladding processing parameters are as follows: laser power 1400W, scanning speed 4mm/s, spot The diameter is 3mm, the overlap ratio is 50%, and the shielding gas is Ar 5L/min.
  • FIG. 4 is a cross-sectional metallographic structure diagram of a matrix of a 316L stainless steel sample obtained by repairing a 316L stainless steel sample according to the steps described herein;
  • the laser shock strengthening parameters are as follows: laser energy 8 J, pulse width 10 ns, spot The diameter is 3mm and the overlap ratio is 50%.
  • the laser cladding processing parameters are as follows: laser power 1400W, scanning speed 4mm/s, spot diameter 3mm, lap rate 50%, shielding gas Ar 5L/min.
  • Fig. 5 is a cross-sectional metallographic structure of the surface layer of the cladding layer obtained by repairing only the size of the damaged piece of 316L stainless steel by multi-pass laser cladding; the laser cladding processing parameters are as follows: laser power 1400 W, scanning speed 4 mm/s, spot diameter 3 mm, The overlap ratio is 50% and the shielding gas Ar 5L/min.
  • laser shock enhancement parameters are as follows: laser energy 8 J, pulse width 10 ns, spot diameter 3 mm, The lap joint rate is 50%; the laser cladding processing parameters are as follows: laser power 1400W, scanning speed 4mm/s, spot diameter 3mm, lap rate 50%, shielding gas Ar 5L/min.
  • the cladding powder used in this embodiment is Fe3O4 stainless steel, and the sample base material is 316L stainless steel, and its geometrical dimension is 120 mm ⁇ 60 mm ⁇ 15 mm.
  • the middle part is cut by a wire and the upper width is 10 mm, the lower width is 8 mm, and the depth is 3 mm.
  • the groove is cut by a wire and the upper width is 10 mm, the lower width is 8 mm, and the depth is 3 mm.
  • the depth a of the laser impact strengthening in the stainless steel cladding layer is 0.6 mm, so the thickness b of each cladding layer in the present embodiment is calculated to be 0.4 according to the formula in the specification.
  • Mm Since the groove depth h is 3 mm, the number of cladding layers calculated according to the formula in the specification is 8 layers.
  • laser shock strengthening that is, the surface is not coated with an absorbing layer, and water is used as a transparent constraining layer to remove impurities on the surface of the groove of the substrate, and refine the surface layer. Grain And the structure is more tight, which promotes the bonding effect between the cladding layer 1 and the substrate; wherein the laser shock strengthening parameters are as follows: laser energy 8J, pulse width 10 ns, spot diameter 3 mm, lap rate 50%.
  • the upper surface of the cladding layer 1 is subjected to non-absorption layer laser shock strengthening to remove impurities on the surface of the cladding layer 1, refine the surface grains and make the structure closer. Therefore, the bonding effect of the cladding layer 2 and the cladding layer 1 is better; and a layer of Fe3O4 stainless steel cladding powder having a thickness of 0.4 mm is pre-preposed on the surface of the cladding layer 1 which is not subjected to laser shock enhancement of the absorption layer, and is also used.
  • the laser cladding is laser cladding, which is regarded as cladding layer 2.
  • the laser shock enhancement parameters are as follows: laser energy 8J, pulse width 10ns, spot diameter 3mm, overlap ratio 50%, laser cladding processing parameters are as follows: laser power 1400W, scanning speed 4mm/s, spot diameter 3mm, overlap ratio 50%, shielding gas Ar 5L/min.
  • the cladding layer is covered with aluminum foil as an absorbing layer, and 1-2 mm of running water is used as a constraining layer above the absorbing layer, and the surface of the cladding layer is laser-impedded by large-area overlap, and the horizontal and vertical laps are overlapped.
  • the rate is 50%, and the damage repairing work is completed; the parameters of laser shock strengthening are as follows: laser energy 8J, pulse width 10 ns, spot diameter 3 mm.
  • the "general method” is only multi-channel Laser cladding to repair the size of the method, the resulting picture is as follows:
  • the surface layer of the cladding layer is coarser, and its size is about (6-8) ⁇ m ⁇ (3-4) ⁇ m, and between the crystal grains.
  • the gap is large.
  • the surface layer of the obtained cladding layer is mostly fine equiaxed crystal, and the diameter thereof is about 3 ⁇ m, compared with FIG.
  • the grains are significantly refined. And the crystal grains are arranged more closely and the gap is significantly reduced.

Abstract

一种金属损伤件激光热力组合再制造方法,其针对损伤沟槽深度达到1 mm以上的金属损伤件,将损伤沟槽按照激光冲击强化对熔覆层的影响深度分为多个层次,先采用无吸收层激光冲击强化直接处理沟槽底部表面,去除表面杂质,同时细化表层晶粒,后采用激光熔覆形成给定厚度的的熔覆层;接下来每一层都采用先无吸收层激光冲击强化然后激光熔覆的组合工艺,直到熔覆层完全填满损伤沟槽并高出金属件表面,接着采用机械加工的方法切削高出试样表面的熔覆层,并用砂纸打磨,对激光熔覆层上表面进行大面积搭接的激光冲击强化。采用该方法能够提高修复区域的机械性能。

Description

一种金属损伤件激光热力组合再制造方法 技术领域
本发明涉及激光加工领域,特指一种金属损伤件激光热力组合再制造方法,特别适用于修复损伤较深的金属件。
背景技术
激光熔覆是一种新的表面改性技术,通过在基材表面添加熔覆材料,并利用高能密度的激光束使之与基材表面薄层一起熔凝的方法,在基层表面形成与其为冶金结合的添料熔覆层,显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性的工艺方法,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。
激光冲击强化是一种新型的材料表面强化技术,利用强激光诱导的冲击波力学效应对材料进行加工,具有高压、高能、超快和超高应变率等特点,其形成的高能量冲击波能细化材料晶粒尺寸,使材料组织排列更为紧密,降低孔隙率,能够显著提高金属零件的疲劳寿命以及抗腐蚀和抗磨损能力;大量的研究证明激光冲击强化技术是延长裂纹萌生时间降低裂纹扩展速度提高材料寿命的有效手段。
航空关键件出现局部损伤,其他部件往往还有很大的承载能力,延长损伤关键件的服役寿命和提高其可靠性已经成为机械构件再制造工程中的核心科学问题之一;激光热力复合再制造即对损伤关键件先进行激光熔覆修复、恢复尺寸,然后进行激光冲击强化细化晶粒并提高其性能。
然而激光冲击强化只能对金属表面以下1mm深度内的区域产生影响,因此当部件的损伤深度超过1mm时,在较深的区域激光冲击强化就无法起到改善其性能的作用,其熔覆层由于热效应引起的缺陷及结构疏松会导致机械性能较差,容易产生疲劳失效。
发明内容
为解决上述技术问题,本发明提供了一种金属损伤件激光热力组合再制造方法,即利用激光冲击强化与激光熔覆技术相结合,针对损伤沟槽深度达到1mm以上的金属损伤件,将损伤沟槽按照激光冲击强化对熔覆层的影响深度分为多个 层次,先采用无吸收层激光冲击强化直接处理沟槽底部表面,去除表面杂质,同时细化表层晶粒,后采用激光熔覆形成给定厚度的熔覆层;接下来每一层都采用先无吸收层激光冲击强化然后激光熔覆的组合工艺,直到熔覆层完全填满损伤沟槽并高出金属件表面,接着采用机械加工的方法切削高出试样表面的熔覆层,并用砂纸打磨,对激光熔覆层上表面进行大面积搭接的激光冲击强化。
上述无吸收层激光冲击强化就是在激光冲击强化过程中基材与约束层之间不涂覆任何吸收材料;相反,有吸收层激光冲击强化就是在基材与约束层之间涂覆一层吸收层,用于吸收激光能量,防止材料表层被烧蚀;吸收层材料一般选用金属铝箔等。
其具体步骤为:
(1)选取激光冲击强化工艺参数,包括激光脉冲能量、脉宽、光斑直径、横向搭接率和纵向搭接率,对熔覆层进行激光冲击强化试验,获得激光冲击强化的影响深度a,据此设置单个激光熔覆层的厚度b,根据损伤件沟槽深度h及b确定熔覆层数N。
在上述步骤中,激光冲击强化可有效提高熔覆层的力学性能,其影响深度即为力学性能提高的深度,因此所述的激光冲击熔覆层的影响深度a可通过测量深度方向上的硬度强化深度等方式获得。
单个熔覆层的厚度b设定为2a/3,取值范围为0.3-0.8mm,a为熔覆层激光冲击强化影响深度。
熔覆层数N根据公式
Figure PCTCN2014094057-appb-000001
确定,N取整数;b为单个熔覆层的厚度,h为损伤件沟槽深度。
无吸收层和有吸收层激光冲击强化的工艺参数范围同样为:激光脉冲能量3-12J,脉宽5-20ns,光斑直径1-3mm,横向搭接率和纵向搭接率均为30%-50%。
激光熔覆工艺参数范围如下:激光功率400-1800W、扫描速度4-9mm/s、光斑直径1-3mm、搭接率30-50%、保护气Ar 3-5L/min。
(2)采用无吸收层激光冲击强化对基材沟槽的表面进行预处理,即表面不涂覆吸收层,使用流水作为透明约束层,用以去除基材沟槽表面的杂质,细化表层晶粒并使其结构更为紧密;无吸收层激光冲击强化过程中工艺参数范围为:激光 脉冲能量3-12J,脉宽5-20ns,光斑直径1-3mm,横向搭接率和纵向搭接均为30%-50%。
(3)进行第一层激光熔覆,在预处理过的沟槽表面预置一层厚度为b的熔覆粉末,使用光纤激光器对其进行激光熔覆,视为熔覆层1;激光熔覆参数范围如下:激光功率400-1800W、扫描速度4-9mm/s、光斑直径1-3mm、搭接率30-50%、保护气Ar 3-5L/min。
(4)待熔覆层1凝固成型后,在熔覆层1上表面进行无吸收层激光冲击强化,用以去除熔覆层1表面的杂质,细化表层晶粒并使其结构更为紧密,从而促使熔覆层2与熔覆层1的结合效果更好;在无吸收层激光冲击强化过的熔覆层1表面再预置一层厚度为b的熔覆粉末,同样使用光纤激光器对其进行激光熔覆,视为熔覆层2;该过程中激光冲击强化及激光熔覆的参数分别与步骤(2)和(3)相同。
(5)如此依次重复操作,直到激光熔覆层完全填满沟槽并高出金属件表面,完成第N次激光熔覆,最后采用机械加工的方法切削高出试样表面的熔覆层,并用砂纸打磨使其粗糙度小于或等于Ra 0.4μm;重复操作过程中,每一层都是采用先无吸收层激光冲击强化然后激光熔覆的组合工艺,最后一层即第N层熔覆完成后直接切割打磨,激光冲击强化及激光熔覆的参数分别与步骤(2)和(3)相同。
(6)在打磨后的熔覆层覆盖铝箔作为吸收层,在吸收层上方覆盖1-2mm流水作为约束层,对熔覆层表面进行大面积搭接的激光冲击强化,横向和纵向的搭接率均为30%-50%,完成目标损伤件修复;该过程中的有吸收层激光冲击强化工艺参数与步骤(2)中无吸收层激光冲击强化参数一致。
本发明的有益效果:采用上述方法进行金属损伤件的激光热力组合再制造,可以通过无吸收层激光冲击强化使表层金属汽化,从而去除沟槽底部表面和每一激光熔覆层的表面杂质,细化沟槽底部表面和每一激光熔覆层表层的晶粒尺寸,加强激光熔覆层与沟槽底部表面、激光熔覆层与激光熔覆层之间的结合强度,使沟槽微观结构更加紧密,并且损伤试样表面采用大面积搭接的激光冲击强化能在金属损伤件表层诱导较深的残余压应力,并细化表层晶粒,提高修复区域的机械性能。
附图说明
图1为金属损伤件激光热力组合再制造方法的示意图。
图2为金属损伤件激光热力组合再制造方法的加工流程图。
图3为仅采用多道激光熔覆修复316L不锈钢损伤件尺寸后所得基体与熔覆层搭界区的截面金相组织图;激光熔覆加工参数如下:激光功率1400W、扫描速度4mm/s、光斑直径3mm、搭接率50%、保护气Ar 5L/min。
图4为按照本文所述步骤进行激光热力组合再制造方法修复316L不锈钢试样所得基体与熔覆层搭界区的截面金相组织图;激光冲击强化参数如下:激光能量8J、脉宽10ns、光斑直径3mm、搭接率50%;激光熔覆加工参数如下:激光功率1400W、扫描速度4mm/s、光斑直径3mm、搭接率50%、保护气Ar 5L/min。
图5为仅采用多道激光熔覆修复316L不锈钢损伤件尺寸后所得熔覆层表层的截面金相组织图;激光熔覆加工参数如下:激光功率1400W、扫描速度4mm/s、光斑直径3mm、搭接率50%、保护气Ar 5L/min。
图6为按照本文所述步骤进行激光热力组合再制造方法修复316L不锈钢试样所得熔覆层表层的截面金相组织图;激光冲击强化参数如下:激光能量8J、脉宽10ns、光斑直径3mm、搭接率50%;激光熔覆加工参数如下:激光功率1400W、扫描速度4mm/s、光斑直径3mm、搭接率50%、保护气Ar 5L/min。
具体实施方式
下面结合附图和实施例对本发明的具体实施方式做详细的说明,但本发明不应仅限于实施例。
本实施例所采用的熔覆粉末为Fe3O4不锈钢,试样基体材料为316L不锈钢,其几何尺寸为120mm×60mm×15mm,在其中间部位用线切割开一道上宽10mm、下宽8mm、深3mm的沟槽。
一种使用上述加工方法修复试样的实例,其步骤为:
(1)根据熔覆层试验获得激光冲击强化在不锈钢熔覆层中的的影响深度a为0.6mm,因此根据说明书中的公式计算得本实施例中每道熔覆层的厚度b定为0.4mm;由于沟槽深度h为3mm,根据说明书中的公式计算所得熔覆层数为8层。
(2)采用无吸收层激光冲击强化对基材沟槽的表面进行预处理,即表面不涂覆吸收层,使用流水作为透明约束层,用以去除基材沟槽表面的杂质,细化表层晶粒 并使其结构更为紧密,从而促使熔覆层1与基材的结合效果更好;其中激光冲击强化参数如下:激光能量8J、脉宽10ns、光斑直径3mm、搭接率50%。
(3)进行第一层激光熔覆,在预处理过的沟槽表面预置一层厚度为0.4mm的Fe3O4不锈钢熔覆粉末,使用光纤激光器对其进行激光熔覆,视为熔覆层1;其中激光熔覆加工参数如下:激光功率1400W、扫描速度4mm/s、光斑直径3mm、搭接率50%、保护气Ar 5L/min。
(4)待熔覆层1凝固成型后,在熔覆层1上表面进行无吸收层激光冲击强化,用以去除熔覆层1表面的杂质,细化表层晶粒并使其结构更为紧密,从而促使熔覆层2与熔覆层1的结合效果更好;在无吸收层激光冲击强化过的熔覆层1表面再预置一层厚度为0.4mm的Fe3O4不锈钢熔覆粉末,同样使用光纤激光器对其进行激光熔覆,视为熔覆层2,其中激光冲击强化参数如下:激光能量8J、脉宽10ns、光斑直径3mm、搭接率50%,激光熔覆加工参数如下:激光功率1400W、扫描速度4mm/s、光斑直径3mm、搭接率50%、保护气Ar 5L/min。
(5)如此依次重复操作,直到激光熔覆层完全填满沟槽并高出金属件表面,完成第8次激光熔覆。最后采用机械加工的方法切削高出试样表面的熔覆层,并用砂纸打磨使其粗糙度小于或等于Ra 0.4μm。
(6)在打磨后的熔覆层覆盖铝箔作为吸收层,在吸收层上方覆盖1-2mm流水作为约束层,对熔覆层表面进行大面积搭接的激光冲击强化,横向和纵向的搭接率均为50%,完成损伤件修复工作;其中激光冲击强化的参数如下:激光能量8J、脉宽10ns、光斑直径3mm。
对修复完成后的试样进行线切割,取其截面做金相组织观察,并将之与一般加工方法所得到的熔覆层金相组织进行对比,所述“一般方法”即仅仅采用多道激光熔覆修复尺寸的方法,所得图片如下:
如图3所示,当仅仅采用多道激光熔覆修复尺寸时,基材与熔覆层之间结合程度较差,存在较为明显的缺陷(图中圆圈所示),晶粒排列杂乱无章,并且晶粒间的间隙较大。
相反,如图4所示,当采用本文所述激光热力组合再制造方法修复损伤件时,所得基体与熔覆层结合更为紧密,无明显缺陷存在,与图3相比晶粒排列有序 并且晶粒间的间隙明显减小。
如图5所示,当仅仅采用多道激光熔覆修复尺寸时,熔覆层表层晶粒较为粗大,其大小约为(6-8)μm×(3-4)μm,并且晶粒间的间隙较大。
相反,如图6所示,当采用本文所述激光热力组合再制造方法修复损伤件时,所得熔覆层表层晶粒多为细小的等轴晶,其直径约为3μm,与图5相比晶粒明显细化。并且晶粒之间排列更为紧密,间隙明显减小。

Claims (8)

  1. 一种金属损伤件激光热力组合再制造方法,其特征在于:利用激光冲击强化与激光熔覆技术相结合,针对损伤沟槽深度达到1mm以上的金属损伤件,将损伤沟槽按照激光冲击强化对熔覆层的影响深度分为多个层次,先采用无吸收层激光冲击强化直接处理沟槽底部表面,去除表面杂质,同时细化表层晶粒,后采用激光熔覆形成给定厚度的的熔覆层;接下来每一层都采用先无吸收层激光冲击强化然后激光熔覆的组合工艺,直到熔覆层完全填满损伤沟槽并高出金属件表面,接着采用机械加工的方法切削高出试样表面的熔覆层,并用砂纸打磨,对激光熔覆层上表面进行大面积搭接的激光冲击强化。
  2. 如权利要求1所述的一种金属损伤件激光热力组合再制造方法,其特征在于具体步骤如下:
    (1)选取激光冲击强化工艺参数,包括激光脉冲能量、脉宽、光斑直径、横向搭接率和纵向搭接率,对熔覆层进行激光冲击强化试验,获得激光冲击强化的影响深度a,据此设置单个激光熔覆层的厚度b,根据损伤件沟槽深度h及b确定熔覆层数N;
    (2)采用无吸收层激光冲击强化对基材沟槽的表面进行预处理,即表面不涂覆吸收层,使用流水作为透明约束层,用以去除基材沟槽表面的杂质,细化表层晶粒并使其结构更为紧密;
    (3)进行第一层激光熔覆,在预处理过的沟槽表面预置一层厚度为b的熔覆粉末,使用光纤激光器对其进行激光熔覆,视为熔覆层1;
    (4)待熔覆层1凝固成型后,在熔覆层1上表面进行无吸收层激光冲击强化,用以去除熔覆层1表面的杂质,细化表层晶粒并使其结构更为紧密,从而促使熔覆层2与熔覆层1的结合效果更好;在无吸收层激光冲击强化过的熔覆层1表面再预置一层厚度为b的熔覆粉末,同样使用光纤激光器对其进行激光熔覆,视为熔覆层2;该过程中激光冲击强化及激光熔覆的参数分别与步骤(2)和(3)相同;
    (5)如此依次重复操作,直到激光熔覆层完全填满沟槽并高出金属件表面,完成第N次激光熔覆,最后采用机械加工的方法切削高出试样表面的熔覆层,并用砂纸打磨;重复操作过程中,每一层都是采用先无吸收层激光冲击强化然后激光熔覆的组合工艺,最后一层即第N层熔覆完成后直接切割打磨,激光冲击 强化及激光熔覆的参数分别与步骤(2)和(3)相同;
    (6)在打磨后的熔覆层覆盖铝箔作为吸收层,在吸收层上方覆盖1-2mm流水作为约束层,对熔覆层表面进行大面积搭接的激光冲击强化,完成目标损伤件修复;该过程中的有吸收层激光冲击强化工艺参数与步骤(2)中无吸收层激光冲击强化参数一致。
  3. 如权利要求2所述的一种金属损伤件激光热力组合再制造方法,其特征在于:步骤(1)中,激光冲击强化可有效提高熔覆层的力学性能,其影响深度即为力学性能提高的深度,因此所述的激光冲击熔覆层的影响深度a可通过测量深度方向上的硬度强化深度方式获得。
  4. 如权利要求2所述的一种金属损伤件激光热力组合再制造方法,其特征在于:步骤(1)中,单个熔覆层的厚度b设定为2a/3,取值范围为0.3-0.8mm,a为熔覆层激光冲击强化影响深度。
  5. 如权利要求2所述的一种金属损伤件激光热力组合再制造方法,其特征在于:步骤(1)中,熔覆层数N根据公式
    Figure PCTCN2014094057-appb-100001
    确定,N取整数;b为单个熔覆层的厚度,h为损伤件沟槽深度。
  6. 如权利要求2所述的一种金属损伤件激光热力组合再制造方法,其特征在于:无吸收层和有吸收层激光冲击强化的工艺参数范围同样为:激光脉冲能量3-12J,脉宽5-20ns,光斑直径1-3mm,横向搭接率和纵向搭接率均为30%-50%。
  7. 如权利要求2所述的一种金属损伤件激光热力组合再制造方法,其特征在于:激光熔覆工艺参数范围如下:激光功率400-1800W、扫描速度4-9mm/s、光斑直径1-3mm、搭接率30-50%、保护气Ar 3-5L/min。
  8. 如权利要求2所述的一种金属损伤件激光热力组合再制造方法,其特征在于:步骤(5)中,用砂纸打磨使其粗糙度小于或等于Ra 0.4μm。
PCT/CN2014/094057 2014-11-12 2014-12-17 一种金属损伤件激光热力组合再制造方法 WO2016074314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/307,784 US10391587B2 (en) 2014-11-12 2014-12-17 Laser thermal combination remanufacturing method for damaged metal part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410631969.9 2014-11-12
CN201410631969.9A CN104480476B (zh) 2014-11-12 2014-11-12 一种金属损伤件激光热力组合再制造方法

Publications (1)

Publication Number Publication Date
WO2016074314A1 true WO2016074314A1 (zh) 2016-05-19

Family

ID=52755075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094057 WO2016074314A1 (zh) 2014-11-12 2014-12-17 一种金属损伤件激光热力组合再制造方法

Country Status (3)

Country Link
US (1) US10391587B2 (zh)
CN (1) CN104480476B (zh)
WO (1) WO2016074314A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195468A (zh) * 2020-10-23 2021-01-08 广东镭奔激光科技有限公司 基于双激光束的整体叶盘的损伤叶片修复方法及装置
CN112899678A (zh) * 2021-01-20 2021-06-04 中车青岛四方机车车辆股份有限公司 一种车轴再制造方法、再制造车轴及系统
CN113088962A (zh) * 2021-04-02 2021-07-09 中国人民解放军空军工程大学 钛合金薄壁叶片损伤件的激光熔覆多方位修复方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108444B (zh) * 2015-09-11 2017-12-26 江苏万力机械股份有限公司 高温服役剪切装备刀具的修复及强化方法
CN108136543A (zh) * 2015-10-07 2018-06-08 康宁股份有限公司 将要被激光切割的经过涂覆的基材的激光预处理方法
EP3515648B1 (en) * 2016-09-23 2023-03-22 Tata Steel Nederland Technology B.V. Method of and arrangement for the liquid-assisted laser texturing of moving steel strip
CN107190257A (zh) * 2017-05-11 2017-09-22 江苏大学 一种模具损伤部位的激光熔覆与机械喷丸交错再制造方法
CN107225244A (zh) * 2017-06-21 2017-10-03 苏州大学 一种调控/降低激光增材制造零件内应力的方法
CN107858680B (zh) * 2017-10-12 2021-02-05 南京航空航天大学 一种减小激光熔覆金属涂层残余应力的方法
CN108505033A (zh) * 2018-03-21 2018-09-07 西安交通大学 感应辅助喷丸细化激光增材制造轻合金晶粒的方法
CN108607945B (zh) * 2018-05-17 2023-05-09 湖北三环锻造有限公司 3d焊材打印模具多层覆层结构及覆层厚度确定方法
CN108754490B (zh) * 2018-05-25 2020-10-09 广东工业大学 高温合金小尺寸结构涡轮盘的损伤榫槽双激光锻造再制造修复装置及应用方法
CN109652618B (zh) * 2018-12-19 2020-09-15 中钢集团邢台机械轧辊有限公司 一种激光表面强化的方法
US11458572B2 (en) 2019-05-16 2022-10-04 Caterpillar Inc. Laser smoothing
CN110315075B (zh) * 2019-07-19 2022-01-07 西北工业大学 一种激光增材制造镍基高温合金的同步激光热处理方法
CN110846652B (zh) * 2019-10-21 2021-11-23 神华铁路装备有限责任公司 车轴修复方法以及再制造车轴
CN111235380B (zh) * 2020-02-24 2022-03-29 广州民航职业技术学院 一种损伤金属构件修复时表面层特征参数梯度的控制方法
CN111730208B (zh) * 2020-05-13 2021-09-14 中国科学院西安光学精密机械研究所 一种改进激光铣削表面粗糙度的方法
CN112899674A (zh) * 2021-01-15 2021-06-04 同高先进制造科技(太仓)有限公司 一种基于梯形沟槽的激光熔覆方法
CN114905156B (zh) * 2021-02-09 2023-04-07 中国科学院半导体研究所 用于复合材料层板挖补修复的损伤层激光剥除方法
CN113151774B (zh) * 2021-03-10 2022-05-24 南京理工大学 一种具有双梯度的竹节式纳米结构金属材料及其制备方法
CN113529068B (zh) * 2021-06-28 2022-06-17 济南大学 制动盘表面激光熔覆陶瓷复合涂层的制备方法
CN113737175B (zh) * 2021-09-09 2022-11-11 南通大学 一种超高压柱塞泵柱塞杆激光复合修复方法
CN113604802B (zh) * 2021-09-09 2022-11-18 南通大学 一种超高压柱塞泵柱塞杆制造方法
CN113718246B (zh) * 2021-09-09 2022-11-15 南通大学 一种可消除熔覆层界面的海工平台桩腿激光复合修复方法
CN115074725B (zh) * 2022-06-29 2024-01-30 中国航发动力股份有限公司 一种钛合金薄叶片叶边块缺陷的修复方法
CN115070061A (zh) * 2022-07-20 2022-09-20 西安空天机电智能制造有限公司 一种起落架裂纹激光修复方法
CN115233144B (zh) * 2022-07-29 2024-04-09 江苏大学 一种喷涂态陶瓷涂层用机械激光交互式抛光强化方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584662A (en) * 1995-03-06 1996-12-17 General Electric Company Laser shock peening for gas turbine engine vane repair
US5735044A (en) * 1995-12-12 1998-04-07 General Electric Company Laser shock peening for gas turbine engine weld repair
CN100999046A (zh) * 2006-12-22 2007-07-18 江苏大学 金属损伤叶片激光冲击修复装置与方法
CN101403114A (zh) * 2008-10-24 2009-04-08 江苏宏大特种钢机械厂 一种链篦机关键零部件表面裂纹修复方法
CN102828182A (zh) * 2012-09-20 2012-12-19 丹阳宏图激光科技有限公司 齿轮的激光熔覆修复工艺
CN103409758A (zh) * 2013-07-12 2013-11-27 江苏大学 泵类壳体及叶片微细裂纹激光强化延寿方法
CN103695939A (zh) * 2013-12-25 2014-04-02 江苏万力机械股份有限公司 一种超大型剪切装备刀具的激光修复再制造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952180A (en) * 1974-12-04 1976-04-20 Avco Everett Research Laboratory, Inc. Cladding
US6163012A (en) * 1996-09-27 2000-12-19 Kabushiki Kaisha Toshiba Laser maintaining and repairing apparatus
US6881925B1 (en) * 1997-12-09 2005-04-19 Kabushiki Kaisha Toshiba Laser emission head, laser beam transmission device, laser beam transmission device adjustment method and preventive maintenance/repair device of structure in nuclear reactor
US6410884B1 (en) * 1999-07-19 2002-06-25 The Regents Of The University Of California Contour forming of metals by laser peening
US6670578B2 (en) * 1999-07-19 2003-12-30 The Regents Of The University Of California Pre-loading of components during laser peenforming
JP2001219269A (ja) * 2000-02-07 2001-08-14 Hitachi Ltd 水中加工装置及びその加工方法
US6423935B1 (en) * 2000-02-18 2002-07-23 The Regents Of The University Of California Identification marking by means of laser peening
US6852179B1 (en) * 2000-06-09 2005-02-08 Lsp Technologies Inc. Method of modifying a workpiece following laser shock processing
US6583384B2 (en) * 2001-07-23 2003-06-24 Lsp Technologies, Inc. UV curable overlays for laser shock processing
JP4490608B2 (ja) * 2001-08-09 2010-06-30 株式会社東芝 構造物の補修方法
EP1312437A1 (en) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Crack repair method
US6960395B2 (en) * 2003-12-30 2005-11-01 General Electric Company Ceramic compositions useful for thermal barrier coatings having reduced thermal conductivity
US20060235564A1 (en) * 2005-04-18 2006-10-19 Igor Troitski Method and multifunctional system for producing laser-induced images on the surfaces of various materials and inside transparent materials
US20090057275A1 (en) * 2007-08-31 2009-03-05 General Electric Company Method of Repairing Nickel-Based Alloy Articles
US8471168B2 (en) * 2008-06-19 2013-06-25 General Electric Company Methods of treating metal articles and articles made therefrom
DE102008044407A1 (de) * 2008-12-05 2010-06-17 Airbus Deutschland Gmbh Verfahren zum Vermeiden einer Rissbildung und einer Verlangsamung des Rissfortschritts in metallischen Flugzeugstrukturen mittels Laserschockstrahlen
WO2011024419A1 (ja) * 2009-08-25 2011-03-03 株式会社 東芝 レーザ照射装置およびレーザ施工方法
US8726501B2 (en) * 2009-08-31 2014-05-20 General Electric Company Method of welding single crystal turbine blade tips with an oxidation-resistant filler material
DE102009051551A1 (de) * 2009-10-31 2011-05-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
JP5814652B2 (ja) * 2011-06-22 2015-11-17 株式会社東芝 レーザ照射装置及びレーザ照射方法
FR2983757B1 (fr) * 2011-12-07 2014-09-12 Snecma Procede de reformage d'une aube de turbomachine comportant au moins une zone deformee par grenaillage
CN103305665A (zh) * 2013-06-07 2013-09-18 江苏大学 一种无吸收层激光温冲击强化焊缝方法
US20150224607A1 (en) * 2014-02-07 2015-08-13 Siemens Energy, Inc. Superalloy solid freeform fabrication and repair with preforms of metal and flux

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584662A (en) * 1995-03-06 1996-12-17 General Electric Company Laser shock peening for gas turbine engine vane repair
US5735044A (en) * 1995-12-12 1998-04-07 General Electric Company Laser shock peening for gas turbine engine weld repair
CN100999046A (zh) * 2006-12-22 2007-07-18 江苏大学 金属损伤叶片激光冲击修复装置与方法
CN101403114A (zh) * 2008-10-24 2009-04-08 江苏宏大特种钢机械厂 一种链篦机关键零部件表面裂纹修复方法
CN102828182A (zh) * 2012-09-20 2012-12-19 丹阳宏图激光科技有限公司 齿轮的激光熔覆修复工艺
CN103409758A (zh) * 2013-07-12 2013-11-27 江苏大学 泵类壳体及叶片微细裂纹激光强化延寿方法
CN103695939A (zh) * 2013-12-25 2014-04-02 江苏万力机械股份有限公司 一种超大型剪切装备刀具的激光修复再制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195468A (zh) * 2020-10-23 2021-01-08 广东镭奔激光科技有限公司 基于双激光束的整体叶盘的损伤叶片修复方法及装置
CN112899678A (zh) * 2021-01-20 2021-06-04 中车青岛四方机车车辆股份有限公司 一种车轴再制造方法、再制造车轴及系统
CN113088962A (zh) * 2021-04-02 2021-07-09 中国人民解放军空军工程大学 钛合金薄壁叶片损伤件的激光熔覆多方位修复方法

Also Published As

Publication number Publication date
CN104480476A (zh) 2015-04-01
US10391587B2 (en) 2019-08-27
US20170239751A1 (en) 2017-08-24
CN104480476B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2016074314A1 (zh) 一种金属损伤件激光热力组合再制造方法
CN103409758B (zh) 泵类壳体及叶片微细裂纹激光强化延寿方法
CN105039652A (zh) 一种用于曲面的方形光斑激光冲击均匀强化方法
Chen et al. Effect of wet shot peening on Ti-6Al-4V alloy treated by ceramic beads
CN108505035B (zh) 一种用于汽轮机末级叶片损伤件的振动熔覆修复工艺
JP6530069B2 (ja) 燃料噴射管用鋼管およびその製造方法
CN105002349A (zh) 一种变光斑多层交错激光冲击均匀强化叶片的方法
Zhang et al. Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint
CN111041409B (zh) 一种利用综合手段提高渗碳齿轮抗磨损/疲劳的方法
Kang et al. Effect of grinding parameters on surface quality, microstructure and rolling contact fatigue behaviors of gear steel for vacuum pump
Zhang et al. Effect of laser shock processing on fatigue life of fastener hole
CN107190257A (zh) 一种模具损伤部位的激光熔覆与机械喷丸交错再制造方法
WO2023036141A1 (zh) 一种可消除熔覆层界面的海工平台桩腿激光复合修复方法
CN104846156A (zh) 一种方形光斑激光多层交错冲击均匀强化方法
Zhang et al. Effects of laser shock processing on mechanical properties of laser welded ANSI 304 stainless steel joint
CN105695984B (zh) 一种Al‑Zn‑Mg‑Cu合金板的表面修复方法
CN108817699B (zh) 一种利用超快激光切割两相复合材料的方法
CN109234506B (zh) 一种激光辅助机械喷丸形成梯度纳米结构的复合方法
CN114438307A (zh) 一种激光冲击-超声滚压复合强化方法
Lei et al. Fatigue properties of Ti17 alloy strengthened by combination of electric spark treatment with ultrasonic surface treatment
CN114481005B (zh) 一种合金表面复合强化处理方法
Wang et al. Microstructure and mechanical properties of AI/Fe micro-laminated composites fabricated by ultrasonic consolidation
Chen et al. Influence of carbon pre-coating prior to laser deposition on rolling contact fatigue of gray cast iron
Cao et al. The residual stress distribution and fatigue property of TC4 laser-welded joint treated by laser shock peening
Chen et al. Enhancing wear resistance and microstructural evolution of brass through laser shock peening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15307784

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905855

Country of ref document: EP

Kind code of ref document: A1