WO2016074287A1 - 全息面板及其制作方法以及全彩相干背光装置 - Google Patents

全息面板及其制作方法以及全彩相干背光装置 Download PDF

Info

Publication number
WO2016074287A1
WO2016074287A1 PCT/CN2014/092771 CN2014092771W WO2016074287A1 WO 2016074287 A1 WO2016074287 A1 WO 2016074287A1 CN 2014092771 W CN2014092771 W CN 2014092771W WO 2016074287 A1 WO2016074287 A1 WO 2016074287A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
holographic
wavelength range
light
Prior art date
Application number
PCT/CN2014/092771
Other languages
English (en)
French (fr)
Inventor
熊源
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/425,626 priority Critical patent/US20160342001A1/en
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2016074287A1 publication Critical patent/WO2016074287A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13342Holographic polymer dispersed liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H1/024Hologram nature or properties
    • G03H1/0248Volume holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2605Arrangement of the sub-holograms, e.g. partial overlapping
    • G03H2001/261Arrangement of the sub-holograms, e.g. partial overlapping in optical contact
    • G03H2001/2615Arrangement of the sub-holograms, e.g. partial overlapping in optical contact in physical contact, i.e. layered holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2226/00Electro-optic or electronic components relating to digital holography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/30Details of photosensitive recording material not otherwise provided for
    • G03H2260/33Having dispersed compound

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a holographic panel, a method for fabricating the same, and a full-coherent backlight device.
  • the backlight module part mostly uses a beam expander, a small hole and the like to expand the small-diameter laser source into a large-area coherent backlight source, and further utilizes a large incident light for the spatial light modulator. Area coherent light field loading information.
  • the beam expander, aperture, and other devices used in the backlight module require a relatively long optical path to achieve beam expansion.
  • the optical path folding scheme can reduce the space occupied by the backlight module, the space utilization rate is not Too ideal, can not achieve large-area, thin and light backlight module, which makes the entire dynamic holographic three-dimensional display system difficult to achieve flat.
  • the technical problem solved by the present invention is to provide a holographic panel, a manufacturing method thereof and a full-coherent backlight device capable of providing a large-area coherent backlight for full-color three-dimensional display.
  • the present invention provides a holographic panel comprising a first substrate, a second substrate, and a polymer dispersed liquid crystal between the first substrate and the second substrate, the polymer dispersed liquid crystal being formed to have a predetermined wavelength range Holographic stripe, at least one of the first substrate and the second substrate is fabricated with an electrode, wherein when the electrode is not applied with a voltage, the polymer dispersed liquid crystal converts incident light of a predetermined wavelength range into collimated coherent light and exits, and the electrode is applied At the time of voltage, the polymer dispersed liquid crystal is transparent to incident light of a predetermined wavelength range.
  • the distance between the first substrate and the second substrate is not less than 35 ⁇ m.
  • the polymer dispersed liquid crystal is composed of trimethylolpropane triacrylate, N-vinylpyrrolidone, N-phenylglycine, rose bengal, and liquid crystal material in a predetermined mass ratio.
  • the incident light is incident on the holographic panel in an oblique manner, and the collimated coherent light is emitted from the holographic panel in a vertical manner, and the outgoing direction of the collimated coherent light and the vertical component of the incident light with respect to the holographic panel are opposite to each other.
  • the present invention provides a method for fabricating a holographic panel, comprising: fabricating an electrode on at least one of a first substrate and a second substrate; filling a polymer dispersed liquid crystal between the first substrate and the second substrate
  • the polymer-dispersed liquid crystal has a dye to absorb light of a predetermined wavelength range; and in a state where no voltage is applied to the electrode, the polymer-dispersed liquid crystal is exposed by light of a predetermined wavelength range to form hologram stripes in the polymer-dispersed liquid crystal.
  • the holographic stripe enables the polymer-dispersed liquid crystal to convert incident light of a predetermined wavelength range into collimated coherent light and exit when no voltage is applied to the electrode, and when the electrode applies a voltage, the polymer-dispersed liquid crystal exhibits incident light of a predetermined wavelength range. Transparent.
  • the distance between the first substrate and the second substrate is not less than 35 ⁇ m.
  • the present invention provides a full color coherent backlight device comprising at least three aforementioned holographic panels stacked, wherein each holographic panel corresponds to a different predetermined wavelength range.
  • the holographic panels are three and correspond to a red light wavelength range, a green light wavelength range, and a blue light wavelength range, respectively.
  • voltages are alternately applied across at least three holographic panels such that at least three holographic panels alternately output collimated coherent light of different predetermined wavelength ranges.
  • the present invention has an advantageous effect that a holographic stripe corresponding to a predetermined wavelength range is formed by a polymer dispersed liquid crystal located between the first substrate and the second substrate, and at least one of the first substrate and the second substrate An electrode is formed.
  • the polymer dispersed liquid crystal converts incident light of a predetermined wavelength range into collimated coherent light and emits it.
  • the electrode applies a voltage, the polymer dispersed liquid crystal is transparent to incident light of a predetermined wavelength range. It provides a large area coherent backlight for full color 3D display.
  • FIG. 1 is a schematic structural view of a hologram panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the operation of the hologram panel according to the embodiment of the present invention when it is powered on;
  • FIG. 3 is a schematic flow chart of a method for fabricating a holographic panel according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a full color coherent backlight device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a holographic panel according to an embodiment of the present invention.
  • the hologram panel 10 includes a first substrate 11, a second substrate 12, and a polymer dispersed liquid crystal 13 between the first substrate 11 and the second substrate 12.
  • the polymer dispersed liquid crystal 13 is formed with hologram stripes corresponding to a predetermined wavelength range, and the electrode 14 is formed on at least one of the first substrate 11 and the second substrate 12.
  • the electrode 14 is not applied with a voltage
  • the polymer dispersed liquid crystal 13 converts incident light of a predetermined wavelength range into collimated coherent light and emits it.
  • the voltage V is applied to the electrode 14, the polymer dispersed liquid crystal 13 is transparent to incident light of a predetermined wavelength range.
  • the spacing between the first substrate 11 and the second substrate 12 is not less than 35 ⁇ m to ensure the recording quality of the volume holographic stripes.
  • the polymer-dispersed liquid crystal 13 has different dyes, corresponding to different absorption wavelengths, and acts on incident light of a predetermined wavelength range.
  • the polymer dispersed liquid crystal 13 is composed of trimethylolpropane triacrylate, N-vinylpyrrolidone, N-phenylglycine, rose bengal, and a liquid crystal material in a predetermined mass ratio.
  • the polymer-dispersed liquid crystal 13 composed of the above components can be polymerized under a blue-green band (450-550 nm) laser exposure under a specific mass ratio formulation, and a hologram can be formed under a specific exposure light path setting so that it can The scattered light of this band is converted into collimated coherent light.
  • a blue-green band 450-550 nm
  • a hologram can be formed under a specific exposure light path setting so that it can The scattered light of this band is converted into collimated coherent light.
  • the polymer-dispersed liquid crystal 13 is exposed to light of a predetermined wavelength range without being charged, so that the hologram panel 10 can convert the predetermined wavelength of the scattered light into collimated coherent light.
  • the incident light is incident on the hologram panel 10 in an oblique manner, and the collimated coherent light is emitted from the hologram panel 10 in a vertical manner, and the outgoing direction of the collimated coherent light and the vertical component of the incident light with respect to the hologram panel 10 are opposite to each other.
  • incident light is obliquely incident on the hologram panel 10, and since the refractive indices of the polymer dispersed liquid crystals 13 at different positions are different, scattering is formed in the hologram panel 10, so that the polymer dispersed liquid crystal 13 converts incident light of a predetermined wavelength range into
  • the emitted light is distributed throughout the holographic panel 10 to form a large area coherent backlight, and the remaining portion of the light is transmitted through the holographic panel 10 from the other side.
  • V voltage
  • the holographic panel 10 can convert the incident light of different wavelength ranges into collimated coherent light and emit it by adjusting the composition of the polymer dispersed liquid crystal 13, preferably, such as a red wavelength range and a green wavelength.
  • the range and blue wavelength range provide a large area coherent backlight for full color 3D display.
  • FIG. 3 is a flow chart showing a method of fabricating a hologram panel according to an embodiment of the present invention. As shown in FIG. 3, the manufacturing method of the holographic panel includes:
  • Step S10 forming an electrode on at least one of the first substrate and the second substrate. It is of course also possible to make electrodes on both the first substrate and the second substrate. Among them, the holographic panel can be operated in different scenes by applying a voltage to the electrodes or not applying a voltage.
  • Step S11 filling a polymer dispersed liquid crystal between the first substrate and the second substrate, the polymer dispersed liquid crystal having a dye to absorb light of a predetermined wavelength range.
  • the polymer dispersed liquid crystal is composed of trimethylolpropane triacrylate, N-vinylpyrrolidone, N-phenylglycine, rose bengal, and a liquid crystal material in a predetermined mass ratio.
  • a polymer dispersed liquid crystal composed of the above components can be polymerized under laser exposure in a blue-green band (450-550 nm) under a specific mass ratio formulation, and a hologram can be formed under a specific exposure light path setting so that it can The scattered light of this band is converted into collimated coherent light.
  • Step S12 Exposing the polymer dispersed liquid crystal with light of a predetermined wavelength range in a state where no voltage is applied to the electrode to form a hologram stripe in the polymer dispersed liquid crystal.
  • the holographic stripe enables the polymer-dispersed liquid crystal to convert incident light of a predetermined wavelength range into collimated coherent light when the electrode is not applied with a voltage, and the polymer-dispersed liquid crystal is transparent to incident light of a predetermined wavelength range when a voltage is applied to the electrode. . Since the refractive indices of the polymer dispersed liquid crystals at different positions are different, so that scattering is formed in the holographic panel, so that the polymer dispersed liquid crystal converts incident light of a predetermined wavelength range into collimated coherent light and exits, the emitted light spreads over the holographic panel to form Large area coherent backlight. Applying a voltage, after exposure processing, by applying a certain voltage to the electrodes, the holographic panel loses the function of converting the scattered light into collimated coherent light, and the holographic panel will have no significant loss of light transmitted through the visible light band.
  • the spacing between the first substrate and the second substrate is not less than 35 ⁇ m.
  • the holographic panel converts incident light of different wavelength ranges into collimated coherent light and emits it, preferably, such as a red wavelength range, a green wavelength range, and a blue wavelength range, etc.
  • Full color 3D display provides large area coherent backlighting.
  • the full color coherent backlight device 100 includes at least three holographic panels 10, 20, 30 stacked thereon, wherein each holographic panel corresponds to a different predetermined wavelength range.
  • the holographic panels are three and correspond to the red light wavelength range, the green light wavelength range, and the blue light wavelength range, respectively.
  • the three holographic panels 10, 20, 30 respectively correspond to different operating wavelengths, that is, when one of them operates, such as the holographic panel 10, light of a corresponding wavelength is incident, and at this time, electrodes of the remaining two holographic panels 20, 30 are applied.
  • the voltage makes it transparent, and the light of this wavelength is converted into collimated coherent light, and the full-color backlight is realized by sequentially turning on the timing. Specifically, in operation, voltages are alternately applied across at least three holographic panels 10, 20, 30 such that at least three holographic panels 10, 20, 30 alternately output collimated coherent light of different predetermined wavelength ranges.
  • the hologram panel 10 is a holographic panel of a red wavelength range
  • a voltage is applied to the electrodes of the two hologram panels 20, 30 in the green wavelength range and the blue wavelength range, so that the two The holographic panels 20, 30 are transparent, and the holographic panel 10 of the red wavelength range does not apply a voltage, and the polymer dispersed liquid crystal converts the incident light of the red wavelength range into collimated coherent light and exits.
  • At least three holographic panels 10, 20, 30 are stacked together, and voltages are alternately applied in time series, so that at least three holographic panels 10, 20, 30 alternately output collimated coherent light of different predetermined wavelength ranges.
  • a large-area coherent backlight is provided for full-color 3D display.
  • the present invention forms a holographic stripe corresponding to a predetermined wavelength range by a polymer dispersed liquid crystal between the first substrate and the second substrate, and at least one of the first substrate and the second substrate is formed with an electrode.
  • the polymer-dispersed liquid crystal converts the incident light of a predetermined wavelength range into collimated coherent light and emits it.
  • the polymer-dispersed liquid crystal is transparent to the incident light of a predetermined wavelength range, and can be completely Color 3D display provides large area coherent backlight

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种全息面板(10、20、30)及其制作方法以及全彩相干背光装置(100)。全息面板(10、20、30)包括:第一基板(11)、第二基板(12)以及位于基板间的聚合物分散液晶(13)。聚合物分散液晶(13)形成有对应于预定波长范围的全息条纹,第一基板和第二基板的至少一者上制作有电极(14),其中当电极(14)未施加电压时,聚合物分散液晶(13)将预定波长范围的入射光转换成准直相干光并出射,电极(14)施加电压时,聚合物分散液晶(13)对预定波长范围的入射光呈透明化。将三个全息面板(10、20、30)堆叠形成全彩三维显示的大面积相干背光。

Description

全息面板及其制作方法以及全采相干背光装置
【技术领域】
本发明涉及显示技术领域,特别是涉及一种全息面板及其制作方法以及全采相干背光装置。
【背景技术】
现有的动态全息三维显示系统中,背光模组部分大多使用扩束镜、小孔等器件将小口径激光源扩束为大面积的相干背光源,进而为空间光调制器利用对入射的大面积相干光场加载信息。背光模组中所使用的扩束镜、小孔等器件都需要相当的光程才能实现扩束作用,虽然有光程折叠等方案能够减少背光模组所占空间,但是其空间利用率都不太理想,不能实现大面积,轻薄的背光模组,进而使得整个动态全息三维显示系统难以实现平板化。
【发明内容】
本发明解决的技术问题是,提供一种全息面板及其制作方法以及全采相干背光装置,能够为全彩三维显示提供大面积相干背光。
为解决上述技术问题,本发明提供了一种全息面板,包括第一基板、第二基板以及位于第一基板和第二基板间的聚合物分散液晶,聚合物分散液晶形成有对应于预定波长范围的全息条纹,第一基板和第二基板的至少一者上制作有电极,其中当电极未施加电压时,聚合物分散液晶将预定波长范围的入射光转换成准直相干光并出射,电极施加电压时,聚合物分散液晶对预定波长范围的入射光呈透明化。
其中,第一基板和第二基板间的间距不小于35μm。
其中,聚合物分散液晶由三羟甲基丙烷三丙烯酸酯、N-乙烯吡咯烷酮、N-苯基甘氨酸、玫瑰红以及液晶材料按预定的质量比组成。
其中,入射光以倾斜方式入射至全息面板,准直相干光以垂直方式从全息面板出射,且准直相干光的出射方向与入射光相对于全息面板的垂直分量互为反向。
为解决上述技术问题,本发明提供了一种全息面板的制作方法,包括:在第一基板和第二基板的至少一者上制作电极;在第一基板和第二基板间填充聚合物分散液晶,聚合物分散液晶具有染料,以吸收预定波长范围的光;在电极未施加电压的状态下,利用预定波长范围的光对聚合物分散液晶进行曝光,以在聚合物分散液晶内形成全息条纹。
其中,全息条纹能够使得当电极未施加电压时,聚合物分散液晶将预定波长范围的入射光转换成准直相干光并出射,电极施加电压时,聚合物分散液晶对预定波长范围的入射光呈透明化。
其中,第一基板和第二基板间的间距不小于35μm。
为解决上述技术问题,本发明提供了全彩相干背光装置,包括至少三个前述的全息面板堆叠而成,其中每个全息面板对应不同的预定波长范围。
其中,全息面板为三个且分别对应于红光波长范围、绿光波长范围和蓝光波长范围。
其中,工作时,在至少三个全息面板上交替施加电压,以使得至少三个全息面板交替输出不同预定波长范围的准直相干光。
通过上述方案,本发明的有益效果是:通过位于第一基板和第二基板间的聚合物分散液晶形成有对应于预定波长范围的全息条纹,且第一基板和第二基板的至少一者上制作有电极,当电极未施加电压时,聚合物分散液晶将预定波长范围的入射光转换成准直相干光并出射,电极施加电压时,聚合物分散液晶对预定波长范围的入射光呈透明化,能够为全彩三维显示提供大面积相干背光。
【附图说明】
图1是本发明实施例的全息面板的结构示意图;
图2是本发明实施例的全息面板加电时的工作示意图;
图3是本发明实施例的全息面板的制作方法的流程示意图;
图4是本发明实施例的全彩相干背光装置的结构示意图。
【具体实施方式】
请参阅图1,图1是本发明实施例的全息面板的结构示意图。如图1所示,全息面板10包括:第一基板11、第二基板12以及位于第一基板11和第二基板12间的聚合物分散液晶13。聚合物分散液晶13形成有对应于预定波长范围的全息条纹,第一基板11和第二基板12的至少一者上制作有电极14。其中当电极14未施加电压时,聚合物分散液晶13将预定波长范围的入射光转换成准直相干光并出射。电极14施加电压V时,聚合物分散液晶13对预定波长范围的入射光呈透明化。
在本发明实施例中,第一基板11和第二基板12间的间距不小于35μm,以保证能体积全息条纹的记录质量。聚合物分散液晶13具有不同染料,对应具有不同的吸收波长,对预定波长范围的入射光发生作用。具体地,聚合物分散液晶13由三羟甲基丙烷三丙烯酸酯、N-乙烯吡咯烷酮、N-苯基甘氨酸、玫瑰红以及液晶材料按预定的质量比组成。如由以上成分组成的聚合物分散液晶13,在特定质量比的配方下能在蓝绿波段(450-550nm)的激光曝光下发生聚合反应,在特定曝光光路设置下能形成全息图使得其能将该波段的散射光转换成准直相干光出射。
如图1所示,在不加电的情况下,聚合物分散液晶13用预定波长范围的入射光进行曝光处理使得全息面板10能将该预定波长的散射光转换成准直相干光出射。入射光以倾斜方式入射至全息面板10,准直相干光以垂直方式从全息面板10出射,且准直相干光的出射方向与入射光相对于全息面板10的垂直分量互为反向。具体地,入射光倾斜入射至全息面板10,由于不同位置处聚合物分散液晶13的折射率不同,从而在全息面板10中形成散射,使得聚合物分散液晶13将预定波长范围的入射光转换成准直相干光并出射时,出射光遍布全息面板10,形成大面积相干背光,其余部分的光透过全息面板10从另一面出射。如图2所示,在曝光处理后,通过对电极14施加一定的电压V能使全息面板10失去将散射光转换成准直相干光的功能,全息面板10将没有明显损失的透过可见光波段的光。
在本发明实施例中,可以通过调整聚合物分散液晶13的组成,使全息面板10对不同波长范围的入射光转换成准直相干光并出射,优选的,如红光波长范围、绿光波长范围和蓝光波长范围等,能够为全彩三维显示提供大面积相干背光。
图3是本发明实施例的全息面板的制作方法的流程示意图。如图3所示,全息面板的制作方法包括:
步骤S10:在第一基板和第二基板的至少一者上制作电极。当然也可以在第一基板和第二基板都制作电极。其中,可以通过对电极施加电压或不施加电压使全息面板工作在不同的场景。
步骤S11:在第一基板和第二基板间填充聚合物分散液晶,聚合物分散液晶具有染料,以吸收预定波长范围的光。
具体地,聚合物分散液晶由三羟甲基丙烷三丙烯酸酯、N-乙烯吡咯烷酮、N-苯基甘氨酸、玫瑰红以及液晶材料按预定的质量比组成。如由以上成分组成的聚合物分散液晶,在特定质量比的配方下能在蓝绿波段(450-550nm)的激光曝光下发生聚合反应,在特定曝光光路设置下能形成全息图使得其能将该波段的散射光转换成准直相干光出射。
步骤S12:在电极未施加电压的状态下,利用预定波长范围的光对聚合物分散液晶进行曝光,以在聚合物分散液晶内形成全息条纹。
全息条纹能够使得当电极未施加电压时,聚合物分散液晶将预定波长范围的入射光转换成准直相干光并出射,电极施加电压时,聚合物分散液晶对预定波长范围的入射光呈透明化。由于不同位置处聚合物分散液晶的折射率不同,从而在全息面板中形成散射,使得聚合物分散液晶将预定波长范围的入射光转换成准直相干光并出射时,出射光遍布全息面板,形成大面积相干背光。施加电压,在曝光处理后,通过对电极施加一定的电压能使全息面板失去将散射光转换成准直相干光的功能,全息面板将没有明显损失的透过可见光波段的光。
在本发明实施例中,第一基板和第二基板间的间距不小于35μm。可以通过调整聚合物分散液晶的组成,使全息面板对不同波长范围的入射光转换成准直相干光并出射,优选的,如红光波长范围、绿光波长范围和蓝光波长范围等,能够为全彩三维显示提供大面积相干背光。
图4是本发明实施例的全彩相干背光装置的结构示意图。如图4所示,全彩相干背光装置100包括至少三个上述的全息面板10、20、30堆叠而成,其中每个全息面板对应不同的预定波长范围。全息面板为三个且分别对应于红光波长范围、绿光波长范围和蓝光波长范围。此三种全息面板10、20、30分别对应不同的工作波长,即当其中一个工作时,如全息面板10,对应波长的光入射,而此时对其余两个全息面板20、30的电极施加电压使其透明化,该波长的光会被转换成准直相干光出射,通过时序上的依次打开工作实现全彩的背光。具体地,工作时,在至少三个全息面板10、20、30上交替施加电压,以使得至少三个全息面板10、20、30交替输出不同预定波长范围的准直相干光。例如,假设全息面板10为红光波长范围的全息面板,需要输出红光波长范围的光时,对绿光波长范围和蓝光波长范围的两个全息面板20、30的电极施加电压,使此两个全息面板20、30透明化,而红光波长范围的全息面板10不施加电压,其聚合物分散液晶将红光波长范围的入射光转换成准直相干光并出射。
在本发明实施例中,利用至少三个全息面板10、20、30堆叠在一起,依时序交替施加电压,使得至少三个全息面板10、20、30交替输出不同预定波长范围的准直相干光,实现为全彩三维显示提供大面积相干背光。
综上所述,本发明通过位于第一基板和第二基板间的聚合物分散液晶形成有对应于预定波长范围的全息条纹,且第一基板和第二基板的至少一者上制作有电极,当电极未施加电压时,聚合物分散液晶将预定波长范围的入射光转换成准直相干光并出射,电极施加电压时,聚合物分散液晶对预定波长范围的入射光呈透明化,能够为全彩三维显示提供大面积相干背光
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种全息面板,其中,所述全息面板包括第一基板、第二基板以及位于所述第一基板和所述第二基板间的聚合物分散液晶,所述聚合物分散液晶形成有对应于预定波长范围的全息条纹,所述第一基板和所述第二基板的至少一者上制作有电极,其中当所述电极未施加电压时,所述聚合物分散液晶将所述预定波长范围的入射光转换成准直相干光并出射,所述电极施加电压时,所述聚合物分散液晶对所述预定波长范围的入射光呈透明化。
  2. 根据权利要求1所述的全息面板,其中,所述第一基板和所述第二基板间的间距不小于35μm。
  3. 根据权利要求1所述的全息面板,其中,所述聚合物分散液晶由三羟甲基丙烷三丙烯酸酯、N-乙烯吡咯烷酮、N-苯基甘氨酸、玫瑰红以及液晶材料按预定的质量比组成。
  4. 根据权利要求1所述的全息面板,其中,所述入射光以倾斜方式入射至所述全息面板,所述准直相干光以垂直方式从所述全息面板出射,且所述准直相干光的出射方向与所述入射光相对于所述全息面板的垂直分量互为反向。
  5. 一种全息面板的制作方法,其中,所述方法包括:
    在第一基板和第二基板的至少一者上制作电极;
    在所述第一基板和所述第二基板间填充聚合物分散液晶,所述聚合物分散液晶具有染料,以吸收预定波长范围的光;
    在所述电极未施加电压的状态下,利用所述预定波长范围的光对所述聚合物分散液晶进行曝光,以在所述聚合物分散液晶内形成全息条纹。
  6. 根据权利要求5所述的方法,其中,所述全息条纹能够使得当所述电极未施加电压时,所述聚合物分散液晶将所述预定波长范围的入射光转换成准直相干光并出射,所述电极施加电压时,所述聚合物分散液晶对所述预定波长范围的入射光呈透明化。
  7. 根据权利要求5所述的方法,其中,所述第一基板和所述第二基板间的间距不小于35μm。
  8. 一种全彩相干背光装置,其中,所述装置包括至少三个如权利要求1-4任一项所述的全息面板堆叠而成,其中每个所述全息面板对应不同的预定波长范围。
  9. 根据权利要求8所述的装置,其中,所述全息面板为三个且分别对应于红光波长范围、绿光波长范围和蓝光波长范围。
  10. 根据权利要求8所述的装置,其中,工作时,在所述至少三个全息面板上交替施加电压,以使得所述至少三个全息面板交替输出不同预定波长范围的准直相干光。
PCT/CN2014/092771 2014-11-11 2014-12-02 全息面板及其制作方法以及全彩相干背光装置 WO2016074287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/425,626 US20160342001A1 (en) 2014-11-11 2014-10-12 Holographic panel, manufacture method thereof and full color coherent backlight device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410631862.4A CN104360525B (zh) 2014-11-11 2014-11-11 全息面板及其制作方法以及全采相干背光装置
CN201410631862.4 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016074287A1 true WO2016074287A1 (zh) 2016-05-19

Family

ID=52527801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092771 WO2016074287A1 (zh) 2014-11-11 2014-12-02 全息面板及其制作方法以及全彩相干背光装置

Country Status (3)

Country Link
US (1) US20160342001A1 (zh)
CN (1) CN104360525B (zh)
WO (1) WO2016074287A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090822A1 (en) * 2000-05-24 2001-11-29 Science Applications International Corporation A system and method for replicating volume holograms
CN1680854A (zh) * 2004-04-08 2005-10-12 住友化学株式会社 采用计算机合成全息图的光学元件、导光板、背光源及液晶显示装置
CN101819351A (zh) * 2009-02-26 2010-09-01 乐金显示有限公司 用于液晶显示设备的背光单元及其驱动方法
CN104076424A (zh) * 2014-07-28 2014-10-01 上海交通大学 全息聚合物分散液晶光栅及其制备方法
WO2014160151A2 (en) * 2013-03-14 2014-10-02 Drexel University Holographic polymer dispersed liquid crystals

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515674B2 (zh) * 1972-05-26 1976-02-21
AU6519099A (en) * 1998-10-16 2000-05-08 Digilens Inc. Method and system for display resolution multiplication
US6816290B2 (en) * 2000-07-05 2004-11-09 Sony Corporation Image display element, and image display device
EP1612596A1 (en) * 2004-06-29 2006-01-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High-efficient, tuneable and switchable optical elements based on polymer-liquid crystal composites and films, mixtures and a method for their production
JP4683262B2 (ja) * 2004-09-08 2011-05-18 ソニー株式会社 表示装置および方法、並びに光学素子
JP2006267765A (ja) * 2005-03-25 2006-10-05 Alps Electric Co Ltd 高分子分散型液晶素子及びその製造方法
CN101551542B (zh) * 2009-05-14 2011-08-31 复旦大学 电控开关式全息聚合物分散液晶衍射分束器
CN102955256B (zh) * 2012-10-15 2015-06-24 上海交通大学 基于体积全息原理的大面积相干光背光模组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001090822A1 (en) * 2000-05-24 2001-11-29 Science Applications International Corporation A system and method for replicating volume holograms
CN1680854A (zh) * 2004-04-08 2005-10-12 住友化学株式会社 采用计算机合成全息图的光学元件、导光板、背光源及液晶显示装置
CN101819351A (zh) * 2009-02-26 2010-09-01 乐金显示有限公司 用于液晶显示设备的背光单元及其驱动方法
WO2014160151A2 (en) * 2013-03-14 2014-10-02 Drexel University Holographic polymer dispersed liquid crystals
CN104076424A (zh) * 2014-07-28 2014-10-01 上海交通大学 全息聚合物分散液晶光栅及其制备方法

Also Published As

Publication number Publication date
US20160342001A1 (en) 2016-11-24
CN104360525B (zh) 2018-05-11
CN104360525A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
US11328380B2 (en) Machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources
US10254465B2 (en) Illumination device for a liquid crystal display
US8982437B2 (en) Hologram recording film and method of manufacturing same, and image display apparatus
WO2017088220A1 (zh) 液晶显示器及其显示方法
CN115356905A (zh) 波导单元格中全息光栅高吞吐量记录的系统和方法
CN102023411B (zh) 透明显示设备
CN104335100A (zh) 具有调制层的定向背光体
WO2004042449A1 (ja) 表示素子およびそれを用いた表示装置
WO2017177488A1 (zh) 双面液晶显示装置及其背光模组
JP2004205973A (ja) 平面表示素子及びその駆動方法
CN112470067A (zh) 具有反射器的可切换的光准直层
WO2019148661A1 (zh) 一种液晶显示面板及其制作方法、液晶显示装置
WO2011136072A1 (ja) 表示装置
WO2018192041A1 (zh) 一种侧入式背光模组、显示器及导光板
WO2000039641A1 (en) Method for producing a multi-layer holographic device
WO2013004053A1 (zh) 液晶面板预倾角的制作装置和方法、样品台、光源装置
KR102205868B1 (ko) 양방향 표시 장치
CN106707624A (zh) 一种显示器件、背光源、显示装置
TWI804139B (zh) 顯示裝置
KR101550392B1 (ko) 홀로그래픽 광학 소자 및 이를 구비하는 디스플레이 장치
KR101739491B1 (ko) 광학 소자와 이를 구비하는 디스플레이 장치 및 광학 소자를 이용한 백색 광 형성 방법
WO2021244036A1 (zh) 一种光栅阵列、3d显示装置和3d显示方法
WO2016074287A1 (zh) 全息面板及其制作方法以及全彩相干背光装置
KR20190118698A (ko) 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법
CN105683785A (zh) 用于反射式显示器的光再导向全息图

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14425626

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906055

Country of ref document: EP

Kind code of ref document: A1