WO2016074111A1 - 一种控温式硫化氢连续分解制取氢气的装置 - Google Patents

一种控温式硫化氢连续分解制取氢气的装置 Download PDF

Info

Publication number
WO2016074111A1
WO2016074111A1 PCT/CN2014/001024 CN2014001024W WO2016074111A1 WO 2016074111 A1 WO2016074111 A1 WO 2016074111A1 CN 2014001024 W CN2014001024 W CN 2014001024W WO 2016074111 A1 WO2016074111 A1 WO 2016074111A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
inner cylinder
discharge
hydrogen
hydrogen sulfide
Prior art date
Application number
PCT/CN2014/001024
Other languages
English (en)
French (fr)
Inventor
李建庆
Original Assignee
李建庆
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李建庆 filed Critical 李建庆
Priority to PCT/CN2014/001024 priority Critical patent/WO2016074111A1/zh
Publication of WO2016074111A1 publication Critical patent/WO2016074111A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the utility model belongs to the technical field of hydrogen production and gas purification, and relates to a device for decomposing hydrogen sulfide into hydrogen and elemental sulfur by using a dielectric barrier discharge.
  • H 2 S is widely used in the exhaust gas of oil and gas exploration, petrochemical, coal chemical and other industries. It is a highly toxic and odorous acid gas. The environmental protection and corrosion requirements require H 2 S to be treated without pollution. At present, it is mainly oxidized to elemental sulfur and water by the Claus method, but the Claus method only recovers sulfur in H 2 S, and hydrogen generates water during oxidation, resulting in hydrogen. Waste of resources.
  • hydrogen sulfide has the lowest dissociation energy, so theoretically, the thermal decomposition of hydrogen sulfide is the easiest to obtain hydrogen.
  • the hydrogen sulfide decomposition reaction is a strong endothermic reaction, which is limited by the thermodynamic equilibrium, and it has a considerable conversion rate only at high temperatures.
  • the decomposition rate of hydrogen sulfide at 1000 ° C is only 20%, and the conversion at 1200 ° C is 38% (Slimane RB, GasTIPS, 2004, 30-34).
  • Electrochemical and photocatalytic methods can also achieve H 2 S decomposition to produce hydrogen and sulfur, but there are disadvantages of many operation steps or low reaction efficiency.
  • the researchers used membrane reaction technology and non-equilibrium plasma technology, but the development and application of high temperature and sulfur-resistant membrane materials has become the key to achieving breakthroughs in the use of membrane reactions to decompose hydrogen sulfide.
  • the decomposition of H 2 S by the non-equilibrium plasma technique can be realized in arc discharge, rotary glow discharge, and contraction normal glow discharge, microwave discharge, pulse corona discharge, dielectric barrier discharge, and the like.
  • the energy consumption required for H 2 S arc discharge decomposition is higher than that of methane steam reforming to generate hydrogen (3.7 eV/H 2 ) (J Appl Phys, 1998, 84: 1215-1221).
  • the energy consumption required for H 2 S rotating glow discharge decomposition is also higher than that of methane steam reforming to generate hydrogen (Plasma Chem Plasma Process, 1993, 13: 77-91).
  • H 2 S is decomposed using pulsed corona discharge.
  • the technical feature is: a mixed gas of H 2 S and argon gas at a pressure of 1.322 atmospheres, a flow rate of 1.18*10 -4 SCMs -1 at room temperature, and a 16% percentage of H 2 S, pulse corona discharge
  • the decomposition rate of the lower H 2 S is about 28%, and the lowest decomposition energy consumption is 17 eV/H 2 S.
  • the dielectric barrier discharge has the characteristics of being able to work under atmospheric pressure and discharging in a large space, and can prevent local sparks or arc discharges from being formed in the discharge space, and thus has a good industrial application prospect.
  • Patent document CN102408095A (2012) reports the decomposition of H 2 S by dielectric barrier discharge.
  • the technical feature is that a photocatalyst is added to a wire-bar dielectric barrier reactor in which a stainless steel wire and a thin aluminum plate are respectively a high-voltage electrode and a ground electrode, thereby realizing H 2 S decomposition to prepare hydrogen and elemental sulfur, and sulfur generated by decomposition is deposited on the catalyst. Downstream of the bed.
  • H 2 S is decomposed by dielectric barrier discharge. Its technical characteristics are: under atmospheric pressure, the H 2 S is decomposed into hydrogen and sulfur in the ozone generator by dielectric barrier discharge, the experimental temperature is from 443.16-833.16K, the total gas flow rate is 50-100cm 3 /min, H 2 S The percentage is 20-100%. Studies have shown that Ar can reduce energy consumption and breakdown voltage, but its energy consumption is still high after adding Ar, and the decomposition energy consumption is between 37-106eV/H2S.
  • the technical feature is: in the dielectric barrier discharge reactor filled with the MoOx/Al 2 O 3 catalyst, when the raw material gas is a mixed gas of H 2 S and Ar, the volume content of H 2 S is 5%, and the total gas flow rate At 150 ml/min, the H 2 S conversion was 48% and the energy consumption was 0.92 kJ/l H 2 S at 10 minutes of discharge.
  • the sulfur produced by the decomposition adheres to the inside of the catalyst and the reactor, causing catalyst deactivation and system capacitance to change, and the discharge is unstable. As the discharge time is extended, the decomposition rate of H 2 S is gradually decreased.
  • the purpose of the utility model is to provide a device for continuously decomposing hydrogen from a temperature-controlled hydrogen sulfide medium barrier discharge.
  • the utility model is realized by the following technical solutions.
  • the utility model belongs to a temperature-controlled plasma generating device for dielectric barrier discharge, wherein the device is a coaxial sleeve type reactor, and the main structure comprises a central electrode, a discharge region and a circulating liquid ground electrode; during the discharging process, the central electrode protrudes
  • the portion of the insulating material is connected to the high voltage end of the AC step-up transformer, the area between the inner cylinder and the center electrode is a discharge area, the inner cylinder and the outer cylinder form a jacket, and the outer cylinder and the inner cylinder are made of an insulating material, and the insulation is
  • the material is oxide glass, corundum, One of ceramics and quartz.
  • the lower end of the side wall of the outer cylinder is provided with a circulating liquid inlet
  • the upper end of the side wall of the outer cylinder is provided with a circulating liquid outlet
  • a circulating liquid formed in the jacket formed by the inner cylinder and the outer cylinder serves as a grounding electrode, and the temperature of the discharge area and the cylinder wall is controlled.
  • a metal current lead-out wire is fixed on the lower part of the outer cylinder and the inner cylinder annular gap, one end of which is deep into the jacket and is in contact with the circulating liquid grounding electrode, and the other end is extended from the outer cylinder and the grounding wire; the upper end wall of the inner cylinder is provided with raw materials
  • the gas inlet has a discharge port at the lower end of the inner cylinder.
  • the ratio of the diameter of the center electrode to the inner diameter of the inner cylinder is 1:20 to 1:1.5, the ratio of the diameter of the grounding wire to the diameter of the center electrode is 1:1. When 5:1, the effect is the best;
  • the center electrode and the grounding wire are made of platinum, rhodium, palladium, gold, copper, tungsten or iron;
  • the oxide glass as an insulating material contains silicon oxide, boron oxide, cerium oxide, aluminum oxide, phosphorus oxide, arsenic oxide, vanadium oxide, antimony oxide, gallium oxide, One or more of titanium oxide, molybdenum oxide, and tin oxide;
  • the circulating liquid as the ground electrode in the jacket is a salt solution, an alkali solution and an ionic liquid;
  • hydrogen sulfide is subjected to a discharge decomposition reaction in a cylindrical space formed by the inner cylinder and the center electrode, and is decomposed into hydrogen gas and sulfur.
  • the circulating liquid in the jacket has the dual function of acting as a grounding electrode and temperature control. By adjusting the temperature of the circulating liquid in the jacket between 119 ° C and 444 ° C, the generated sulfur is melted into a liquid state and leaves the discharge zone.
  • the utility model provides a device for continuously decomposing and controlling hydrogen for controlling temperature hydrogen sulfide, which has the following advantages:
  • the device increases the uniformity of hydrogen sulfide discharge
  • the device can separate the elemental sulfur generated by decomposition from the discharge area, so that the discharge continues to be stable, which is favorable for industrialization;
  • the device reduces the capacitance current, reduces the energy loss, improves the energy utilization rate, and improves the energy efficiency of hydrogen sulfide decomposition to obtain hydrogen.
  • Figure 1 is a schematic view showing the structure of a coaxial sleeve type reactor without a catalyst
  • FIG. 2 is a schematic structural view of a coaxial sleeve type reactor filled with a catalyst according to the present invention
  • the invention relates to a device for continuously decomposing hydrogen by controlling temperature-type hydrogen sulfide, which is a temperature-controlled plasma generating device belonging to dielectric barrier discharge, wherein the casing is a coaxial sleeve structure made of insulating material, and the outer cylinder (5) Sealing with the upper and lower sides of the inner cylinder (6) to form a jacket (7).
  • the jacket (7) is used as a circulating liquid for temperature control and grounding electrodes, and the top end of the inner cylinder (6) is insulated.
  • the root metal current lead-out wire has one end deep into the jacket (7) and the circulating liquid ground electrode, and the other end protrudes from the outer cylinder (5) and the grounding wire (8), and the center electrode (1) and the grounding wire (8) are made of a material It is one of platinum metal, base metal, palladium metal, gold metal, copper metal, tungsten metal, iron metal, nickel metal, titanium metal and alloy thereof; the outer tube (5) has a circulating liquid inlet at the lower end of the side wall (9)
  • the outer tube (5) has a circulating liquid outlet (4) at the upper end of the side wall, a raw material gas inlet (3) on the upper end side wall of the inner tube (6), and a discharge port at the lower end
  • the hydrogen sulfide gas is ionized in the discharge region and decomposed into hydrogen and elemental sulfur.
  • the generated elemental sulfur is partially attached to the inner cylinder wall, and a part is discharged along with the unreacted raw material gas and the generated hydrogen;
  • the invention relates to a device for continuously decomposing hydrogen by controlling temperature-type hydrogen sulfide, which is a temperature-controlled plasma generating device belonging to dielectric barrier discharge, wherein the casing is a coaxial sleeve structure made of insulating material, and the outer cylinder (5) Sealing with the upper and lower sides of the inner cylinder (6) to form a jacket (7).
  • the jacket (7) is used as a circulating liquid for temperature control and grounding electrodes, and the top end of the inner cylinder (6) is insulated.
  • a metal current lead-out wire is fixed to the lower part of the annular gap of the cylinder (6), one end of which is deep into the jacket (7) and is in contact with the circulating liquid grounding electrode, and the other end is extended from the outer cylinder (5) and is connected to the grounding wire (8), and the central electrode ( 1) and the grounding wire (8) is made of platinum metal, base metal, palladium metal, gold metal, copper metal, tungsten metal, iron metal, nickel metal, titanium metal and alloy thereof; outer cylinder (5)
  • the lower end of the side wall is provided with a circulating liquid inlet (9), and the upper end of the side wall of the outer tube (5) is provided with a circulating liquid outlet (4), and the upper end wall of the inner tube (6) is provided
  • the cylinder wall of the cylinder (6) is a reactor shell and is a blocking medium for discharge.
  • the outer cylinder (5) and the inner cylinder (6) are both made of an insulating material, and the inner cylinder (6) is filled with hydrogen sulfide decomposition.
  • the insulating material is one of oxide glass, corundum, ceramic, and quartz.
  • the hydrogen sulfide gas is ionized in the discharge region, and is decomposed into hydrogen and elemental sulfur, and the generated elemental sulfur-part is attached to the inner cylinder wall and the catalyst bed, and a part is discharged with the unreacted raw material gas and the generated hydrogen;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

提供一种控温式硫化氢连续分解制取氢气的装置,是一种介质阻挡放电可控温式等离子体发生装置,反应器为同轴套管式结构,反应器筒体采用绝缘介质制成,中心电极为金属,接地极为温度可控的循环液体,通过温度控制,使分解产生的硫分离出来。

Description

一种控温式硫化氢连续分解制取氢气的装置 技术领域
本实用新型属于制氢和气体纯化技术领域,涉及到一种利用介质阻挡放电将硫化氢分解为氢气和单质硫的装置。
技术背景
H2S在石油和天然气开采、石油化工、煤化工等行业的废气中广泛存在,是一种剧毒、恶臭的酸性气体,从环保和腐蚀方面的要求需要将H2S进行无公害处理。目前主要采用克劳斯(Claus)法将其部分氧化为单质硫和水,但克劳斯(Claus)法只回收了H2S中的硫,氢则在氧化过程中生成了水,造成氢资源的浪费。
在常见的非金属氢化物(水、甲醇和硫化氢)中,硫化氢的离解能最低,因此从理论上讲,硫化氢热分解制取氢气最容易。但是,硫化氢分解反应是强吸热反应,受热力学平衡的限制,仅在高温下其才有可观的转化率。比如,1000℃时硫化氢的分解率仅为20%,1200℃时的转化率为38%(Slimane R.B.,GasTIPS,2004,30-34)。电化学和光催化方法也可实现H2S分解制取氢气和硫,但是存在操作步骤多或者反应效率低的缺点。为了打破化学反应平衡限制,研究者采用了膜反应技术和非平衡等离子体技术等,但是耐高温且耐硫的膜材料的开发和应用成为实现利用膜反应分解硫化氢技术突破的关键。利用非平衡等离子技术分解H2S,可在弧光放电、旋转辉光放电和收缩正常辉光放电、微波放电、脉冲电晕放电和介质阻挡放电等中实现。H2S弧光放电分解所需的能耗比甲烷蒸汽重整生成氢气的能耗(3.7eV/H2)高(J Appl Phys,1998,84:1215-1221)。H2S旋转辉光放电分解所需的能耗也比甲烷蒸汽重整生成氢气的能耗高(Plasma Chem Plasma Process,1993,13:77-91)。
公开文献International journal of hydrogen energy,2012,37:1335-1347.报道了H2S收缩正常辉光放电分解。其技术特征是:当体系压强为0.197个大气压,实验温度在2000-4000K之间时,在最佳的条件下,H2S收缩正常辉光放电的能耗为2.35eV/H2S,此体系温度高,压强低,反应条件苛刻。
公开文献International journal o f hydrogen energy,2012,37:10010-10019.报道了利用微波等离子体技术分解H2S。其技术特征是:利用微波等离子体技术在2400K,大气压条件下,H2S几乎可完全分解,但是分解后的氢和硫在高温下会迅速复合而生成H2S,且目前为止尚无对应淬冷装置。
公开文献Chem Eng Sci,2007,62:2216-2227.报道了利用脉冲电晕放电分解H2S。其技术特征是:H2S和氩气的混合气体在压强为1.322个大气压,室温下,流速为1.18*10-4SCMs-1,H2S百分含量为16%时,脉冲电晕放电下H2S的分解率约为28%,最低分解能耗为17eV/H2S。
公开文献Chem Eng Sci,2009,64:4826-4834.报道了利用脉冲电晕放电分解H2S。其技术特征是:在压强为1.322个大气压,室温下,流速为1.18*10-4SCMs-1,当H2S百分含量为8%,氩气和氮气的混合气体作为填充气下,H2S的转化率约为33%,能耗降到了4.9eV/H2S。但是如此低气速、低浓度和低转化率在工业生产中无意义。
介质阻挡放电具有可在大气压下工作、大空间放电,可以防止放电空间内形成局部火花或弧光放电等特点,因而具有很好的工业化应用前景。
专利文献CN102408095A(2012)报道了利用介质阻挡放电分解H2S。其技术特征是:在不锈钢线和薄铝片分别为高压电极和接地电极的线筒式介质阻挡反应器中加入光催化剂,实现H2S分解制备氢气和单质硫,分解产生的硫沉积在催化剂床层下游。
公开文献International journal of hydrogen energy,2012,37:1335-1347.报道了利用介质阻挡放电分解H2S。其技术特征是:在0.246个大气压和室温下,H2S气体流速为0.091/min时,实现了H2S的分解率为18.5%,能耗为12eV/H2S,分解产生的硫沉积在反应器内部。
公开文献Plasma Chemistry and Plasma Processing,1992,12:275-285.报道了利用介质阻挡放电分解H2S。其技术特征是:在大气压下,利用介质阻挡放电在臭氧发生器内将H2S分解生成氢气和硫,实验温度从443.16-833.16K,总气体流速为50-100cm3/min,H2S百分含量为20-100%,研究表明Ar能降低能耗和击穿电压,但是添加Ar之后其能耗依旧很高,分解能耗介于37-106eV/H2S。
公开文献International journal of hydrogen energy,2012,37:2204-2209.报道了利用介质阻挡放电分解H2S。其技术特征是:H2S气体的分解率和能量消耗取决于操作温度、停留时间、放电频率和H2S气体的初始含量,研究表明H2S的分解率在298K高于430K时。
公开文献Applied Energy,2012,95:87-92.报道了利用介质阻挡放电分解H2S。其技术特征是:在常温常压下,利用介质阻挡放电,在最佳的反应条件下,原料气中H2S的含量为25%(其余为氩气),流量为150ml/min时,可实现H2S的分解率为16%,能耗为1.6eV/H2S,研究表明在较低浓度下H2S能获得较高转化率,转化率随浓度提高而降低,反应生成的硫沉积在反应器内部,不能及时去除。
公开文献Int.J.Energy Res,2012:2924-2930.报道了利用介质阻挡放电分解H2S。其技术特征是:在填装有MoOx/Al2O3催化剂的介质阻挡放电反应器中,当原料气为H2S和Ar的混合气体,H2S的体积含量为5%,气体总流量为150ml/min,放电10分钟时,H2S转化率为48%,能耗为0.92kJ/l H2S。分解生产的硫附着在催化剂和反应器内部,造成催化剂失活和体系电容发生改变,放电很不稳定,随放电时间的延长,H2S的分解率逐渐降低。
硕士论文《等离子体协同ZnS分解H2S制氢二》,2012.报道了等离子体协同ZnS分解H2S制氢,报道了分解率的情况,未提及H2S分解的能效问题和稳定性问题。
发明内容
本实用新型的目的是提供一种控温式硫化氢介质阻挡放电连续分解制取氢气的装置。
本实用新型是通过下述技术方案实现的。
本实用新型属于介质阻挡放电的控温式等离子体发生装置,该装置为同轴套管式反应器,主体结构包括中心电极、放电区域、循环液体接地电极;在放电过程中,中心电极伸出绝缘材料的部分与交流升压变压器的高电压端连接,内筒和中心电极之间的区域为放电区域,内筒与外筒形成夹套,外筒和内筒均由绝缘材料制成,绝缘材料为氧化物玻璃、刚玉、 陶瓷和石英中的一种。外筒侧壁下端设有循环液体进口,外筒侧壁上端设有循环液体出口,内筒和外筒形成的夹套内通入循环液体作为接地电极,并对放电区域和筒壁进行控温;在外筒与内筒环隙的下部固定一根金属电流导出线,其一端深入夹套与循环液体接地电极接触,另一端伸出外筒与接地线连接;在内筒上端侧壁上设有原料气进口,在内筒的下端设有排出口。
在上述介质阻挡放电的控温式等离子体发生装置中,当中心电极的直径与内筒内径之比为1∶20-1∶1.5,接地线的直径与中心电极的直径比为1∶1-5∶1时,效果最好;
在上述介质阻挡放电的控温式等离子体发生装置中,中心电极和接地线的材质为铂、铑、钯、金、铜、钨或铁;
在上述介质阻挡放电的控温式等离子体发生装置中,作为绝缘材料的氧化物玻璃含有氧化硅、氧化硼、氧化锗、氧化铝、氧化磷、氧化砷、氧化钒、氧化铋、氧化镓、氧化钛、氧化钼和氧化锡中的一种或多种;
在上述介质阻挡放电的控温式等离子体发生装置中,夹套内作为接地电极的循环液体为盐溶液、碱溶液和离子液体的一种;
在上述介质阻挡放电的控温式等离子体发生装置中,硫化氢在内筒与中心电极所构成的筒状空间内进行放电分解反应,分解为氢气和硫。夹套内的循环液体具有作为接地电极和温度控制的双重作用,通过调节夹套内循环液体的温度在119℃-444℃之间,使生成的硫熔化变为液态,离开放电区。
本实用新型提供的一种控温式硫化氢连续分解制取氢气的装置,具有以下优点:
(1)该装置提高硫化氢放电的均匀性;
(2)该装置能使分解生成的单质硫离开放电区域,使放电持续稳定进行,利于工业化推广;
(3)该装置降低电容电流,降低能量损耗,提高能量的利用率,提高硫化氢分解制取氢气的能效。
附图说明
图1为本实用新型的不填装催化剂的同轴套管式反应器结构示意图;
图2为本实用新型的填装催化剂的同轴套管式反应器结构示意图;
其中1-中心电极、2-绝缘封头3-原料气进口、4-循环液体出口、5-外筒、6-内筒、7-夹套、8-接地线、9-循环液体进口、10-排出口、11-催化剂。
具体实施方式
下面结合附图和实施例对本实用新型作进一步说明。
实施例1:采用不填装催化剂的同轴套管式反应器
一种控温式硫化氢连续分解制取氢气的装置,是一种属于介质阻挡放电的可控温式等离子体发生装置,其壳体是用绝缘材料制成的同轴套管结构,外筒(5)与内筒(6)的上方和下方均封口,形成夹套(7),夹套(7)中是用作控温和接地电极的循环液体,内筒(6)的顶端用绝缘封头封口,通过该绝缘封头的中心向内筒(6)中插入中心电极(1),其伸出绝缘材料的部分与交流升压变压器的高电压端连接,在外筒(5)与内筒(6)环隙的下部固定一 根金属电流导出线,其一端深入夹套(7)与循环液体接地电极接触,另一端伸出外筒(5)与接地线(8)连接,中心电极(1)和接地线(8)的材质为铂金属、铑金属、钯金属、金金属、铜金属、钨金属、铁金属、镍金属、钛金属及其合金中的一种;外筒(5)侧壁下端设有循环液体进口(9),外筒(5)侧壁上端设有循环液体出口(4),在内筒(6)上端侧壁上设有原料气进口(3),在内筒(6)的下端设有排出口(10),硫化氢在内筒(6)与中心电极(1)所构成的筒状空间内进行放电分解反应,内筒(6)的筒壁是反应器壳体,同时是放电的阻挡介质,外筒(5)和内筒(6)均由绝缘材料制成,绝缘材料为氧化物玻璃、刚玉、陶瓷和石英中的一种。
一种控温式硫化氢连续分解制取氢气的装置,制取氢气和硫的具体步骤为:
(1)在等离子体分解硫化氢的装置中通入氮气,清除放电区域中的空气,同时从循环液体入口通入液体并从循环液体出口将其排出,液体温度保持为室温;
(2)在原料气进口将硫化氢或含硫化氢的气体通入,接通交流高压电源,然后通过电压调节器和频率调节器,将交流高压逐步加载到等离子体发生装置的电极上,使中心电极和接地电极之间形成等离子体放电场,并达到均匀放电状态,此时放电区域内的硫化氢受到电场的作用发生电离;
(3)硫化氢气体在放电区域发生电离,分解为氢气和单质硫,产生的单质硫一部分附着在内筒壁,一部分随未反应的原料气及产生的氢气排出;
(4)当内筒壁上附着的硫严重影响放电时,在放电的同时使夹套内循环液体的温度达到120℃,待壁面上的硫熔化,以液态形式流出,离开放电区,再将循环液体温度恢复到室温,如此反复进行;反应后的气体经过氢氧化钠水溶液和硫酸铜水溶液两段吸收后,尾气中氢气含量用色谱仪在线分析。
实施例2:采用填装催化剂的同轴套管式反应器
一种控温式硫化氢连续分解制取氢气的装置,是一种属于介质阻挡放电的可控温式等离子体发生装置,其壳体是用绝缘材料制成的同轴套管结构,外筒(5)与内筒(6)的上方和下方均封口,形成夹套(7),夹套(7)中是用作控温和接地电极的循环液体,内筒(6)的顶端用绝缘封头封口,通过该绝缘封头的中心向内筒(6)中插入中心电极(1),其伸出绝缘材料的部分与交流升压变压器的高电压端连接,在外筒(5)与内筒(6)环隙的下部固定一根金属电流导出线,其一端深入夹套(7)与循环液体接地电极接触,另一端伸出外筒(5)与接地线(8)连接,中心电极(1)和接地线(8)的材质为铂金属、铑金属、钯金属、金金属、铜金属、钨金属、铁金属、镍金属、钛金属及其合金中的一种;外筒(5)侧壁下端设有循环液体进口(9),外筒(5)侧壁上端设有循环液体出口(4),在内筒(6)上端侧壁上设有原料气进口(3),在内筒(6)的下端设有排出口(10),硫化氢在内筒(6)与中心电极(1)所构成的筒状空间内进行放电分解反应,内筒(6)的筒壁是反应器壳体,同时是放电的阻挡介质,外筒(5)和内筒(6)均由绝缘材料制成,内筒(6)内填装有硫化氢分解用催化剂(11),绝缘材料为氧化物玻璃、刚玉、陶瓷和石英中的一种。
一种控温式硫化氢连续分解制取氢气的装置,制取氢气和硫的具体步骤为:
(1)在等离子体分解硫化氢的装置中通入氮气,清除放电区域中的空气,同时从循环液体入口通入液体并从循环液体出口将其排出,液体温度保持为室温;
(2)在原料气进口将硫化氢或含硫化氢的气体通入,接通交流高压电源,然后通过电压调节器和频率调节器,将交流高压逐步加载到等离子体发生装置的电极上,使中心电 极和接地电极之间形成等离子体放电场,并达到均匀放电状态,此时放电区域内的硫化氢受到电场的作用发生电离;
(3)硫化氢气体在放电区域发生电离,分解为氢气和单质硫,产生的单质硫-部分附着在内筒壁和催化剂床层,一部分随未反应的原料气及产生的氢气排出;
(4)当内筒壁上和催化剂上附着的硫严重影响放电时,在放电的同时使夹套内循环液体的温度达到120℃,待内筒壁上和催化剂上的硫熔化,以液态形式流出,离开放电区,再将循环液体温度恢复到室温,如此反复进行;反应后的气体经过氢氧化钠水溶液和硫酸铜水溶液两段吸收后,尾气中氢气含量用色谱仪在线分析。
以上所述的具体实施例,对本实用新型的目的、技术方案和有益效果进行了详细说明,所应理解的是,以上所述仅为本实用新型的具体实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护之中。

Claims (4)

  1. 一种控温式硫化氢连续分解制取氢气的装置,是一种属于介质阻挡放电的可控温式等离子体发生装置,其壳体是用绝缘材料制成的同轴套管结构,外筒(5)与内筒(6)的上方和下方均封口,形成夹套(7),夹套(7)中是用作控温和接地电极的循环液体,内筒(6)的顶端用绝缘封头封口,通过该绝缘封头的中心向内筒(6)中插入中心电极(1),其伸出绝缘材料的部分与交流升压变压器的高电压端连接,在外筒(5)与内筒(6)环隙的下部固定一根金属电流导出线,其一端深入夹套(7)与循环液体接地电极接触,另一端伸出外筒(5)与接地线(8)连接,中心电极(1)和接地线(8)的材质为铂、铑、钯、金、铜、钨或铁;外筒(5)侧壁下端设有循环液体进口(9),外筒(5)侧壁上端设有循环液体出口(4),在内筒(6)上端侧壁上设有原料气进口(3),在内筒(6)的下端设有排出口(10),硫化氢在内筒(6)与中心电极(1)所构成的筒状空间内进行放电分解反应,内筒(6)的筒壁是反应器壳体,同时是放电的阻挡介质,外筒(5)和内筒(6)均由绝缘材料制成,绝缘材料为氧化物玻璃、刚玉、陶瓷和石英中的一种。
  2. 根据权利要求1所述的一种控温式硫化氢连续分解制取氢气的装置,其特征在于,所述的中心电极(1)的直径与内筒(6)内径之比为1∶20-1∶1.5。
  3. 根据权利要求1所述的一种控温式硫化氢连续分解制取氢气的装置,其特征在于,所述的接地线(8)的直径与中心电极(1)的直径比为1∶1-5∶1。
  4. 根据权利要求1所述的一种控温式硫化氢连续分解制取氢气的装置,其特征在于,夹套(7)内作为接地电极的液体为盐溶液、碱溶液和离子液体的一种。
PCT/CN2014/001024 2014-11-15 2014-11-15 一种控温式硫化氢连续分解制取氢气的装置 WO2016074111A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/001024 WO2016074111A1 (zh) 2014-11-15 2014-11-15 一种控温式硫化氢连续分解制取氢气的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/001024 WO2016074111A1 (zh) 2014-11-15 2014-11-15 一种控温式硫化氢连续分解制取氢气的装置

Publications (1)

Publication Number Publication Date
WO2016074111A1 true WO2016074111A1 (zh) 2016-05-19

Family

ID=55953525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/001024 WO2016074111A1 (zh) 2014-11-15 2014-11-15 一种控温式硫化氢连续分解制取氢气的装置

Country Status (1)

Country Link
WO (1) WO2016074111A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124471A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 分解硫化氢的高通量低温等离子体系统和分解硫化氢的方法
CN110127627A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 分解硫化氢的低温等离子体系统和分解硫化氢的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546367A (zh) * 2003-11-28 2004-11-17 大连理工大学 室温下直接合成过氧化氢的装置和方法
CN102408095A (zh) * 2011-08-20 2012-04-11 大连理工大学 一种分解硫化氢制备氢气和单质硫的方法
CN103204466A (zh) * 2013-04-24 2013-07-17 滨州学院 一种控温式硫化氢连续分解制取氢气的装置和方法
CN203461814U (zh) * 2013-04-24 2014-03-05 滨州学院 一种控温式硫化氢连续分解制取氢气的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546367A (zh) * 2003-11-28 2004-11-17 大连理工大学 室温下直接合成过氧化氢的装置和方法
CN102408095A (zh) * 2011-08-20 2012-04-11 大连理工大学 一种分解硫化氢制备氢气和单质硫的方法
CN103204466A (zh) * 2013-04-24 2013-07-17 滨州学院 一种控温式硫化氢连续分解制取氢气的装置和方法
CN203461814U (zh) * 2013-04-24 2014-03-05 滨州学院 一种控温式硫化氢连续分解制取氢气的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110124471A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 分解硫化氢的高通量低温等离子体系统和分解硫化氢的方法
CN110127627A (zh) * 2018-02-09 2019-08-16 中国石油化工股份有限公司 分解硫化氢的低温等离子体系统和分解硫化氢的方法

Similar Documents

Publication Publication Date Title
CN203461814U (zh) 一种控温式硫化氢连续分解制取氢气的装置
Wang et al. Catalyst preparation with plasmas: how does it work?
CN103204466A (zh) 一种控温式硫化氢连续分解制取氢气的装置和方法
CN111278766B (zh) 低温等离子体反应设备和分解硫化氢的方法
CN103204467A (zh) 一种硫化氢持续稳定分解制取氢气的装置和方法
CN203307046U (zh) 一种硫化氢持续稳定分解制取氢气的装置
Vadikkeettil et al. Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends
WO2019154244A1 (zh) 等离子体反应装置和分解硫化氢的方法
Chen et al. Progress in plasma-assisted catalysis for carbon dioxide reduction
Nozaki et al. Innovative methane conversion technology using atmospheric pressure non-thermal plasma
JP2001115175A (ja) 硫化水素含有の気体状組成物の処理
AU718307B2 (en) Process and apparatus for converting a greenhouse gas
WO2016074111A1 (zh) 一种控温式硫化氢连续分解制取氢气的装置
KR20150047993A (ko) 플라즈마-촉매를 이용한 메탄올, 포름알데하이드 및 c2 이상의 탄화수소 중 어느 하나 이상을 생산하는 방법 및 메탄 전환 장치
JP2002193601A (ja) 水の分解方法及びその装置
Zhou et al. Direct and continuous synthesis of concentrated hydrogen peroxide by the gaseous reaction of H 2/O 2 non-equilibrium plasma
CN110127623B (zh) 等离子体分解硫化氢的方法
CN110124471B (zh) 分解硫化氢的高通量低温等离子体系统和分解硫化氢的方法
CN111377409A (zh) 等离子体设备和分解硫化氢的方法
El-Shafie et al. Comprehensive analysis of hydrogen production from various water types using plasma: Water vapour decomposition in the presence of ammonia and novel reaction kinetics analysis
KR101807782B1 (ko) 플라즈마-촉매를 이용한 c-h 결합 분해 장치 및 수소 및/또는 c2 이상의 탄화수소를 생산하는 방법
CN110124598B (zh) 分解硫化氢的低温等离子体装置和分解硫化氢的方法
WO2019037725A1 (zh) 低温等离子双电场辅助气相反应合成化合物的方法和装置
CN110980641B (zh) 一种气液两相高效制氢的装置及方法
CN111377410A (zh) 低温等离子体设备和分解硫化氢的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905959

Country of ref document: EP

Kind code of ref document: A1