WO2016072312A1 - 波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法 - Google Patents

波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法 Download PDF

Info

Publication number
WO2016072312A1
WO2016072312A1 PCT/JP2015/080173 JP2015080173W WO2016072312A1 WO 2016072312 A1 WO2016072312 A1 WO 2016072312A1 JP 2015080173 W JP2015080173 W JP 2015080173W WO 2016072312 A1 WO2016072312 A1 WO 2016072312A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
light emitting
storage space
conversion member
Prior art date
Application number
PCT/JP2015/080173
Other languages
English (en)
French (fr)
Inventor
宮永 昭治
榮一 金海
晋吾 國土
Original Assignee
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsマテリアルズ株式会社 filed Critical Nsマテリアルズ株式会社
Priority to US15/522,398 priority Critical patent/US10598843B2/en
Priority to EP15857683.5A priority patent/EP3217444A4/en
Priority to CN201580059774.4A priority patent/CN107258023B/zh
Priority to JP2016557715A priority patent/JP6883159B2/ja
Publication of WO2016072312A1 publication Critical patent/WO2016072312A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a wavelength conversion member in which a wavelength conversion member made of a molded body is disposed in a container, a light emitting device using the same, a light emitting element, a light source device, a display device, a light guide member, and a method for manufacturing the wavelength conversion member. .
  • Patent Document 1 discloses an invention related to a light emitting device including a light source, a wavelength conversion member, a light guide plate, and the like.
  • the wavelength conversion member is provided between the light source and the light guide plate, and after absorbing light emitted from the light source, generates light having a wavelength different from the wavelength of the light from the light source.
  • a material in which a wavelength conversion part substance is enclosed in a cylindrical container such as glass is described.
  • a fluorescent pigment, a fluorescent dye, or a quantum dot is disclosed.
  • a wavelength conversion member formed by filling a resin containing a wavelength conversion substance such as a fluorescent pigment in a cylindrical container such as glass has not been disclosed so far.
  • a method of filling a cylindrical container with a resin containing a wavelength converting substance a method of filling the container with a liquid resin mixed with the wavelength converting substance can be considered.
  • it is difficult to manage the speed and pressure when filling the liquid resin into the container so that bubbles do not enter there is a problem that the yield tends to decrease.
  • the present invention has been made in view of such points, and in particular, a wavelength conversion member that can suppress bubbles from entering the resin containing the wavelength conversion substance and can improve the yield, and a light-emitting device using the same, It aims at providing the manufacturing method of a light emitting element, a light source device, a display apparatus, a light guide member, and a wavelength conversion member.
  • the wavelength conversion member of the present invention is characterized by having a container provided with a storage space, and a molded body containing a wavelength conversion substance disposed in the storage space.
  • the molded body containing the wavelength converting substance in the storage space, it is possible to suppress the mixing of bubbles and improve the yield as compared with the configuration in which the liquid resin is injected into the storage space. Moreover, quality control can be facilitated by forming a molded body containing a wavelength converting substance.
  • the molded body containing the wavelength converting substance is preferably formed by molding a resin composition in which quantum dots are dispersed.
  • the container includes a light incident surface, a light emitting surface facing the light incident surface, and a side surface connecting the light incident surface and the light emitting surface, and the inner side of the side surface. It is preferable that the storage space is provided, and a colored layer is formed on the side surface, on an end portion of the light emitting surface, or on the end surface of the light emitting surface.
  • the container includes a light incident surface, a light emitting surface opposed to the light incident surface, and a side surface connecting the light incident surface and the light emitting surface, and is located on the inner side of the side surface.
  • the storage space may be provided, and a colored layer may be formed on a wall surface in the storage space.
  • the container includes a light incident surface, a light emitting surface opposed to the light incident surface, and a side surface connecting the light incident surface and the light emitting surface, and the inner side of the side surface.
  • the storage space may be provided, and a colored layer may be provided between the side surface of the container and the storage space.
  • the container includes a light incident surface, a light emitting surface facing the light incident surface, and a side surface connecting the light incident surface and the light emitting surface, and the light incident surface and the light It is preferable that the storage space is provided on the inner side of the emission surface, and a distance L1 between the light incident surface and the storage space is larger than a distance L2 between the light emission surface and the storage space.
  • the light-emitting device of the present invention is characterized by including a light-emitting element and the wavelength conversion member according to any one of the above-described components disposed on the light-emitting side of the light-emitting element.
  • the light-emitting element of the present invention is characterized by including a light-emitting chip and the wavelength conversion member according to any one of the above-described components disposed on the light emitting side of the light-emitting chip.
  • the light source device of the present invention is characterized by having the above light emitting device or the above light emitting element and a light guide plate.
  • the light guide member of the present invention is characterized in that the wavelength conversion member and the light guide plate are integrated.
  • the light source device of the present invention includes the light guide member and a light emitting element, and the light emitting element is attached to the light incident surface of the light guide member.
  • a display device comprising: a display unit; and the light-emitting device, the light-emitting element, the light source device, the light guide member, or the light source device disposed on a back side of the display unit.
  • the method for producing a wavelength conversion member of the present invention includes a step of forming a molded body containing a wavelength converting substance and a step of inserting the molded body into the storage space of a container provided with a storage space. It is characterized by.
  • the molded object containing the wavelength conversion substance formed beforehand is inserted in a storage container, mixing of a bubble can be suppressed. Therefore, workability and yield can be improved and quality control can be facilitated.
  • it is based on a simple method of inserting a molded article containing a wavelength converting substance into a storage container, it does not require complicated management such as the speed and pressure during filling, unlike the method of injecting a liquid resin.
  • a wavelength conversion member can be formed.
  • a molded body containing a wavelength converting substance it is possible to suppress bubbles from entering the wavelength converting substance by arranging the liquid converting resin into the accommodating space by arranging it in the accommodating space, and the yield. Can be improved. Moreover, quality control can be facilitated by forming the molded body containing a wavelength converting substance.
  • FIG. 10 is an enlarged longitudinal sectional view taken in the height direction along the line BB and viewed from the arrow direction in a state where the wavelength conversion members shown in FIG. 9 are combined.
  • FIG. 10 is a longitudinal sectional view of the light-emitting element as viewed from the direction of the arrow, cut in the height direction along the line BB shown in FIG. 9 in a state where the members of the light-emitting element shown in FIG.
  • FIG. 1 It is a longitudinal cross-sectional view of the display apparatus using the light emitting element shown in FIG. It is a perspective view which shows the light guide member which concerns on this Embodiment. It is a perspective view which shows the light source device using the light guide member which concerns on this Embodiment.
  • FIG. 1 is a perspective view and a sectional view of a wavelength conversion member showing a first embodiment according to the present embodiment.
  • FIG. 1A is a perspective view of a wavelength conversion member showing the first embodiment.
  • FIG. 1B is a cross-sectional view of the wavelength conversion member shown in FIG. 1A cut along a line AA in the plane direction and viewed from the arrow direction.
  • the wavelength conversion member 1 in the first embodiment includes a container 2 and a molded body 3 containing a wavelength conversion substance.
  • the container 2 includes a storage space 5 in which a molded body 3 containing a wavelength converting substance can be stored and held.
  • the container 2 is preferably a transparent member. “Transparent” refers to what is generally recognized as transparent or has a visible light transmittance of about 50% or more.
  • the vertical and horizontal dimensions of the container 2 are about several mm to several tens of mm, and the vertical and horizontal dimensions of the storage space 5 are about several hundred ⁇ m to several mm.
  • the container 2 includes a light incident surface 2a, a light emitting surface 2b, and a side surface 2c connecting the light incident surface 2a and the light emitting surface 2b. As shown in FIG. 1, the light incident surface 2a and the light emitting surface 2b are in a positional relationship facing each other.
  • the container 2 has a storage space 5 formed inside the light incident surface 2a, the light emitting surface 2b, and the side surface 2c. Note that a part of the storage space 5 may reach the light incident surface 2a, the light emitting surface 2b, or the side surface 2c.
  • the outer cross section of the storage space 5 and the outer cross section of the container 2 are both rectangular. It is formed with.
  • Such a cut surface is a surface cut in the direction in which the light incident surface 2a, the light emitting surface 2b, and the side surface 2c appear.
  • the “rectangular shape” has four vertices having a substantially right angle and includes a square and a rectangle.
  • the outer cross section of the storage space 5 and the outer cross section of the container 2 are preferably similar.
  • the container 2 shown in FIG. 1 is, for example, a glass tube container, and can be exemplified by a glass capillary.
  • a resin or the like may be used as long as the container having excellent transparency can be configured as described above.
  • a molded body 3 containing a wavelength conversion substance is disposed in the storage space 5.
  • the storage space 5 is open, and a molded body 3 containing a wavelength converting substance can be inserted therefrom.
  • the wavelength conversion material according to the present embodiment is characterized by comprising a molded body.
  • the molded body 3 containing the wavelength converting substance is previously molded according to the shape of the storage space 5.
  • the molded object 3 containing a wavelength conversion substance can be appropriately arrange
  • FIG. Therefore, in comparison with the case where the wavelength conversion substance is injected into the storage space 5 and the storage space 5 is filled, it is possible to suppress the problem that bubbles enter the wavelength conversion substance or the wavelength conversion substance is not uniform. That is, the wavelength conversion substance can be arranged uniformly. For example, when bubbles are introduced, the wavelength conversion efficiency tends to decrease due to light diffusion or the like at that portion.
  • this Embodiment which can suppress that a bubble enters the inside of a wavelength conversion substance can improve wavelength conversion efficiency effectively. Moreover, in this Embodiment, since it can suppress that a bubble enters into a wavelength conversion substance, a yield can be improved and quality control can be performed easily.
  • the molded body 3 containing the wavelength converting substance is inserted into the storage space 5 by means such as press fitting or adhesion.
  • the molded body 3 containing the wavelength conversion substance is formed to be completely the same size as the storage space 5 or slightly larger than the storage space 5 and the wavelength conversion substance is applied while applying pressure. Is inserted into the storage space 5 to suppress the generation of a gap between the molded body 3 containing the wavelength converting substance and the container 2 as well as the inside of the molded body 3 containing the wavelength converting substance. it can.
  • the molded body 3 containing the wavelength conversion substance When the molded body 3 containing the wavelength conversion substance is bonded and fixed in the storage space 5, the molded body 3 containing the wavelength conversion substance is molded to be smaller than the storage space 5, and the side surface of the molded body 3 containing the wavelength conversion substance.
  • the molded body 3 containing the wavelength converting substance is inserted into the storage space 5 with the adhesive layer applied thereto.
  • the cross-sectional area of the molded body 3 may be slightly smaller than the cross-sectional area of the housing space 5. Accordingly, the molded body 3 containing the wavelength converting substance and the container 2 are in close contact with each other through the adhesive layer, and the formation of a gap between the molded body 3 containing the wavelength converting substance and the container 2 is suppressed. it can.
  • the adhesive layer the same resin as the molded body 3 or a resin having a common basic structure can be used. Alternatively, a transparent adhesive may be used as the adhesive layer.
  • the molded body 3 containing the wavelength converting substance contains quantum dots. Fluorescent pigments other than quantum dots, fluorescent dyes, and the like may be used as the molded body 3 including the wavelength conversion substance, but including the quantum dots is excellent in wavelength conversion characteristics.
  • the molded body 3 containing the wavelength converting substance is preferably formed by molding a resin composition in which quantum dots are dispersed.
  • resins include polypropylene, polyethylene, polystyrene, AS resin, ABS resin, methacrylic resin, polyvinyl chloride, polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, and polyphenylene sulfide.
  • Polyamideimide, polymethylpentene, liquid crystal polymer, epoxy resin, phenol resin, urea resin, melamine resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, polyimide, polyurethane, silicone resin, or some mixture thereof Etc. can be used.
  • the refractive index of the wavelength converting material layer 3 is preferably smaller than the refractive index of the container 2.
  • the refractive index of the silicone resin composition is 1.52 for SCR1016 manufactured by Shin-Etsu Chemical Co., Ltd. and 1.55 for A2045 manufactured by Daicel Co., Ltd. ) KER-2500 1.41 and Daicel A1080 A 1.41.
  • the refractive index of the epoxy resin composition is 1.51 for Cell Venus WO917 manufactured by Daicel Corporation and 1.50 for Cell Venus WO 925 at 23 ° C. for sodium D line.
  • the refractive index of the container 2 made of glass is about 1.45 in the case of general glass, and about 1.50 to 1.90 in the case of optical glass with a high refractive index. Therefore, the refractive index of the molded body 3 containing the wavelength converting substance can be made smaller than the refractive index of the container 2 by appropriately selecting the material of the molded body 3 containing the wavelength converting substance and the container 2. For example, A1080 or KER-2500, which is a silicone resin having a refractive index of 1.41, is used as the molded body 3 containing the wavelength converting substance, and the container 2 can be made of glass having a refractive index of 1.45.
  • a silicone resin or epoxy resin having a refractive index of 1.41 to 1.55 is used as the molded body 3 containing the wavelength converting substance, and the container 2 is made of glass having a high refractive index of 1.56 or more. Can be configured. Thereby, a part of the light that has entered the molded body 3 containing the wavelength converting substance is totally reflected by the side wall portion of the container 2 facing the storage space 5. This is because the incident angle on the medium side with a small refractive index is larger than the incident angle on the medium side with a large refractive index. Thereby, since the amount of light leaking from the side of the container 2 to the outside can be reduced, the color conversion efficiency and the light emission intensity can be increased.
  • the resin composition which comprises the molded object 3 containing the wavelength conversion substance here is not limited to resin for disperse
  • the configuration and material of the quantum dots included in the molded body 3 including the wavelength conversion substance are not limited.
  • the quantum dots in the present embodiment include a core of semiconductor particles and a shell that covers the periphery of the core. Part.
  • CdSe is used for the core, but the material is not particularly limited.
  • a core material containing at least Zn and Cd a core material containing Zn, Cd, Se and S, ZnCuInS, CdS, CdSe, ZnS, ZnSe, InP, CdTe, and some composites thereof are used. it can.
  • the quantum dot in this Embodiment may be comprised only by the core part of a semiconductor particle, without forming a shell part.
  • the quantum dot does not need to have a covering structure with a shell part as long as it has at least a core part.
  • the region that becomes the covering structure may be small or the covering portion may be too thin to analyze and confirm the covering structure. Therefore, it can be determined as a quantum dot regardless of the presence or absence of the shell portion by analysis.
  • Quantum dots include, for example, two types of quantum dots having an absorption wavelength of 460 nm (blue) and a fluorescence wavelength of about 520 nm (green) and a quantum dot of about 660 nm (red). For this reason, when blue light is incident from the light incident surface 2a, a part of blue is converted into green or red by each quantum dot. Thereby, white light can be obtained from the light emitting surface 2b.
  • FIG. 2 is a cross-sectional view of a wavelength conversion member provided with a colored layer.
  • colored layers 4 and 4 may be provided on the side surfaces 2c and 2c.
  • the “colored layer” is a layer that is not transparent, and refers to a layer colored in colors including white.
  • the colored layer 4 is preferably composed of paint, ink, or tape.
  • the color of the colored layer 4 is not limited, it is suitable that it is white. Therefore, the colored layer 4 can be easily formed by simply applying white paint or white ink to the side surface 2c or simply applying a white tape to the side surface 2c.
  • the colored layer 4 By providing the colored layer 4 in this manner, light leakage through the side region 7 can be suppressed, color conversion can be performed appropriately and with higher efficiency than in the past, and light of a desired color can be emitted. It can be obtained from the light exit surface 2b. Further, according to the present embodiment, the emission intensity of white light can be made equal to or higher than that of the prior art.
  • the colored layer 4 can be formed by vapor-depositing a metal such as Ni, Ag, Al, or Cr.
  • the colored layer 4 is formed on the side surface 2c of the container 2, but as shown in FIG. 2B, the colored layer 4 is formed from the side surface 2c of the container 2 to the end 2e of the light emitting surface 2b. Can do. Or as shown to FIG. 2C, the colored layer 4 can also be formed only in the edge part 2e of the light-projection surface 2b.
  • the colored layer 4 is preferably formed from the side surface 2c of the container 2 as shown in FIG. 2A or from the side surface 2c of the container 2 to the end 2e of the light emitting surface 2b as shown in FIG. 2B.
  • the end 2e of the light exit surface 2b faces the side region 7 between the storage space 5 and the side surface 2c. Therefore, the end 2e does not face the storage space 5 in which the molded body 3 containing the wavelength converting substance is disposed. Therefore, the colored layer 4 provided at the end 2e of the light emitting surface 2b is preferably located on both sides of the storage space 5 in which the molded body 3 containing the wavelength converting substance is disposed and does not face the storage space 5.
  • the colored layer 4 may be formed slightly longer on the light emitting surface 2 b and may partially face the storage space 5. For example, the colored layer 4 is included in the allowable range as long as it faces about 1/3 or less of the width of the storage space 5.
  • the colored layer 4 is preferably formed on the entire surface of the side surface 2c or the end portion 2e, but may not necessarily be the entire surface, and may be a part of the side surface 2c or the end portion 2e. However, the colored layer 4 preferably covers an area of 50% or more of the side surface 2c or the end 2e. Further, the colored layer 4 may be formed by using all or part of the side region 7 as a colored material instead of being formed on the side region 7. For example, all or part of the side region 7 can be formed by using white glass or white resin.
  • the colored layer 4 is formed on the outer surface of the container 2, but the colored layer 4 may be formed on the wall surface 5 a of the storage space 5 as shown in FIG. 3A.
  • the wall surface 5 a that forms the colored layer 4 is located at a position facing the side surface 2 c of the container 2.
  • the side portion 2 d of the container 2 between the side surface 2 c of the container 2 and the storage space 5 can be a colored layer 4.
  • the container 2 is molded in two colors, and at this time, a colored resin is used for a portion to be the side portion 2d of the container 2.
  • the container 2 shown in FIG. 3B can be formed by bonding the side part 2d of the container 2 and the other part by bonding or the like.
  • the same reference numerals as those in FIGS. 2A and 2B indicate the same parts as those in FIGS. 2A and 2B.
  • FIG. 3C is a cross-sectional view of the wavelength conversion member 1 shown in FIG. 1A cut along the line CC and viewed from the arrow direction.
  • a stepped portion 80 in which the molded body 3 is recessed from the container 2 is formed at both ends of the wavelength conversion member 1.
  • a chip 82 as a colored layer covering the step portion 80 is connected via an adhesive layer 81.
  • the chip 82 is formed in a shape substantially opposite to the stepped portion 80, and has a shape in which a portion facing the molded body 3 protrudes.
  • the chip 82 is made of, for example, Al, but the material is not particularly limited.
  • the adhesive layer 81 preferably has a water resistance barrier property.
  • a colored layer may be formed on both ends of the wavelength conversion member 1 without forming the stepped portion 80.
  • light leakage from both ends of the wavelength conversion member 1 can be suppressed, and color conversion can be performed appropriately and efficiently compared to the conventional case.
  • FIG. 4 is a cross-sectional view of a wavelength conversion member in which a light incident surface side is formed with a thickness as viewed from a storage space (a molded body including a wavelength conversion substance).
  • the distance between the light incident surface 2a and the molded body 3 containing the wavelength converting substance is L1, and the distance L2 between the light emitting surface 2b and the wavelength converting layer 3.
  • the distances L1 and L2 are linear distances. For example, each of the centers of the light incident surface 2a and the light emitting surface 2b is drawn with a straight line, and the distances L1 and L2 can be measured by a length along the straight line.
  • the distance L1 is larger than the distance L2. That is, the container 2 is thicker on the light incident surface 2a side than on the light emitting surface 2b side when viewed from the molded body 3 containing the wavelength converting substance.
  • the distance L1 is about 1 mm to 8 mm, and the distance L2 is about 0.2 mm to 1 mm.
  • the distance L1 is about 5 mm, and the distance L2 is about 0.5 mm.
  • a light emitting element (light source) 10 such as an LED can be attached to the light incident surface 2a of the wavelength conversion member 1 as shown in FIG.
  • the light emitting element 10 is in contact with the light incident surface 2 a of the wavelength conversion member 1.
  • the molded body 3 containing the wavelength conversion material formed on the wavelength conversion member 1 is arranged so as to be biased toward the light exit surface 2 b rather than the light incident surface 2 a. Therefore, as shown in FIG. 1B, the molded body 3 containing the wavelength converting substance is disposed in the center between the light incident surface 2a and the light emitting surface 2b, and the light emitting element 10 is brought into contact with the light incident surface 2a as in FIG. Compared with the case where it was made, the structure of FIG. 4 can distance the wavelength conversion layer 3 from the light emitting element 10 compared with the structure of FIG. 1B.
  • the wavelength conversion member 1 is disposed in contact with the light emitting element 10, so that the wavelength conversion member 1 and the light emitting element 10 can be integrally formed while keeping the wavelength conversion layer 3 away from the light emitting element 10. .
  • blackening occurs in the portion of the molded body 3 containing the wavelength converting substance facing the light emitting element 10.
  • the blackening is considered to be caused by the influence of light and / or heat from the light emitting element 10 on the quantum dots.
  • L1 is made larger than the distance L2 between the molded body 3 containing the wavelength converting substance and the light emitting surface 2b.
  • the container 2 is made thinner on the light exit surface 2b side when viewed from the molded body 3 containing the wavelength converting substance. Accordingly, it is possible to suppress the occurrence of blackening while suppressing an increase in the thickness of the entire container 2 (width dimension between the light incident surface 2a and the light emitting surface 2b).
  • the cross-sectional shape is preferably such that the outer shape of the container 2 and the storage space 5 is rectangular.
  • the side surface 2c of the container 2 and the side wall surface of the storage space 5 can be curved or elliptical.
  • FIG. 5 is a cross-sectional view of a wavelength conversion member showing a cross-sectional shape different from that of FIG.
  • the outer shape of the container 2 and the storage space 5 is square, but as shown in FIG. 5B, the outer shape of the container 2 and the storage space 5 can be rectangular.
  • the effect of providing the colored layer 4 (color conversion can be performed appropriately and efficiently, as shown in FIGS. 4)
  • the distance L1 between the light incident surface 2a and the molded body 3 containing the wavelength converting substance can be set as shown in FIG.
  • the distance L2 between the light emitting surface 2b and the molded body 3 containing the wavelength converting substance can be appropriately and easily increased.
  • the outer shapes of the cross section of the container 2 and the storage space 5 are similar to each other, but as shown in FIG. 5C, the outer shape of the cross section of the container 2 And the outer shape of the cross section of the storage space 5 can be made different.
  • the outer shape of the cross section of the container 2 is a rectangular shape
  • the outer shape of the cross section of the storage space 5 is a hexagon.
  • the external shape of the cross section of the container 2 and the storage space 5 can be made into a trapezoid shape similar to each other. For example, in FIG.
  • the shorter side of the trapezoid is the light incident surface 2a, and the longer side is the light emitting surface 2b. Thereby, the light emitted from the light source can be enlarged to a predetermined size.
  • the long side of the trapezoid may be the light incident surface 2a and the short side may be the light emitting surface 2b, contrary to FIG. 5D. Thereby, the light emitted from the light source can be condensed to a predetermined size.
  • the outer shapes of the cross sections of the container 2 and the storage space 5 are different from those in FIG. 5D, and the side surfaces are formed symmetrically with respect to the center line passing through the centers of the upper base and the lower base of the trapezoid. May be.
  • the colored layer 4 does not need to be formed.
  • the light incident surface 2a side may be formed thick with respect to the molded body 3 containing the wavelength converting substance.
  • the light-incidence surface and the light-projection surface are formed in the plane, either one or both of a light-incidence surface and a light-projection surface are It may be formed with a curved surface.
  • the side surface of the container 2 is formed as a flat surface, but the side surface may be formed as a curved surface. The corners between the sides may be R-shaped.
  • expressions such as a rectangular shape, a hexagonal shape, and a trapezoidal shape are not limited to geometrically accurate quadrangular shapes, hexagonal shapes, trapezoidal shapes, etc., and lines and angles constituting these have distortions, or Including errors are also included. By these, the direction of the emitted light can be adjusted.
  • FIG. 6 is a process diagram of molding a molded body containing the wavelength converting substance according to the present embodiment.
  • FIG. 7 is a process diagram for inserting the molded body containing the wavelength converting substance shown in FIG. 6 into the storage space of the container.
  • a mold 45 and an injection molding machine 41 are prepared.
  • the shape of the molding space 45 a of the mold 45 is substantially the same as the shape of the storage space 5 of the container 2. “Substantially the same” is not limited to the case where they are completely the same, but may be slightly different in size. Specifically, an allowable range is a dimensional difference of about ⁇ 5%.
  • the molding space 45a of the mold 45 has an elongated bar shape.
  • the resin composition 44 in which the quantum dots 46 are dispersed is injected from the injection molding machine 41 to the mold 45.
  • the resin composition 44 is a molten resin.
  • the resin composition 44 in which the quantum dots 46 are dispersed is injected into a mold and then cooled to become a solid, thereby forming a molded body.
  • the burrs and the like on the surface of the molded body 40 taken out from the mold 45 are ground to obtain the molded body 40 having a desired size and shape.
  • the wavelength conversion member 1 According to the method for manufacturing the wavelength conversion member 1 according to the present embodiment, it is possible to freely produce molded bodies 40 of various shapes using a resin composition in which quantum dots and the like are dispersed.
  • the molded body 40 according to the present embodiment is formed by methods such as extrusion molding, hollow molding, thermoforming, compression molding, calendar molding, inflation method, casting method, and the like. May be used.
  • the produced molded body 40 is inserted into the storage space 5 of the container 2 in the wavelength conversion member 1 (in FIG. 7, the insertion is indicated by an arrow).
  • the container 2 include a glass capillary as described above.
  • the cross section of the molded body 40 shown in FIG. 7 (the cross section parallel to the surface of reference numeral 42) is the same as or slightly larger than the size of the cross section of the storage space 5, the molded body 40 is stored while applying pressure. Insert into space 5 (press fit). Since the container 2 has high strength in the insertion direction of the molded body 40, the container 2 is not easily damaged such as cracking of the container 2 during press-fitting.
  • the molded body 40 and the container 2 can be brought into close contact and fixed.
  • the cross section of the molded body 40 shown in FIG. 7 is slightly smaller than the size of the cross section of the storage space 5
  • the molded body 40 is stored in the storage space 5 with the adhesive layer applied to the side surface of the molded body 40. Insert into.
  • the molded body 40 and the container 2 can be fixed in close contact via an adhesive layer.
  • the wavelength conversion member 1 When the wavelength converting substance is injected into the storage space 5, there is a problem that bubbles are likely to enter.
  • the wavelength conversion material is formed of a molded body, it is possible to prevent bubbles from entering the wavelength conversion material.
  • the molded body 3 containing the wavelength converting substance can be brought into close contact with the container 2, and therefore, a gap can be prevented from entering between the molded body 3 containing the wavelength converting substance and the container 2.
  • the high-quality wavelength conversion member 1 can be manufactured with a high yield.
  • workability is improved and quality control can be facilitated.
  • FIG. 8 is a plan view of a light emitting device and a light source device using the wavelength conversion member shown in FIG.
  • the wavelength conversion member 1 shown in FIG. 1 can be interposed between a light emitting element 10 such as an LED and a light guide plate 12, as shown in FIG.
  • the wavelength conversion member 1 is disposed on the light emitting side of the light emitting element 10.
  • the light emitting side is a side from which light is emitted from the light emitting element 10.
  • the light emitting element 10 has a configuration in which an LED chip is mounted on a printed wiring board, the light emitting element 10 is on the opposite side of the printed wiring board with respect to the LED chip.
  • a combination of the wavelength conversion member 1 and the light emitting element 10 is a light emitting device, and a light source plate 12 is added to the light emitting device to constitute a light source device.
  • the light guide member can be configured by combining the wavelength conversion member 1 and the light guide plate 12.
  • the light emitting device shown in FIG. 8 can be used as a white surface light source of a liquid crystal display, for example.
  • the light emitted from the light emitting element 10 enters from the light incident surface 2 a of the wavelength conversion member 1, is wavelength-converted by the molded body 3 (see FIG. 1) containing the wavelength conversion substance, and the wavelength The converted desired light is emitted from the light emitting surface 2b to the light guide plate 12.
  • the desired color of emitted light is white light.
  • the rate at which the light source light from the light emitting element 10 passes through the side region of the wavelength conversion member 1 without being wavelength-converted can be reduced, which is more effective.
  • light of a desired color can be obtained from the light exit surface 2b.
  • the occurrence of blackening can be suppressed by making the light incident surface 2a side thicker when viewed from the molded body 3 containing the wavelength converting substance.
  • the wavelength conversion member 1 and the light emitting element 10 are separated from each other.
  • the distance between the molded body 3 containing the wavelength conversion substance and the light emitting element 10 can be increased, and the occurrence of blackening can be effectively suppressed.
  • FIG. 9 is an exploded perspective view of a light emitting device including a wavelength conversion member according to the second embodiment.
  • FIG. 10 is an enlarged longitudinal sectional view taken along the line BB in the height direction and viewed from the arrow direction in a state where the wavelength conversion members shown in FIG. 9 are combined.
  • FIG. 11 is a longitudinal cross-sectional view of the light-emitting element as seen from the direction of the arrow, cut in the height direction along the line BB shown in FIG. 9 in a state where the members of the light-emitting element shown in FIG. 9 are combined.
  • the wavelength conversion member 21 includes a container 25 formed of a plurality of pieces of a container main body 23 and a lid body 24.
  • the wavelength conversion member 1 is disposed on the light emitting side of the LED chip (light emitting chip) 22.
  • the light emitting side is a direction opposite to the printed wiring board 29 of the light emitting element 20 with respect to the LED chip (light emitting chip) 22, that is, a direction in which light is emitted from the light emitting element 20.
  • a bottomed storage space 26 is formed at the center of the container body 23.
  • a molded body 27 including a wavelength conversion substance made of a molded body is disposed in the storage space 26.
  • the lid body 24 is joined to the container body 23 via an adhesive layer (not shown). Further, a colored layer is formed on the side surface 25 c of the container 25.
  • the lower surface of the container 25 of the wavelength conversion member 21 shown in FIGS. 9, 10, and 11 is a light incident surface 25a.
  • the upper surface facing the light incident surface 25a is the light emitting surface 25b.
  • a storage space 26 is formed at a position inside the side surface 25c provided in the container 25 of the wavelength conversion member 21 shown in FIG. 9, FIG. 10, and FIG.
  • a molded body 27 made of a molded body and containing a wavelength conversion substance is disposed by fixing means such as press-fitting or adhesion. That is, the molded body 27 containing the wavelength conversion substance is formed by molding the molded body 27 containing the wavelength converting substance slightly larger than the storage space 26 and press-fitting the molded body 27 containing the wavelength conversion substance into the storage space 26.
  • the container 25 can be brought into close contact. Further, the molded body 27 containing the wavelength converting substance may be molded slightly smaller than the storage space 26.
  • the molded body 27 containing the wavelength conversion substance is inserted into the storage space 26 by inserting the molded body 27 containing the wavelength conversion substance into the storage space 26.
  • the container 25 can be brought into close contact with the adhesive layer.
  • the same resin as the molded body 27 or a resin having a common basic structure can be used.
  • a transparent adhesive may be used as the adhesive layer.
  • the LED chip 22 is connected to a printed wiring board 29, and the periphery of the LED chip 22 is surrounded by a frame 30 as shown in FIGS.
  • the inside of the frame 30 is sealed with a resin layer 31.
  • the wavelength conversion member 21 is joined to the upper surface of the frame body 30 via an adhesive layer (not shown) to form a light emitting element 20 such as an LED.
  • the colored layer described in FIG. 2 and the like may be provided in the wavelength conversion member 21 shown in FIGS. 9, 10, and 11, the colored layer described in FIG. 2 and the like may be provided. As described in FIG. 4, the wavelength conversion member 21 is viewed from the molded body 27 containing the wavelength conversion material.
  • the light incident surface 25a side may be formed thicker than the light emitting surface 25b side.
  • FIG. 12 is a longitudinal sectional view of a display device using the light emitting element shown in FIG.
  • the display device 50 includes a plurality of light emitting elements 20 (LEDs) and a display unit 54 such as a liquid crystal display facing the light emitting elements 20.
  • Each light emitting element 20 is disposed on the back side of the display unit 54.
  • the plurality of light emitting elements 20 are supported by the support body 52.
  • the light emitting elements 20 are arranged at a predetermined interval.
  • Each light emitting element 20 and the support 52 constitute a backlight 55 for the display unit 54.
  • the support 52 is not particularly limited in shape or material such as a sheet shape, a plate shape, or a case shape.
  • a light diffusion plate 53 or the like is interposed between the backlight 55 and the display unit 54.
  • the light emitting device and the light source device (including the light emitting element, the capillary wavelength conversion member 1, the light guide plate 12, and the like) shown in FIG. 8 are arranged on the back side of the display unit 54 shown in FIG.
  • the display device 50 may be configured.
  • FIG. 13 is a perspective view showing a light guide member according to the present embodiment.
  • a storage space 5 is formed between both end portions on the light incident surface side of the light guide plate 12, and the molded body 3 containing a wavelength converting substance is inserted into the storage space 5.
  • the structure of the molded body 3 containing the wavelength converting substance may be the same as that shown in FIG.
  • the wavelength conversion member 1 and the light guide plate 12 are integrated, a combination process of the wavelength conversion member 1 and the light guide plate 12 is not necessary, and a positional shift or the like accompanying the combination process. The problem does not occur.
  • a light diffusing plate 53 or the like may be included between the light guide plate 12 and the wavelength conversion member 1.
  • the light emitting element is disposed to face the light incident surface 12a of the light guide plate 12 (wavelength conversion member 1).
  • FIG. 14 is a perspective view showing a light source device using the light guide member according to the present embodiment.
  • the light emitting element 10 is attached to the light incident surface 60 a of the light guide member 60.
  • the light emitting element 10 has a configuration in which a plurality of LED chips are juxtaposed in a horizontal direction in a frame body and embedded in a resin. In addition, it can also be set as the structure by which the several light emitting element 10 was attached to the light-incidence surface 60a of the light guide member 60.
  • the distance d between the molded body 3 containing the wavelength converting substance and the light incident surface 60a is extended as compared with FIG. 13, so that the light emitting element 10 can be directly attached to the light incident surface 60a.
  • the distance d is preferably about 1 mm to 8 mm, similar to the distance L1 shown in FIG.
  • the colored layer 4 is provided as in FIG. 13. However, the colored layer 4 may not be formed in the configurations of FIGS. 13 and 14.
  • a light guide member 60 and a light emitting element (not shown) shown in FIG. 13 and a light source device 70 shown in FIG. 14 are arranged on the back side of the display unit 54 shown in FIG.
  • the display device 50 may be configured.
  • the wavelength conversion member and the light emitting element of the present embodiment can be applied to other types of light source devices, illumination devices, light diffusion devices, light reflection devices, and the like. it can.
  • an LED, a backlight device, a display device, or the like can be realized by using a wavelength conversion member in which a molded product of a wavelength conversion material is press-fitted in a container.
  • a wavelength conversion member of the present invention since the molded product containing the wavelength conversion material can be appropriately disposed on the wavelength conversion member, the LED, backlight device, display device, etc. using the wavelength conversion member of the present invention are of high quality. Can be maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Liquid Crystal (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Filters (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)

Abstract

 波長変換物質を含む樹脂に気泡が入ることを抑制でき、歩留まりを向上させることができる波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びにその製造方法を提供する。波長変換部材(1)は、収納空間(5)が設けられた容器(2)と、収納空間内に配置された波長変換物質を含む成形体(3)と、を有する。これにより、波長変換物質に気泡が入るのを抑制でき、歩留まりを向上させることができる。

Description

波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法
 本発明は、容器内に成型体からなる波長変換部材を配置した波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法に関する。
 例えば下記の特許文献1には、光源、波長変換部材及び導光板等を備えた発光装置に関する発明が開示されている。
 波長変換部材は、光源と導光板との間に設けられ、光源が発する光を吸収した後、光源の光の波長とは異なる波長の光を発生させる。波長変換部材は、ガラス等の筒状の容器に波長変換部物質が封入されたものが記載されている。波長変化物質として、蛍光顔料、蛍光染料又は量子ドットが開示されている。
特開2013―218954号公報
 しかしながら、波長変換部材において、例えばガラス等の筒状の容器に、蛍光顔料等の波長変換物質を含む樹脂を充填して形成したものはこれまで開示されていなかった。筒状の容器に波長変換物質を含む樹脂を充填する方法として、波長変換物質を混合した液状の樹脂を、容器に充填する方法が考えられる。しかし、細くて長い筒状の容器内に液状の樹脂を空隙なく充填するのは難しく、気泡の混入、又は、樹脂硬化のときの収縮による不均一化等の不具合が発生しやすい。また、気泡が入らないように液状の樹脂を容器内に充填する際の速さや圧力等の管理も難しいので、歩留まりが低下しやすい問題があった。
 本発明はかかる点に鑑みてなされたものであり、特に、波長変換物質を含む樹脂に気泡が入ることを抑制でき、歩留まりを向上させることができる波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法を提供することを目的とする。
 本発明の波長変換部材は、収納空間が設けられた容器と、前記収納空間内に配置された波長変換物質を含む成形体と、を有することを特徴とする。
 このように、波長変換物質を含む成形体を収納空間に配置することで、収納空間に液状の樹脂を注入する構成に比べて、気泡の混入を抑制でき、歩留まりを向上させることができる。また波長変換物質を含む成形体を形成することで品質管理を容易にできる。
 本発明では、前記波長変換物質を含む成形体は、量子ドットが分散された樹脂組成物が成形されてなることが好ましい。
 また本発明では、前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記側面よりも内側に前記収納空間が設けられており、前記側面上、前記光出射面の端部上、又は、前記側面上から前記光出射面の端部上にかけて着色層が形成されていることが好ましい。
 あるいは本発明では、前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記側面よりも内側に前記収納空間が設けられており、前記収納空間内の壁面に着色層が形成されていてもよい。又は本発明では、前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記側面よりも内側に前記収納空間が設けられており、前記容器の前記側面と前記収納空間までの間に着色層が設けられていてもよい。
 また本発明では、前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記光入射面及び光出射面よりも内側に前記収納空間が設けられており、前記光入射面と前記収納空間との間の距離L1は、前記光出射面と前記収納空間との距離L2よりも大きいことが好ましい。
 また本発明の発光装置は、発光素子と、前記発光素子の発光側に配置される上記のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする。
 また本発明の発光素子は、発光チップと、前記発光チップの光出射側に配置される上記のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする。
 また本発明の光源装置は、上記の発光装置、あるいは、上記の発光素子と、導光板と、を有することを特徴とする。
 また本発明の導光部材は、上記の波長変換部材と、導光板とが一体となっていることを特徴とする。
 また本発明の光源装置は、上記の導光部材と、発光素子と、を有し、前記発光素子は、前記導光部材の前記光入射面に取り付けられていることを特徴とする。
 また本発明の表示装置は、表示部と、前記表示部の裏面側に配置された上記の発光装置、上記の発光素子、光源装置、導光部材、あるいは、光源装置と、を有することを特徴とする。
 また本発明の波長変換部材の製造方法は、波長変換物質を含む成形体を形成する工程と、前記成型体を収納空間が設けられた容器の前記収納空間内に挿入する工程と、を含むことを特徴とする。このように予め形成された波長変換物質を含む成形体を収納容器内に挿入するので、気泡の混入を抑制することができる。したがって、作業性および歩留まりを向上させ、かつ、品質管理を容易にできる。また波長変換物質を含む成形体を収納容器に挿入する簡単な方法によるため、液状の樹脂を注入する方法のように、充填の際の速さや圧力等の煩雑な管理を必要とせず、簡単に波長変換部材を形成することができる。
 本発明によれば、波長変換物質を含む成形体として、収納空間に配置することで、収納空間に液状の樹脂を注入する構成に比べて、波長変換物質に気泡が入ることを抑制でき、歩留まりを向上させることができる。また波長変換物質を含む成形体で形成することで品質管理を容易にできる。
本実施の形態に係る第1の実施の形態を示す波長変換部材の斜視図及び断面図である。 着色層を設けた波長変換部材の断面図である。 図2とは異なる断面形状を示す波長変換部材の断面図である。 収納空間(波長変換物質を含む成形体)から見て光入射面側を肉厚で形成した波長変換部材の断面図である。 図2とは異なる断面形状を示す波長変換部材の断面図である。 本実施の形態に係る波長変換物質を含む成形体を成形する工程図である。 図6に示す波長変換物質を含む成形体を容器の収納空間に挿入する工程図である。 図1に示す波長変換部材を用いた発光装置及び光源装置の平面図である。 本実施の形態に係る第2の実施の形態を示す波長変換部材を備えた発光素子の分解斜視図である。 図9に示す波長変換部材を組み合せた状態で、B-B線に沿って高さ方向に切断し矢印方向から見た拡大縦断面図である。 図9に示す発光素子の各部材を組み合わせた状態で、図9に示すB-B線に沿って高さ方向に切断し矢印方向から見た発光素子の縦断面図である。 図9に示す発光素子を用いた表示装置の縦断面図である。 本実施の形態に係る導光部材を示す斜視図である。 本実施の形態に係る導光部材を用いた光源装置を示す斜視図である。
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 図1は、本実施の形態に係る第1の実施の形態を示す波長変換部材の斜視図及び断面図である。図1Aは、第1の実施の形態を示す波長変換部材の斜視図である。図1Bは、図1Aに示す波長変換部材をA-A線に沿って平面方向に切断し矢印方向から見た断面図である。
 図1Aに示すように、第1の実施の形態における波長変換部材1は、容器2と、波長変換物質を含む成形体3とを有して構成される。
 容器2は、波長変換物質を含む成形体3を収納し保持することが可能な収納空間5を備える。容器2は透明な部材であることが好ましい。「透明」とは、一般的に透明と認識されるもの、又は、可視光線透過率が約50%以上のものを指す。
 容器2の縦横寸法の大きさは、数mm~数十mm程度、収納空間5の縦横寸法は、数百μm~数mm程度である。
 図1に示すように容器2は、光入射面2a、光出射面2b、及び、光入射面2aと光出射面2bとの間を繋ぐ側面2cとを備える。図1に示すように、光入射面2aと光出射面2bとは互いに対向した位置関係にある。
 図1に示すように、容器2には、光入射面2a、光出射面2b及び側面2cよりも内側に収納空間5が形成されている。なお、収納空間5の一部が、光入射面2a、光出射面2bあるいは側面2cにまで達していてもよい。
 図1Bに示すように、光入射面2a及び光出射面2bの、少なくともいずれか一方に垂直な平面で切断した断面形状において、収納空間5の外形断面及び容器2の外形断面はいずれも矩形状で形成されている。このような切断面は、光入射面2a、光出射面2b及び側面2cが現れる方向に向けて切断した面である。ここで「矩形状」とは4つの頂点が略直角であり、正方形、長方形を含む。
 図1Bに示すように、収納空間5の外形断面及び容器2の外形断面は相似形であることが好ましい。
 図1に示す容器2は例えばガラス管の容器であり、ガラスキャピラリを例示できる。ただし、上記したように透明性に優れる容器を構成できれば樹脂等であってもよい。
 図1に示すように、収納空間5には、波長変換物質を含む成形体3が配置されている。図1に示すように、収納空間5は開口しており、ここから波長変換物質を含む成形体3を挿入することができる。
 本実施の形態に係る波長変換物質は成型体からなることを特徴とする。波長変換物質を含む成形体3は、予め収納空間5の形状に合わせて成形加工されている。そして波長変換物質を含む成形体3を容器2の収納空間5内に挿入することで、波長変換物質を含む成形体3を適切に収納空間5内に配置することができる。したがって、波長変換物質を収納空間5に注入して収納空間5を充填する場合に比べ、波長変換物質の内部に気泡が入る、あるいは波長変換物質が不均一になる不具合を抑制することができる。つまり、波長変換物質を均一に配置することができる。例えば、気泡が入ると、その部分での光の拡散等により波長変換効率が低下しやすくなる。したがって、気泡が波長変換物質の内部に入るのを抑制できる本実施の形態は、効果的に波長変換効率を向上させることができる。また本実施の形態では、波長変換物質に気泡が入るのを抑制できるため、歩留まりを向上させることができ、品質管理を容易に行うことができる。
 波長変換物質を含む成形体3は、収納空間5内に圧入や接着等の手段により挿入される。圧入する場合には、波長変換物質を含む成形体3を収納空間5と完全に同一の大きさかあるいは、収納空間5よりもわずかに大きく成形し、圧力を加えながら波長変換物質を含む成形体3を収納空間5内に挿入することで、波長変換物質を含む成形体3の内部のみならず、波長変換物質を含む成形体3と容器2との間にも隙間が生じるのを抑制することができる。
 また波長変換物質を含む成形体3を収納空間5内に接着して固定する場合、波長変換物質を含む成形体3を収納空間5よりも小さく成形し、波長変換物質を含む成形体3の側面に接着層を塗布した状態で、波長変換物質を含む成形体3を収納空間5内に挿入する。このとき、成型体3の断面積が、収容空間5の断面積よりもわずかに小さくてもよい。これにより、波長変換物質を含む成形体3と容器2とは接着層を介して密接し、波長変換物質を含む成形体3と容器2との間に隙間が形成されるのを抑制することができる。接着層には、成型体3と同じ樹脂、あるいは、基本構造が共通する樹脂を用いることができる。または、接着層として、透明な接着材を用いてもよい。
 図1に示す波長変換物質を含む成形体3は、青色の光を吸収して赤色の光を発する物質、及び、青色の光を吸収して緑色の光を発する物質を含むことが好ましい。具体的には、波長変換物質を含む成形体3に量子ドットを含むことが好ましい。波長変換物質を含む成形体3として、量子ドット以外の蛍光顔料、蛍光染料等を用いてもよいが、量子ドットを含むことが、波長変換特性に優れる。
 波長変換物質を含む成形体3は、量子ドットが分散された樹脂組成物が成形されてなることが好ましい。樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、AS樹脂、ABS樹脂、メタクリル樹脂、ポリ塩化ビニル、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアミドイミド、ポリメチルペンテン、液晶ポリマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、シリコーン樹脂、又は、これらのいくつかの混合物等を使用することができる。このうち、シリコーン樹脂あるいはエポキシ樹脂を用いて量子ドットを分散した樹脂組成物を形成することが好適である。より好ましくは、シリコーン樹脂を用いて量子ドットを分散した樹脂組成物を形成する。
 また、波長変換物質層3の屈折率は、容器2の屈折率に比べて小さいことが好ましい。例えば、シリコーン樹脂組成物の屈折率は、ナトリウムD線、23℃において、信越化学工業(株)製のSCR1016で1.52、(株)ダイセル製のA2045で1.55、信越化学工業(株)製のKER-2500で1.41、(株)ダイセル製のA1080で1.41である。また、エポキシ樹脂組成物の屈折率は、ナトリウムD線、23℃において、(株)ダイセル製のセルビーナスWO917で1.51、セルビーナスWO925で1.50である。これに対して、ガラスによる容器2の屈折率は、一般的なガラスの場合で1.45前後であり、高屈折率の光学ガラスの場合で1.50~1.90程度である。したがって、波長変換物質を含む成形体3及び容器2の材質を適切に選択することにより、波長変換物質を含む成形体3の屈折率を、容器2の屈折率に比べて小さくできる。例えば、波長変換物質を含む成形体3として屈折率が1.41のシリコーン樹脂であるA1080又はKER-2500を用い、容器2を屈折率1.45のガラスで構成することができる。また別の例として、波長変換物質を含む成形体3として屈折率が1.41~1.55のシリコーン樹脂又はエポキシ樹脂を用い、容器2を屈折率1.56以上の高屈折率のガラスで構成することができる。これにより、波長変換物質を含む成形体3内に進入した光の一部が、収納空間5に面する容器2の側壁部分で全反射する。屈折率の小さい媒体側における入射角は、屈折率の大きい媒体側における入射角より大きくなるためである。これにより光が容器2の側方から外部へ漏れる量を減らすことができるので、色変換効率及び発光強度を高めることができる。なお、ここでいう波長変換物質を含む成形体3を構成する樹脂組成物とは、量子ドットを分散するための樹脂に限定されるものではない。
 また波長変換物質を含む成形体3に含まれる量子ドットの構成及び材質を限定するものではないが、例えば、本実施の形態における量子ドットは、半導体粒子のコアと、コアの周囲を被覆するシェル部とを有することができる。コアには、例えば、CdSeが使用されるが、特に材質を限定するものでない。例えば、少なくともZnとCdとを含有するコア材、Zn、Cd、Se及びSを含有するコア材、ZnCuInS、CdS、CdSe、ZnS、ZnSe、InP、CdTe、これらのいくつかの複合物等が使用できる。本実施の形態における量子ドットは、シェル部が形成されず、半導体粒子のコア部のみで構成されてもよい。すなわち、量子ドットは、少なくともコア部を備えていれば、シェル部による被覆構造を備えていなくてもよい。例えば、コア部に対して、シェル部の被覆を行った場合、被覆構造となる領域が小さいか被覆部分が薄すぎて被覆構造を分析・確認できないことがある。したがって、分析によるシェル部の有無にかかわらず、量子ドットと判断することができる。
 量子ドットとして、例えば、吸収波長が460nm(青色)であって、蛍光波長が約520nm(緑色)の量子ドット及び約660nm(赤色)の量子ドットの2種類が含まれている。このため、光入射面2aから青色の光が入射されると、それぞれの量子ドットによって、青色の一部が、緑色又は赤色に変換される。これによって、光出射面2bから白色の光を得ることができる。
 図2は、着色層を設けた波長変換部材の断面図である。本実施の形態では、図2Aに示すように側面2c、2cに着色層4、4を設けてもよい。「着色層」とは透明でない層であり、白色を含む色が着色された層を指す。着色層4は、塗料、インク、あるいはテープにより構成されることが好ましい。また着色層4の色を限定するものでないが、白色であることが好適である。したがって白い塗料や白色インクを側面2cに塗布したり、白色テープを側面2cに貼るだけで簡単に着色層4を形成することができる。
 このように着色層4を設けることで、側方領域7を通過する光抜けを抑制することができ、従来に比べて色変換を適切かつ高効率に行うことができ、所望の色の光を光出射面2bより得ることができる。また本実施の形態によれば、白色光の発光強度を従来と同等あるいはそれ以上にすることができる。また、Ni、Ag、Al、Cr等の金属を蒸着して着色層4とすることもできる。
 図2Aでは着色層4を、容器2の側面2cに形成しているが、図2Bに示すように、着色層4を、容器2の側面2cから光出射面2bの端部2eにかけて形成することができる。あるいは図2Cに示すように、着色層4を、光出射面2bの端部2eにのみ形成することもできる。着色層4は、図2Aに示すように、容器2の側面2cか、図2Bに示すように、容器2の側面2cから光出射面2bの端部2eにかけて形成されることが好ましい。
 光出射面2bの端部2eは、収納空間5と側面2cとの間の側方領域7に対向している。よって端部2eは、波長変換物質を含む成形体3が配置された収納空間5と対向していない。したがって光出射面2bの端部2eに設けられた着色層4は、波長変換物質を含む成形体3が配置された収納空間5の両側に位置し、収納空間5と対向しないことが好ましいが、光出射面2b上で着色層4が多少長く形成され、収納空間5と一部対向していてもよい。例えば着色層4は、収納空間5の幅の約1/3以下と対向する程度であれば許容範囲に含まれる。
 なお着色層4は、側面2cあるいは端部2eの全面に形成されることが好ましいが、必ずしも全面でなくてもよく、側面2cあるいは端部2eの一部であってもよい。ただし、側面2cあるいは端部2eの50%以上の面積を着色層4で覆うことが好ましい。また、着色層4は、側方領域7の上に形成される代わりに、側方領域7の全部又は一部を着色された材料とすることで形成してもよい。例えば、側方領域7の全部又は一部を、白色のガラス又は白色の樹脂とすることで形成することもできる。
 また上記では、着色層4を容器2の外面に形成していたが、図3Aに示すように、着色層4を収納空間5の壁面5aに形成することもできる。着色層4を形成する壁面5aは、容器2の側面2cと対向した位置にある。
 あるいは、図3Bに示すように、容器2の側面2cと収納空間5との間の容器2の側部2dそのものを着色層4とすることができる。係る場合、容器2の成形を二色成形し、このとき、容器2の側部2dとなる部分には着色した樹脂を用いる。あるいは、容器2の側部2dと、それ以外の部分とを接着等で接合し図3Bに示す容器2を形成することもできる。なお、図3A、図3Bにおいて、図2A、図2Bと同じ符号は、図2A、図2Bと同じ部分を示している。
 図3Cは、図1Aに示す波長変換部材1をC-C線に沿って切断し矢印方向から見た断面図である。図3Cに示すように、波長変換部材1の両端では、成形体3が容器2よりも凹んだ段差部80が形成されている。そして段差部80を覆う着色層としてのチップ82が接着層81を介して接続されている。チップ82は、段差部80とは略逆形状で形成されており、成形体3と対向する部分が突出した形状である。チップ82は例えばAlで形成されるが特に材質を問うものではない。また、接着層81は耐水バリア性を備えることが好ましい。また、段差部80を形成せずに、波長変換部材1の両端に着色層を形成してもよい。これにより、波長変換部材1の両端からの光抜けを抑制することができ、従来に比べて色変換を適切かつ高効率に行うことができる。
 図4は、収納空間(波長変換物質を含む成形体)から見て光入射面側を肉厚で形成した波長変換部材の断面図である。
 図4に示すように、光入射面2aと波長変換物質を含む成形体3との間の距離はL1であり、光出射面2bと波長変換層3との間の距離L2である。距離L1、L2は直線距離である。例えば、光入射面2aと光出射面2bの各中心を直線で引き、その直線上に沿う長さで距離L1、L2を測ることができる。
 図4に示すように本実施の形態では、距離L1は距離L2よりも大きい。すなわち容器2は、波長変換物質を含む成形体3から見て光入射面2a側のほうが光出射面2b側よりも肉厚とされている。
 限定されるものでないが、例えば、距離L1は、1mm~8mm程度、距離L2は、0.2mm~1mm程度である。一例を挙げると、距離L1は、5mm程度、距離L2は、0.5mm程度である。
 本実施の形態では、図4に示すように波長変換部材1の光入射面2aにLED等の発光素子(光源)10を取り付けることができる。発光素子10は、波長変換部材1の光入射面2aに当接している。
 図4では、波長変換部材1に形成された波長変換物質を含む成形体3は、光入射面2aよりも光出射面2bに偏って配置されている。このため、図1Bのように、波長変換物質を含む成形体3を光入射面2aと光出射面2bとの中央に配置し、図4と同様に光入射面2aに発光素子10を当接させた場合に比べて、図4の構成のほうが、図1Bの構成に比べて、波長変換層3を発光素子10から遠ざけることができる。図4では、波長変換部材1を発光素子10に接して配置したことで、波長変換層3を発光素子10から遠ざけつつ、波長変換部材1と発光素子10とを一体型で構成することができる。
 波長変換物質を含む成形体3が発光素子10に近接していると、発光素子10に対向する波長変換物質を含む成形体3の部分に黒変が発生することがわかった。黒変が生じるのは、発光素子10からの光あるいは熱、又はその両方の影響が量子ドットに影響を及ぼすことが原因であると思われる。
 そこで図4の構成では、黒変発生を抑制すべく、波長変換物質を含む成形体3を発光素子10から遠ざけるために、波長変換物質を含む成形体3と光入射面2aとの間の距離L1を、波長変換物質を含む成形体3と光出射面2bとの間の距離L2よりも大きくしたのである。これにより、図4に示すように、波長変換部材1と発光素子10とを接して配置させても、適切に波長変換物質を含む成形体3を発光素子10から遠ざけることができる。これにより、従来に比べて黒変発生を抑制することができる。
 また本実施の形態では、容器2は、波長変換物質を含む成形体3から見て光出射面2b側のほうを薄くしている。これにより容器2全体の厚み(光入射面2aと光出射面2b間の幅寸法)の増大を抑制しつつ、黒変発生を抑制することができる。
 図1B、及び図2に示すように、断面形状は、容器2及び収納空間5の外形形状が矩形状であることが好適である。ただし、図5Aのように、容器2の側面2c及び収納空間5の側壁面が曲面である構成や、楕円状の構成とすることもできる。図5は、図2とは異なる断面形状を示す波長変換部材の断面図である。
 また、図1B、図2では、容器2及び収納空間5の外形形状が正方形であったが、図5Bに示すように、容器2及び収納空間5の外形形状を長方形とすることできる。
 なお曲面を含む断面形状よりも、図1B、図2、図4、図5Bに示すように、矩形状であることで、着色層4を設けた効果(適切かつ高効率に色変換でき、従来に比べて所望の色の光を得ることができる)を適切に発揮させることができ、図4に示すように、光入射面2aと波長変換物質を含む成形体3との間の距離L1を、光出射面2bと波長変換物質を含む成形体3との間の距離L2よりも適切かつ簡単に大きくすることができる。
 また図1B、図2、図4及び図5A、図5Bでは、容器2及び収納空間5の断面の外形形状を互いに相似形状としているが、図5Cに示すように、容器2の断面の外形形状と収納空間5の断面の外形形状とを異ならせることもできる。例えば図5Cでは、容器2の断面の外形形状が矩形状であり、収納空間5の断面の外形形状が六角形である。また図5Dに示すように、容器2及び収納空間5の断面の外形形状を、それぞれ互いに相似の台形状にすることができる。例えば図5Dでは、台形の短辺側を光入射面2aとし、長辺側を光出射面2bとしている。これにより、光源から放出された光を、所定の大きさに拡大することができる。また、他の例として、図5Dとは逆に、台形の長辺側を光入射面2aとし、短辺側を光出射面2bとしてもよい。これにより、光源から放出された光を、所定の大きさに集光することができる。また、容器2及び収納空間5の断面の外形形状は、図5Dとは異なり、台形の上底と下底との中心を通る中心線に対して、側面が互いに線対称の位置に形成されていてもよい。
 図5の各図では、着色層4を設けているが、着色層4は形成されていなくてもよい。また、図4に示すように波長変換物質を含む成形体3から見て光入射面2a側を肉厚で形成してもよい。
 また図1B、図2、図4、及び図5の各図において、光入射面及び光出射面は平面で形成されているが、光入射面及び光出射面のいずれか一方、又は、双方が曲面で形成されてもよい。また、図1B、図2、図4、図5B~図5Dの各図において、容器2の側面は平面で形成されているが、側面が曲面で形成されてもよい。また各辺の間の角をR形状にしてもよい。すなわち、矩形状、六角形、台形状などの表現は、幾何学的に正確な四角形、六角形、台形などに限られるものではなく、これらを構成する線及び角度が、歪を有し、又は、誤差を含むものも含まれる。これらにより、放出される光の方向を調節することができる。
 次に、本実施の形態に係る波長変換部材1の製造方法について説明する。図6は、本実施の形態に係る波長変換物質を含む成形体を成形する工程図である。図7は、図6に示す波長変換物質を含む成形体を容器の収納空間に挿入する工程図である。
 図6に示すように、金型45と射出成型機41を用意する。ここで金型45の成形空間45aの形状は、容器2の収納空間5の形状と、略同一の形状とされる。「略同一」とは、完全に同じである場合のみならず、大きさがわずかに異なっていてもよい。具体的には、±5%程度の寸法差なら許容範囲とされる。
 図6では、図1Aに示す波長変換物質を含む成形体3を成形するので、金型45の成形空間45aは細長いバー形状である。
 図6に示すように、例えば、量子ドット46が分散された樹脂組成物44を射出成形機41から金型45に射出する。樹脂組成物44は溶融樹脂である。量子ドット46が分散された樹脂組成物44は、金型内に射出された後、冷されて固体状となり、成形体とされる。金型45から取り出された成形体40表面のバリ等を研削加工して、所望の大きさ及び形状を有する成形体40を得る。
 本実施の形態に係る波長変換部材1の製造方法によれば、量子ドット等が分散された樹脂組成物を用いて様々な形状の成形体40を自由に作製することが可能である。
 樹脂成形体を射出成形で成形する例を説明するが、本実施の形態に係る成形体40は、押出成形、中空成形、熱成形、圧縮成形、カレンダー成形、インフレーション法、キャスティング法等の方法を用いて作製してもよい。
 次に、図7に示すように、作製された成形体40を、波長変換部材1における容器2の収納空間5内に挿入する(図7では挿入を矢印で示した)。容器2としては、上述したとおり、例えばガラスキャピラリが挙げられる。このとき、図7に示す成形体40の横断面(符号42の面と平行な断面)が、収納空間5の横断面の大きさと同一かわずかに大きい場合、圧力を加えながら成形体40を収納空間5に挿入する(圧入)。容器2は成形体40の挿入方向には強度が高いため圧入の際に、容器2が割れる等の損傷を受けにくい。圧入により、成形体40と容器2とを密接させて固定することができる。一方、図7に示す成形体40の横断面が、収納空間5の横断面の大きさよりもわずかに小さい場合、成形体40の側面に接着層を塗布した状態で、成形体40を収納空間5に挿入する。接着固定により、成形体40と容器2との間に接着層を介して密接させて固定することができる。
 波長変換物質を収納空間5に注入する場合、気泡が入りやすい問題がある。これに対して本実施の形態に係る波長変換部材1よれば、波長変換物質を成形体で形成するために、波長変換物質の内部に気泡が入ることを防止することができる。加えて波長変換物質を含む成形体3を容器2に密接させることができ、したがって波長変換物質を含む成形体3と容器2との間に空隙が入ることも防止することができる。以上により、高品質の波長変換部材1を高い歩留りで製造することができる。また波長変換物質を成形体で形成することで、作業性が高くなり、かつ、品質管理を容易にできる。すなわち、波長変換物質を含む成形体3を成形した時点で波長変換物質を含む成形体3内部に気泡が入っていないか否かを確認することができる。波長変換物質を含む成形体3内部に気泡が入っていれば、その時点で不良品として排除し、容器2の収納空間5への挿入工程には回さないようにできる。波長変換物質を含む成形体3内部に気泡が入っていなければ、容器2の収納空間5への挿入工程に回す。容器2の収納空間5内に波長変換物質を樹脂注入する場合、注入した後に品質管理を必要とするため、波長変換物質内に気泡が入っているか否かを確認することが難しくまた見落としも発生しやすい。本実施の形態では、波長変換物質を含む成形体3を成形した時点で品質管理を容易に行うことができる。
 図8は、図1に示す波長変換部材を用いた発光装置及び光源装置の平面図である。図1に示す波長変換部材1を、図8に示すように、LED等の発光素子10と導光板12との間に介在させることができる。波長変換部材1は、発光素子10の発光側に配置される。ここで発光側とは、発光素子10から光が放出される側である。発光素子10がプリント配線基板上にLEDチップを搭載した構成を有するときは、LEDチップに対してプリント配線基板の反対側である。ここで波長変換部材1と発光素子10とを組み合わせたものが、発光装置であり、さらに発光装置に導光板12を加えて光源装置が構成される。あるいは、波長変換部材1と導光板12とを組み合わせて導光部材を構成することもできる。図8に示す発光装置は、例えば、液晶ディスプレイの白色面光源として用いることができる。
 図8に示す構成により、発光素子10から発せられた光は、波長変換部材1の光入射面2aから入射され、波長変換物質を含む成形体3(図1参照)にて波長変換され、波長変換された所望の光が光出射面2bから導光板12に出射される。例えば所望の色の発光光とは白色光である。
 図2、図5等に示すように着色層4を設けることで、発光素子10からの光源光が波長変換部材1の側方領域を波長変換されずに通り抜ける割合を減らすことができ、より効果的に所望の色の光を光出射面2bから得ることができる。
 また図4に示すように、波長変換物質を含む成形体3から見て光入射面2a側を肉厚とした構成とすることで黒変発生を抑制できる。図8では、波長変換部材1と発光素子10とを離した形態としているが、例えば、図4に示すように、波長変換部材1の光入射面2aに発光素子10を当接させても、波長変換物質を含む成形体3と発光素子10との間の距離を離すことができ、黒変発生を効果的に抑制することができる。
 図9は、本実施の形態に係る第2の実施の形態を示す波長変換部材を備えた発光素子の分解斜視図である。図10は、図9に示す波長変換部材を組み合せた状態で、B-B線に沿って高さ方向に切断し矢印方向から見た拡大縦断面図である。図11は、図9に示す発光素子の各部材を組み合わせた状態で、図9に示すB-B線に沿って高さ方向に切断し矢印方向から見た発光素子の縦断面図である。
 図9、図11に示す発光素子20は、波長変換部材21と、LEDチップ(発光チップ)22とを有して構成される。波長変換部材21は、容器本体23と蓋体24との複数ピースで構成された容器25を備える。波長変換部材1は、LEDチップ(発光チップ)22の光出射側に配置される。ここで光出射側とは、LEDチップ(発光チップ)22に対して、発光素子20のプリント配線基板29の反対側、つまり、発光素子20から光が放射される方向である。また図9、図10、図11に示すように、容器本体23の中央部には有底の収納空間26が形成されている。そして成形体からなる波長変換物質を含む成形体27が収納空間26に配置されている。蓋体24が容器本体23上に図示しない接着層を介して接合される。また、容器25の側面25cに着色層が形成される。
 図9、図10、図11に示す波長変換部材21の容器25の下面が光入射面25aである。光入射面25aに対向する上面が光出射面25bである。
 図9、図10、図11に示す波長変換部材21の容器25に設けられた側面25cに対して内側の位置に収納空間26が形成されている。そして収納空間26内に、成形体からなる波長変換物質を含む成形体27が圧入や接着等の固定手段により配置されている。すなわち波長変換物質を含む成形体27を収納空間26よりもわずかに大きく成形して、波長変換物質を含む成形体27を収納空間26内に圧入することで、波長変換物質を含む成形体27と容器25とを密接させることができる。また、波長変換物質を含む成形体27を収納空間26よりもわずかに小さく成形してもよい。このとき、波長変換物質を含む成形体27の側面に接着層を塗布した状態で、波長変換物質を含む成形体27を収納空間26内に挿入することで、波長変換物質を含む成形体27と容器25とを接着層を介して密接させることができる。接着層には、成型体27と同じ樹脂、あるいは、基本構造が共通する樹脂を用いることができる。または、接着層として、透明な接着材を用いてもよい。
 図11に示すように、LEDチップ22は、プリント配線基板29に接続され、図9、図11に示すようにLEDチップ22の周囲が枠体30に囲まれている。そして、枠体30内は樹脂層31で封止されている。
 図11に示すように、波長変換部材21が枠体30の上面に図示しない接着層を介して接合されてLED等の発光素子20が構成される。
 図9、図10、図11に示す波長変換部材21において、図2等で説明した着色層を設けてもよいし、図4で説明したように、波長変換物質を含む成形体27から見て光入射面25a側を光出射面25b側よりも肉厚で形成してもよい。
 図12は、図9に示す発光素子を用いた表示装置の縦断面図である。図12に示すように表示装置50は、複数の発光素子20(LED)と、各発光素子20に対向する液晶ディスプレイ等の表示部54とを有して構成される。各発光素子20は、表示部54の裏面側に配置される。
 複数の発光素子20は支持体52に支持されている。各発光素子20は、所定の間隔を空けて配列されている。各発光素子20と支持体52とで表示部54に対するバックライト55を構成している。支持体52はシート状や板状、あるいはケース状である等、特に形状や材質を限定するものでない。
 図12に示すように、バックライト55と表示部54との間には、光拡散板53等が介在している。
 図9、図11に示す発光素子20と図8に示す導光板12とを組み合わせて光源装置を構成することができる。あるいは、図8に示す発光装置及び光源装置(発光素子と、キャピラリ状の波長変換部材1と導光板12等を備える)を図12に示す表示部54の裏面側に配置し(光拡散板53等の介在は任意である)、表示装置50を構成してもよい。
 また、図8に示す波長変換部材1と、導光板12とが一体となっている導光部材60を構成することができる。図13は、本実施の形態に係る導光部材を示す斜視図である。図13に示すように導光板12の光入射面側における両端部間に収納空間5を形成し、この収納空間5内に、波長変換物質を含む成形体3を挿入する。波長変換物質を含む成形体3の構成は図1等と同じであってよい。図13に示す実施の形態では、波長変換部材1と、導光板12とを一体としたことで、波長変換部材1と導光板12との組み合わせ工程が必要でなく、組み合わせ工程に伴う位置ずれ等の不具合が生じない。また導光部材60を作製する際の部品点数を減らすことができ、組み立て工程を容易化でき、生産コストの低減にも繋がる。なお、導光板12と波長変換部材1との間に光拡散板53等が入っていてもよい。また図2等で説明した着色層4を波長変換部材1の部分に設けてもよい。換言すれば導光板12として機能する表面には着色層4を設けない。これにより波長変換効率と導光効率とを向上させることができる。
 図13には図示していないが、発光素子が導光板12(波長変換部材1)の光入射面12aに対向して配置されている。
 また図13で示した、導光部材60と、発光素子10とが一体となっている光源装置70を構成することができる。図14は、本実施の形態に係る導光部材を用いた光源装置を示す斜視図である。図14に示すように、導光部材60の光入射面60aに発光素子10が取り付けられている。発光素子10は枠体内に複数のLEDチップが横方向に並設され樹脂で埋設された構成である。なお複数の発光素子10が導光部材60の光入射面60aに取り付けられた構成とすることもできる。図14では、図13よりも、波長変換物質を含む成形体3と光入射面60aとの間の距離dを延ばして、発光素子10を光入射面60aに直接取り付けることができるようにした。これにより発光素子10を簡単に導光部材60に対して配置することができるとともに、波長変換物質を含む成形体3の黒変発生を防ぐことができる。距離dは、図4で示す距離L1と同に1mm~8mm程度であることが好ましい。また図14の構成においても図13と同様に、着色層4を設けた。ただし図13、図14の構成において着色層4は形成されていなくてもよい。
 図13に示す導光部材60及び発光素子(不図示)、並びに、図14に示す光源装置70を図12に示す表示部54の裏面側に配置し(光拡散板53等の介在は任意である)、表示装置50を構成してもよい。また本実施の形態の波長変換部材や発光素子を、上記に示した光源装置や表示装置以外に、その他の形態の光源装置、照明装置、光拡散装置、光反射装置等にも適用することができる。
 本発明では、容器内に波長変換物質の成形体を圧入した波長変換部材を用いて、LEDやバックライト装置、表示装置等を実現できる。本発明の波長変換部材によれば、波長変換部材に波長変換物質を含む成形体を適切に配置できるので、本発明の波長変換部材を用いたLED、バックライト装置、表示装置等を高品質に維持することができる。
 本出願は、2014年11月4日出願の特願2014-224053に基づく。この内容は全てここに含めておく。

Claims (13)

  1.  収納空間が設けられた容器と、
     前記収納空間内に配置された波長変換物質を含む成形体と、を有することを特徴とする波長変換部材。
  2.  前記波長変換物質を含む成形体は、量子ドットが分散された樹脂組成物が成形されてなることを特徴とする請求項1に記載の波長変換部材。
  3.  前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記側面よりも内側に前記収納空間が設けられており、
     前記側面上、前記光出射面の端部上、又は、前記側面上から前記光出射面の端部上にかけて着色層が形成されていることを特徴とする請求項1又は請求項2に記載の波長変換部材。
  4.  前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記側面よりも内側に前記収納空間が設けられており、
     前記収納空間内の壁面に着色層が形成されていることを特徴とする請求項1又は請求項2に記載の波長変換部材。
  5.  前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記側面よりも内側に前記収納空間が設けられており、
     前記容器の前記側面と前記収納空間までの間に着色層が設けられていることを特徴とする請求項1又は請求項2に記載の波長変換部材。
  6.  前記容器は、光入射面、前記光入射面に対向する光出射面、及び、前記光入射面と前記光出射面との間を繋ぐ側面を備え、前記光入射面及び光出射面よりも内側に前記収納空間が設けられており、
     前記光入射面と前記収納空間との間の距離L1は、前記光出射面と前記収納空間との距離L2よりも大きいことを特徴とする請求項1から請求項5のいずれかに記載の波長変換部材。
  7.  発光素子と、前記発光素子の発光側に配置される請求項1から請求項6のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする発光装置。
  8.  発光チップと、前記発光チップの光出射側に配置される請求項1から請求項6のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする発光素子。
  9.  請求項7に記載の発光装置、あるいは、請求項8に記載の発光素子と、導光板と、を有することを特徴とする光源装置。
  10.  請求項1又は請求項2に記載の波長変換部材と、導光板とが一体となっていることを特徴とする導光部材。
  11.  請求項10に記載の導光部材と、発光素子と、を有し、前記発光素子は、前記導光部材の前記光入射面に取り付けられていることを特徴とする光源装置。
  12.  表示部と、前記表示部の裏面側に配置された請求項7に記載の発光装置、請求項8に記載の発光素子、請求項9に記載の光源装置、請求項10に記載の導光部材、あるいは、請求項11に記載の光源装置と、を有することを特徴とする表示装置。
  13.  波長変換物質を含む成形体を形成する工程と、
     前記成型体を収納空間が設けられた容器の前記収納空間内に挿入する工程と、を含むことを特徴とする波長変換部材の製造方法。
PCT/JP2015/080173 2014-11-04 2015-10-27 波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法 WO2016072312A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/522,398 US10598843B2 (en) 2014-11-04 2015-10-27 Method of producing wavelength converting member
EP15857683.5A EP3217444A4 (en) 2014-11-04 2015-10-27 Wavelength conversion member, light-emitting device in which same is used, light-emitting element, light-source device, display device, light guide member, and method for manufacturing wavelength conversion member
CN201580059774.4A CN107258023B (zh) 2014-11-04 2015-10-27 波长转换部件及其制造方法、发光装置、光源装置
JP2016557715A JP6883159B2 (ja) 2014-11-04 2015-10-27 波長変換部材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014224053 2014-11-04
JP2014-224053 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016072312A1 true WO2016072312A1 (ja) 2016-05-12

Family

ID=55909038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080173 WO2016072312A1 (ja) 2014-11-04 2015-10-27 波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法

Country Status (6)

Country Link
US (1) US10598843B2 (ja)
EP (1) EP3217444A4 (ja)
JP (1) JP6883159B2 (ja)
CN (2) CN107258023B (ja)
TW (1) TWI693729B (ja)
WO (1) WO2016072312A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661573B (zh) * 2018-06-01 2019-06-01 宇瞻科技股份有限公司 多頻譜光源裝置
JP2020016856A (ja) * 2018-07-27 2020-01-30 セイコーエプソン株式会社 光源装置およびプロジェクター

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071005A (ja) * 2007-09-13 2009-04-02 Sony Corp 波長変換部材及びその製造方法、並びに、波長変換部材を用いた発光デバイス
JP2012073613A (ja) * 2010-09-27 2012-04-12 Lg Innotek Co Ltd 光学部材、これを含む表示装置及びその製造方法
JP2013016583A (ja) * 2011-07-01 2013-01-24 Nippon Electric Glass Co Ltd 発光デバイス用セル及び発光デバイス
JP2013068728A (ja) * 2011-09-21 2013-04-18 Nippon Electric Glass Co Ltd 発光体封入用毛細管及び波長変換部材
JP2013115351A (ja) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Led波長変換部材とその製造方法
JP2014165116A (ja) * 2013-02-27 2014-09-08 Sony Corp 照明装置および表示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6501091B1 (en) * 1998-04-01 2002-12-31 Massachusetts Institute Of Technology Quantum dot white and colored light emitting diodes
CA2299934C (en) * 1999-03-03 2006-09-19 Kuraray Co., Ltd. Oxygen absorptive resin composition
GB2365113B (en) * 2000-07-25 2004-11-10 Stg Aerospace Ltd Improvements in or relating to emergency lighting
US20100033951A1 (en) * 2001-07-23 2010-02-11 Chris Luginbuhl Electrical cover plate with visual enhancement
GB0522451D0 (en) * 2005-11-03 2005-12-14 Saf T Glo Ltd Improvements in or relating to emergency lighting
US8475024B2 (en) * 2007-04-14 2013-07-02 Saf-T-Glo Limited Emergency lighting
US9158151B2 (en) * 2009-11-17 2015-10-13 Sharp Kabushiki Kaisha Surface light-emitting unit and display device provided with the same
KR101742615B1 (ko) * 2010-09-20 2017-06-01 엘지이노텍 주식회사 발광 소자 패키지 및 발광 모듈
KR101199064B1 (ko) * 2011-01-21 2012-11-07 엘지이노텍 주식회사 광 변환 부재, 이를 포함하는 표시장치 및 이의 제조방법
JP5543518B2 (ja) * 2011-04-05 2014-07-09 エルジー イノテック カンパニー リミテッド 表示装置
TWI436507B (zh) * 2011-08-05 2014-05-01 Au Optronics Corp 發光裝置以及光源模組
KR20160095187A (ko) * 2012-01-19 2016-08-10 나노코 테크놀로지스 리미티드 발광 장치 적용을 위한 성형된 나노입자 형광체
JP6092522B2 (ja) * 2012-04-11 2017-03-08 サターン ライセンシング エルエルシーSaturn Licensing LLC 発光装置、表示装置および照明装置
JP6192897B2 (ja) 2012-04-11 2017-09-06 サターン ライセンシング エルエルシーSaturn Licensing LLC 発光装置、表示装置および照明装置
GB201305803D0 (en) * 2013-03-28 2013-05-15 Saf T Glo Ltd Emergency lighting
KR102116823B1 (ko) * 2013-09-13 2020-06-01 삼성디스플레이 주식회사 광원, 그것의 제조 방법, 및 그것을 포함하는 백라이트 유닛
US9335023B2 (en) * 2013-12-11 2016-05-10 Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot lens and manufacturing method thereof
US9851497B2 (en) * 2014-06-11 2017-12-26 Samsung Electronics Co., Ltd. Light mixing chamber for use with color converting material and light guide plate and assembly
JP6495891B2 (ja) * 2014-08-06 2019-04-03 Nsマテリアルズ株式会社 樹脂成形品及び、波長変換部材、照明部材
CN106663727B (zh) * 2014-08-22 2020-10-16 Ns材料株式会社 波长转换部件及利用它的发光装置、发光元件、光源装置、以及显示装置
JP6295237B2 (ja) * 2014-09-30 2018-03-14 富士フイルム株式会社 バックライトユニット、液晶表示装置および波長変換部材
WO2016072313A1 (ja) * 2014-11-04 2016-05-12 Nsマテリアルズ株式会社 導光部材及びそれを用いた光源装置
EP3240051B1 (en) * 2014-12-26 2020-03-18 NS Materials Inc. Method for manufacturing a wavelength conversion member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071005A (ja) * 2007-09-13 2009-04-02 Sony Corp 波長変換部材及びその製造方法、並びに、波長変換部材を用いた発光デバイス
JP2012073613A (ja) * 2010-09-27 2012-04-12 Lg Innotek Co Ltd 光学部材、これを含む表示装置及びその製造方法
JP2013016583A (ja) * 2011-07-01 2013-01-24 Nippon Electric Glass Co Ltd 発光デバイス用セル及び発光デバイス
JP2013068728A (ja) * 2011-09-21 2013-04-18 Nippon Electric Glass Co Ltd 発光体封入用毛細管及び波長変換部材
JP2013115351A (ja) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Led波長変換部材とその製造方法
JP2014165116A (ja) * 2013-02-27 2014-09-08 Sony Corp 照明装置および表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3217444A4 *

Also Published As

Publication number Publication date
CN107258023A (zh) 2017-10-17
EP3217444A4 (en) 2018-08-22
TWI693729B (zh) 2020-05-11
JP6883159B2 (ja) 2021-06-09
CN110828639A (zh) 2020-02-21
EP3217444A1 (en) 2017-09-13
US10598843B2 (en) 2020-03-24
US20170315287A1 (en) 2017-11-02
CN107258023B (zh) 2020-04-17
JPWO2016072312A1 (ja) 2017-10-12
TW201630220A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
JP5543518B2 (ja) 表示装置
US11380826B2 (en) Light emitting module
EP2689290B1 (en) Display device
KR101659357B1 (ko) 발광소자패키지
JP2020043353A (ja) 波長変換部材、成形体、波長変換装置、シート部材、発光装置、導光装置、並びに表示装置
CN106663727B (zh) 波长转换部件及利用它的发光装置、发光元件、光源装置、以及显示装置
US10578791B2 (en) Light guide member and light source unit using the same
CN103547963A (zh) 光转换元件和具有光转换元件的显示器件
US10422937B2 (en) Wavelength converting member, and light emitting device, light emitting element, light source unit, and display device using wavelength converting member
WO2016072312A1 (ja) 波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、表示装置、導光部材、並びに波長変換部材の製造方法
US9405051B2 (en) Backlight assembly and display device having the same
JP2009069714A (ja) 液晶表示装置
KR101262538B1 (ko) 표시장치 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522398

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016557715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015857683

Country of ref document: EP