WO2016071653A1 - Dispositif et procédé de régulation de la température d'un moule par faisceau laser - Google Patents

Dispositif et procédé de régulation de la température d'un moule par faisceau laser Download PDF

Info

Publication number
WO2016071653A1
WO2016071653A1 PCT/FR2015/053015 FR2015053015W WO2016071653A1 WO 2016071653 A1 WO2016071653 A1 WO 2016071653A1 FR 2015053015 W FR2015053015 W FR 2015053015W WO 2016071653 A1 WO2016071653 A1 WO 2016071653A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
temperature
heat exchange
regulating
exchange plate
Prior art date
Application number
PCT/FR2015/053015
Other languages
English (en)
Inventor
Olivier TORRES
Stéphane GUILLIER
Original Assignee
Compagnie Plastic Omnium
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Plastic Omnium filed Critical Compagnie Plastic Omnium
Priority to CN201580067019.0A priority Critical patent/CN107000264A/zh
Priority to DE112015005075.2T priority patent/DE112015005075T5/de
Priority to US15/524,072 priority patent/US20170334097A1/en
Publication of WO2016071653A1 publication Critical patent/WO2016071653A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • B29C33/06Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means using radiation, e.g. electro-magnetic waves, induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum

Definitions

  • the present invention relates to a device for regulating the temperature of a mold.
  • conventional devices for regulating the temperature of a mold are generally composed of means for heating and / or cooling by conduction of hot pressurized water, the heating means operating in particular by induction, electrical resistance, or by circulation of fluids (water, oil ... etc.) or gas (steam under pressure).
  • Such devices have many disadvantages. With regard to devices with fluid circulation heating means, in order to heat the areas in contact with the workpiece, the heating means must pass through other areas of the mold (walls in particular), resulting in a loss of heat and a great deal of heat. inertia in the heating and cooling cycles. Devices with induction heating means or electrical resistance can partly avoid these disadvantages, but have others, such as a very high energy consumption and the fact of being able to be used only to form small parts dimensions and substantially flat shape.
  • the invention aims to remedy this by providing a device for regulating the temperature of a mold for the manufacture of a plastic part, comprising means for heating the molding surface comprising at least one radiation head .
  • the invention is distinguished by the fact that the heating means comprise a heat exchange plate made of a thermally conductive material and arranged to be in contact with a localized area of a wall of the mold, the radiation head being adapted to regulate the temperature of the heat exchange plate by emitting a ray beam directed towards the heat exchange plate.
  • Such a device by its localized temperature regulation, avoids the high inertia in the heating and cooling cycles and the heat losses caused by global heating, while being energy efficient.
  • the use of a device according to the invention also avoids having to provide a complex network of piping for cooling the entire mold. Simplifying this network, or even not using such a network, reduces investment costs, assembly time or dismantling, but also reduces the size of the blocks constituting the mold.
  • the maintenance of the cooling system is also made less frequent because of the reduction of the size of the network and therefore of the potential leaks.
  • radiation heads are also particularly advantageous because they make it possible to increase the temperature very rapidly, which can sometimes accelerate the molding cycles even more.
  • the heating means comprise a thermal insulation plate disposed between the radiation head and the heat exchange plate, said thermal insulation plate being provided with an orifice adapted to the passage of the beam of heat. rays.
  • This is particularly useful for protecting the heating means in the context of a production of parts by a compression-on-injection method.
  • the radiation head is a laser source comprising an optical head connected to a power source by an optical fiber.
  • control device further comprises means for modulating the power of the radiation so as to be able to vary the temperature of the heat exchange plate.
  • the heating means are arranged in a metal body intended to be placed in a cavity made in the wall of the mold.
  • the heat exchange plate has a shape identical or similar to that of the localized area of the wall of the mold to be positioned at any point at a substantially constant distance from this localized area.
  • the heat exchange plate is made of graphite or graphene.
  • Graphite is a particularly suitable material for forming the heat exchange plate because it is both particularly thermally conductive and resistant to high temperatures.
  • the thermal insulation plate is made of a microporous material.
  • a microporous material is a material with a porous structure, that is, with closed cells whose dimensions are smaller than the average free path of certain molecules.
  • Such materials are particularly suitable for constituting the thermal insulation plate because they are in essence constituted by cells filled with gas, and therefore benefit from a very low thermal conductivity.
  • the invention also relates to a mold for the manufacture of a plastic part comprising a temperature control device according to the invention.
  • the invention also relates to a method for regulating the temperature of a mold for the manufacture of a plastic part by regulating the temperature of a heat exchange surface by emission of a ray beam directed towards a heat exchange surface made of a thermally conductive material and arranged to be in contact with a localized area of the mold wall.
  • FIG. 1 is a schematic representation of a section of a mold for the manufacture of a plastic part provided with a temperature control device according to the invention
  • FIG. 1 is a schematic representation of heating means of a temperature control device of Figure 1.
  • FIG. 1 shows a mold 1 according to one embodiment of the invention.
  • It comprises an upper block 2a and a lower block 2b respectively comprising an upper wall 4a and a lower wall 4b which define between them a chamber 6. It is in this chamber 6 that the material forming a part 8 is molded.
  • the mold 1 comprises a temperature control device 10, which comprises, in the embodiment thus presented, a plurality of heating means in the form of intensifiers 100 ("boosters" in English terminology).
  • intensifiers 100 are arranged on either side of the chamber 6, in other words intensifiers 100 are arranged both in the upper block 2a and in the lower block 2b.
  • intensifiers 100 there may be intensifiers 100 only in the upper block 2a or in the lower block 2b.
  • the intensifiers 100 are regularly distributed along the upper blocks 2a and the lower blocks 2b next to the chamber 6. It goes without saying that their arrangement, as well as their number and their size or shape , may vary according to the desired uses. Thus, the intensifiers 100 may be staggered (in the normal direction to the figure), with a precise step, or not.
  • Each intensifier 100 comprises a body 102, preferably made of metal material, which is disposed in a cavity 104 made in the mold 1.
  • the body 102 houses, in a space 106, a radiation head 112, for example infrared or laser.-It is here composed of a laser head 112 adapted to emit a laser beam 114 and a power source 116 by via an optical fiber 118.
  • the power sources of the laser heads are not drawn and that the representation of the intensifiers has been simplified for the sake of clarity.
  • the laser beam 114 can be transmitted and / or guided through mirrors rather than through an optical fiber.
  • the body 102 also houses a heat exchange plate 120 made of a thermally conductive material (with high thermal conductivity) such as graphite, which is disposed in the cavity 104 so as to be in contact with a localized zone 130 of the wall lower 4b of the chamber 6 of the mold.
  • the localized zone 130 is itself in contact with a localized zone of the molding part 8.
  • the entire surface of the heat exchange plate 120 is in contact with a localized zone 130 of the associated lower wall 4b.
  • the heat exchange plate 120 advantageously has a shape identical or similar to that of the localized zone 130 of the bottom wall of the mold 4b in order to be positioned at any point at a substantially constant distance from this localized zone.
  • the heat exchange plate 120 is placed on the path of the laser beam
  • the laser beam 114 so that the laser beam 114 can heat it by radiation.
  • the heat exchange plate 120 being in contact with the localized zone 130 of the lower wall 4b of the mold 1, it transmits by heat the heat resulting from the radiation to the localized zone 130. It does not transmit it on the other hand not or very little to the rest of the mold 1, which avoids global heating and the disadvantages associated therewith.
  • the localized zone 130 of the lower wall 4b itself being in contact with a localized zone of the workpiece 8 to be manufactured, it in turn transmits this heat to the localized zone of the workpiece 8. not to the whole of the piece 8, which increases the precision of the molding.
  • the other intensifiers 100 heat the localized areas of the upper walls 4a and lower 4b in front of which they are located, and through this the localized areas of the room 8 associated.
  • the regulator device 10 further comprises means for modulating the power of the radiation, for example through a modulation (power / intensity, focal length, wavelength, cycling "on / off” ... ) of the laser beam 114 in order to be able to vary the temperature of the heat exchange plate 120.
  • modulation power / intensity, focal length, wavelength, cycling "on / off” ...
  • the body 102 also houses a thermal insulating plate 142 disposed between the heat exchange plate 120 and the radiation head 112.
  • the thermal insulating plate 142 makes it possible to protect the radiation head 112 from the heat generated by the emission of the beam of rays 114 on the heat exchange plate 120. In this case, it is intended here to protect the laser head 112 .
  • the thermal insulation plate 142 is provided with an orifice 144 allowing the laser beam 114 to pass therethrough.
  • the thermal insulating plate 142 is preferably made of a microporous type material which has the advantage of benefiting from a very low thermal conductivity.
  • the mold 1 comprises thermal insulation means 150 arranged around the intensifiers 100.
  • These thermal insulation means are arranged to constitute a closed space around of the chamber 6, and they thus form an insulating envelope, such as a sarcophagus, around the intensifiers 100. These means thus make it possible to confine the heat in the chamber 6. This envelope is sandwiched between the two blocks (2a, 2b) mold 1 and must therefore withstand the pressure within the mold 1.
  • thermal insulation means 150 can be envisaged according to the shape and arrangement of the upper blocks 2a and lower 2b.
  • the radiation head can be directly placed in the mold: in this case, the beam beam emission is direct.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

L'invention concerne un dispositif de régulation de la température d'un moule (1) pour la fabrication d'une pièce (8) en matière plastique, comprenant des moyens de chauffage (100) de la surface moulante comprenant au moins une tête de rayonnement (112). Les moyens de chauffage (100) comprennent une plaque d'échange thermique (120) réalisée en un matériau thermiquement conducteur et agencée pour être en contact avec une zone localisée (130) de la paroi (4a, 4b) du moule (1). La tête de rayonnement (112) est apte à réguler la température de la plaque d'échange thermique (120) par émission d'un faisceau de rayons (114) dirigé vers la plaque d'échange thermique (120). De plus l'invention concerne un procédé de régulation de la température d'un moule pour la fabrication d'une pièce (8) en matière plastique.

Description

DISPOSITIF ET PROCÉDÉ DE RÉGULATION DE LA TEMPÉRATURE D'UN MOULE
PAR FAISCEAU LASER
La présente invention concerne un dispositif de régulation de la température d'un moule.
De façon générale, afin de réaliser une pièce en matériau plastique ou composite dans le domaine de la construction automobile, l'on utilise des moules d'injection ou de compression en matériau métallique dont on chauffe et refroidit alternativement les zones moulantes afin de conformer la matière contenue dans le moule à la forme désirée.
A cet effet, des dispositifs conventionnels de régulation de la température d'un moule sont généralement composés de moyens de chauffage et/ou de refroidissement par conduction d'eau chaude pressurisée, les moyens de chauffage fonctionnant notamment par induction, résistance électrique, ou par circulation de fluides (eau, huile... etc.) ou de gaz (vapeur sous pression).
De tels dispositifs présentent de nombreux inconvénients. S'agissant des dispositifs à moyens de chauffage par circulation de fluides, afin de chauffer les zones au contact de la pièce, les moyens de chauffage doivent traverser d'autres zones du moule (parois notamment), entraînant une déperdition de chaleur et une grande inertie dans les cycles de chauffe et de refroidissement. Les dispositifs à moyens de chauffage par induction ou résistance électrique permettent d'éviter en partie ces inconvénients, mais en présentent d'autres, tels qu'une très forte consommation énergétique et le fait de ne pouvoir être utilisés que pour former des pièces de petites dimensions et de forme sensiblement plane.
Outre la moindre efficacité énergétique de tels dispositifs, ils complexifient la conception et la réalisation du moule. Ceci est particulièrement le cas des dispositifs à moyens de chauffage par circulation de fluides qui imposent l'installation de circuits percés qui suivent les formes de la surface moulante.
Il existe donc un besoin de disposer d'un dispositif de régulation de température d'un moule énergétiquement efficace et permettant de simplifier la conception et la réalisation du moule
Il a déjà été proposé, dans EP 2 647 479, un procédé de fabrication d'une pièce à base de matière plastique moussée comprenant des étapes d'injection de matière moussée dans un moule chauffé et de refroidissement du moule. Le moule y est toutefois chauffé de manière homogène sur toutes ses parois en contact avec la matière de la pièce à réaliser, par exemple par laser.
Un tel procédé souffre donc d'une grande partie des inconvénients évoqués ci- dessus. L'invention a pour but d'y remédier en fournissant un dispositif de régulation de la température d'un moule pour la fabrication d'une pièce en matière plastique, comprenant des moyens de chauffage de la surface moulante comprenant au moins une tête de rayonnement.
L'invention se distingue par le fait que les moyens de chauffage comprennent une plaque d'échange thermique réalisée en un matériau thermiquement conducteur et agencée pour être en contact avec une zone localisée d'une paroi du moule, la tête de rayonnement étant apte à réguler la température de la plaque d'échange thermique par émission d'un faisceau de rayons dirigé vers la plaque d'échange thermique.
Un tel dispositif, de par sa régulation de température localisée, permet d'éviter la grande inertie dans les cycles de chauffe et de refroidissement et les déperditions de chaleur entraînées par un chauffage global, tout en étant énergétiquement efficace.
L'usage d'un dispositif selon l'invention évite également de devoir prévoir un réseau complexe de tuyauterie visant à refroidir l'ensemble du moule. Le fait de simplifier ce réseau, voire de ne pas utiliser un tel réseau, permet d'alléger les coûts d'investissement, les temps de montage ou démontage, mais permet également de réduire la taille des blocs constituant le moule.
La maintenance du système de refroidissement est également rendue moins fréquente du fait de la réduction de la taille du réseau et donc des fuites potentielles.
L'usage de têtes de rayonnement s'avère également particulièrement avantageux car elles permettent de faire monter très rapidement en température, ce qui peut parfois accélérer encore davantage les cycles de moulage.
En outre, étant particulièrement fiables, leur usage réduit les risques de panne et par conséquent réduit le temps de maintenance et leurs coûts associés.
Dans un mode de réalisation préféré, les moyens de chauffage comprennent une plaque d'isolant thermique disposée entre la tête de rayonnement et la plaque d'échange thermique, ladite plaque d'isolant thermique étant munie d'un orifice adapté au passage du faisceau de rayons.
Ceci est particulièrement utile pour protéger les moyens de chauffage dans le cadre d'une fabrication de pièces par un procédé par compression on injection.
Ceci permet notamment d'empêcher que la tête de rayonnement ne soit endommagée par l'élévation de température de la plaque de matériau conducteur.
Dans un mode de réalisation particulier, qui présente l'avantage d'être simple de mise en œuvre, la tête de rayonnement est une source laser comprenant une tête optique reliée à une source d'alimentation par une fibre optique.
Dans un mode de réalisation préféré, le dispositif de régulation comprend en outre des moyens de modulation de la puissance du rayonnement de manière à pouvoir faire varier la température de la plaque d'échange thermique.
Ceci permet de mieux contrôler la température de la zone localisée de la paroi et donc de la matière à mouler pour former la pièce.
En particulier, ceci permet d'utiliser des procédés de fabrication par paliers de température comme les procédés de moulage par injection basse pression de résine liquide (Resin Transfer Molding en terminologie anglo-saxonne).
Selon un mode de réalisation particulier, les moyens de chauffage sont disposés dans un corps métallique destiné à être placé dans une cavité réalisée dans la paroi du moule.
Ceci présente l'avantage de conférer une plus grande modularité au dispositif, et en particulier de pouvoir remplacer et/ou déplacer facilement les moyens de chauffage dans le moule.
Dans un mode avantageux en efficacité, la plaque d'échange thermique présente une forme identique ou similaire à celle de la zone localisée de la paroi du moule afin d'être positionnée en tout point à une distance sensiblement constante de cette zone localisée.
Dans un mode de réalisation particulier, la plaque d'échange thermique est réalisée en graphite ou en graphène.
Le graphite est un matériau particulièrement adapté pour constituer la plaque d'échange thermique car il est à la fois particulièrement conducteur thermiquement et résistant aux températures élevées.
Dans un mode de réalisation particulier, la plaque d'isolant thermique est réalisée dans un matériau de type microporeux.
On rappelle ici qu'un matériau microporeux est un matériau à structure poreuse, autrement dit comportant des cellules fermées dont les dimensions sont inférieures au libre parcours moyen de certaines molécules.
De tels matériaux sont particulièrement adaptés pour constituer la plaque d'isolation thermique car ils sont par nature constitués d'alvéoles remplies de gaz, et bénéficient par conséquent d'une conductivité thermique très basse.
L'invention concerne également un moule pour la fabrication d'une pièce en matière plastique comprenant un dispositif de régulation de la température selon l'invention.
L'invention concerne également un procédé de régulation de la température d'un moule pour la fabrication d'une pièce en matière plastique par régulation de la température d'une surface d'échange thermique par émission d'un faisceau de rayons dirigé vers une surface d'échange thermique réalisée en un matériau thermiquement conducteur et agencée pour être en contact avec une zone localisée de la paroi du moule. L'invention sera mieux comprise à la lecture de la description des figures annexées, qui sont fournies à titre d'exemples et ne présentent aucun caractère limitatif, dans lesquelles :
- la figure 1 est une représentation schématique d'une coupe d'un moule pour la fabrication d'une pièce en matière plastique muni d'un dispositif de régulation de la température selon l'invention ;
- la figure 2 est une représentation schématique de moyens de chauffage d'un dispositif de régulation de la température de la figure 1 .
On a représenté sur la figure 1 un moule 1 selon un mode de réalisation de l'invention.
Il comprend un bloc supérieur 2a et un bloc inférieur 2b comprenant respectivement une paroi supérieure 4a et une paroi inférieure 4b qui définissent entre elles une chambre 6. C'est dans cette chambre 6 qu'est moulée la matière formant une pièce 8.
Le moule 1 comprend un dispositif de régulation de la température 10, qui comprend, dans le mode de réalisation ainsi présenté, une pluralité de moyens de chauffage sous la forme d'intensifieurs 100 (« boosters » en terminologie anglo- saxonne).
De préférence, une pluralité d'intensifieurs 100 sont disposés de part et d'autre de la chambre 6, autrement dit des intensifieurs 100 sont disposés à la fois dans le bloc supérieur 2a et dans le bloc inférieur 2b.
Dans un autre mode de réalisation, non représenté, il peut n'y avoir d'intensifieurs 100 que dans le bloc supérieur 2a ou que dans le bloc inférieur 2b.
Dans le mode de réalisation présenté sur la figure 1 , les intensifieurs 100 sont régulièrement répartis le long des blocs supérieur 2a et inférieur 2b en regard de la chambre 6. Il va de soi que leur disposition, tout comme leur nombre et leur taille ou forme, peut varier selon les utilisations désirées. Ainsi, les intensifieurs 100 peuvent être répartis en quinconce (dans la direction normale à la figure), avec un pas précis, ou non.
Un de ces intensifieurs 100 est représenté de façon plus précise à la figure 2.
Chaque intensifieur 100 comprend un corps 102, réalisé de préférence en matériau métallique, qui est disposé dans une cavité 104 réalisée dans le moule 1 .
Le corps 102 abrite, dans un espace 106, une tête de rayonnement 112, par exemple infrarouge ou laser.-Elle est ici composée d'une tête laser 112 adaptée à émettre un faisceau laser 114 et d'une source d'alimentation 116 par l'intermédiaire d'une fibre optique 118.
On notera que sur la figure 1 , les sources d'alimentation des têtes laser ne sont pas dessinées et que la représentation des intensifieurs a été simplifiée pour des raisons de clarté. Par ailleurs, dans une variante non représentée, le faisceau laser 114 peut être transmis et/ou guidé par l'intermédiaire de miroirs plutôt que par l'intermédiaire d'une fibre optique. Le corps 102 abrite également une plaque d'échange thermique 120 réalisée dans un matériau thermiquement conducteur (à conductivité thermique élevée) tel que le graphite, qui est disposée dans la cavité 104 de manière à être en contact avec une zone localisée 130 de la paroi inférieure 4b de la chambre 6 du moule.
La zone localisée 130 est elle-même en contact avec une zone localisée de la pièce à mouler 8.
De préférence, toute la surface de la plaque d'échange thermique 120 est en contact avec une zone localisée 130 de la paroi inférieure 4b associée.
Plus particulièrement encore, la plaque d'échange thermique 120 présente avantageusement une forme identique ou similaire à celle de la zone localisée 130 de la paroi inférieure du moule 4b afin d'être positionnée en tout point à une distance sensiblement constante de cette zone localisée.
La plaque d'échange thermique 120 est placée sur la trajectoire du faisceau laser
114 de manière à ce que le faisceau laser 114 puisse la chauffer par rayonnement.
Ainsi, la plaque d'échange thermique 120 étant en contact avec la zone localisée 130 du la paroi inférieure 4b du moule 1 , elle transmet par conduction la chaleur issue du rayonnement à la zone localisée 130. Elle ne la transmet en revanche pas ou très peu au reste du moule 1 , ce qui évite un chauffage global et les inconvénients qui y sont associés.
La zone localisée 130 de la paroi inférieure 4b étant elle-même en contact avec une zone localisée de la pièce 8 à fabriquer, elle transmet à son tour par conduction cette chaleur à la zone localisée de la pièce 8. Elle ne la transmet en revanche pas à l'ensemble de la pièce 8, ce qui augmente la précision du moulage.
De même, les autres intensifieurs 100 chauffent les zones localisées des parois supérieures 4a et inférieures 4b en face desquels ils se trouvent, et par ce biais les zones localisées de la pièce 8 associées.
De préférence, le dispositif de régulation 10 comprend en outre des moyens de modulation de la puissance du rayonnement, par exemple à travers une modulation (de puissance/intensité, distance focale, longueur d'onde, cyclage « marche/arrêt» ...) du faisceau laser 114 afin de pouvoir faire varier la température de la plaque d'échange thermique 120. Ces moyens ne sont pas représentés en détail et sont par exemple intégrés dans la source d'alimentation 116.
Comme on peut le voir sur la figure 2, dans le mode de réalisation préféré représenté ici, le corps 102 abrite également une plaque d'isolant thermique 142 disposée entre la plaque d'échange thermique 120 et la tête de rayonnement 112. La plaque d'isolant thermique 142 permet de protéger la tête de rayonnement 112 de la chaleur engendrée par l'émission du faisceau de rayons 114 sur la plaque d'échange thermique 120. En l'occurrence, on veut ici protéger la tête laser 112.
La plaque d'isolant thermique 142 est à cet effet munie d'un orifice 144 permettant le passage du faisceau laser 114.
La plaque d'isolant thermique 142 est de préférence réalisée dans un matériau de type microporeux qui présente l'avantage de bénéficier d'une conductivité thermique très basse.
Comme on peut le voir sur la figure 1 , dans le mode de réalisation préféré représenté ici, le moule 1 comprend des moyens d'isolation thermique 150 disposés autour des intensifieurs 100. Ces moyens d'isolation thermique sont disposés pour constituer un espace fermé autour de la chambre 6, et ils forment ainsi une enveloppe isolante, telle un sarcophage, autours des intensifieurs 100. Ces moyens permettent ainsi de confiner la chaleur dans la chambre 6. Cette enveloppe est prise en sandwich entre les deux blocs (2a, 2b) du moule 1 et doit donc résister à la pression au sein du moule 1 .
On notera que d'autres configurations des moyens d'isolation thermique 150 peuvent être envisagées selon la forme et la disposition des blocs supérieur 2a et inférieur 2b.
D'une manière générale, l'invention n'est pas limitée aux modes de réalisation présentés et d'autres modes de réalisation apparaîtront clairement à l'homme du métier.
Ainsi, la tête de rayonnement peut être directement placée dans le moule : dans ce cas, l'émission du faisceau de rayon est directe.

Claims

REVENDICATIONS
1 . Dispositif de régulation de la température d'un moule pour la fabrication d'une pièce (8) en matière plastique, comprenant des moyens de chauffage (100) de la surface moulante comprenant au moins une tête de rayonnement (112),
caractérisé en ce que les moyens de chauffage (100) comprennent une plaque d'échange thermique (120) réalisée en un matériau thermiquement conducteur et agencée pour être en contact avec une zone localisée (130) de la paroi (4a, 4b) du moule (1 ),
la tête de rayonnement (112) étant apte à réguler la température de la plaque d'échange thermique (120) par émission d'un faisceau de rayons (114) dirigé vers la plaque d'échange thermique (120).
2. Dispositif de régulation de la température d'un moule selon la revendication 1 , caractérisé en ce que les moyens de chauffage (100) comprennent une plaque d'isolant thermique (142) disposée entre la tête de rayonnement (112) et la plaque d'échange thermique (120), ladite plaque d'isolant thermique (142) étant munie d'un orifice (144) adapté au passage du faisceau de rayons (114).
3. Dispositif de régulation de la température d'un moule selon l'une quelconque des revendications précédentes, caractérisé en ce que la tête de rayonnement (112) est une source laser comprenant une tête optique reliée à une source d'alimentation (116) par une fibre optique (118).
4. Dispositif de régulation de la température d'un moule selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de modulation de la puissance du rayonnement de manière à pouvoir faire varier la température de la plaque d'échange thermique (120).
5. Dispositif de régulation de la température d'un moule selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de chauffage (100) sont disposés dans un corps métallique (102) destiné à être placé dans une cavité (104) réalisée dans la paroi (4a, 4b) du moule (1 ).
6. Dispositif de régulation de la température d'un moule selon l'une quelconque des revendications précédentes, caractérisé en ce que la plaque d'échange thermique (120) présente une forme identique ou similaire à celle de la zone localisée (130) de la paroi (4a, 4b) du moule afin d'être positionnée en tout point à une distance sensiblement constante de cette zone localisée (130).
7. Dispositif de régulation de la température d'un moule selon l'une quelconque des revendications précédentes, caractérisé en ce que la plaque d'échange thermique (120) est une plaque d'échange thermique réalisée en graphite ou en graphène.
8. Dispositif de régulation de la température d'un moule selon l'une quelconque des revendications 2 à 7, caractérisé en ce que la plaque d'isolant thermique (142) est réalisée dans un matériau de type microporeux.
9. Moule pour la fabrication d'une pièce (8) en matière plastique comprenant un dispositif de régulation de la température (10) selon l'une quelconque des revendications précédentes.
10. Procédé de régulation de régulation de la température d'un moule pour la fabrication d'une pièce (8) en matière plastique par régulation de la température d'une plaque d'échange thermique (120) par émission d'un faisceau de rayons (114) dirigé vers une plaque d'échange thermique (120) réalisée en un matériau thermiquement conducteur et agencée pour être en contact avec une zone localisée de la paroi (4a, 4b) du moule (1 ).
PCT/FR2015/053015 2014-11-07 2015-11-06 Dispositif et procédé de régulation de la température d'un moule par faisceau laser WO2016071653A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580067019.0A CN107000264A (zh) 2014-11-07 2015-11-06 用于通过激光束来调节模具的温度的设备和方法
DE112015005075.2T DE112015005075T5 (de) 2014-11-07 2015-11-06 Vorrichtung und Verfahren zur Regelung der Temperatur eines Formwerkzeugs durch Laserstrahl
US15/524,072 US20170334097A1 (en) 2014-11-07 2015-11-06 Device and method for controlling the temperature of a mold using a laser beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460823 2014-11-07
FR1460823A FR3028203B1 (fr) 2014-11-07 2014-11-07 Dispositif de regulation de la temperature d'un moule par faisceau laser

Publications (1)

Publication Number Publication Date
WO2016071653A1 true WO2016071653A1 (fr) 2016-05-12

Family

ID=52465530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053015 WO2016071653A1 (fr) 2014-11-07 2015-11-06 Dispositif et procédé de régulation de la température d'un moule par faisceau laser

Country Status (5)

Country Link
US (1) US20170334097A1 (fr)
CN (1) CN107000264A (fr)
DE (1) DE112015005075T5 (fr)
FR (1) FR3028203B1 (fr)
WO (1) WO2016071653A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308008A1 (de) * 1993-03-13 1994-09-15 Jung Artur Prof Dipl Ing Dynamische Formtemperierung beim Spritzgießen
US5785903A (en) * 1995-01-10 1998-07-28 Matsushita Electric Industrial Co., Ltd. Method of molding high-viscosity materials
US20040185137A1 (en) * 2003-03-20 2004-09-23 Mold-Masters Limited Method and apparatus for heating a nozzle with radiant energy
DE102008023479A1 (de) * 2007-06-01 2008-12-04 Engel Austria Gmbh Formwerkzeug
EP2647479A1 (fr) 2012-04-04 2013-10-09 Plastiques du Val de Loire Procédé de moulage par injection d'un materiau plastique mousse
WO2013190020A1 (fr) * 2012-06-19 2013-12-27 Roctool Moule à chauffage et refroidissement rapides

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3508600A (en) * 1967-10-16 1970-04-28 William T Rawles Process of casting with mold stool protection plate
FR2402526A1 (fr) * 1977-09-09 1979-04-06 Isobox Barbier Sa Dispositif et procede de moulage de matieres plastiques expansees, par rayonnement ultra-haute frequence
GB8301543D0 (en) * 1983-01-20 1983-02-23 Foseco Trading Ag Refractory heat-insulating articles
IT8619291A0 (it) * 1986-02-04 1986-02-04 A Giovanni Coscia Pressa fomratrice per gomma esimili, in cui la temperatura di culcanizzazione viene ottenuta per assorbimento di onde elettromagnetiche.
US5132091A (en) * 1990-12-17 1992-07-21 General Electric Company Apparatus and method employing focussed radiative heater for control of solidification interface shape in a crystal growth process
US6683783B1 (en) * 1997-03-07 2004-01-27 William Marsh Rice University Carbon fibers formed from single-wall carbon nanotubes
US6837299B2 (en) * 2002-04-26 2005-01-04 Sky+Ltd. Heating to control solidification of cast structure
WO2007127899A2 (fr) * 2006-04-28 2007-11-08 Halliburton Energy Services, Inc. Moules et procédés de formation de moules associés à la fabrication de trépans de forage rotatifs et d'autres outils de fond de puits
US20110159138A1 (en) * 2007-01-08 2011-06-30 Garrtech Inc. Blow mold for molding a container
BRPI0811665A2 (pt) * 2007-06-20 2015-02-10 3M Innovative Properties Co "modelagem por injeção ultrassônica em uma manta"
FR2937270B1 (fr) * 2008-10-20 2010-11-26 Roctool Dispositif de transformation de materiaux utilisant un chauffage par induction permettant un prechauffage du dispositif
CN103817829A (zh) * 2012-11-16 2014-05-28 财团法人金属工业研究发展中心 以激光加热模具的方法及其模具装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4308008A1 (de) * 1993-03-13 1994-09-15 Jung Artur Prof Dipl Ing Dynamische Formtemperierung beim Spritzgießen
US5785903A (en) * 1995-01-10 1998-07-28 Matsushita Electric Industrial Co., Ltd. Method of molding high-viscosity materials
US20040185137A1 (en) * 2003-03-20 2004-09-23 Mold-Masters Limited Method and apparatus for heating a nozzle with radiant energy
DE102008023479A1 (de) * 2007-06-01 2008-12-04 Engel Austria Gmbh Formwerkzeug
EP2647479A1 (fr) 2012-04-04 2013-10-09 Plastiques du Val de Loire Procédé de moulage par injection d'un materiau plastique mousse
WO2013190020A1 (fr) * 2012-06-19 2013-12-27 Roctool Moule à chauffage et refroidissement rapides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Variotherm Temperature Control via Laser Beam Heating | Kunststoffe.de", 13 December 2010 (2010-12-13), XP055190607, Retrieved from the Internet <URL:https://www.kunststoffe.de/en/specialized-information/technology-report/artikel/variotherm-temperature-control-via-laser-beam-heating-633421.html> [retrieved on 20150520] *
CHARLES DANIEL FOX ET AL: "A BASIC UNDERSTANDING OF RAPID MOLD SURFACE HEATING VIA LASER ENERGY", 1 January 2012 (2012-01-01), XP055190609, Retrieved from the Internet <URL:http://rave.ohiolink.edu/etdc/view?acc_num=wright1341332102> [retrieved on 20150521] *

Also Published As

Publication number Publication date
FR3028203B1 (fr) 2017-07-14
CN107000264A (zh) 2017-08-01
FR3028203A1 (fr) 2016-05-13
US20170334097A1 (en) 2017-11-23
DE112015005075T5 (de) 2017-07-13

Similar Documents

Publication Publication Date Title
EP1970622A1 (fr) Dispositif d&#39;éclairage et/ou de signalisation pour véhicule automobile comprenant une paroi externe pourvue d&#39;une zone d&#39;échange thermique
EP3393739B1 (fr) Dispositif de régulation de la température d&#39;un moule par diode vcsel
WO2016071653A1 (fr) Dispositif et procédé de régulation de la température d&#39;un moule par faisceau laser
EP3749898B1 (fr) Procede de realisation d&#39;un composant d&#39;un faux-plafond rayonnant modulaire, composant et faux-plafond correspondants
FR2824386A1 (fr) Radiateur convecteur electrique et mixte
FR2636125A1 (fr) Generateur de fluide chaud, notamment d&#39;eau chaude
BE1023731B1 (fr) Dispositif de prechauffage de fluide notamment de fluide de refroidissement de moteur a combustion
EP2454773B1 (fr) Pile a combustible a encombrement reduit
EP3274637B1 (fr) Chaudière et porte pour ladite chaudière
KR102116260B1 (ko) 가열 장치
FR2959000A1 (fr) Conduit pour un circuit d&#39;evacuation des produits de combustion et d&#39;alimentation en air comburant dans une installation de fumisterie
FR2945107A1 (fr) Radiateur electrique a fluide caloporteur forme d&#39;elements modulaires moules
FR3026165A1 (fr) Dispositif de traitement thermique d&#39;un fluide a consommation energetique reduite
EP4139611B1 (fr) Panneau climatique
EP2770269A1 (fr) Appareil de chauffage et de production d&#39;eau chaude
FR2836716A1 (fr) Radiateur electrique perfectionne
EP1865273A1 (fr) Méthode de chauffage et chaudière basés sur le principe de friction de fluide
FR2866102A1 (fr) Radiateur muni de plaques rayonnantes et procede de fabrication de ce radiateur
EP0128092A1 (fr) Dispositif de couverture de réacteur à fusion nucléaire utilisant la réaction deutérium tritium, à matériau tritigène solide
EP2770270B1 (fr) Appareil de chauffage et de production d&#39;eau chaude
CH713010A2 (fr) Capteur thermique solaire, procédé de captage thermique solaire avec ledit capteur et application dans un réseau urbain de distribution d&#39;énergie du type anergie.
FR3004288A1 (fr) Panneau solaire auto refroidissant
WO2022083981A1 (fr) Module thermoelectrique
GB2478747A (en) Solar energy collection devices
FR3106880A1 (fr) Systeme de regulation thermique reversible pour doubles vitrages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801907

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015005075

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15801907

Country of ref document: EP

Kind code of ref document: A1