WO2016070658A1 - Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备 - Google Patents

Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备 Download PDF

Info

Publication number
WO2016070658A1
WO2016070658A1 PCT/CN2015/086199 CN2015086199W WO2016070658A1 WO 2016070658 A1 WO2016070658 A1 WO 2016070658A1 CN 2015086199 W CN2015086199 W CN 2015086199W WO 2016070658 A1 WO2016070658 A1 WO 2016070658A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
resistant coating
fishbone
cladding
plasma cladding
Prior art date
Application number
PCT/CN2015/086199
Other languages
English (en)
French (fr)
Inventor
陶庆
王健
王聪
赖伟
刘建阳
顾范君
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US15/118,750 priority Critical patent/US20170044673A1/en
Priority to GB1609913.7A priority patent/GB2540265A/en
Publication of WO2016070658A1 publication Critical patent/WO2016070658A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium

Definitions

  • the invention relates to a wear-resistant coating on a surface of a material and a preparation thereof, in particular to a Co 3 W 3 C fishbone hard phase reinforced Fe-based wear-resistant coating and a preparation method thereof.
  • the wear and tear of mechanical parts is particularly serious. Therefore, it is required that the surface of the mechanical part in which the friction pair exists during use has high hardness and wear resistance.
  • Surface engineering technology can produce wear-resistant coatings with excellent performance.
  • the coating materials are mostly composite materials, and the reinforcing phase is mainly carbides, borides and nitrides with high hardness and wear resistance.
  • the Co 3 W 3 C fishbone hard phase does not appear in the reinforcing phase of current wear resistant coatings and is not used in the reinforcement phase of wear resistant coatings.
  • the object of the present invention is to provide a Co 3 W 3 C fishbone hard phase reinforced Fe-based wear-resistant coating which is simple in operation and is not easy to fall off.
  • the technical solution for achieving the object of the present invention is: the wear-resistant coating and the preparation method: a Fe-based WC alloy powder is coated on the surface of the metal substrate by a plasma cladding process to obtain a layer of fish bone-like Co 3 W 3 C as a strengthening phase. Wear resistant high hardness coating;
  • the composition of the Fe-based WC mixed alloy powder is C: 1.89-3.77%, Cr: 5.4-11.7%, Ni: 3.3-7.15%, W: 28.81-57.83%, Co: 4.2-8.4. %, Si: 0.03-0.065%, the balance is Fe;
  • the polished substrate is removed by grinding to remove the oxide layer on the surface of the substrate, and the processed substrate is placed on the plasma cladding workbench and the position is adjusted;
  • the WC powder with a particle size of 280-320 mesh and the Fe-based alloy powder of 100-200 mesh are screened, and the Fe-based WC mixed alloy powder of the mass percentage is prepared and stirred in a stirrer for 50-60 minutes, and then placed in a drying oven for heating. Drying at 150 ° C, the above pretreatment process can be completed into the plasma cladding machine;
  • the technical parameters of the plasma cladding process are: working current 135-145A, working voltage 11-12V, argon gas for powder feeding gas and shielding gas, powder feeding pressure 280-300MPa, protection gas pressure 700-800MPa, nozzle distance base
  • the surface is 10 mm and the scanning speed is 80 mm/min.
  • the plasma cladding equipment is turned off, and the side and front sides of the cladding layer are cut.
  • the fishbone hard phase can be seen under the optical microscope and the electron microscope, combined with X-ray diffraction.
  • the analysis results were confirmed to be Co 3 W 3 C, which showed high performance in both the hardness test and the abrasion resistance test.
  • the beneficial effects are that, due to the above scheme, the metallurgical bonding performance of the cladding layer and the matrix material obtained by the plasma cladding technology is excellent, the operation process is simple, and the equipment price is low.
  • the Fe-based WC alloy powder is prepared by a plasma cladding process to obtain a Co 3 W 3 C fishbone hard phase reinforced Fe-based wear-resistant coating and a preparation method thereof, wherein the strengthening phase is Co 3 W 3 C fish bone carbide.
  • the cladding layer with the enhanced phase of the fishbone hard phase Co 3 W 3 C has the characteristics of high hardness and high wear resistance, and the cladding layer is not easy to fall off, and has high application value and innovative significance.
  • the plasma cladding process is simple, the equipment is easy to operate, and the economic benefit is high, and it can be widely used for surface strengthening of precision parts.
  • the obtained cladding layer has strong bonding with the matrix, and the optimal performance matching between the ceramic phase of the cladding layer and the matrix can be achieved, and the comprehensive mechanical properties of the matrix structure are greatly improved.
  • the fish bone-shaped strengthening phase Co 3 W 3 C has the characteristics of high hardness and high wear resistance, which improves the hardness of the cladding layer and reduces the wear of the matrix structure as the skeleton of the cladding layer in friction, effectively improving The use value of the matrix.
  • Figure 1 is an XRD pattern of a plasma clad wear resistant coating of the present invention.
  • FIG. 2 is a metallographic structure diagram of a plasma cladding layer of the present invention under an optical microscope.
  • Fig. 3 is a view showing the metallographic structure of the plasma cladding layer of the present invention under an electron microscope.
  • Figure 4 is a topographical view of the plasma cladding layer of the present invention at 100 microns after the abrasion test.
  • Figure 5 is a topographical view of the plasma cladding layer of the present invention at 30 microns after the abrasion test.
  • the wear-resistant coating and the preparation method of the invention the Fe-based WC alloy powder is coated on the surface of the metal substrate by a plasma cladding process to obtain a wear-resistant high-hardness coating with a fishbone Co 3 W 3 C as a strengthening phase. ;
  • the composition of the Fe-based WC mixed alloy powder is C: 1.89-3.77%, Cr: 5.4-11.7%, Ni: 3.3-7.15%, W: 28.81-57.83%, Co: 4.2-8.4. %, Si: 0.03-0.065%, the balance is Fe;
  • the polished substrate is removed by grinding to remove the oxide layer on the surface of the substrate, and the processed substrate is placed on the plasma cladding workbench and the position is adjusted;
  • the WC powder with a particle size of 280-320 mesh and the Fe-based alloy powder of 100-200 mesh are screened, and the Fe-based WC mixed alloy powder of the mass percentage is prepared and stirred in a stirrer for 50-60 minutes, and then placed in a drying oven for heating. Drying at 150 ° C, the above pretreatment process can be completed into the plasma cladding machine;
  • the technical parameters of the plasma cladding process are: working current 135-145A, working voltage 11-12V, argon gas for powder feeding gas and shielding gas, powder feeding pressure 280-300MPa, protection gas pressure 700-800MPa, nozzle distance base
  • the surface is 10 mm and the scanning speed is 80 mm/min.
  • the plasma cladding equipment is turned off, and the side and front sides of the cladding layer are cut.
  • the fishbone hard phase can be seen under the optical microscope and the electron microscope, combined with X-ray diffraction.
  • the analysis results were confirmed to be Co 3 W 3 C, which showed high performance in both the hardness test and the abrasion resistance test.
  • Example 1 The oxide layer on the surface of the substrate was removed by sanding, the treated substrate was placed on a plasma cladding table, and the position was adjusted.
  • the WC powder with the particle size of 280-320 mesh and the Fe-based alloy powder of 100-200 mesh were screened to prepare the Fe-based WC mixed alloy powder.
  • the composition was based on the mass percentage: C: 3.24%, Cr: 7.2%, Ni: 4.4%. W: 49.56%, Co: 7.2%, Si: 0.04%, and the balance is Fe.
  • the powder is pretreated, placed in a stirrer for 50-60 minutes, placed in a dry box and heated at 150 ° C to dry, and placed in a powder feeder.
  • the cladding process is: working current 140A, working voltage 11V, argon gas is used for powder feeding gas and shielding gas, powder feeding pressure is 300MPa, protective gas pressure is 800MPa, nozzle is 10mm away from the surface of the substrate, and scanning speed is 80mm/min.
  • the plasma cladding machine is turned off, and the workpiece is naturally cooled to room temperature in the air.
  • the prepared Co 3 W 3 C fishbone hard phase reinforced Fe-based wear-resistant coating was subjected to a grinding test on a M-200 abrasion tester with a wear time of 40 min and a wear amount of only 0.008 g, while the Q235 steel was under the same conditions.
  • the wear amount is 0.1996g, the wear resistance is obviously improved, the highest hardness value reaches 946HV, and the hardness value is also obviously improved.
  • Fig. 2 it can be seen that a large number of fishbone hard phases are distributed on the substrate.
  • Fig. 3 the skeleton structure of the tissue can be clearly seen, and in the friction experiment, the wear-resistant skeleton is left and right. Reduces wear of the matrix structure and improves wear resistance.
  • Example 2 The pretreatment process of the substrate was maintained in the same manner as in Example 1, and the prepared Fe-based WC The alloy powder was mixed, and its composition was C: 3.77%, Cr: 5.4%, Ni: 3.3%, W: 57.83%, Co: 8.4%, Si: 0.03%, and the balance was Fe. The process parameters of the plasma cladding were kept the same as in Example 1, and a cladding layer excellent in performance was obtained.
  • the prepared Co 3 W 3 C fishbone hard phase reinforced Fe-based wear-resistant coating was subjected to the grinding test on the M-200 abrasion tester.
  • the wear time was 40 min, the wear amount was 0.0032 g, and the wear resistance was excellent.
  • Co 3 W 3 C in the cladding layer plays a large role in improving the performance.
  • Fig. 4 it can be seen that a large amount of fishbone hard phase Co 3 W 3 C embossed on the surface of the substrate on the wear surface, and the wear resistance is good.
  • Example 3 Pretreatment Process of Substrate
  • the Fe-based WC mixed alloy powder prepared in the same manner as in Example 1 was prepared in a mass percentage of C: 1.89%, Cr: 11.7%, Ni: 7.15%, W: 28.81%, Co: 4.2%, Si: 0.065%, and the balance is Fe.
  • the process parameters of the plasma cladding were kept the same as in Example 1, and a cladding layer excellent in performance was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials For Medical Uses (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备,属于材料表面耐磨涂层及制备方法。耐磨涂层为:C:1.89-3.77%、Cr:5.4-11.7%、Ni:3.3-7.15%、W:28.81-57.83%、Co:4.2-8.4%、Si:0.03-0.065%,余量为Fe;制备工艺耐磨涂层为:(1)等离子熔覆前对基体进行预处理;(2)对铁基合金粉末进行预处理;(3)调整等离子熔覆工艺参数,制备规定宽度和厚度的熔覆层,在空气中自然冷却。该耐磨涂层的工艺简单,制备的熔覆层与基体组织的冶金结合性强,可以实现熔覆层陶瓷相和基体间的最佳性能匹配,鱼骨状硬质相Co3W3C硬度值很高,在摩擦过程中起到骨架的作用减少基体组织的磨损,耐磨性能优良,且等离子熔覆便于操作,可实现自动化,制作耐磨层尺寸精度高,可广泛应用于机械零部件的表面改性。

Description

Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备 技术领域
本发明涉及一种材料表面耐磨涂层及制备,特别是一种Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及其制备方法。
背景技术
在机械零件的使用过程中,大部分的磨损发生在工件的表面部分,特别是在恶劣的工作环境中如高腐蚀、强摩擦、高温高压等,机械零件的磨损失效尤其严重。因此,要求在使用过过程中存在摩擦副的机械零件表面有较高的硬度和耐磨性。表面工程技术可以制备出性能优异的耐磨涂层,涂层材料多为复合材料,增强相主要为硬度和耐磨性都很高的碳化物、硼化物和氮化物等。Co3W3C鱼骨状硬质相并没有在目前的耐磨涂层的增强相中出现,也没有被用于耐磨涂层的增强相。
发明内容
本发明的目的是要提供一种操作工艺简便、且熔覆层不易脱落的Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及其制备。
实现本发明目的的技术方案为:该耐磨涂层及制备方法:采用等离子熔覆工艺将Fe基WC合金粉末熔覆在金属基体表面获得一层以鱼骨状Co3W3C为强化相的耐磨高硬度涂层;
所述的Fe基WC混合合金粉末的组份按质量百分比为:C:1.89-3.77%、Cr:5.4-11.7%、Ni:3.3-7.15%、W:28.81-57.83%、Co:4.2-8.4%、Si:0.03-0.065%,余量为Fe;
等离子熔覆工艺具体步骤为:
(1)对基体进行预处理:
通过打磨去掉基体表面的氧化层,将处理好的基体放在等离子熔覆工作台,并调整好位置;
(2)对合金粉末预处理:
筛选颗粒度为280-320目的WC粉末与100-200目的Fe基合金粉末,制备所述质量百分比例的Fe基WC混合合金粉末,并放入搅拌器搅拌50-60分钟,放入干燥箱加热150℃干燥,完成以上预处理工艺即可放入等离子熔覆机;
(3)等离子熔覆:
等离子熔覆工艺的技术参数为:工作电流135-145A,工作电压11-12V,送粉气体和保护气体均采用氩气,送粉气压为280-300MPa,保护气压为700-800MPa,喷嘴距离基体表面10mm,扫描速度为80mm/min。
(4)熔覆层处理:
完成等离子熔覆工艺后,关闭等离子熔覆设备,对熔覆层的侧面与正面进行切削加工,打磨抛光后在光学显微镜和电子显微镜下即可看到鱼骨状硬质相,结合X射线衍射分析结果,可确定为Co3W3C,在硬度试验和耐磨性实验中均表现出很高的性能。
有益效果,由于采用了上述方案,等离子熔覆技术得到的熔覆层与基体材料的冶金结合性能十分优良,操作工艺简便,且设备价格较低。采用等离子熔覆工艺制备Fe基WC合金粉末获得Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及其制备方法,其强化相为Co3W3C鱼骨状碳化物,该碳化物具有较高的硬度(显微硬度HV=888-1097)和较高的耐磨性。获得增强相为鱼骨状硬质相Co3W3C的熔覆层具有高硬度高耐磨性的特点,且熔覆层不易脱落,具有很高的应用价值和创新意义。
本发明的优点是:
(1)等离子熔覆工艺简单,设备便于操作,经济效益高,可以大范围用于精密零部件的表面强化。
(2)采用以上的工艺方案,所得的熔覆层与基体的结合性强,可以实现熔覆层陶瓷相和基体间的最佳性能匹配,很大程度上提升了基体组织的综合力学性能。
(3)鱼骨状强化相Co3W3C具有高硬度高耐磨性的特征,提升了熔覆层的硬度,在摩擦中作为熔覆层的骨架减少基体组织的磨损,有效的提升了基体的使用价值。
附图说明
图1为本发明等离子熔覆耐磨涂层的XRD图谱。
图2为本发明等离子熔覆层在光学显微镜下的金相组织图。
图3为本发明等离子熔覆层在电子显微镜下的金相组织图。
图4为本发明等离子熔覆层在磨损实验后100微米的组织形貌。
图5为本发明等离子熔覆层在磨损实验后30微米的组织形貌。
具体实施方式:
下面结合附图对本发明的具体实施例作进一步的描述:
本发明的耐磨涂层及制备方法:采用等离子熔覆工艺将Fe基WC合金粉末熔覆在金属基体表面获得一层以鱼骨状Co3W3C为强化相的耐磨高硬度涂层;
所述的Fe基WC混合合金粉末的组份按质量百分比为:C:1.89-3.77%、Cr:5.4-11.7%、Ni:3.3-7.15%、W:28.81-57.83%、Co:4.2-8.4%、Si:0.03-0.065%,余量为Fe;
等离子熔覆工艺具体步骤为:
(1)对基体进行预处理:
通过打磨去掉基体表面的氧化层,将处理好的基体放在等离子熔覆工作台,并调整好位置;
(2)对合金粉末预处理:
筛选颗粒度为280-320目的WC粉末与100-200目的Fe基合金粉末,制备所述质量百分比例的Fe基WC混合合金粉末,并放入搅拌器搅拌50-60分钟,放入干燥箱加热150℃干燥,完成以上预处理工艺即可放入等离子熔覆机;
(3)等离子熔覆:
等离子熔覆工艺的技术参数为:工作电流135-145A,工作电压11-12V,送粉气体和保护气体均采用氩气,送粉气压为280-300MPa,保护气压为700-800MPa,喷嘴距离基体表面10mm,扫描速度为80mm/min。
(4)熔覆层处理:
完成等离子熔覆工艺后,关闭等离子熔覆设备,对熔覆层的侧面与正面进行切削加工,打磨抛光后在光学显微镜和电子显微镜下即可看到鱼骨状硬质相,结合X射线衍射分析结果,可确定为Co3W3C,在硬度试验和耐磨性实验中均表现出很高的性能。
实施例1:通过打磨去掉基体表面的氧化层,将处理好的基体放在等离子熔覆工作台,并调整好位置。
筛选颗粒度为280-320目的WC粉末与100-200目的Fe基合金粉末,制备Fe基WC混合合金粉末,其组份按质量百分比为:C:3.24%、Cr:7.2%、Ni:4.4%、W:49.56%、Co:7.2%、Si:0.04%,余量为Fe。对粉末进行预处理,放入搅拌器搅拌50-60分钟,放入干燥箱加热150℃干燥,放入送粉器。熔覆工艺为:工作电流140A,工作电压11V,送粉气体和保护气体均采用氩气,送粉气压为300MPa,保护气压为800MPa,喷嘴距离基体表面10mm,扫描速度为80mm/min。熔覆完毕后关闭等离子熔覆机,将工件在空气中自然冷却至室温。
制备的Co3W3C鱼骨状硬质相增强Fe基耐磨涂层在M-200磨损试验机上进行对磨实验,磨损时间40min,磨损量仅为0.008g,而Q235钢相同条件下的磨损量为0.1996g,耐磨性有了明显的提升,最高硬度值达到946HV,硬度值也提升明显。
图2中,可以看到有大量的鱼骨状硬质相分布于基体之上,图3中,可以明显的看出其组织的骨架结构,在摩擦实验中,起到耐磨骨架的左右,减少了基体组织的磨损,提升了耐磨性。
实施例2:基体的预处理工艺保持与实施例1相同,制备的Fe基WC 混合合金粉末,其组份按质量百分比为:C:3.77%、Cr:5.4%、Ni:3.3%、W:57.83%、Co:8.4%、Si:0.03%,余量为Fe。等离子熔覆的工艺参数保持与实施例1相同,可得到性能优良的熔覆层。
制备的Co3W3C鱼骨状硬质相增强Fe基耐磨涂层在M-200磨损试验机上进行对磨实验,磨损时间40min,磨损量为0.0032g,耐磨性十分优良,图1为实施例2的等离子熔覆层的XRD图谱,熔覆层中的Co3W3C对其性能的提升起到很大的作用。图4中,可以看出在磨损面上有大量的鱼骨状硬质相Co3W3C浮凸于基体表面,耐磨性能良好。
实施例3:基体的预处理工艺保持与实施例1相同,制备的Fe基WC混合合金粉末,其组份按质量百分比为:C:1.89%、Cr:11.7%、Ni:7.15%、W:28.81%、Co:4.2%、Si:0.065%,余量为Fe。等离子熔覆的工艺参数保持与实施例1相同,可得到性能优良的熔覆层。

Claims (2)

  1. 一种Co3W3C鱼骨状硬质相增强Fe基耐磨涂层,其特征是:该耐磨涂层由以下质量百分比的合金粉末元素组成:所述的合金粉末成分为:C:1.89-3.77%、Cr:5.4-11.7%、Ni:3.3-7.15%、W:28.81-57.83%、Co:4.2-8.4%、Si:0.03-0.065%,余量为Fe。
  2. 一种采用权利要求1所述的Co3W3C鱼骨状硬质相增强Fe基耐磨涂层的制备方法,其特征是:采用等离子熔覆工艺将Fe基WC合金粉末熔覆在金属基体表面获得一层以鱼骨状Co3W3C为强化相的耐磨高硬度涂层;具体步骤为:
    (1)对基体进行预处理:
    通过打磨去掉基体表面的氧化层,将处理好的基体放在等离子熔覆工作台,并调整好位置;
    (2)对合金粉末预处理:
    筛选颗粒度为280-320目的WC粉末与100-200目的Fe基合金粉末,制备所述质量比例的Fe基WC混合合金粉末,并放入搅拌器搅拌50-60分钟,放入干燥箱加热150℃干燥,完成以上预处理工艺即可放入等离子熔覆机;
    (3)等离子熔覆:
    等离子熔覆工艺的技术参数为:工作电流135-145A,工作电压11-12V,送粉气体和保护气体均采用氩气,送粉气压为280-300MPa,保护气压为700-800MPa,喷嘴距离基体表面10mm,扫描速度为80mm/min;
    (4)熔覆层处理:
    完成等离子熔覆工艺后,关闭等离子熔覆设备,对熔覆层的侧面与正面进行切削加工,打磨抛光后在光学显微镜和电子显微镜下即可看到鱼骨状硬质相,结合X射线衍射分析结果,可确定为Co3W3C,在硬度试验和耐磨性实验中均表现出很高的性能。
PCT/CN2015/086199 2014-11-03 2015-08-06 Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备 WO2016070658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/118,750 US20170044673A1 (en) 2014-11-03 2015-08-06 CO3W3C Fishbone-Like Hard Phase-Reinforced Fe-Based Wear-Resistant Coating and Preparation Thereof
GB1609913.7A GB2540265A (en) 2014-11-03 2015-08-06 CO3W3C fishbone-like hard phase-reinforced fe-based wear-resistant coating and preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410610715.9 2014-11-03
CN201410610715.9A CN104313570B (zh) 2014-11-03 2014-11-03 Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备

Publications (1)

Publication Number Publication Date
WO2016070658A1 true WO2016070658A1 (zh) 2016-05-12

Family

ID=52368875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086199 WO2016070658A1 (zh) 2014-11-03 2015-08-06 Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备

Country Status (4)

Country Link
US (1) US20170044673A1 (zh)
CN (1) CN104313570B (zh)
GB (1) GB2540265A (zh)
WO (1) WO2016070658A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985728A (zh) * 2022-06-09 2022-09-02 海南大学 一种陶瓷/铁基复合涂料、碳钢基复合材料及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313570B (zh) * 2014-11-03 2017-05-03 中国矿业大学 Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备
CN104789920B (zh) * 2015-04-28 2017-05-03 山东科技大学 利用等离子熔射鱼鳞状耐磨涂层的方法
EP3317456A1 (de) * 2015-07-02 2018-05-09 Voith Patent GmbH Bauteil für eine maschine zur herstellung und/oder behandlung einer faserstoffbahn und verfahren zur herstellung einer beschichtung eines bauteils
CN107876768A (zh) * 2017-11-29 2018-04-06 湖南工业大学 一种等离子3d打印装置和方法及其在特种耐磨材料修复中的应用
CN108977752A (zh) * 2018-07-04 2018-12-11 湖南工业大学 一种利用等离子熔覆制备耐磨耐腐蚀复合涂层的方法
CN111621732A (zh) * 2020-05-18 2020-09-04 山东金萃冶金技术有限公司 一种耐磨耐蚀表面涂层及其制备方法
CN113913807A (zh) * 2020-07-10 2022-01-11 丹阳宏图激光科技有限公司 一种cta压力过滤机转鼓激光修复方法
CN112626517A (zh) * 2020-12-15 2021-04-09 赣州乾屹铭金属材料有限公司 一种采用等离子熔覆的高性能搅拌叶片生产工艺
CN113511802B (zh) * 2021-04-20 2022-12-20 成都光明光电股份有限公司 玻璃制品生产用软化垫片及其制作方法
CN113122841B (zh) * 2021-04-25 2022-04-26 中国海洋大学 一种具有梯度组合结构的耐蚀耐磨涂层及其制备方法
CN113510238B (zh) * 2021-07-14 2022-03-04 中南大学 一种基于激光熔覆制备高硬度高耐磨刀模的复合材料及其制备方法
CN115537803A (zh) * 2022-10-09 2022-12-30 广东粤科新材料科技有限公司 一种316L不锈钢表面的WC-Ni耐磨涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213455A (ja) * 1988-10-08 1990-08-24 Toshiba Mach Co Ltd 耐摩耗性部材
CN101693996A (zh) * 2008-11-14 2010-04-14 北京工业大学 一种WC-FeNiCr超硬无磁涂层复合材料及其制备方法
CN102392241A (zh) * 2011-11-10 2012-03-28 湖北汽车工业学院 采用等离子熔覆法制备Fe基WC-Ni梯度涂层的方法
CN103382555A (zh) * 2013-07-12 2013-11-06 河海大学 前驱体碳化等离子熔覆反应合成的wc增强金属基合金涂层及制备
CN104313570A (zh) * 2014-11-03 2015-01-28 中国矿业大学 Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1163625C (zh) * 2000-08-29 2004-08-25 宝山钢铁股份有限公司 一种复合金属陶瓷喷涂材料
CN101298654B (zh) * 2008-06-30 2010-04-14 钢铁研究总院 一种含陶瓷相的铁基非晶纳米晶复合涂层及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213455A (ja) * 1988-10-08 1990-08-24 Toshiba Mach Co Ltd 耐摩耗性部材
CN101693996A (zh) * 2008-11-14 2010-04-14 北京工业大学 一种WC-FeNiCr超硬无磁涂层复合材料及其制备方法
CN102392241A (zh) * 2011-11-10 2012-03-28 湖北汽车工业学院 采用等离子熔覆法制备Fe基WC-Ni梯度涂层的方法
CN103382555A (zh) * 2013-07-12 2013-11-06 河海大学 前驱体碳化等离子熔覆反应合成的wc增强金属基合金涂层及制备
CN104313570A (zh) * 2014-11-03 2015-01-28 中国矿业大学 Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, SHAOQUN ET AL.: "Characteristics of Fe-based WC Composite Coatings Prepared by Double-pass Plasma Cladding Process", RARE METAL MATERIALS AND ENGINEERING, vol. 41, no. S1, 29 February 2012 (2012-02-29), pages 195 - 198, ISSN: 1002-185X *
LU , JINBIN ET AL.: "Study on NiCrBSi steel/WC composite coating prepared by plasma cladding on Q235 steel", TRANSACTIONS OF MATERIALS AND HEAT TREATMENT, vol. 30, no. 4, 31 August 2009 (2009-08-31), pages 142 - 145, ISSN: 1009-6264 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985728A (zh) * 2022-06-09 2022-09-02 海南大学 一种陶瓷/铁基复合涂料、碳钢基复合材料及其制备方法
CN114985728B (zh) * 2022-06-09 2024-05-14 海南大学 一种陶瓷/铁基复合涂料、碳钢基复合材料及其制备方法

Also Published As

Publication number Publication date
CN104313570A (zh) 2015-01-28
GB201609913D0 (en) 2016-07-20
GB2540265A (en) 2017-01-11
CN104313570B (zh) 2017-05-03
US20170044673A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
WO2016070658A1 (zh) Co3W3C鱼骨状硬质相增强Fe基耐磨涂层及制备
Sahoo et al. Microstructure and mechanical properties of TiC-Ni coating on AISI304 steel produced by TIG cladding process
CN107815682B (zh) 一种在高锰钢表面制备耐磨增韧涂层的方法
CN109402631A (zh) 高硬度梯度增强冷轧辊及其表面激光熔覆涂层制备方法
CN108118338B (zh) 一种高频感应加热熔覆TiC增强高熵合金涂层的方法
Zhang et al. Comparison between WC–10Co–4Cr and Cr3C2–25NiCr coatings sprayed on H13 steel by HVOF
CN107267909B (zh) 一种等离子喷焊Ni基WC/TiC/LaAlO3耐磨涂层
CN108866538B (zh) 激光熔覆原位合成复合碳化物(Ti,Nb)C强化Ni基涂层及制备
CN109468638B (zh) 一种金刚石增强高熵合金复合涂层的制备方法
CN111676479B (zh) 耐磨铁基高速激光熔覆涂层材料及应用
CN103526198A (zh) 含稀土元素的NbC颗粒增强铁基耐磨激光熔覆涂层及制备方法
CN102912340A (zh) 一种耐高温冲击磨损梯度复合材料的制备方法
Laurila et al. Microstructure and wear behaviour of a vanadium carbide reinforced weld coating
CN108914113A (zh) 一种超声波辅助等离子束熔覆高熵合金涂层的方法
Tong et al. Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron
CN109576604A (zh) 一种用于激光制造的抗冲击耐磨材料
CN105312752A (zh) 一种铁基非晶涂层及其制备方法
CN107541725A (zh) 一种镍基铜包碳化硅激光熔覆层的制备方法
CN103498155B (zh) 用于制备自生陶瓷相增强铁基耐磨层的氩弧熔覆材料
CN108677184A (zh) 一种列车车轴的耐磨涂层及其制备方法
CN114672720A (zh) 一种合金粉末、零件表面处理的方法及其应用
Nga et al. Microstructure and Micro-Hardness of Al2O3–TiO2 Coating by Plasma Spraying on SKD61 Steel
CN111593339B (zh) 含有纳米碳化钽的多层高熵合金激光熔覆层及其制备方法
CN107338436A (zh) 一种铁基复合涂层及其制备方法和应用
CN102864453A (zh) 激光熔覆原位合成硼化物陶瓷涂层及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201609913

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150806

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857243

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15118750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857243

Country of ref document: EP

Kind code of ref document: A1