WO2016070500A1 - 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法 - Google Patents

可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法 Download PDF

Info

Publication number
WO2016070500A1
WO2016070500A1 PCT/CN2015/071958 CN2015071958W WO2016070500A1 WO 2016070500 A1 WO2016070500 A1 WO 2016070500A1 CN 2015071958 W CN2015071958 W CN 2015071958W WO 2016070500 A1 WO2016070500 A1 WO 2016070500A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
bone implant
composite bone
amino acid
phosphorus
Prior art date
Application number
PCT/CN2015/071958
Other languages
English (en)
French (fr)
Inventor
严永刚
王鹏
李鸿
徐璠
刘朋真
Original Assignee
四川国纳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川国纳科技有限公司 filed Critical 四川国纳科技有限公司
Priority to US15/524,959 priority Critical patent/US10967099B2/en
Publication of WO2016070500A1 publication Critical patent/WO2016070500A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the invention relates to a controlled degradation multi-amino acid copolymer-organic calcium/phosphorus-filled composite bone implant for bone tissue defect repair, and a preparation method thereof.
  • bone healing is a continuous process. Generally speaking, it can be divided into three phases: hematoma computerization period, primitive osteophyte formation period and osteophyte transformation period.
  • the healing cycle takes about three months. It takes half a year or more to fully restore the bone or joint physiological function. .
  • the bone healing cycle is also affected by many factors such as age, physical health, fracture site, infection and treatment. Therefore, for bone repair materials, whether the degradation rate can match the physiological bone healing cycle is the key to determining whether the material has clinical application value.
  • Filled bone restorations are often used for implanted implants after trauma, tumors, and tuberculosis; supportive bone restorations provide basic mechanical support requirements for lesions or trauma to the spine, limbs, and head.
  • Bone repair materials that have been widely used include different types such as autologous bone, allogeneic bone, xenogenic bone and artificial bone material. Among them, autologous bone, allogeneic bone, xenogeneic bone and other natural bones are limited in source, intangible and biosafety, which makes their clinical application A big limit.
  • synthetic materials that have been used for clinical bone tissue repair include inorganic materials such as calcium sulfate, calcium phosphate, bioglass, and bone filler materials of organic polymer materials.
  • the degradable inorganic material has excellent biological properties and can guide bone tissue growth, its strength is low, brittleness is large, and it is often in the form of a coating. At the same time, it is easy to form a weakly acidic environment after being implanted in the body, which is not conducive to bone tissue repair or cause an inflammatory reaction (such as calcium sulfate).
  • some inorganic calcium salt materials have low solubility and long degradation cycle. For example, hydroxyapatite with high activity is very slow to degrade and can persist in the body for more than 10 years. Such a long degradation cycle is not conducive to new bone.
  • the degradation rate is more than twice as fast as the autologous bone.
  • the organic polymer material may include, for example, polymethyl methacrylate (PMMA), polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), and polyamide (PA).
  • PMMA polymethyl methacrylate
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PCL polycaprolactone
  • PA polyamide
  • HA/PA hydroxyapatite/polyamide
  • HA/PLA hydroxyapatite/polylactic acid
  • CS/PGA polyglycolic acid
  • the present invention provides a controlled degradation multi-amino acid copolymer-organic calcium/phosphorus-filled composite bone implant, and further provides a preparation method thereof. Controlled Degradation of Multi-Amino Acid Copolymer - Organic Calcium/Phosphate Filled Composite Bone Implant.
  • the controllably degradable multi-amino acid copolymer-organic calcium/phosphorus-filled composite bone implant of the present invention is composed of a copolymer of a plurality of amino acids and a medically acceptable organic calcium/phosphorus salt component, said organic calcium/ The phosphorus salt is 20 to 90%, preferably 40 to 70%, of the total mass of the composite; the copolymer of the polyamino acid is formed by polymerizing ⁇ -aminocaproic acid with at least two, preferably with 3 other amino acids. Wherein ⁇ -aminocaproic acid is at least 50% of the total molar amount of the amino acid copolymer, and each of the other amino acids is at least an amino acid copolymer 0.5% of the total molar amount.
  • polyamino acid polymer formed by ⁇ -aminocaproic acid and other amino acids in the above composite bone implant of the present invention can be referred to the publication No. CN101342383A ("polymerized form of tissue repair material" which has been patented by the present applicant. And preparation methods") and the like have been reported / used in the preparation.
  • the other amino acid may be selected from the group consisting of glycine, alanine, phenylalanine, tryptophan, arginine, serine, tyrosine, threonine, leucine, proline, hydroxyammonia
  • amino acids such as acid, lysine, ⁇ -aminobutyric acid, and the like, preferably a weakly basic amino acid or a neutral amino acid acceptable or present in the human body.
  • the addition of these other amino acids, in particular amino acids with rigid molecular groups such as phenylalanine, valine, tryptophan and hydroxyproline, on the one hand, can reduce the poly- ⁇ -amino group to a greater extent.
  • the regularity of the molecular chain of caproic acid increases the degradation rate, and also imparts a certain mechanical strength to the multi-amino acid copolymer; on the other hand, the degradation product of the multi-amino acid copolymer is a small molecule oligopeptide or an amino acid monomer, which is non-toxic and non-irritating. High biosecurity.
  • the degradation rate of the polymer itself can be flexibly regulated by changing the amino acid composition/proportion and polymerization time and temperature, thereby affecting the overall degradation rate of the composite bone implant.
  • the medically acceptable organic calcium/phosphorus salt described in the above composite bone implant is preferably composed of calcium glycinate, fructose diphosphate, and inositol, in addition to a single salt containing calcium and phosphorus.
  • At least one calcium phosphate containing calcium phosphate and includes calcium citrate, calcium lactate, calcium laurate, calcium oleate, calcium palmitate, calcium salicylate, calcium stearate, calcium succinate, calcium acetate, a mixture of calcium gluconate, calcium D-sucrose, calcium L-threonate, vitamin C calcium, calcium tartrate, calcium glycerate, at least one non-phosphorus-containing calcium salt, which has the advantage that it can be more conveniently.
  • the total molar ratio of Ca/P elements in organic calcium/phosphorus salts It is now close to the normal human bone (1.5 ⁇ 1.67) / 1 form.
  • the organic calcium salt not only has high solubility, but also the pH of most organic calcium salt solutions is neutral, and does not cause strong changes in the pH of the surrounding physiological environment. At the same time, the organic calcium salt can increase the amount of bone calcium, bone density and bone strength, and can reverse the rotation of the object. Negative calcium balance. The passive absorption of calcium is directly proportional to the intake. The more intake, the more absorption. Calcium entering the plasma by passive diffusion of molecules exists in the form of small molecules, which increases the total calcium concentration of the blood, and increases the proportion of calcium in the form of small molecules in total calcium, that is, relatively prolongs the time of calcium metabolism into the plasma, blood.
  • the medium molecular calcium salt has a moderate ability to dissociate calcium ions, which not only prolongs the metabolic time, but also allows blood calcium to have sufficient time to metabolize with bone calcium, so the bioavailability is high.
  • calcium citrate, calcium tartrate and calcium succinate have been widely used in calcium-rich foods or medicines. It can effectively supplement calcium sources and enhance the absorption and utilization of nutrients by muscle cells.
  • Organophosphorus salts are involved in the balance regulation of calcium and phosphorus during bone development and maturation. Metabolizes with sugars, lipids and amino acids, regulates acid-base balance, and participates in the composition of bones and teeth. In addition to forming a biofilm, it is also involved in the recognition and signaling of proteins by cell membranes (such as lecithin, cephalin, and phosphatidylglycerol).
  • the organophosphorus salt-forming compounds mainly include cyclic phosphates, such as calcium diphosphate, calcium physate, and calcium monophosphate.
  • organic phosphates are intermediates in the process of glucose metabolism, which can act on the cell membrane, increase the concentration of high-energy phosphate and adenosine triphosphate in the cells, thereby promoting the influx of potassium ions, restoring the resting state of cells, and increasing the glycerol diphosphate in red blood cells.
  • the content inhibits the release of oxygen free radicals and histamine and improves cell function.
  • organic calcium/phosphorus salts are non-toxic and have good biocompatibility, and have been widely used in medicine, food and other industries, and can be used to supplement the physiological functions of calcium/phosphorus. Due to the many advantages of organic calcium/phosphorus salts, and the difference in solubility of different organic calcium/phosphorus salts, the material degradation cycle can be flexibly regulated.
  • the bone is composed of bone salt, bone matrix and bone cells.
  • Bone salt can increase the hardness of bone, bone matrix determines the shape and toughness of bone, and bone cells play a leading role in bone metabolism.
  • the medically acceptable organic calcium/phosphorus salt in the above composite bone implant can be more conveniently realized by mixing phosphorus-containing and phosphorus-free organic calcium salts.
  • the total molar ratio of Ca/P element is (1.5 ⁇ 1.67)/1 which is closer to the normal bone Ca/P element ratio of the human body; and the above multi-amino acid copolymer can have a chemical structure similar to human bone matrix protein, thereby making the present
  • the composite bone implant of the above form of the invention can have good biomechanical properties and compatibility, and imparts higher biological activity through the organic calcium/phosphorus component.
  • the proportion of calcium/phosphorus salt in the total amount in the composite bone implant, and/or the molar ratio of Ca/P element in the calcium/phosphorus salt For example, the purpose of regulating the degradation rate of the composite bone implant can be achieved.
  • the test results show that the composite bone implant with the amount of organic calcium/phosphorus salt is 40-70% of the total mass of the composite bone implant, which can have a more ideal degradation cycle and pH value, which is simulated in body fluid in vitro.
  • the weight loss can be controlled within 8-30 weeks, which is more in line with the human body's natural bone healing repair cycle, and the pH value of the soaked liquid after degradation is between 6.5 and 7.5, which has little effect on the local physiological environment and does not cause irritation, most Conducive to cell growth and tissue repair.
  • the basic process is to treat the above proportion of organic calcium/phosphorus salt and ⁇ -aminocaproic acid under the protection of an inert gas. And other amino acid components are mixed and dissolved in water, and then dehydrated at 150 to 200 ° C, and then heated to 200 to 260 ° C for in-situ polymerization to obtain the controlled degradation polyamino acid copolymer - organic calcium / phosphorus salt filled composite Bone implant material.
  • a further preferred mode is that the in-situ polymerization reaction is carried out in two stages and the above-mentioned in-situ polymerization reaction can be obtained, and a more desirable effect can be obtained: heating to 200-210 ° C for the reactants after dehydration
  • the composite bone implant is obtained by reacting in a molten state for 1-3 h, then raising the temperature to 210-260 ° C and continuing the reaction for 0.5-5 h to complete the polymerization.
  • Increasing the reaction temperature and/or prolonging the reaction time can increase the degree of polymerization and molecular weight of the composite, and the degradation rate of the obtained product is also slowed down, and vice versa.
  • by changing and adjusting the ratio of ⁇ -aminocaproic acid to other amino acids not only the performance and degradation cycle of the multi-amino acid copolymer can be adjusted, but also the pH value of the degradation environment can be adjusted.
  • the organic calcium/phosphorus salt containing crystal water can also be formed by self-foaming during processing.
  • the porous surface at the same time, the dissolution of the organic calcium/phosphorus salt in the composite bone implant also forms micropores, which greatly increases the surface area of the composite bone implant, accelerates the degradation rate, promotes the release rate of the growth factor of the bone defect and the self-repair of the human bone tissue. Speed matching is beneficial to the rapid repair of bone defects.
  • the composite bone implant of the present invention can be further pulverized into particles having a particle diameter of 0.3 to 5 mm, or processed into a diameter of 5 to 8 mm (the length can be determined as needed)
  • the length can be determined as needed
  • it can be 5 to 50 mm) or a suitable form of (10 to 50 mm) ⁇ (3 to 15 mm) ⁇ (3 to 10 mm) blocks to meet different clinical needs.
  • the composite bone implant (material) of the present invention is subjected to in vitro simulated body fluid immersion for degradation rate test, the soaking solution is SBF solution, and the sample is taken out at each time point.
  • the mass loss rate is measured by constant weight.
  • Quantitative qualitative analysis of degradation products showed that it is mainly oligopeptide or small molecule of amino acid, and has high biosafety.
  • the continuous accumulation of calcium and phosphorus ions in the soaking solution can stimulate the proliferation and differentiation of bone cells and promote the process of bone healing. It has been found by cell culture that the composite bone implant of the present invention is compared with a single form of a multi-amino acid copolymer and/or a composite bone of an inorganic calcium/phosphorus salt and a multi-amino acid copolymer has been reported during cell culture. Repair material with significant cell proliferation activity.
  • controllable degradable multi-amino acid copolymer-organic calcium/phosphorus-filled composite bone implant of the present invention is a type of filled bone repair material having a controlled degradation cycle and good osteoinductive activity. .
  • the calcium citrate-calcium phosphate-polyamino acid composite bone implant was subjected to in vitro simulated body fluid immersion test and the extract was used to culture L929 fibroblast experiment, and the calcium sulfate-hydrogen phosphate using inorganic calcium/phosphorus salt was prepared by the same process.
  • the calcium-polyamino acid copolymer composite was a control. After soaking for one week, the concentration of calcium ions in the test sample degradation solution was 3.2 times that of the control sample, and the phosphorus ion concentration was 2.4 times that of the control sample.
  • the cell proliferation rate was 124% and the toxicity was 0 grade by the MTT method.
  • the cell proliferation rate of the comparison sample was only 106%, and the cell activity was low.
  • the reaction was carried out at 220 to 230 ° C for 1 hour, and cooled to room temperature under a nitrogen atmosphere to obtain 275 g of calcium citrate-calcium phosphate/polyamino acid composite bone implant material.
  • An organic calcium phosphate-polyamino acid composite bone implant having a diameter of 2-5 mm is pulverized.
  • the content of calcium phosphate in the composite bone implant was 60%, and the Ca/P ratio was analyzed to be 1.50.
  • the calcium citrate-calcium phosphate-polyamino acid composite bone implant was subjected to in vitro simulated body immersion test and the extract was used to culture L929 fibroblast experiment, and the tricalcium phosphate-polyamino acid copolymer composite prepared by the same process was Control. After soaking for one week, the concentration of calcium ions in the test sample degradation solution was 6.9 times that of the control sample, and the phosphorus ion concentration was 4.7 times that of the control sample. Soaking in simulated body fluid for 24 weeks, the weight loss was 36% in the first 4 weeks, the weight loss was 58% in 12 weeks, the weight loss was 73% in 24 weeks, and the pH was maintained at 6.6-7.4 during the degradation process. The weight loss rate of the comparison sample was only 31% in 24 weeks. The long degradation period of the comparative sample under the same preparation conditions was not conducive to the growth of new bone.
  • the cell proliferation rate was 120% and the toxicity was 0 grade by the MTT method.
  • the contrast-like cell proliferation rate was only 101%, and the cell activity was low.
  • the prepolymerization was carried out in a molten state for 2 hours, and then the temperature was further raised to 230 ⁇ 5 ° C for 1 hour, and cooled to room temperature under a nitrogen atmosphere to obtain 265 g of calcium citrate-calcium phosphate/polyamino acid composite bone implant material.
  • An organic calcium phosphate-polyamino acid composite bone implant having a diameter of 2-5 mm is pulverized.
  • the composite bone implant has a calcium phosphate content of 60% and a Ca/P ratio of 1.60.
  • the calcium citrate-calcium phosphate/polyamino acid composite bone implant was subjected to in vitro simulated body fluid immersion test and the extract thereof was cultured for L929 fibroblast experiment, and the bone-like apatite-polyamino acid copolymer composite prepared by the same process was combined.
  • the material is a control. After soaking for one week, the concentration of calcium ions in the test sample degradation solution was 5.3 times that of the control sample, and the phosphorus ion concentration was 2.5 times that of the control sample.
  • the weight loss was 59% in the first 4 weeks, the weight loss was 87% in 12 weeks, the weight loss was completely lost in 16 weeks, and the pH was maintained at 6.5-7.2 during the degradation process.
  • the weight loss rate of the comparison sample was only 26% in 24 weeks. The long degradation cycle of the comparative sample under the same preparation process conditions is not conducive to the growth of new bone.
  • the organocalcium phosphate-polyamino acid copolymer composite bone implant was immersed in simulated body fluid for 24 weeks, the weight loss was 19% in the first 4 weeks, the weight loss was 30% in 12 weeks, the weight loss was 44% in 24 weeks, and the pH was maintained at 6.8 during the degradation process. -7.5.
  • the cell proliferation rate was 118% and the toxicity was 0 grade by the MTT method.
  • Implant material 219g An organic calcium phosphate-polyamino acid composite bone implant having a diameter of 2-5 mm is pulverized.
  • the composite bone implant has a calcium phosphate content of 50% and a Ca/P ratio of 1.67.
  • the organocalcium phosphate-polyamino acid copolymer composite bone implant was soaked in simulated body fluid for 24 weeks, the weight loss was 39% in the first 4 weeks, the weight loss was 48% in 12 weeks, the weight loss was 61% in 24 weeks, and the pH was maintained at 6.7 during the degradation process. -7.4.
  • the cell proliferation rate was 126% and the toxicity was 0 grade by the MTT method.
  • the organic calcium phosphate-polyamino acid copolymer composite bone implant was soaked in simulated body fluid for 24 weeks, the weight loss was 63% in the first 4 weeks, the weight loss was 81% in 8 weeks, and all weight loss was observed in 11 weeks.
  • the pH in the process is maintained at 7.0-7.5.
  • the cell proliferation rate was calculated by the MTT method, and the cell proliferation rate was 0%.
  • the reaction was carried out at 220 ° C for 1 hour, and cooled to room temperature under a nitrogen atmosphere to obtain 269 g of calcium tartrate-fructose diphosphate/polyamino acid composite bone implant material.
  • An organic calcium phosphate-polyamino acid composite bone implant having a diameter of 2-5 mm is pulverized.
  • the content of calcium phosphate in the composite bone implant was 60%, and the Ca/P ratio was analyzed to be 1.67.
  • the organocalcium phosphate-polyamino acid copolymer composite bone implant was immersed in simulated body fluid for 24 weeks, and the weight loss was 74% in the first 4 weeks, and the weight loss was completely lost in 9 weeks, and the pH was maintained at 6.7-7.1 during the degradation process.
  • the cell proliferation rate was 114% and the toxicity was 0 grade by the MTT method.
  • ⁇ -aminocaproic acid, lysine, proline, ⁇ -aminobutyric acid, calcium citrate tetrahydrate and calcium glycerophosphate respectively, 95g, 3g, 5g, 24g, 64.80g, 106.87g into 500ml three-necked flask
  • 130 ml of distilled water is added to dissolve and mix, and the mixture is gradually stirred under nitrogen protection.
  • Calcium citrate-calcium phosphate/multi-amino acid composite bone implant material 272 g An organic calcium phosphate-polyamino acid composite bone implant having a diameter of 2-5 mm is pulverized. The content of calcium phosphate in the composite bone implant was 60%, and the Ca/P ratio was analyzed to be 1.67.
  • the organocalcium phosphate-polyamino acid copolymer composite bone implant was immersed in simulated body fluid for 24 weeks, the weight loss was 20% in the first 4 weeks, the weight loss was 38% in 12 weeks, the weight loss was 43% in 24 weeks, and the pH was maintained at 6.7 during the degradation process. -7.3.
  • the cell proliferation rate was 121% and the toxicity was 0 grade by the MTT method.
  • the organocalcium phosphate-polyamino acid copolymer composite bone implant was immersed in the simulated body fluid for 24 weeks, and the weight loss was 78% in the first 4 weeks, and the weight loss was completely lost in 9 weeks, and the pH was maintained at 6.8-7.5 during the degradation process.
  • the cell proliferation rate was 127% and the toxicity was 0 grade by the MTT method.
  • the reaction was carried out for 1 hour, and cooled to room temperature under a nitrogen atmosphere to obtain 182 g of calcium citrate-calcium phosphate/multi-amino acid composite bone implant material. It is processed into a bar of ⁇ 6 mm ⁇ 7 mm and a block of 10 mm ⁇ 10 mm ⁇ 5 mm.
  • the calcium phosphate content of the composite bone implants of the two processing specifications was 40%, and the Ca/P ratio was 1.67.
  • the ⁇ 6mm ⁇ 7mm bar composite bone implant was soaked in simulated body fluid for 24 weeks, the weight loss was 41% in the first 4 weeks, the weight loss was 63% in 12 weeks, the weight loss was 73% in 24 weeks, and the pH was maintained at 6.7-7.1 during the degradation process.
  • the 10 mm ⁇ 10 mm ⁇ 5 mm bulk composite bone implant was immersed in simulated body fluid for 24 weeks, with a weight loss of 21% in the first 4 weeks, a weight loss of 37% in 12 weeks, a weight loss of 54% in 24 weeks, and a pH of 6.6 in the degradation process. 7.5.
  • the L929 fibroblasts were cultured with the extract of the ⁇ 6 mm ⁇ 7 mm rod composite bone implant for 72 hours, and the cell proliferation rate was 124% and the toxicity was 0 grade by the MTT method.
  • the cell proliferation rate of the 10 mm ⁇ 10 mm ⁇ 5 mm bulk composite bone implant was 120%, and the toxicity was 0.
  • the calcium sulphate dihydrate powder is processed into cylindrical particles of ⁇ 6 mm ⁇ 5 mm, and the weight loss of the soaking solution is maintained at 6.1-6.8 after being soaked in the simulated body fluid for 5 weeks. Because the degradation cycle is too fast, the calcium sulfate material used for bone filling repair is easy to collapse, which is not conducive to the healing of bone tissue growth.
  • the cell proliferation rate was 91% and the toxicity was grade 1 by the MTT method.
  • the cell proliferation rate is low, because the calcium sulfate degradation environment is acidic and lacks the synergistic effect of phosphorus.
  • the tricalcium phosphate powder was processed into cylindrical particles of ⁇ 6 mm ⁇ 5 mm, soaked in simulated body fluid for 24 weeks, weight loss was 3% in the first 4 weeks, weight loss was 8% in 12 weeks, weight loss was 11% in 24 weeks, and pH was maintained at 7.2 during degradation. 7.5. Excessive degradation cycle is not conducive to the growth of new bone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法。该复合骨植入物由多元氨基酸的共聚物和医学中可以接受的有机钙/磷盐成分组成,所述有机钙/磷盐为复合材料总质量的20~90%;多元氨基酸的共聚物由ε-氨基己酸与至少两种其它氨基酸聚合而成,其中ε-氨基己酸至少为氨基酸共聚物总摩尔量的50%,各其它氨基酸的量分别至少为氨基酸共聚物总摩尔量的0.5%。该复合骨植入物能更适合人体自然骨的愈合修复周期,降解后的浸泡液pH值为6.5-7.5之间,对局部生理环境影响小,不会引起刺激反应,有利于细胞生长和组织修复。

Description

可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法 技术领域
本发明涉及一种用于骨组织缺损修复的可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物,以及其制备方法。
背景技术
骨愈合临床研究和计算机模拟分析表明,骨愈合是一个连续不断的过程。一般来说可分为三期:血肿机化期、原始骨痂形成期和骨痂改造期,愈合周期约需要三个月左右时间,要完全恢复骨或关节生理功能则需要半年或更长时间。此外,骨愈合周期还受到如年龄、身体健康状况、骨折部位、是否感染及治疗方法等很多因素的影响。因此,对于骨修复材料来说,其降解速率是否能够匹配生理骨愈合周期是决定其材料是否具有临床应用价值的关键。
用于临床骨组织修复的产品可有填充型和支撑型两类。填充型骨修复物多用于对创伤、肿瘤以及结核等挖出后的填充性植入;支撑型骨修复物则能提供基本力学支撑需求而用于对脊柱、四肢、头部等因病变或者外伤造成的骨缺损修复的植入物。
目前已广泛应用的骨修复材料包括自体骨、同种异体骨、异种骨和人工骨材料等不同类型。其中自体骨、同种异体骨、异种骨等天然骨因来源受限、不可塑形以及生物安全性等问题,使其临床应用受到 了很大限制。
除天然骨外,已用于临床骨组织修复的人工合成材料有包括硫酸钙、磷酸钙盐、生物玻璃等无机材料,以及有机高分子材料的骨填充材料。
可降解的无机材料虽具有优良的生物学性能,能引导骨组织生长,但其强度低,脆性大,多以涂层形式出现。同时,被植入体内后其还易形成弱酸性环境,不利于骨组织修复,或引起炎症反应(如硫酸钙)。另一方面,一些无机钙盐材料多数溶解性低,降解周期长,如具有高活性的羟基磷灰石的降解十分缓慢,能在体内持续10年以上,如此长的降解周期不利于新骨的长入;而一些溶解性高的无机钙盐,因降解过快也无法与自然骨生长速率相匹配,容易形成塌陷,如硫酸钙、无定形磷酸钙用于修复骨缺损的完全降解时间为45~72天,降解速度比自体骨快两倍多。
有机高分子材料可包括如聚甲基丙烯酸甲酯(PMMA)、聚乳酸(PLA)、聚乙醇酸(PGA)、聚己内酯(PCL)和聚酰胺(PA)等。这些材料具有可设计性,可以针对目标产物设计分子链基团,材料的表面性能和降解性能都能进行相对应的加工,便于标准化和规模化生产。但由于多数高分子聚合物的亲水性差,生物相容性低,如PMMA、PCL等,而如聚乳酸(PLA)、聚乙醇酸(PGA)等可降解的高分子材料,因属于是本体降解,其在体内的降解速率无法控制,易导致材料的崩塌,而且其降解产物呈酸性,对机体产生刺激、炎症反应等不利影响。
近来,模仿骨组织组成的复合骨植入物研究成为了骨修复材料的 热点和重点。例如HA/PA(羟基磷灰石/聚酰胺)复合骨植入物、HA/PLA(羟基磷灰石/聚乳酸)复合骨植入物以及CS/PGA(/聚乙醇酸)复合骨植入物等,这些材料不仅保持了聚合物的机械性能和强度,同时可兼有钙/磷盐的生物活性。
虽然这些复合骨植入物在材料的力学性能方面取得了一定的成功,但仍然不够理想、如无机钙/磷盐在聚合物中的分散性不佳,降解速率和降解产物的问题仍然没有得到有效解决。因此,面对临床上如此庞大的需求量,急需一种可控降解型高活性的复合骨植入物,使其降解速率与骨组织愈合修复周期相匹配,而且降解周期可以灵活调控来满足临床上不同的需求,并且降解产物不会对机体产生刺激等副反应,同时能够刺激骨细胞增殖分化促进骨愈合过程,从而达到骨修复协同作用。
发明内容
针对上述情况,本发明提供了一种可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物,并进一步提供了其制备方法。可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物。
本发明的可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物,是由多元氨基酸的共聚物和医学中可以接受的有机钙/磷盐成分组成,所述有机钙/磷盐为复合材料总质量的20~90%,优选比例为40~70%;所述多元氨基酸的共聚物由ε-氨基己酸与至少两种、优选为与3种其它氨基酸聚合而成,其中ε-氨基己酸至少为氨基酸共聚物总摩尔量的50%,各其它氨基酸的量分别至少为氨基酸共聚物 总摩尔量的0.5%。
本发明上述复合骨植入物中所述的由ε-氨基己酸与其它氨基酸形成的多元氨基酸聚合物,可以参照包括本申请人已获得专利的公开号CN101342383A(“聚合物形式的组织修复材料及制备方法”)等已有报道/使用的方式制备得到。其中,所述的其它氨基酸可以选自甘氨酸、丙氨酸、苯丙氨酸、色氨酸、精氨酸、丝氨酸、酪氨酸、苏氨酸、亮氨酸、脯氨酸、羟脯氨酸、赖氨酸、γ-氨基丁酸等多种氨基酸,其中优选的是人体可接受或存在的弱碱性氨基酸或中性氨基酸。所述的这些其它氨基酸,特别是如苯丙氨酸、脯氨酸、色氨酸以及羟脯氨酸等带有刚性分子基团的氨基酸的加入,一方面可更大程度降低聚ε-氨基己酸分子链的规整性提高降解速率,同时还可以赋予多元氨基酸共聚物一定的机械强度;另一方面,多元氨基酸共聚物降解产物为小分子寡肽或氨基酸单体,无毒、无刺激,生物安全性高。该聚合物本身的降解速率可以通过改变氨基酸组成/配比以及聚合反应时间和温度进行灵活调控,从而影响复合骨植入物整体的降解速率。
上述复合骨植入物中所述的医学中可以接受的有机钙/磷盐,除单一使用同时含有钙、磷元素的盐外,优选采用由包括甘油磷酸钙、果糖二磷酸钙、肌醇六磷酸钙中的至少一种含磷钙盐,与包括柠檬酸钙、乳酸钙、月桂酸钙、油酸钙、棕榈酸钙、水杨酸钙、硬脂酸钙、琥珀酸钙、乙酸钙、葡萄糖酸钙、D-蔗糖酸钙、L-苏糖酸钙、维生素C钙、酒石酸钙、甘油酸钙中的至少一种非含磷的钙盐混合组成,其优点是可以更方便地使所述有机钙/磷盐中的Ca/P元素总摩尔比实 现接近人体正常骨的(1.5~1.67)/1的形式。
有机钙盐不仅溶解度高,而且多数有机钙盐溶液的pH值呈中性,不会引起周围生理环境酸碱度强烈变化,同时有机钙盐能增加骨钙量、骨密度和骨强度,能逆转动物的负钙平衡。钙的被动吸收量与摄入量成正比,摄入越多,吸收越多。借分子被动扩散方式进入血浆中的钙以小分子形式存在,增加了血总钙浓度,使总钙中小分子形式的钙所占的比例增大,即相对延长了进入血浆中钙代谢时间,血中分子态钙盐有适中的解离钙离子的能力,不仅延长了代谢时间,而且使血钙有充足的时间与骨钙等进行新陈代谢,故生物利用度高。特别是如柠檬酸钙、酒石酸钙以及琥珀酸钙等在补钙食品或药品中已广泛使用有机多元羧酸钙盐,可以有效补充钙源,同时可以增强肌肉细胞对营养的吸收利用,在体内具有多重吸收途径,通过内循可以形成不溶于水的沉积物形式充实骨骼钙库补充骨骼钙;又如硬脂酸钙、月桂酸钙以及油酸钙等具有脂肪酸链的长链有机钙盐,易被酸解成不同的脂肪酸以及相应的钙盐,不仅可以提供不同的不饱和或饱和的脂肪酸参与人体脂类代谢和蛋白质代谢循环,而且钙盐成分的溶解性高、吸收利用度高。此外,医药中常见的如葡萄糖酸钙、D-蔗糖酸钙以及L-苏糖酸钙等带有碳环结构的有机钙盐类,也是食品添加剂中常用的钙强化剂与营养剂、缓冲剂、固化剂、鳌合剂,可降低毛细血管渗透性,增加致密度,维持神经与肌肉的正常兴奋性,加强心肌收缩力,并可助于骨质形成。
有机磷盐在骨的发育与成熟过程中既参与钙磷的平衡调控,也参 与糖、脂类及氨基酸的代谢,调节酸碱平衡,并参与骨骼和牙齿的组成。除构成生物膜外,还参与细胞膜对蛋白质的识别和信号传导(如卵磷脂、脑磷脂以及磷脂酰甘油等)。有机磷成盐化合物主要有环磷酸盐类,如果糖二磷酸钙、肌醇六磷酸钙以及葡萄糖一磷酸钙等。这些有机磷酸盐多数为葡萄糖代谢过程中的中间产物,可作用于细胞膜,增加细胞内高能磷酸键和三磷酸腺苷的浓度,从而促进钾离子内流,恢复细胞静息状态,增加红细胞内二磷酸甘油酸的含量,抑制氧自由基和组织胺释放,改善细胞功能作用。
研究已经证实,上述的有机钙/磷盐无毒性,且生物相容性良好,并已广泛用于医药、食品等行业,使用后可以起到补充钙/磷的生理功能。由于有机钙/磷盐诸多优势,且利用不同有机钙/磷盐溶解性的差异,可以灵活调控材料降解周期。
骨是由骨盐、骨基质和骨细胞等部分组成。骨盐可增加骨的硬度,骨基质决定骨的形状和韧性,骨细胞则在骨的代谢中起到主导作用。为了模拟自然骨有机/无机的组成,上述复合骨植入物中所述医学中可以接受的有机钙/磷盐采用由含磷与不含磷的有机钙盐混合,可以更方便地实现使其Ca/P元素的总摩尔比达到更接近人体正常骨Ca/P元素比例的(1.5~1.67)/1;而上述的多元氨基酸共聚物则可具有类似人体骨基质蛋白的化学结构,从而使本发明上述形式的复合骨植入物能具有良好的生物力学性能和相容性,并通过有机钙/磷成分赋予了其能具有更高的生物活性。在此基础上通过改变在复合骨植入物中钙/磷盐在总量中所占的比例,和/或钙/磷盐中Ca/P元素的摩尔比 例,都可以实现调控复合骨植入物的降解速率的目的。试验结果显示,有机钙/磷盐的量为复合骨植入物总质量40~70%时的复合骨植入物,可以有更为理想的降解周期以及pH值变化,其在体外模拟体液中的失重可控制在8-30周内,更符合人体自然骨愈合修复周期,而且降解后的浸泡液pH值为6.5-7.5之间,对局部生理环境影响小,不会引起刺激反应,最有利于细胞生长和组织修复。
对上述可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物的制备,基本过程是在惰性气体保护下,将上述比例量的有机钙/磷盐及ε-氨基己酸和其它氨基酸成分用水混合溶解,再于150~200℃脱水后,继续升温至200~260℃进行原位聚合反应,得到所述的可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物材料。
在上述基本制备方法的基础上,进一步的优选方式,是分两阶段进行和完成所述的原位聚合反应,可以够获得更为理想的效果:脱水后先加热至200-210℃使反应物在熔融状态下反应1-3h,然后升温至210-260℃继续反应0.5-5h完成聚合反应,得到所述的复合骨植入物。提高反应温度和/或延长反应时间都可以增大复合材料的聚合程度和分子量,所得产物的降解速率也相应减慢,反之则可使产物的降解速率加快。此外,通过改变和调整ε-氨基己酸与其它氨基酸的配料比例,不仅可以调节多元氨基酸共聚物的性能及降解周期,而且可以调节降解环境pH值变化。
而且含结晶水的有机钙/磷盐在加工过程中还可以由自发泡形成 多孔表面,同时复合骨植入物中有机钙/磷盐的溶解也会形成微孔大大增加复合骨植入物表面积加速其降解速率,促进骨缺损愈合的生长因子释放速度与人体骨组织自主修复速度匹配,有利于骨缺损的快速修复。
对用于填充型的骨植入物而言,本发明上述的复合骨植入物可以进一步粉碎成粒径为0.3~5mm的颗粒,或者加工成直径为5~8mm(长度可视需要而定,通常可为5~50mm)的棒材或是(10~50mm)×(3~15mm)×(3~10mm)的块材等适当形式,以适应临床的不同实际需要。
参照YY/T 0474-2004行业标准中规定的方法,对本发明上述的复合骨植入物(材料)采用体外模拟体液浸泡进行降解速率试验,浸泡液采用SBF溶液,每个时间点取出样品烘干至恒重测其质量损失率。试验结果表明,本发明的复合骨植入物完全失重可在4~60周的很宽范围内根据需要进行调控,完全能够适应和满足临床骨修复的需要。对降解产物的定量定性分析表明,其主要为寡肽或氨基酸小分子,生物安全性高。而且,随着复合骨植入物中钙磷离子不断释放,浸泡液中钙磷离子持续累计能够刺激骨细胞增殖分化促进骨愈合进程。经细胞培养发现,在细胞培养过程中,本发明的复合骨植入物相比于单一形式的多元氨基酸共聚物和/或现已有报道采用无机钙/磷盐与多元氨基酸共聚物的复合骨修复材料,具有显著的细胞增殖活性。因此,本发明上述的可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物,是一类具有可控的降解周期、并具有良好诱导骨生成活性的填充型骨修复材料。
以下通过实施例的具体实施方式再对本发明的上述内容作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包括在本发明的范围内。
具体实施方式
实施例1
分别取ε-氨基己酸、丙氨酸、赖氨酸、脯氨酸、γ-氨基丁酸、四水柠檬酸钙以及甘油磷酸钙各86.5g、4.5g、3g、5g、25.7g、63.02g、103.94g加入500ml三颈瓶中,用130ml蒸馏水使其溶解混合,在氮气保护下搅拌升温至150℃~200℃进行脱水后,继续升温至200~210℃使其成熔融状进行预聚合反应2小时,然后再升温至220℃反应1小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料265g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.67。
将该柠檬酸钙-甘油磷酸钙-多元氨基酸复合骨植入物进行体外模拟体液浸泡实验以及其提取液培养L929成纤维细胞实验,以相同工艺制备采用无机钙/磷盐的硫酸钙-磷酸氢钙-多元氨基酸共聚物复合材料为对照。浸泡一周后试验样降解液中钙离子的浓度为对照样的3.2倍,磷离子浓度为对照样的2.4倍。模拟体液中浸泡24周,试验样前4周失重48%,12周失重65%,24周失重88%,在降解过程中pH保持 6.7-7.3。而对比样24周失重率仅48%,相同制备工艺条件下对比样降解周期较长。
用本发明该试验样提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为124%,毒性为0级。而对比样的细胞增值率仅为106%,细胞活性较低。
实施例2
分别取ε-氨基己酸、赖氨酸、脯氨酸、γ-氨基丁酸、四水柠檬酸钙以及甘油磷酸钙各98.25g、3g、5g、21.7g、53.50g、118.24g加入500ml三颈瓶中,加入130ml蒸馏水使其溶解混合,在氮气保护下搅拌逐温至150℃~200℃进行脱水后,继续升温至210℃使其成熔融状进行预聚合反应2小时,然后继续升温至220~230℃反应1小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料275g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.50。
将该柠檬酸钙-甘油磷酸钙-多元氨基酸复合骨植入物进行体外模拟体液浸泡实验以及其提取液培养L929成纤维细胞实验,以相同工艺制备的磷酸三钙-多元氨基酸共聚物复合材料为对照。浸泡一周后试验样降解液中钙离子的浓度为对照样的6.9倍,磷离子浓度为对照样的4.7倍。模拟体液中浸泡24周,试验样前4周失重36%,12周失重58%,24周失重73%,在降解过程中pH保持6.6-7.4。而对比样24周失重率仅31%,相同制备工艺条件下对比样降解周期过长不利于新骨的长入。
用本发明该试验样提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为120%,毒性为0级。而对比样细胞增值率仅为101%,细胞活性较低。
实施例3
分别取ε-氨基己酸、丙氨酸、苯丙氨酸、赖氨酸、脯氨酸、γ-氨基丁酸、四水柠檬酸钙以及甘油磷酸钙各86.5g、3g、7g、2g、4.6g、20.6g、58.55g、107.83g加入500ml三颈瓶中,加入130ml蒸馏水使溶解混合,在氮气保护下搅拌升温至150℃~200℃进行脱水后,继续升温至210±5℃使其熔融状进行预聚合反应2小时,然后继续升温至230±5℃反应1小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料265g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.60。
将该柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物进行体外模拟体液浸泡实验以及其提取液培养L929成纤维细胞实验,以相同工艺制备的类骨磷灰石-多元氨基酸共聚物复合材料为对照。浸泡一周后试验样降解液中钙离子的浓度为对照样的5.3倍,磷离子浓度为对照样的2.5倍。模拟体液中浸泡24周,试验样前4周失重59%,12周失重87%,16周已完全失重,在降解过程中pH保持6.5-7.2。而对比样24周失重率仅26%,相同制备工艺条件下对比样降解周期过长不利于新骨的长入。
用本发明该试验样提取液培养L929成纤维细胞72小时后,用MTT 法计算,细胞增值率为131%,毒性为0级。而对比样细胞增值率仅为109%,细胞活性较低。
实施例4
分别取分别取ε-氨基己酸、甘氨酸、丙氨酸、苯丙氨酸、赖氨酸、脯氨酸、四水柠檬酸钙以及甘油磷酸钙各108g、3g、6g、7g、1g、6g、19.19g、31.66g加入250ml三颈瓶中,加入70ml蒸馏水使溶解混合,在氮气保护下搅拌升温至150℃~200℃进行脱水后,继续升温至210℃使其在熔融状进行预聚合反应2小时,然后再升温至220℃反应1小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料161g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为30%,分析得Ca/P比为1.67。
将该有机钙磷盐-多元氨基酸共聚物复合骨植入物在模拟体液中浸泡24周,前4周失重19%,12周失重30%,24周失重44%,在降解过程中pH保持6.8-7.5。
用本发明该复合骨植入物的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为118%,毒性为0级。
实施例5
分别取ε-氨基己酸、丙氨酸、苯丙氨酸、苏氨酸、脯氨酸、羟脯氨酸、四水柠檬酸钙以及甘油磷酸各105g、1.7g、3g、1.5g、6.9g、10g、43.40g、71.57g加入500ml三颈瓶中,加入130ml蒸馏水使溶解混合,在氮气保护下搅拌升温至150℃~200℃进行脱水后,继续升温 至210±5℃使其在熔融状进行预聚合反应2小时,然后再升温至230~240℃反应1小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料219g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为50%,分析得Ca/P比为1.67。
将该有机钙磷盐-多元氨基酸共聚物复合骨植入物在模拟体液中浸泡24周,前4周失重39%,12周失重48%,24周失重61%,在降解过程中pH保持6.7-7.4。
用该的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为126%,毒性为0级。
实施例6
分别取ε-氨基己酸、赖氨酸、脯氨酸、γ-氨基丁酸、葡萄糖酸钙以及甘油磷酸钙各98.25g、3g、5g、21.27g、96.24g、67.26g加入500ml三颈瓶中,加入130ml蒸馏水使溶解混合,在氮气保护下搅拌逐步升温至150℃~200℃进行缓慢脱水后,继续升温至210℃使其在熔融状进行预聚合反应2小时,然后再升温至220±5℃反应1小时,在氮气保护下冷却至室温,得葡萄糖酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料263g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.67。
将该有机钙磷盐-多元氨基酸共聚物复合骨植入物在模拟体液中浸泡24周,前4周失重63%,8周失重81%,11周已全部失重,在降解过 程中pH保持7.0-7.5。
用该复合骨植入物的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为119%,毒性为0级。
实施例7
分别取分别取ε-氨基己酸、赖氨酸、脯氨酸、γ-氨基丁酸、酒石酸钙以及果糖二磷酸钙各98.25g、3g、5g、21.7g、38.35g、126.65g加入500ml三颈瓶中,加入130ml蒸馏水使溶解混合,在氮气保护下搅拌逐步升温至150℃~200℃进行缓慢脱水后,继续升温至210℃使其在熔融状进行预聚合反应2小时,然后再升温至220℃反应1小时,在氮气保护下冷却至室温,得酒石酸钙-果糖二磷酸钙/多元氨基酸复合骨植入物材料269g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.67。
将该有机钙磷盐-多元氨基酸共聚物复合骨植入物在模拟体液中浸泡24周,前4周失重74%,9周即完全失重,在降解过程中pH保持6.7-7.1。
用该复合骨植入物的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为114%,毒性为0级。
实施例8
分别取ε-氨基己酸、赖氨酸、脯氨酸、γ-氨基丁酸、四水柠檬酸钙以及甘油磷酸钙各95g、3g、5g、24g、64.80g、106.87g加入500ml三颈瓶中,加入130ml蒸馏水使溶解混合,在氮气保护下搅拌逐步升 温至150℃~200℃进行缓慢脱水后,继续升温至210±5℃使其在熔融状进行预聚合反应3小时,然后再升温至250℃反应2小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料272g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.67。
将该有机钙磷盐-多元氨基酸共聚物复合骨植入物在模拟体液中浸泡24周,前4周失重20%,12周失重38%,24周失重43%,在降解过程中pH保持6.7-7.3。
用该的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为121%,毒性为0级。
实施例9
分别取ε-氨基己酸、赖氨酸、脯氨酸、γ-氨基丁酸、四水柠檬酸钙以及甘油磷酸钙各90g、3g、5g、28g、64.20g、105.89g加入500ml三颈瓶中,加入130ml蒸馏水使溶解混合,在氮气保护下搅拌逐步升温至150℃~200℃进行缓慢脱水后,继续升温至210℃使其在熔融状进行预聚合反应1小时,然后再升温至220±5℃反应0.5小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料272g。粉碎得直径为2-5mm的有机钙磷盐-多元氨基酸复合骨植入物。该复合骨植入物中钙磷盐含量为60%,分析得Ca/P比为1.67。
将该有机钙磷盐-多元氨基酸共聚物复合骨植入物在模拟体液中浸泡24周,前4周失重78%,9周即完全失重,在降解过程中pH保持6.8-7.5。
用该的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为127%,毒性为0级。
实施例10
分别取ε-氨基己酸、赖氨酸、脯氨酸、γ-氨基丁酸、四水柠檬酸钙以及甘油磷酸钙各95g、3g、5g、24g、28.80g、47.50g加入250ml三颈瓶中,加入70ml蒸馏水使溶解混合,在氮气保护下搅拌逐步升温至150℃~200℃进行缓慢脱水后,继续升温至210℃使其在熔融状进行预聚合反应2小时,然后继续升温至220℃反应1小时,在氮气保护下冷却至室温,得柠檬酸钙-甘油磷酸钙/多元氨基酸复合骨植入物材料182g。加工成Φ6mm×7mm的棒材和10mm×10mm×5mm的块材。该两种加工规格的复合骨植入物中钙磷盐含量为40%,分析得Ca/P比均为1.67。
将该Φ6mm×7mm的棒材复合骨植入物在模拟体液中浸泡24周,前4周失重41%,12周失重63%,24周失重73%,在降解过程中pH保持6.7-7.1。
将该10mm×10mm×5mm的块材复合骨植入物在模拟体液中浸泡24周,前4周失重21%,12周失重37%,24周失重54%,在降解过程中pH保持6.6-7.5。
用该Φ6mm×7mm的棒材复合骨植入物的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为124%,毒性为0级。10mm×10mm×5mm的块材复合骨植入物的细胞增值率为120%,毒性为0级。
对比例1
将二水硫酸钙粉末加工成Φ6mm×5mm的圆柱形颗粒,在模拟体液浸泡5周即完全失重,浸泡液的pH值保持6.1-6.8。由于降解周期过快,用于骨填充修复的硫酸钙材料容易塌陷,不利于骨组织生长愈合。
用该硫酸钙的提取液培养L929成纤维细胞72小时后,用MTT法计算,细胞增值率为91%,毒性为1级。细胞增值率较低,由于硫酸钙降解环境显酸性同时缺少磷元素的协同作用。
对比例2
将磷酸三钙粉末加工成Φ6mm×5mm的圆柱形颗粒,在模拟体液中浸泡24周,前4周失重3%,12周失重8%,24周失重11%,在降解过程中pH保持7.2-7.5。降解周期过长不利于新骨的长入。

Claims (9)

  1. 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物,其特征是由多元氨基酸的共聚物和医学中可以接受的有机钙/磷盐成分组成,所述有机钙/磷盐为复合材料总质量的20~90%;所述多元氨基酸的共聚物由ε-氨基己酸与至少两种其它氨基酸聚合而成,其中ε-氨基己酸至少为氨基酸共聚物总摩尔量的50%,各其它氨基酸的量分别至少为氨基酸共聚物总摩尔量的0.5%。
  2. 如权利要求1所述的复合骨植入物,其特征是所述有机钙/磷盐为复合材料总质量的40~70%。
  3. 如权利要求1所述的复合骨植入物,其特征是所述的多元氨基酸的共聚物由ε-氨基己酸与3种其它氨基酸聚合而成。
  4. 如权利要求1至3之一所述的复合骨植入物,其特征是所述的其它氨基酸选自甘氨酸、丙氨酸、苯丙氨酸、色氨酸、精氨酸、丝氨酸、酪氨酸、苏氨酸、亮氨酸、脯氨酸、羟脯氨酸、赖氨酸、γ-氨基丁酸。
  5. 如权利要求1至4之一所述的复合骨植入物,其特征是所述医学中可以接受的有机钙/磷盐由包括甘油磷酸钙、果糖二磷酸钙、肌醇六磷酸钙中的至少一种含磷钙盐,与包括柠檬酸钙、乳酸钙、月桂酸钙、油酸钙、棕榈酸钙、水杨酸钙、硬脂酸钙、琥珀酸钙、乙酸钙、葡萄糖酸钙、D-蔗糖酸钙、L-苏糖酸钙、维生素C钙、酒石酸钙、甘油酸钙中的至少一种非含磷的钙盐混合组成。
  6. 如权利要求5所述的复合骨植入物,其特征是所述有机钙/磷盐中的钙/磷元素摩尔比为1.5~1.67。
  7. 权利要求1至6之一所述可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物的制备方法,其特征是在惰性气体保护下,将上述比例量的有机钙/磷盐及ε-氨基己酸和其它氨基酸成分用水混合,于150~200℃脱水后,再升温至200~260℃进行原位聚合反应得到。
  8. 如权利要求7所述的制备方法,其特征是所述原位聚合反应分两阶段进行,所述的混合物料脱水后先加热至200~210℃使反应物在熔融状态下预聚合反应1~3h,然后再升温至210~260℃继续反应0.5~5h完成聚合反应,得到所述的复合骨植入物。
  9. 如权利要求7或8所述的制备方法,其特征是将由原位聚合反应复合得到复合骨植入物粉碎成粒径为0.3~5mm的颗粒,或加工成直径为5~8mm的棒材或(10~50mm)×(3~15mm)×(3~10mm)的块材。
PCT/CN2015/071958 2014-11-06 2015-01-30 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法 WO2016070500A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/524,959 US10967099B2 (en) 2014-11-06 2015-01-30 Composite bone implant material and method of making thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2014106170171 2014-11-06
CN201410617017.1A CN104307048B (zh) 2014-11-06 2014-11-06 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法

Publications (1)

Publication Number Publication Date
WO2016070500A1 true WO2016070500A1 (zh) 2016-05-12

Family

ID=52362447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071958 WO2016070500A1 (zh) 2014-11-06 2015-01-30 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法

Country Status (3)

Country Link
US (1) US10967099B2 (zh)
CN (1) CN104307048B (zh)
WO (1) WO2016070500A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104307048B (zh) * 2014-11-06 2016-08-17 四川国纳科技有限公司 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法
CN105536054B (zh) * 2015-12-31 2019-03-12 四川大学 一种生物玻璃/氨基酸聚合物的复合材料及其应用
EP3714909A1 (en) * 2019-03-28 2020-09-30 Industrie Biomediche Insubri S.A. Improved bone implant matrix comprising proline-rich peptide and method of preparing the same
CN110893249A (zh) * 2019-12-31 2020-03-20 中鼎凯瑞科技成都有限公司 一种具有成骨活性的珍珠粉聚氨基酸复合骨修复材料及其制备方法和用途
CN111330087B (zh) * 2020-03-31 2021-09-24 四川大学 一种可临床塑形的硅酸镁/聚氨基酸复合材料的制备方法
CN112546296B (zh) * 2020-12-14 2022-04-22 中鼎凯瑞科技成都有限公司 具有光显效应和自定位功能的复合骨修复材料及制备方法
CN115232304B (zh) * 2022-07-26 2023-05-26 四川大学 含双膦酸聚氨基酸共聚物、抗骨肿瘤骨材料及其制备
CN115463686B (zh) * 2022-09-07 2024-05-24 中鼎凯瑞科技成都有限公司 催化剂、全降解聚氨基酸材料及其制成的膜及膜的应用
CN115591027B (zh) * 2022-11-14 2023-07-28 中鼎凯瑞科技成都有限公司 共聚体材料及其应用
CN116354632B (zh) * 2023-06-01 2023-08-15 天津市镁诺生物技术有限公司 一种提供促进骨再生微环境的磷酸镁骨水泥及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049780A1 (en) * 2001-12-10 2003-06-19 Tech-Medical S.R.L. Biocompatible composite material with an osteotropic action
CN101342384A (zh) * 2008-08-25 2009-01-14 四川国纳科技有限公司 含陶瓷成分的复合聚合物骨修复材料及制备方法
CN101560326A (zh) * 2009-05-31 2009-10-21 四川国纳科技有限公司 氨基酸共聚物-硫酸钙复合材料及制备方法
CN101716377A (zh) * 2009-12-17 2010-06-02 四川国纳科技有限公司 活性可控降解多组分骨修复/重建复合材料及制备方法
CN102580144A (zh) * 2011-01-11 2012-07-18 和康生物科技股份有限公司 外科用骨水泥及其制造方法
CN104307048A (zh) * 2014-11-06 2015-01-28 四川国纳科技有限公司 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA97009909A (es) * 1995-06-06 2004-08-23 Gensci Regeneration Lab Inc Materiales osteogenicos modificados.
RU2278164C2 (ru) * 2003-09-15 2006-06-20 Общество с ограниченной ответственностью ООО "ЭЛЕСТ" Способ получения кальция фруктозодифосфата
CN100534998C (zh) * 2006-06-15 2009-09-02 南京工业大学 果糖-1,6-二磷酸-钙盐的制备及其应用
US20080102097A1 (en) * 2006-10-31 2008-05-01 Zanella John M Device and method for treating osteolysis using a drug depot to deliver an anti-inflammatory agent
WO2008077257A1 (en) * 2006-12-22 2008-07-03 Mathys Ag Bettlach Precursor for the preparation of a pasty bone replacement material by admixture of a liquid
EP2170245B1 (de) * 2007-06-06 2012-11-28 InnoTERE GmbH Implantatmaterial auf basis eines hydraulischen zements sowie dessen verwendung
CN101342383B (zh) * 2008-08-25 2011-09-14 四川国纳科技有限公司 聚合物形式的组织修复材料及制备方法
CN101716380A (zh) * 2009-12-28 2010-06-02 四川大学 可注射成型的骨修复复合材料及制备方法
WO2011109912A1 (en) * 2010-03-09 2011-09-15 Mathys Ag Bettlach Bone graft substitute

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049780A1 (en) * 2001-12-10 2003-06-19 Tech-Medical S.R.L. Biocompatible composite material with an osteotropic action
CN101342384A (zh) * 2008-08-25 2009-01-14 四川国纳科技有限公司 含陶瓷成分的复合聚合物骨修复材料及制备方法
CN101560326A (zh) * 2009-05-31 2009-10-21 四川国纳科技有限公司 氨基酸共聚物-硫酸钙复合材料及制备方法
CN101716377A (zh) * 2009-12-17 2010-06-02 四川国纳科技有限公司 活性可控降解多组分骨修复/重建复合材料及制备方法
CN102580144A (zh) * 2011-01-11 2012-07-18 和康生物科技股份有限公司 外科用骨水泥及其制造方法
CN104307048A (zh) * 2014-11-06 2015-01-28 四川国纳科技有限公司 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法

Also Published As

Publication number Publication date
US10967099B2 (en) 2021-04-06
CN104307048B (zh) 2016-08-17
CN104307048A (zh) 2015-01-28
US20170340776A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
WO2016070500A1 (zh) 可控降解多元氨基酸共聚物-有机钙/磷盐填充型复合骨植入物及制备方法
Yu et al. Strontium-doped amorphous calcium phosphate porous microspheres synthesized through a microwave-hydrothermal method using fructose 1, 6-bisphosphate as an organic phosphorus source: application in drug delivery and enhanced bone regeneration
CN108653809B (zh) 一种基于黑磷和明胶的复合水凝胶及其在骨组织工程方面的应用
CN104195369B (zh) 一种Zn-Ca系锌合金及其制备方法与应用
Ashe et al. Gelatin carrageenan sericin hydrogel composites improves cell viability of cryopreserved SaOS-2 cells
CN107206120B (zh) 生物可吸收性镁复合材料
US20180133368A1 (en) 3D Printed Ti-6Al-4V Scaffolds with Hydrogel Matrix
US20240299620A1 (en) Bioenergetic-active material and use thereof
Cama et al. Structural changes and biological responsiveness of an injectable and mouldable monetite bone graft generated by a facile synthetic method
Wang et al. Composite monetite/amorphous calcium phosphate bone cement promotes bone regeneration
Wang et al. Effect of ZnO-doped magnesium phosphate cements on osteogenic differentiation of mBMSCs in vitro
Hermenean et al. The impact of graphene oxide on bone regeneration therapies
Parra-Torrejón et al. Bioinspired mineralization of engineered living materials to promote osteogenic differentiation
Hu et al. The role and application of metal ions in maxillofacial bone defect
Liu et al. Effect of La3+ and Mg2+ combined system on bioactivity and osteogenesis of bioinspired La-doped magnesium phosphate composites prepared utilizing the precursor method
Koo et al. Bone-regenerative activity of parathyroid hormone-releasing nano-hydroxyapatite/poly (L-lactic acid) hybrid scaffolds
Zhang et al. Bioactivity and cytocompatibility of dicalcium phosphate/poly (amino acid) biocomposite with degradability
Gao et al. Design of novel functionalized collagen-chitosan-MBG scaffolds for enhancing osteoblast differentiation in BMSCs
JP3898046B2 (ja) ハイドロキシアパタイトの製造方法及びその利用
JP6883037B2 (ja) 血清を使わない細胞培養培地
EP4382142A1 (en) Composition for preparing organic-inorganic complex hydrogel and kit for preparing organic-inorganic complex hydrogel comprising same
Yao et al. Dual Factor-Loaded Artificial Periosteum Accelerates Bone Regeneration
Agis Targeting the Cellular “Oxygen Sensors”: Hypoxia Pre-conditioning and Stabilization of Hypoxia-Inducible Factors
Wang et al. Nicorandil-based hydrogel promotes bone defect reconstruction by targeting Hmox1
Zou et al. Fibrin-konjac glucomannan-black phosphorus hydrogel scaffolds loaded with nasal ectodermal mesenchymal stem cells accelerated alveolar bone regeneration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857179

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15524959

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857179

Country of ref document: EP

Kind code of ref document: A1