WO2016070393A1 - 一种强迫导向冷却混合式变压器绕组冷却方法及装置 - Google Patents

一种强迫导向冷却混合式变压器绕组冷却方法及装置 Download PDF

Info

Publication number
WO2016070393A1
WO2016070393A1 PCT/CN2014/090529 CN2014090529W WO2016070393A1 WO 2016070393 A1 WO2016070393 A1 WO 2016070393A1 CN 2014090529 W CN2014090529 W CN 2014090529W WO 2016070393 A1 WO2016070393 A1 WO 2016070393A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
additional
forced
cooling
primary
Prior art date
Application number
PCT/CN2014/090529
Other languages
English (en)
French (fr)
Inventor
彭万霜
黄登威
龙谷宗
胡贵
谭文俊
童皓
黄华
Original Assignee
南车株洲电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南车株洲电机有限公司 filed Critical 南车株洲电机有限公司
Priority to CN201480077442.4A priority Critical patent/CN106663523B/zh
Priority to MYPI2017000597A priority patent/MY177373A/en
Priority to PCT/CN2014/090529 priority patent/WO2016070393A1/zh
Publication of WO2016070393A1 publication Critical patent/WO2016070393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections

Definitions

  • the invention relates to a method and a device for cooling an electrical component, in particular to a method and a device for cooling a traction transformer winding, which are mainly used for manufacturing an traction transformer of an electric or locomotive transmission electric locomotive.
  • the function of the traction transformer is to use the principle of electromagnetic induction to convert the high voltage (such as 25kV) on the contact network into various types of low-voltage electricity (such as 1650V) to meet the working needs of traction motors and other auxiliary electrical machines on the locomotive.
  • the windings in the traction transformer are usually composed of primary and secondary windings and other windings.
  • the conductor material is usually made of metallic copper or aluminum.
  • the traction transformer winding is a circuit of a traction transformer, which is generally wound with insulated copper wire or aluminum wire (flat wire or round wire).
  • the windings can be divided into concentric and overlapping types.
  • the transformer has two kinds of shell structure and core structure.
  • the ratio of external surface area to transformer volume is relatively large, and self-cooling can be used to dissipate heat by radiation and natural convection.
  • the self-cooling method is suitable for indoor small transformers. In order to prevent fires, dry type is generally used, and no oil immersion is required. Since the loss of the transformer is proportional to its volume, as the capacity of the transformer increases, its volume and loss will increase in cubic by the size of the core, while the external surface area will increase only by the quadratic size. Therefore, the core of the large-capacity transformer and the windings should be immersed in the oil and cooled by various cooling measures.
  • the traction transformer is installed on the railway vehicle and is limited by the size and weight of the vehicle. It is required to reduce the weight and size of the traction transformer winding;
  • Patent No. CN201180064188.0 entitled “Transformer Winding with Cooling Channel”, which discloses a transformer winding having at least two hollow cylindrically staggered nests surrounding A winding module in which a common winding shaft extends, wherein the winding modules are radially spaced apart from one another by means of an insulating strip inside at least one channel of a hollow cylindrical cooling channel arranged between the winding modules.
  • the insulating tape has a cross-sectional shape which mainly avoids a radial course towards the surface of the winding shaft.
  • Patent No. CN201210172956.0 entitled “A Heat Dissipating Airway Device for Transformer Windings”, which discloses a heat dissipating air passage device for a transformer winding, uniformly distributed between the outside of the winding and the inside of the winding And spacing arrangement, comprising: a circular arc surface supporting the outside of the winding, a plurality of aluminum support plates pressing the inside of the winding, and a plurality of columns connecting the aluminum support plate and the circular arc surface, the number of the aluminum support plate and the column are the same; aluminum Support plate and column are each 3, stand The columns are evenly distributed along the arcuate surface.
  • the invention is made of a non-magnetizable material (aluminum), and the height can be set according to the reactance height of the winding.
  • the airway device does not exhibit arching deformation of the insulating material, ensuring that the heat dissipation coefficient of the winding is not reduced; the metal material reduces the heat flow drag coefficient, greatly improving the heat dissipation effect, and the temperature rise of the low voltage winding is reduced by about 15K.
  • Patent No. CN200820158745.0 the invention patent entitled “Transformer winding single-sided sparse cooling oil channel insulation board”, which discloses a transformer winding single-sided sparse heat dissipation oil channel insulation board, which is insulated Cardboard production, transformer winding single-sided and dense heat-dissipating oil channel insulation board composed of bottom plate, dense-distance insulation strip group and distance-distance insulation strip group, overcomes the existing corrugated insulation board and uniformly arranges the block to form the gusset curtain fillet
  • the narrowing of the oil passage and the decrease of the insulation distance, the defects of the corrugated wire or the struts in the straight line cause the heat dissipation to be poor, and the use of the dense-distance insulation strip group and the distance-distance insulation strip group are used reasonably, thereby effectively ensuring the heat dissipation effect of the winding is good.
  • Transformer winding fabrication provides a new type of heat-dissipating oil passage insulation board with
  • the interior of the channel is radially separated from each other by means of an insulating tape having a cross-sectional shape which mainly avoids a radial direction toward the surface of the winding axis, which can be found by practical application,
  • the winding structure design is not very reasonable, the electrical distance between the windings is very large, and the heat dissipation area of the winding is also very large, which leads to the problem that the whole winding device is bulky, heavy, and the heat dissipation capability is not necessarily good.
  • the technical problem to be solved by the invention is that the winding of the existing traction transformer is easy to be deformed, the wire cake is easy to loose, and the mechanical strength and short-circuit resistance of the whole winding are not superior, and the electrical distance between the windings is required to be large, and the winding heat dissipation is required.
  • the area requirement is also very large, which leads to the problem that the whole winding device is bulky, heavy, and the heat dissipation capability is not necessarily good.
  • a novel traction transformer winding cooling method and device are proposed, and the method and device ensure the cooling effect of the traction transformer. Premise Under the hood, the entire traction transformer can be lightened and miniaturized, and the reliability and safety of the traction transformer operation can be improved.
  • the technical solution proposed according to the object of the present invention is: a forced cooling method for a forced-guided cooling hybrid transformer winding, wherein the primary winding, the secondary winding and the additional winding are arranged in a concentric winding integrated structure, and the additional winding is located at the core The outer side of the winding is located outside the additional winding; the primary winding is located outside the secondary winding, an oil passage is arranged between the windings, and heat is dissipated by the forced circulation of the pilot oil in the oil passage between the windings.
  • the primary winding adopts a pie winding structure
  • the secondary winding and the additional winding adopt a layer winding structure
  • the primary winding, the secondary winding, and the additional winding itself are disposed between the layers, between the cake and the cake, and the heat is circulated for forced circulation.
  • the winding gaps are arranged with an insulating cylinder and an insulating struts; the additional windings and the secondary winding layers are arranged with insulating struts; the primary windings are arranged with spacers, and finally the entire winding device is externally tied with straps.
  • a forced-directed cooling hybrid transformer winding device implementing the above method, comprising a primary winding, a secondary winding and an additional winding; the primary winding, the secondary winding and the additional winding are arranged in a concentric winding structure, and are attached The winding is located outside the core; the secondary winding is located outside the additional winding; the primary winding is located outside the secondary winding, an oil passage is disposed between the windings, and is cooled by forced circulation of the pilot oil in the oil passage between the windings .
  • the primary winding adopts a pie-type winding structure; the secondary winding and the additional winding adopt a layered winding structure.
  • the secondary side, the additional winding coil is made of a transposed wire, and the primary winding is made of a single copper wire.
  • the wire base material is a high-grade electrolytic copper and the outer portion is covered with insulating paper.
  • an oil passage is disposed between the respective windings, the primary winding has an inter-cake oil passage, and the secondary winding and the additional winding have an interlayer oil passage.
  • the winding heat dissipation mode is to forcibly guide the oil circulation to dissipate heat.
  • the winding gaps are arranged with insulating struts, spacers and insulating cylinders, and the entire winding device is integrally wrapped with a tying strap.
  • An advantage of the present invention is that the present invention provides a forced-steering and cooling hybrid transformer winding device, which includes a primary winding, a secondary winding, and an additional winding, the winding device is a concentric winding, and the entire winding is compact and each winding
  • the electrical distance between the groups is small, and the winding provided by the invention has smaller space and consumes less material than the winding structure design in the prior art, and is convenient for lightweight and compact design of the transformer;
  • an oil passage is arranged between the windings, an oil passage is arranged between the layer and the layer of the winding itself, and between the cake and the cake, and the heat is forced to be circulated by the forced guiding oil.
  • the winding provided by the invention has a larger heat dissipation area under the same volume, and the heat dissipation effect of the entire winding device is better.
  • the excellent heat dissipation capability reduces the size and weight of the transformer, ensures safe and reliable operation of the transformer.
  • FIG. 1 is a schematic structural view of a winding in a winding device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an additional winding in a winding device according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a secondary winding in a winding device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a primary winding in a winding device according to an embodiment of the present invention.
  • Core 1 additional winding 2, secondary winding 3, primary winding 4, insulating cylinder 21, transposed conductor 22, stay 23, insulating cylinder 31, transposed conductor 32, stay 33, insulating cylinder 41, tie wrap 42 , a single wire 43, a block 44.
  • a forced-directed cooling hybrid transformer winding device comprises a primary winding, a secondary winding and an additional winding; the primary winding, the secondary winding and the additional winding are arranged in a concentric winding structure, and the additional winding is located at the core
  • the outer side winding is located outside the additional winding; the primary side winding is located outside the secondary side winding, an oil passage is arranged between the respective windings, and heat is dissipated by the forced circulation of the guiding oil in the oil passage between the respective windings.
  • the primary winding adopts a pie-type winding structure; the secondary winding and the additional winding adopt a layer winding structure; and the secondary winding and the additional winding coil are made of a transposed wire, and the primary winding adopts a single copper.
  • Made of wire The basic material of the wire is high-grade electrolytic copper with insulating paper.
  • an oil passage is arranged between the respective windings, the primary winding has an inter-cake oil passage, the secondary winding and the additional winding have an interlayer oil passage, and the winding heat dissipation method is a forced guiding oil circulation heat dissipation.
  • insulating struts, spacers and insulating cylinders are arranged in the gaps of the windings, and the entire winding device is entirely wrapped with a ligature.
  • a forced-directed cooling hybrid transformer winding device comprising a primary winding, a secondary winding and an additional winding; wherein the additional winding is located outside the core; the secondary winding is located outside the additional winding; the primary winding is located outside the secondary winding .
  • the winding provided by the invention has smaller space and consumes less material, and is convenient for the weight reduction and miniaturization of the transformer;
  • an oil passage is arranged between the windings, and the additional winding 2 is made of a transposed conductor, and a layered winding structure is adopted, and an oil passage is arranged between the layers; the secondary winding 3 is made of a transposed wire, and is adopted.
  • the layer winding structure has oil passages arranged between the layers; the primary winding 4 is made of a single copper wire, and adopts a pie-type winding structure, and an oil passage is arranged between the cakes.
  • the winding provided by the invention has a larger heat dissipation area under the same volume, and the heat is forced to be circulated by the forced guiding oil, and the heat dissipation effect of the whole winding device is better.
  • the excellent heat dissipation capability reduces the size and weight of the transformer, ensures safe and reliable operation of the transformer.
  • the winding device of the present invention three winding gaps are arranged with an insulating cylinder and an insulating stay; the additional winding 2 and the secondary winding 3 are arranged with insulating stays; the primary winding 4 is arranged with a spacer between the cakes, and finally the entire winding The outside of the device is completely wrapped with a tie wrap and processed.
  • the present invention relates to a forced cooling method for a forced-conducting hybrid transformer winding, in which the primary winding, the secondary winding and the additional winding are arranged in a concentric winding integrated structure, and the additional winding is located outside the core
  • the secondary winding is located outside the additional winding;
  • the primary winding is located outside the secondary winding, an oil passage is disposed between the windings, and heat is dissipated by the forced circulation of the pilot oil in the oil passage between the windings.
  • the primary winding adopts a pie winding structure
  • the secondary winding and the additional winding adopt a layer winding structure
  • the primary winding, the secondary winding, and the additional winding itself are disposed between the layers, between the cake and the cake, and the heat is circulated for forced circulation.
  • the winding gaps are arranged with an insulating cylinder and an insulating struts; the additional windings and the secondary winding layers are arranged with insulating struts; the primary windings are arranged with spacers, and finally the entire winding device is externally tied with straps.
  • the invention provides a forced-guided cooling hybrid transformer winding device, which comprises a primary winding, a secondary winding and an additional winding, the winding device is a concentric winding, the whole winding is compact, and the electrical distance between the windings is small, Compared with the winding structure design in the prior art, the winding provided by the invention has smaller space and consumes less material, and is convenient for the weight reduction and miniaturization of the transformer.
  • the winding device provided by the invention between the windings The oil passage is arranged, the oil passage is arranged between the layer and the layer of the winding itself, and between the cake and the cake, and the heat is forced to be circulated by the forced oil.
  • the winding provided by the invention has a larger heat dissipation area under the same volume, and the heat dissipation effect of the entire winding device is better.
  • the excellent heat dissipation capability reduces the size and weight of the transformer, ensures safe and reliable operation of the transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

一种强迫导向冷却混合式变压器绕组冷却方法及装置,将原边绕组(4)、次边绕组(3)以及附加绕组(2)采取同心式绕组一体化结构布置,其特征在于,附加绕组(2)位于铁心(1)的外侧;次边绕组(3)位于附加绕组(2)的外侧;原边绕组(4)位于次边绕组(3)的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。与现有技术中绕组结构设计相比,本申请所提供的绕组占用空间更小、消耗的材料更少,便于变压器轻量化、小型化设计;同时,优异的散热能力减小了变压器体积和重量设计、保障变压器安全、可靠运行。

Description

一种强迫导向冷却混合式变压器绕组冷却方法及装置 技术领域
本发明涉及一种电气部件的冷却方法及装置,特别是一种牵引变压器绕组冷却方法及装置,主要用于交流或多流制传动电力机车牵引变压器制作。
背景技术
牵引变压器功能是利用电磁感应原理将接触网上的高电压(如25kV)变换为各种类型低压电(如1650V),以满足机车上牵引电机和其它辅助电气的工作需要。牵引变压器中的绕组通常由原边绕组和次边绕组以及其他绕组组成,导体材料一般采用金属铜或铝。在变压器工作过程中,由于磁场的作用,变压器中的绕组会产生大量的热,因此一般都需要对牵引变压器中的绕组进行冷却处理。牵引变压器绕组是牵引变压器的电路,一般用绝缘铜线或铝线(扁线或圆线)绕制而成。有两组:一个绕组与电源相连,称为一次绕组(或原绕组),这一侧称为一次侧(或原边);另一个绕组与负载相连,称为二次绕组(或副绕组),这一侧称为二次侧(或副边)。根据两组绕组的相对位置,绕组可分为同心式和交叠式两种。根据绕组和铁心的相对位置,变压器有壳式结构和心式结构两种。变压器运行时,绕组和铁心中的损耗所产生的热量必须及时散逸出去,以免过热而造成绝缘损坏。对小容量变压器,外表面积与变压器容积之比相对较大,可以采用自冷方式,通过辐射和自然对流即可将热量散去。自冷方式适用于室内小型变压器,为了预防火灾,一般采用干式,不用油浸。由于变压器的损耗与其容积成比例,所以随着变压器容量的增大,其容积和损耗将以铁心尺寸三次方增加,而外表面积只依尺寸的二次方增加。因此,大容量变压器铁心及绕组应浸在油中,并采取各种冷却措施进行冷却。
由于牵引变压器属于变压器中比较特殊的一类,对其提出了更高的设计要求;
a)牵引变压器安装在铁路车辆上,受到车辆体积和重量的限制,要求牵引变压器绕组轻量化、小型化设计;
b)牵引变压器在工作时,绕组通有电流,产生热量,通过热传递作用使周围油温上升,影响变压器正常工作,要求牵引变压器绕组具有良好的散热能力;
c)车辆运行时,牵引变压器会受到车辆的强制振动和冲击,要求牵引变压器绕组具有良好的机械强度。
d)由于铁路运行线路供电质量不稳定,要求牵引变压器的绕组具有良好的抗短路冲击能力;
在现有的牵引变压器绕组中,由于绕组结构设计不是十分合理,各绕组间的电气距离要求很大,绕组散热面积要求也很大,导致了整个绕组装置体积大、质量重,且散热能力不一定好。同时,由于绕组结构设计和制造工艺的不足,牵引变压器的绕组易变形、线饼易松散,导致整个绕组的机械强度和抗短路冲击能力不优越。
由以上所述,如何提供一种冷却效果更好的变压器绕组装置,以实现整个牵引变压器轻量化、小型化设计,提高牵引变压器的散热效果、耐振动和冲击能力以及抗短路冲击能力,成为本领域技术人员亟需解决的技术问题。
通过国内专利文献检索未发现直接与本发明相同的技术,只是有一些相关的文献报道,与本发明有一定关系的主要有以下一些:
1、专利号为CN201180064188.0,名称为“具有冷却通道的变压器绕组”的发明专利,该专利公开了一种变压器绕组,所述变压器绕组具有至少两个中空圆柱形地交错嵌套的、围绕公共的卷绕轴延伸的绕组模块,其中所述绕组模块在至少一个设置在所述绕组模块之间的中空圆柱形冷却通道的通道内部借助绝缘带在径向上彼此隔开。绝缘带具有横截面形状,所述横截面形状主要避免在径向上朝向所述卷绕轴的表面走向。
2、专利号为CN201210172956.0,名称为“一种变压器绕组的散热气道装置”的发明专利,该专利公开了一种变压器绕组的散热气道装置,均匀分布于绕组外部与绕组内部之间并间隔设置,其特征是:包括支撑绕组外部的圆弧面、压住绕组内部的若干铝支撑板以及连接铝支撑板和圆弧面的若干立柱,铝支撑板和立柱的个数相同;铝支撑板和立柱各为3个,立 柱沿着圆弧面均匀分布。本发明由一种非磁化性材料(铝)制作而成,高度可根据绕组的电抗高度进行设定。此气道装置不会出现绝缘材料拱起变形,保证绕组的散热系数不被降低;金属材料降低热流风阻系数,大大提高散热的效果,低压绕组温升下降15K左右。
3、专利号为CN200820158745.0,名称为“变压器绕组单面疏密式散热油道绝缘板”的发明专利,该专利公开了一种变压器绕组单面疏密式散热油道绝缘板,采用绝缘纸板制作,由底板、密距绝缘条组和疏距绝缘条组构成的变压器绕组单面疏密式散热油道绝缘板,克服了现有瓦楞绝缘纸板和均匀布置垫块形成撑条帘圆角处油道变窄和绝缘距离变小、直线部位瓦楞或撑条过密致使散热不佳的缺陷,合理运用了密距绝缘条组和疏距绝缘条组,有效保证了绕组散热效果好,为变压器绕组制作提供了一种全新散热油道绝缘板,适用性好,推广应用价值大。
上述这些专利虽然涉及到了变压器绕组的散热,尤其是CN201180064188.0发明专利,还具体提出了变压器绕组通过在所述绕组模块之间设置中空圆柱形冷却通道,通过冷却通道进行散热的方法及结构,强调了通道内部借助绝缘带在径向上彼此隔开,绝缘带具有横截面形状,所述横截面形状主要避免在径向上朝向所述卷绕轴的表面走向,可通过实际应用发现,这些专利都没有解决绕组结构设计不是十分合理,各绕组间的电气距离要求很大,绕组散热面积要求也很大,导致了整个绕组装置体积大、质量重,且散热能力不一定好的问题。同时,由于绕组结构设计和制造工艺的不足,牵引变压器的绕组易变形、线饼易松散,导致整个绕组的机械强度和抗短路冲击能力不优越,而且所采取的冷却方法都比较复杂,难以实施,因此很有必要对此加以改进。
发明内容
本发明所要解决的技术问题是:针对现有牵引变压器的绕组易变形、线饼易松散,导致整个绕组的机械强度和抗短路冲击能力不优越,各绕组间的电气距离要求很大,绕组散热面积要求也很大,导致了整个绕组装置体积大、质量重,且散热能力不一定好的问题,提出一种新型的牵引变压器绕组冷却方法及装置,该方法及装置在保证牵引变压器冷却效果的前提 下,能实现整个牵引变压器轻量化、小型化设计,并提高牵引变压器运行的可靠性、安全性。
按照本发明的发明目的所提出的技术方案是:一种强迫导向冷却混合式变压器绕组冷却方法,将原边绕组、次边绕组以及附加绕组采取同心式绕组一体化结构布置,且附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。
优选地,所述的原边绕组采用饼式绕组结构,次边绕组和附加绕组采用层式绕组结构。
优选地,所述的原边绕组、次边绕组以及附加绕组本身层与层之间、饼与饼之间布置有油道,且为强迫导向油循环散热。
优选地,所述的各绕组间隙布置有绝缘筒和绝缘撑条;附加绕组、次边绕组层间布置有绝缘撑条;原边绕组饼间布置有垫块,最后整个绕组装置外部用绑扎带整体包扎。
一种实现上述方法的强迫导向冷却混合式变压器绕组装置,包括原边绕组、次边绕组以及附加绕组;所述的原边绕组、次边绕组以及附加绕组采取同心式绕组结构形式布置,且附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。
优选地,在上述的绕组装置中,原边绕组采用饼式绕组结构;次边绕组和附加绕组采用层式绕组结构。
优选地,在上述的绕组装置中,次边、附加绕组线圈由换位导线制成,原边绕组采用单根铜线制成。
优选地,在上述的绕组装置中,导线基本材料为高等级电解铜外部包有绝缘纸。
优选地,在上述的绕组装置中,各个绕组间布置有油道,原边绕组具有饼间油道,次边绕组和附加绕组具有层间油道。
优选地,在上述的绕组装置中,绕组散热方式为强迫导向油循环散热。
优选地,在上述的绕组装置中,各绕组间隙布置有绝缘撑条、垫块以及绝缘筒,整个绕组装置外部用绑扎带整体包扎。
本发明的优点在于,本发明提供了一种强迫导向冷却混合式变压器绕组装置,该绕组装置中包括原边绕组、次边绕组以及附加绕组,绕组装置为同心式绕组,整个绕组紧凑、各绕 组间的电气距离小,与现有技术中绕组结构设计相比,本发明所提供的绕组占用空间更小、消耗的材料更少,便于变压器轻量化、小型化设计;在本发明所提供的绕组装置中,各绕组间布置有油道,绕组本身层与层之间、饼与饼之间也布置有油道,且为强迫导向油循环散热。与现有技术中绕组散热相比,本发明所提供的绕组在同体积情况下,散热面积更大,整个绕组装置散热效果更好。同时,优异的散热能力减小了变压器体积和重量设计、保障变压器安全、可靠运行。
附图说明
图1为本发明实施例所提供的绕组装置中绕组结构示意图;
图2为本发明实施例所提供的绕组装置中附加绕组的结构示意图;
图3为本发明实施例所提供的绕组装置中次边绕组的结构示意图;
图4为本发明实施例所提供的绕组装置中原边绕组的结构示意图;
以上图1-4中:
铁心1、附加绕组2、次边绕组3、原边绕组4、绝缘筒21、换位导线22、撑条23、绝缘筒31、换位导线32、撑条33、绝缘筒41、绑扎带42、单根导线43、垫块44。
具体实施方式
下面将结合附图和实施例对本发明做进一步的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
一种强迫导向冷却混合式变压器绕组装置,包括原边绕组、次边绕组以及附加绕组;所述的原边绕组、次边绕组以及附加绕组采取同心式绕组结构形式布置,且附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。
在上述的绕组装置中,原边绕组采用饼式绕组结构;次边绕组和附加绕组采用层式绕组结构;且次边绕组、附加绕组线圈由换位导线制成,原边绕组采用单根铜线制成。导线基本材料为高等级电解铜外部包有绝缘纸。此外,在各个绕组间布置有油道,原边绕组具有饼间油道,次边绕组和附加绕组具有层间油道,绕组散热方式为强迫导向油循环散热。
为了保证油道的均匀一致,在各绕组间隙布置有绝缘撑条、垫块以及绝缘筒,整个绕组装置外部用绑扎带整体包扎。
实施例二
一种强迫导向冷却混合式变压器绕组装置,包括原边绕组、次边绕组以及附加绕组;其中,附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧。
与现有技术中绕组结构设计相比,本发明所提供的绕组占用空间更小、消耗的材料更少,便于变压器轻量化、小型化设计;
在本发明的绕组装置中各绕组间布置有油道,附加绕组2由换位导线制成,采用层式绕组结构,层间布置有油道;次边绕组3由换位导线制成,采用层式绕组结构,层间布置有油道;原边绕组4由单根铜线制成,采用饼式绕组结构,饼间布置有油道。
与现有技术中绕组相比,本发明所提供的绕组在同体积情况下,散热面积更大,且为强迫导向油循环散热,整个绕组装置散热效果更好。同时,优异的散热能力减小了变压器体积和重量设计、保障变压器安全、可靠运行。
在本发明的绕组装置中3个绕组间隙布置有绝缘筒和绝缘撑条;附加绕组2、次边绕组3层间布置有绝缘撑条;原边绕组4饼间布置有垫块,最后整个绕组装置外部用绑扎带整体包扎,并经过工艺处理。
根据上述实例我们可以看出,本发明涉及一种强迫导向冷却混合式变压器绕组冷却方法,将原边绕组、次边绕组以及附加绕组采取同心式绕组一体化结构布置,且附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。
优选地,所述的原边绕组采用饼式绕组结构,次边绕组和附加绕组采用层式绕组结构。
优选地,所述的原边绕组、次边绕组以及附加绕组本身层与层之间、饼与饼之间布置有油道,且为强迫导向油循环散热。
优选地,所述的各绕组间隙布置有绝缘筒和绝缘撑条;附加绕组、次边绕组层间布置有绝缘撑条;原边绕组饼间布置有垫块,最后整个绕组装置外部用绑扎带整体包扎。
本发明提供了一种强迫导向冷却混合式变压器绕组装置,该绕组装置中包括原边绕组、次边绕组以及附加绕组,绕组装置为同心式绕组,整个绕组紧凑、各绕组间的电气距离小,与现有技术中绕组结构设计相比,本发明所提供的绕组占用空间更小、消耗的材料更少,便于变压器轻量化、小型化设计;在本发明所提供的绕组装置中,各绕组间布置有油道,绕组本身层与层之间、饼与饼之间也布置有油道,且为强迫导向油循环散热。与现有技术中绕组散热相比,本发明所提供的绕组在同体积情况下,散热面积更大,整个绕组装置散热效果更好。同时,优异的散热能力减小了变压器体积和重量设计、保障变压器安全、可靠运行。
很显然,上述实施例只是本发明,只是为了说明本发明所列举的几个实例,任何本领域内技术人员的简单更改和替换都是本发明的保护之内。

Claims (10)

  1. 一种强迫导向冷却混合式变压器绕组冷却方法,将原边绕组、次边绕组以及附加绕组采取同心式绕组一体化结构布置,其特征在于,附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。
  2. 如权利要求1所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,所述的原边绕组采用饼式绕组结构,次边绕组和附加绕组采用层式绕组结构。
  3. 如权利要求2所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,所述的原边绕组、次边绕组以及附加绕组本身层与层之间、饼与饼之间布置有油道,且为强迫导向油循环散热。
  4. 如权利要求3所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,所述的各绕组间隙布置有绝缘筒和绝缘撑条;附加绕组、次边绕组层间布置有绝缘撑条;原边绕组饼间布置有垫块,最后整个绕组装置外部用绑扎带整体包扎。
  5. 一种实现上述方法的强迫导向冷却混合式变压器绕组装置,包括原边绕组、次边绕组以及附加绕组;所述的原边绕组、次边绕组以及附加绕组采取同心式绕组结构形式布置,其特征在于,附加绕组位于铁心的外侧;次边绕组位于附加绕组的外侧;原边绕组位于次边绕组的外侧,在各个绕组间布置有油道,并通过导向油在各个绕组间的油道内的强迫循环进行散热。
  6. 如权利要求5所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,所述的原边绕组采用饼式绕组结构;所述的次边绕组和附加绕组采用层式绕组结构。
  7. 如权利要求5所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,在上述的绕组装置中,次边、附加绕组线圈由换位导线制成,原边绕组采用单根铜线制成;导线基本材料为高等级电解铜外部包有绝缘纸。
  8. 如权利要求7所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,各个绕组间布置有油道,原边绕组具有饼间油道,次边绕组和附加绕组具有层间油道。
  9. 如权利要求8所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,在上述的绕组装置中,绕组散热方式为强迫导向油循环散热。
  10. 如权利要求9所述的强迫导向冷却混合式变压器绕组冷却方法,其特征在于,在上述的绕组装置中,各绕组间隙布置有绝缘撑条、垫块以及绝缘筒,整个绕组装置外部用绑扎带整体包扎。
PCT/CN2014/090529 2014-11-07 2014-11-07 一种强迫导向冷却混合式变压器绕组冷却方法及装置 WO2016070393A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480077442.4A CN106663523B (zh) 2014-11-07 2014-11-07 一种强迫导向冷却混合式变压器绕组冷却方法及装置
MYPI2017000597A MY177373A (en) 2014-11-07 2014-11-07 Cooling method and apparatus for forced-directed cooling mixing type transformer winding
PCT/CN2014/090529 WO2016070393A1 (zh) 2014-11-07 2014-11-07 一种强迫导向冷却混合式变压器绕组冷却方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090529 WO2016070393A1 (zh) 2014-11-07 2014-11-07 一种强迫导向冷却混合式变压器绕组冷却方法及装置

Publications (1)

Publication Number Publication Date
WO2016070393A1 true WO2016070393A1 (zh) 2016-05-12

Family

ID=55908410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090529 WO2016070393A1 (zh) 2014-11-07 2014-11-07 一种强迫导向冷却混合式变压器绕组冷却方法及装置

Country Status (2)

Country Link
CN (1) CN106663523B (zh)
WO (1) WO2016070393A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735450B (zh) * 2018-07-18 2023-06-30 中车株洲电机有限公司 一种用于轨道车辆的牵引变压器的冷却系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020036561A1 (en) * 2000-09-26 2002-03-28 Hans Jedlitschka High-voltage transformer winding and method of making
CN201178018Y (zh) * 2008-02-21 2009-01-07 株洲南车电机股份有限公司 一体化多绕组变压器线圈
JP2009206255A (ja) * 2008-02-27 2009-09-10 Tokuden Co Ltd 変圧器
CN201392719Y (zh) * 2009-04-20 2010-01-27 天威保变(合肥)变压器有限公司 一种新型三绕组电力变压器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201449856U (zh) * 2009-03-09 2010-05-05 株洲南车电机股份有限公司 一种交流传动电力机车主变压器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020036561A1 (en) * 2000-09-26 2002-03-28 Hans Jedlitschka High-voltage transformer winding and method of making
CN201178018Y (zh) * 2008-02-21 2009-01-07 株洲南车电机股份有限公司 一体化多绕组变压器线圈
JP2009206255A (ja) * 2008-02-27 2009-09-10 Tokuden Co Ltd 変圧器
CN201392719Y (zh) * 2009-04-20 2010-01-27 天威保变(合肥)变压器有限公司 一种新型三绕组电力变压器

Also Published As

Publication number Publication date
CN106663523B (zh) 2019-04-16
CN106663523A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US9478347B2 (en) Dry type transformer with improved cooling
CN110323043B (zh) 一种可系列化的半灌封通透型高压高频变压器结构
CN106783038A (zh) 一种外侧循环冷却环氧浇注干式变压器
CN102930964B (zh) 一种三相有载调容变压器
CN202977085U (zh) 一种油浸式变压器
WO2016070393A1 (zh) 一种强迫导向冷却混合式变压器绕组冷却方法及装置
CN203850132U (zh) 一种非晶合金变压器线圈
CN202221695U (zh) 一种树脂绝缘干式移相整流变压器
CN204424057U (zh) 变压器
CN103854829A (zh) 散热式电抗器
CN207558572U (zh) 一种高性能变压器线圈
CN201060719Y (zh) 移相整流干式变压器的散热结构
CN203910460U (zh) 双箔绕组节能配电变压器
CN110729103B (zh) 一种隔离变压器
JP2016157915A (ja) 巻線の渦電流損失が低減される変圧器
CN203631281U (zh) 一种油浸变压器混合绝缘的主绝缘装置
CN103117158A (zh) 一种立绕线圈结构电抗器
CN102360798A (zh) 低压绕组层间电压低的干式变压器
CN201044200Y (zh) 换位导线
CN205987442U (zh) 一种多股线绕制的线圈及包括该线圈的电磁开水器
CN104575972A (zh) 一种带绝缘木撑条的卷铁芯自耦变压器
CN204270818U (zh) 超强散热铁芯
KR20190084632A (ko) 냉각효율을 높힌 변압기용 권선코일의 제조방법
CN208570277U (zh) 油浸式高频变压器
CN214312866U (zh) 一种高散热干式电抗器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905504

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/11/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14905504

Country of ref document: EP

Kind code of ref document: A1