WO2016068066A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2016068066A1
WO2016068066A1 PCT/JP2015/080079 JP2015080079W WO2016068066A1 WO 2016068066 A1 WO2016068066 A1 WO 2016068066A1 JP 2015080079 W JP2015080079 W JP 2015080079W WO 2016068066 A1 WO2016068066 A1 WO 2016068066A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
display panel
video
video signal
processing unit
Prior art date
Application number
PCT/JP2015/080079
Other languages
English (en)
French (fr)
Inventor
典昭 山口
宮田 英利
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016068066A1 publication Critical patent/WO2016068066A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present disclosure relates to a technique for displaying an image by controlling a transmission amount of light from a light source with a plurality of display panels.
  • a display device that generates a 3D stereoscopic image by displaying 2D images on a plurality of display surfaces at different depth positions as viewed from the viewer.
  • a display target object is projected from a plurality of display surfaces at different depth positions as viewed from the viewer from the viewing direction of the viewer. It is described that a two-dimensional image is generated, and the generated two-dimensional image is displayed on a plurality of display surfaces at different depth positions as viewed from the viewer.
  • the transmittance of the two-dimensional image displayed on the display surface is changed independently for each display surface, and the luminance of the two-dimensional image displayed on each display surface is changed independently.
  • the light transmission amount on the front display surface as viewed from the viewer cannot be made larger than the light transmission amount on the rear display surface.
  • the color on the rear display surface is controlled to be non-transparent, the color cannot be displayed on the front display surface. Therefore, when the display content on the front display surface is different from the display content on the rear display surface, the color of the front display surface may be different from the color that should be displayed. For this reason, display quality may deteriorate.
  • the present application discloses a configuration capable of suppressing a reduction in display quality in a display device including a plurality of display panels.
  • a display device disclosed in the present application is provided with a backlight, a back display panel that is provided on the backlight, and adjusts a light transmission amount of the backlight for each pixel, and a side opposite to the backlight of the back display panel
  • a front display panel that adjusts the amount of light transmitted from the backlight that has been transmitted through the rear display panel for each pixel, and a video processing unit.
  • the video processing unit includes a rear video signal including a pixel value corresponding to a light transmission amount for each pixel of the video to be displayed on the rear display panel, and a light transmission amount for each pixel of the video to be displayed on the front display panel.
  • the pixel value of the pixel in the adjustment target region in the video indicated by the rear video signal is corrected based on the front video signal including the pixel value corresponding to, and output to the rear display panel.
  • the video processing unit when the light transmission amount of the pixel of the adjustment target region of the rear display panel and the light transmission amount of the corresponding pixel of the front display panel at a position corresponding to the pixel of the adjustment target region, The pixel value of the pixel in the adjustment target region is corrected and output so that the light transmission amount corresponds to the pixel value of the corresponding pixel indicated by the front video signal.
  • a reduction in display quality can be suppressed.
  • FIG. 1 is a diagram illustrating a configuration example of a display device 10 according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating a configuration example of the video processing unit 7.
  • FIG. 3 is a diagram for explaining a specific example of the pixel value correction processing of the adjustment target area.
  • FIG. 4 is a diagram illustrating a configuration example of the display device 10a according to the second embodiment.
  • FIG. 5 is a functional block diagram showing a configuration example of the video processing unit 7a in FIG.
  • FIG. 6A is a diagram for explaining an example of the effect in the first and second embodiments.
  • FIG. 6B is a diagram for explaining an example of the effect in the first and second embodiments.
  • FIG. 1 is a diagram illustrating a configuration example of a display device 10 according to the first embodiment.
  • FIG. 2 is a functional block diagram illustrating a configuration example of the video processing unit 7.
  • FIG. 3 is a diagram for explaining a specific example of the pixel value correction processing of the adjustment
  • FIG. 7 is a diagram illustrating an example of an image when output without correcting the color of the pixel value of the back image signal B1.
  • FIG. 8 is a functional block diagram illustrating a configuration example of the video processing unit 7b according to the fourth embodiment.
  • FIG. 9 is a diagram illustrating an example of a video when the pixel values of the front video signal F1 and the rear video signal B1 are corrected.
  • FIG. 10 is a diagram for explaining an example of the investigation target area in the fifth embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of the display device 10c according to the sixth embodiment.
  • FIG. 12 is a diagram illustrating a configuration example of a display device including three or more display panels.
  • a display device includes a backlight, a back display panel that is provided so as to overlap the backlight, and adjusts a light transmission amount of the backlight for each pixel, and the back of the back display panel.
  • a front display panel that is provided on the opposite side of the light and that adjusts the amount of light transmitted from the backlight that has passed through the rear display panel for each pixel, and a video processing unit.
  • the video processing unit includes a rear video signal including a pixel value corresponding to a light transmission amount for each pixel of the video to be displayed on the rear display panel, and a light transmission amount for each pixel of the video to be displayed on the front display panel.
  • the pixel value of the pixel in the adjustment target region in the video indicated by the rear video signal is corrected based on the front video signal including the pixel value corresponding to, and output to the rear display panel.
  • the video processing unit when the light transmission amount of the pixel of the adjustment target region of the rear display panel and the light transmission amount of the corresponding pixel of the front display panel at a position corresponding to the pixel of the adjustment target region, The pixel value of the pixel in the adjustment target region is corrected and output so that the light transmission amount corresponds to the pixel value of the corresponding pixel indicated by the front video signal.
  • the video processing unit causes the rear video signal to be transmitted from the light transmission amount of the pixel in the adjustment target area of the rear display panel and the corresponding pixel of the front display panel at a position corresponding to the pixel of the adjustment target area.
  • the light transmission amount is corrected so as to correspond to the pixel value of the corresponding pixel of the front image signal, and is output to the rear display panel.
  • the amount of light transmitted through the pixels in the adjustment area of the rear display panel and the corresponding pixel of the front display panel is substantially the same as the amount of light transmitted corresponding to the pixel value of the corresponding pixel of the front image signal. Therefore, the front display panel can display the image indicated by the front video signal without being affected by the light transmission amount of the rear display panel. For this reason, it is possible to suppress a decrease in display quality.
  • the video processing unit includes a display area in which an image is displayed by adjusting a light transmission amount of a pixel in each of the video of the rear video signal and the video of the front video signal, and a transmission area that transmits light to the pixel.
  • a display area in which an image is displayed by adjusting a light transmission amount of a pixel in each of the video of the rear video signal and the video of the front video signal, and a transmission area that transmits light to the pixel.
  • an area that is the display area of the video of the rear video signal and overlaps the display area of the video of the front video signal can be set as the adjustment target area.
  • the pixel value can be adjusted for the area where the display areas overlap each other on the front display panel and the rear display panel. Since the pixel value can be adjusted in a region that easily affects the display quality, it is possible to efficiently suppress a decrease in display quality.
  • the video processing unit can correct the pixel value of the adjustment target area of the rear video signal to a value that maximizes the amount of light transmission.
  • the amount of light transmitted through the pixels in the adjustment target area of the rear display panel and through the corresponding pixels of the front display panel should be substantially the same as the amount of transmission indicated by the pixel value of the corresponding pixel of the front video signal. it can.
  • the video processing unit corrects the pixel value of the adjustment target area corresponding to the pixel when the light transmission amount indicated by the pixel value of the front video signal is a predetermined amount or less than the predetermined amount in the corresponding pixel. Instead, the pixel value indicated by the rear video signal is output as it is.
  • the display quality is hardly affected even if the transmission amount of the corresponding pixel of the rear display panel is not adjusted. Therefore, with the above configuration, even in the pixel to be adjusted, it is possible to prevent correction of a pixel that does not require correction of the pixel value. In addition, it is possible to reduce the risk of deterioration in display quality due to the correction of the pixel value in the adjustment target area of the rear display panel.
  • the video processing unit corrects the pixel value of the adjustment area of the rear video signal to be the same value as the pixel value of the front video signal of the corresponding pixel, and outputs the corrected value to the rear display panel.
  • the pixel value of the corresponding pixel of the front image signal can be corrected and output to the front display panel so that the light transmission amount of the corresponding pixel is maximized.
  • the amount of light transmitted through the pixels in the adjustment target area of the rear display panel and the corresponding pixels of the front display panel is substantially the same as the transmission amount indicated by the pixel value of the corresponding pixel of the front image signal before correction. can do.
  • the back image signal and the front image signal include pixel values corresponding to light transmission amounts of a plurality of colors for each pixel, and the image processing unit includes pixels for each of a plurality of colors of each pixel in the adjustment region.
  • the value can be corrected and output. Thereby, a pixel value can be adjusted for every color.
  • the adjustment area may be set in a wider range than the corresponding pixel area. As a result, it is possible to suppress deterioration in display quality when viewed from a direction having an angle with respect to a direction perpendicular to the display surfaces of the front display panel and the rear display panel.
  • the display device may further include an imaging unit that captures the viewer and an image processing unit that detects the position of the viewer's eyes based on the viewer's image captured by the imaging unit.
  • the video processing unit can determine the adjustment target region using the eye position detected in the image unit. Thereby, it is possible to further suppress the deterioration of display quality when the viewer views from a direction having an angle with respect to the direction perpendicular to the display surfaces of the front display panel and the rear display panel.
  • a plurality of the rear display panel and / or the front display panel may be provided.
  • FIG. 1 is a diagram illustrating a configuration example of a display device 10 according to the first embodiment.
  • the display device 10 displays light by transmitting light from the backlight 1 through a plurality of display panels. Therefore, the display device 10 includes a backlight 1, a rear display panel 2, a front display panel 3, a backlight drive circuit 4 that supplies signals for driving these, panel drive circuits 5 and 6, and a video processing unit 7. .
  • the video source 8 outputs a video signal for display to the video processing unit 7.
  • the video processing unit 7 can be, for example, a video processing circuit that processes video signals from the video source 8 for these drive circuits 4, 5, 6 and sends them out.
  • the rear display panel 2 is provided so as to overlap the backlight 1.
  • the front display panel 3 is provided on the opposite side of the back display panel 2 from the backlight 1.
  • the rear display panel 2 and the front display panel 3 have a common normal direction, and there is a certain space between the front display panel 3 and the rear display panel 3.
  • the rear display panel 2 and the front display panel 3 adjust the amount of light transmitted from the backlight 1 for each pixel. That is, the rear display panel 2 and the front display panel 3 perform display by controlling transmission and non-transmission of light from the backlight 1.
  • Each of the rear display panel 2 and the front display panel 3 includes, for example, a plurality of gate lines that supply gate signals and a plurality of data lines that cross the gate lines and supply data signals. Pixels corresponding to the intersections of the gate lines and the source lines are arranged in a matrix. Each pixel is provided with a switching element connected to the gate line and the source line. A plurality of gate lines are sequentially selected by a gate signal. A voltage signal indicating the light transmission amount in each pixel is applied to the pixel group connected to the selected gate line via the data line. Thereby, the light transmission amount of each pixel is controlled.
  • a liquid crystal display or a MEMS display (Micro Electro Mechanical System Display) panel can be used as the rear display panel 2 and the front display panel 3.
  • the rear display panel 2 and the front display panel 3 represent colors by space division.
  • a color filter type liquid crystal panel corresponds to this.
  • the rear display panel 2 and the front display panel 3 pixels that emit R (red) light, pixels that emit G (green), and pixels that emit B (blue) light are arranged.
  • the front display panel 3 and the rear display panel 2 have the same area, the same resolution, and the same normal direction of the panel surface.
  • the backlight 1 can be a surface light source having at least red, blue and green wavelength spectra.
  • a white LED or a cold cathode tube can be used as the light source.
  • the backlight 1 is a so-called direct-type surface light source that is laid out in a plane and used as a surface light source, or is made into a bar shape so that light is incident from one or a plurality of sides of the light emitting surface, and the light emitting surface is formed by an optical sheet. There are edge-type surface light sources that extract light.
  • the backlight drive circuit 4 receives a signal based on the video signal processed by the video processing unit 7 and outputs a drive signal to the backlight.
  • the backlight drive circuit 4 can include, for example, a driver that drives a backlight and a signal generation circuit that generates a signal to the driver.
  • the signal generation circuit receives a signal synchronized with panel driving from the video processing unit 7 and generates a signal for driving the driver.
  • the driver receives the generated signal and drives the backlight.
  • the display device 10 In the display device 10 according to the present embodiment, light from the backlight 1 passes through the rear display panel 2 and the front display panel 3. Viewer A sees the light transmitted through these display panels 2 and 3.
  • the backlight 1, the front display panel 3, and the rear display panel 2 are arranged so that their display surfaces are parallel, and there is a certain space between the front display panel 3 and the rear display panel 2. That is, the normal line of the front display panel 3 and the normal line of the rear display panel 2 are in the same direction. Thereby, the viewer A can feel the difference in distance between the front display by the front display panel 3 and the rear display by the rear display panel 2.
  • the image displayed by the front display panel 3 can include a display area D2 and a transmission area T2 that can be dynamically set on the display surface.
  • the display area D2 by controlling the amount of light transmitted from the backlight 1 (or blocking light) for each pixel, an image can be displayed so that a display object can be seen on the display surface of the front display panel 3 when viewed from the viewer A. Is displayed.
  • the transmissive region T2 transmits light from the backlight 1 as much as possible, so that the viewer A can see the rear display by the rear display panel 2 through the front display panel 3.
  • the image displayed on the rear display panel 2 can include the display area D1 and the transmission area T1.
  • the video processor 7 receives a rear video signal indicating a video to be displayed on the rear display panel 3 and a front video signal indicating a video to be displayed on the front display panel 3 from a video source, and processes these signals. And output to the backlight drive circuit 4 and the panel drive circuits 5 and 6.
  • FIG. 2 is a functional block diagram illustrating a configuration example of the video processing unit 7.
  • the video processing unit 7 includes a front video processing unit 11, a rear video processing unit 12, and a backlight data generation unit 13.
  • the video source 8 outputs, for example, 60 fps full-color front video signal F1 and rear video signal B1 for the front display panel 3 and the rear display panel 2.
  • the video source 8 is not particularly limited, and examples of the video source 8 include an external device of the display device 10 such as a tuner, a video player, and a general-purpose computer.
  • the front image signal F1 includes a pixel value of a light transmission amount for each pixel of an image to be displayed on the front display panel 3.
  • the rear video signal B1 includes a pixel value indicating a light transmission amount for each pixel of the video to be displayed on the rear display panel 2.
  • the pixel values of the front video signal F1 and the rear video signal B1 can be, for example, data representing the display gradation value (luminance value) of each pixel in 8 bits.
  • the color for example, any color of R (red), G (green), and B (blue)
  • the pixel value of each pixel is a value indicating the gradation of any one of a plurality of colors (RGB).
  • the light transmission amount of each color in the pixel is controlled by the gradation value (luminance value) of each color.
  • the pixel value can be a value corresponding to the light transmission amount of each of a plurality of colors (RGB) in the pixel.
  • the front video processing unit 11 receives the front video signal F1 from the video source 8 and outputs the front video signal F1 to the panel drive circuit 6 and the rear video processing unit 12 of the front display panel 3.
  • the front image processing unit 11 can also convert the gradation value of the front image signal F1 into a format suitable for the panel drive circuit 6 and output it.
  • the front image processing unit 11 can also generate a signal indicating the operation timing of the panel drive circuit 6 and output the signal to the panel drive circuit 6.
  • the rear video processing unit 12 receives the rear video signal B1 from the video source 8 and the front video signal F1 from the front video processing unit 11, performs video processing, and sends the rear generation video signal BG1 to the panel drive circuit 5 of the rear display panel 2. Is output.
  • the rear image processing unit 12 can correct the pixel value of the pixel in the adjustment target region among the image pixel values indicated by the rear image signal B ⁇ b> 1 and output the corrected pixel value to the panel drive circuit 5 of the rear display panel 2.
  • the adjustment target area can be determined based on, for example, the input rear video signal B1 and front video signal F1.
  • the corrected pixel value can also be determined based on the input rear video signal B1 and front video signal F1.
  • the rear video processing unit 12 sets a region that is the video display region D1 indicated by the rear video signal F1 and overlaps with the video display region D2 indicated by the front video signal F1 in the direction perpendicular to the display surface. be able to.
  • the video processing unit 7 can specify the display area based on the display gradation value of each pixel in the video. For example, a pixel area where R, G, and B all have maximum values (values indicating that the transmission amount is maximum) can be determined as a transmission area, and the other areas can be determined as display areas. In addition to the case where R, G, and B are all the maximum values as described above, for example, a specific display gradation value can be registered in the system in advance as a transmission region.
  • the rear image processing unit 12 determines the light transmission amount of the pixel in the adjustment target area of the rear display panel 2 and the corresponding pixel of the front display panel 3 at the position corresponding to the pixel of the adjustment target area.
  • the pixel value of the pixel in the adjustment target region is corrected so that the light transmission amount indicated by the pixel value of the corresponding pixel of the front image signal F1 is obtained.
  • the rear image processing unit 12 can correct the pixel value of the adjustment target area of the rear image signal B1 to a value that maximizes the light transmission amount.
  • FIG. 3 is a diagram for explaining a specific example of this processing.
  • the back image processing unit 12 displays the video display area D2 of the front video signal F1 and the display area D1 of the video of the back video signal B1 when viewed from the viewer A with respect to the input back video signal B1.
  • a process of making the regions D12 and D13 projected onto the transmission region transparent is performed.
  • the rear video processing unit 12 outputs (transmits) the video generated in this way to the panel drive circuit 5 as a rear generated video signal BG1.
  • the backlight data generation unit 13 generates backlight data according to the input video signal, and outputs the generated data to the backlight driving circuit. For example, the backlight data generation unit 13 receives the front video signal F1 and the back generation video signal BG1, and data BL1 indicating the backlight lighting timing for displaying the video of the front video signal F1 and the back generation video signal BG1. Can be generated as backlight data.
  • FIG. 4 is a diagram illustrating a configuration example of the display device 10a according to the second embodiment.
  • the rear display panel 2 and the front display panel 3 are configured such that each pixel displays one of a plurality of colors (for example, RGB).
  • one pixel is configured to display a plurality of colors (for example, RGB) in a time division manner in a predetermined period.
  • the rear display panel 2a and the front display panel 3a express colors by so-called field sequential driving.
  • a liquid crystal panel or a MEMS display panel can be used as the rear display panel 2a and the front display panel 3a.
  • the backlight 1a is a surface light source having at least red, blue and green wavelength spectra, and can control lighting of red, blue and green independently.
  • the backlight 1a can be, for example, a so-called direct-type surface light source in which LEDs 21 capable of individually controlling the lighting of RGB are arranged in the surface to be a surface light source.
  • the backlight 1a can be configured by an edge-type surface light source in which the LEDs 21 are formed in a bar shape so that light enters from one side or a plurality of sides of the light emitting surface and light is extracted from the light emitting surface by an optical sheet.
  • a plurality of pixel rows of the liquid crystal display panel are sequentially selected from the first row for each subfield obtained by dividing a field for displaying a color image composed of a plurality of colors into at least two parts. This includes writing pixel value data of one color among the plurality of colors to the pixels in a row and emitting illumination light of a color corresponding to the pixel value data written on the display panel from the backlight for each subfield.
  • FIG. 5 is a functional block diagram showing a configuration example of the video processing unit 7a in FIG.
  • the video processing unit 7 a further includes subfield generation units 14 and 15.
  • the front video processing unit 11 outputs the front video signal F1 received from the video source 8 to the subfield generation unit 14 and the rear video processing unit 12.
  • the rear video processing unit 12 receives the rear video signal B1 from the video source 8 and the front video signal F1 from the front video processing unit 11, and outputs the rear generated video signal BG1 generated by performing the video processing to the subfield generation unit 15. To do.
  • the video processing of the rear video processing unit 12 can be the same as in the first embodiment. For example, a process similar to the process described with reference to FIG. 3 can be executed.
  • the subfield generation units 14 and 15 receive the front video signal F1 or the back generation video signal BG1 and generate subfield images FS1 and BS1 for field sequential driving. Further, the subfield generation units 14 and 15 generate a panel driving synchronization signal and a backlight control signal in each subfield.
  • the subfield images FS1 and BS1 are output to the panel drive circuits 5a and 6a, and the backlight control signal is output to the backlight data generation unit 13a.
  • the backlight data generation unit 13a generates backlight data according to the input backlight control signal, and outputs the generated data to the backlight drive circuit 4a.
  • the subfield generation unit 15 generates a subfield image using the back surface generation video signal BG1 generated by the back surface image processing unit 12.
  • the back generation video signal BG1 the light transmission amount of the pixel in the adjustment target region of the rear display panel 2a is matched with the light transmission amount of the corresponding pixel in the front display panel 3a at a position corresponding to the pixel in the adjustment target region.
  • the pixel value of the pixel in the adjustment target region is corrected so that the light transmission amount indicated by the pixel value of the corresponding pixel of the front video signal F1 is obtained.
  • the subfield image BS1 generated based on the back generation video signal BG1 also has the pixel value of the pixel in the adjustment target region corrected.
  • the video displayed on the front display panel 3a can display the intended color by the front video signal F1 without being influenced by the color of the rear display panel 2a.
  • FIGS. 6A and 6B are diagrams for explaining an example of the effects in the first and second embodiments.
  • 6A is a diagram illustrating an example of a display mode when the rear video signal B1 is not modified
  • FIG. 6B is a diagram illustrating an example of a display mode when the rear video signal B1 is modified by the processing described in FIG. It is.
  • the pixels P1 and P2 of the front display panel 3 are display areas D2 that display light by controlling the light transmission amount, and the pixel P3 has a light transmission amount as high as possible. This is a transmission region T2 that transmits light.
  • All the pixels P4 to P6 of the rear display panel 2 are the display area D1.
  • the pixel values of the pixels P4 to P6 of the rear display panel 2 in FIG. 6A are set so that, for example, the green (G) and blue (B) components are blocked from transmitting light and the red (R) light is transmitted.
  • the pixel value is set so as to block green and blue and transmit red light
  • the pixel value is set so as to block red and green and transmit blue light. Suppose that it is set.
  • the display object displayed on the front display surface (front display panel 3) and the display object displayed on the rear display surface (rear display panel 2) as viewed from the viewer are viewed by the viewer. Overlapping on the line.
  • the pixels P4 to P6 of the rear display panel 2 are blocked from transmitting green and blue light, so the pixel values are set so that the front display panel 3 transmits green and blue light. Even so, the light of green and blue is not transmitted. In this way, when the rear video signal is not corrected, the light of the color set to be non-transmissive on the rear display panel 2 cannot be displayed on the corresponding pixel of the front display panel 3. Therefore, the display quality is lowered.
  • the rear video signal is corrected so that the light transmission amount is maximized in the pixels P4 and P5 overlapping the display area of the front display panel 3. ing.
  • the display of the part projected on the rear display surface along the viewer's line-of-sight direction in the opaque region of the front display surface may be made transparent. it can.
  • a display color can be displayed on the front display surface.
  • the present embodiment is a modification of the processing by the video processing unit 7.
  • the pixel value of the portion overlapping the display area D2 of the front video signal F1 in the display area D1 of the rear video signal B1 is corrected to be transparent (the light transmission amount is maximum).
  • the rear video processing unit 12 has a pixel whose light transmission amount is smaller than a predetermined amount (for example, a pixel having the largest transmission amount) in the corresponding pixel of the front display panel 3.
  • a process of outputting the pixel value indicated by the rear video signal B1 without executing correction of the pixel value of the adjustment target area of the rear display panel 2 corresponding to the pixel is executed.
  • the transmission amount of the pixel on the front display surface is small, the pixel value of the display area D1 of the rear image signal B1 overlapping with this pixel is output as it is without modification.
  • the color coordinates of the colors to be displayed are R: 0 to 1, G: 0 to 1, B: 0 to 1 (in this example, the light transmission amount is maximum).
  • the value indicating the color at the time of 1 is 1 and the value indicating the color when the light transmission amount is minimum is 0
  • the color of one pixel in the image of the front image signal F1 is (Rf , Gf, Bf)
  • the color of the projected portion of the rear video signal B1 corresponding to the pixel is (Rb, Gb, Bb)
  • the display color of the corresponding point on the front display panel 3 viewed by the viewer is Since these are superposed, (Rf * Rb, Gf * Gb, Bf * Bb).
  • Rf 0, Rb may not be 1.
  • Rb can output the color indicated by the pixel value of the rear video signal B1 as it is. Thereby, for example, even if the viewer's line of sight is slightly shifted and the portion can be seen in the image of the rear display panel 2, the component of the pixel value indicated by the original rear video signal B1 remains. , Can reduce the unnaturalness.
  • FIG. 7 is a diagram illustrating an example of a video when the color of the pixel value of the back video signal B1 is output without being corrected as described above.
  • Rf ⁇ 0, that is, red light non-transmission
  • Gf 0, that is, green light non-transmission.
  • Rb ⁇ 1 (maximum transmission of red light) is not corrected and the pixel value of the back image signal B1 is maintained. Yes.
  • the rear video processing unit 12 of the video processing unit 7 first specifies an adjustment target region in the rear video signal B1.
  • the adjustment target area can be specified as a portion where the display areas D21 and D22 in the video of the front video signal F1 and the display area D1 in the video of the rear video signal B1 overlap as in the first embodiment.
  • the rear image processing unit 12 sets the corresponding pixel value corresponding to each pixel in the adjustment target region (pixels in the display regions D21 and D22 in the example of FIG. 7) to 0 (the light transmission amount is minimum). It is determined whether it is a value.
  • the rear video processing unit 12 sets the pixels of the rear video signal B1 corresponding to the pixel (D12 and D13 in the example of FIG. 7).
  • the pixel value can be left as it is without modification.
  • the rear image processing unit 12 can correct the pixel value of the pixel of the rear image signal B1 corresponding to the corresponding pixel whose pixel value is not 0, for example, 1 (a value that maximizes the amount of transmitted light).
  • the rear image processing unit 12 determines that the transmission amount indicated by the pixel value of the corresponding pixel is a predetermined amount instead of determining whether the pixel value of the corresponding pixel is 0 (a value that minimizes the light transmission amount). It can also be determined whether or not it is less.
  • the pixels of the rear display panel 2 that overlap the pixels with a small amount of light transmission in the front display panel 3 are not made transparent, and the pixel value indicated by the original rear video signal B1 can be maintained.
  • the color of the display area projected on the rear display panel 2 in the image of the front display panel 3, that is, the color of the adjustment target area, can be obtained by superimposing the color of the front display panel 3. .
  • the front display panel 3 cannot display a color that is not in the display color of the projection area of the rear display panel 2. For example, when red is displayed on the entire surface of the rear display panel 2, blue or green cannot be displayed on the front display panel 3.
  • the front display panel 3 can display all the colors by maximizing the light transmission of all the colors in the adjustment target area of the rear display panel 2. In this case, although the adjustment target area of the rear display panel is completely white, the front display panel 2 prevents the viewer from seeing it.
  • the present embodiment is another modification of the processing by the video processing unit 7.
  • the video processing unit 7 is configured to correct the rear video signal B1 out of the front video signal F1 and the rear video signal B1, but the video processing unit 7 includes the rear video signal B1 and the front video signal.
  • the structure which corrects F1 may be sufficient.
  • FIG. 8 is a functional block diagram illustrating a configuration example of the video processing unit 7b according to the fourth embodiment.
  • the rear video processing unit 12 outputs the rear video signal B ⁇ b> 1 received from the video source 8 to the front video processing unit 11.
  • the front video processing unit 11 receives the front video signal F1 and the rear video signal B1, processes these video signals, generates a front video generation signal FG1, and outputs it to the subfield generation unit 14.
  • the front image processing unit 11 corrects the pixel value of the corresponding pixel corresponding to the pixel in the investigation target area in the image indicated by the back image signal B1 to a value that maximizes the light transmission amount.
  • the signal corrected in this way is output to the subfield generation unit 14 as the front image generation signal FG1.
  • the rear image processing unit 12 corrects the pixel value of the adjustment area of the rear image signal B1 to be the same value as the pixel value of the corresponding pixel of the front image signal F1.
  • the corrected signal is output to the subfield generation unit 15 as the back image generation signal BG1.
  • the rear image generation signal BG1 and the front image generation signal FG1 that satisfy the above formulas (1) to (3) described in the third embodiment can be generated.
  • the process in which the front image processing unit 11 generates the front image generation signal FG1 corresponds to correcting Rf on the right side of the equation (1) to 1, and the rear image processing unit.
  • the process of generating the rear video generation signal BG1 by 12 corresponds to the process of changing Rb on the right side of Expression (1) to Rf.
  • the right side of Equation (1) becomes equal to the left side Rf.
  • the pixel values of the display areas D21 and D22 of the front video signal F1 are corrected so as to maximize the transmission amount, and the corresponding pixel value of the rear video signal B1 is changed to the pixel of the front video signal F1.
  • the front video processing unit 11 changes the red component Rf in the display area D21 from 0.5 to 1 (the transmission amount is maximum), and the rear video processing unit 12 outputs the rear video signal B1 corresponding to the display area D21.
  • the red pixel value Rb of the pixel in the region D13 is changed to the original Rf value of 0.5.
  • the green component Gf in the display area D22 of the front video signal F1 is changed from 0.5 to 1 (maximum transmission amount), and the green pixel value of the pixel in the area D12 of the rear video signal B1 corresponding to the display area D22.
  • Gb is changed to the original Gf value of 0.5.
  • the transmission amount of red light in the display area D22 of the front image generation signal FG1 is maximum (1)
  • the transmission amount of red light in the corresponding area D12 in the rear image generation signal BG1 is the original front image.
  • the transmission amount (0.5) of the red component in the region D22 indicated by the signal F1 is obtained.
  • the transmission amount of green light in the display area D21 of the front image generation signal FG1 is maximum (1)
  • the transmission amount of green light in the corresponding area D13 in the rear image generation signal BG1 is the front image signal F1.
  • FIG. 10 is a diagram for explaining an example of the investigation target area in the fifth embodiment.
  • the adjustment target area D120 set in the video on the rear display panel 3 is an area wider than the display area D2 of the video displayed on the front display panel 3.
  • the adjustment target area is the area where the video display area D2 of the front display panel 3 and the video display area D1 of the rear display panel 2 overlap in the direction perpendicular to the display surface. That is, an area where the display area D1 of the image displayed on the front display panel 3 is projected onto the image of the rear display panel 2 along the direction perpendicular to the display surface overlaps with the display area D1.
  • the area obtained by projecting the display area D2 onto the image of the rear display panel 2 along the direction perpendicular to the display surface is set to be enlarged. That is, the video processing unit 7 sets the adjustment target area in a range wider than the area of the corresponding pixel. In this way, even when the viewer's line of sight is slightly deviated, the front display can be displayed without failure.
  • the setting of the adjustment target area is executed in the video processing unit 7 as a process in which the rear video processing unit 12 specifies a location for correcting the input rear video signal B1.
  • the rear video processing unit 12 can set an area in which the display area of the rear video signal B1 and the display area of the front video signal F1 are enlarged as the adjustment target area.
  • the rear video processing unit 12 specifies an area where the video display area D1 indicated by the rear video signal B1 and the video display area D2 indicated by the front video signal F1 overlap. An area obtained by enlarging and converting this overlapping area by image processing can be determined as an adjustment target area.
  • the display device is a form in which the position of the viewer's eyes is detected using an imaging unit such as a camera, and the adjustment target region and the corresponding pixel are determined using the detected eye position.
  • FIG. 11 is a diagram illustrating a configuration example of the display device 10c according to the sixth embodiment.
  • the display device 10c further includes an imaging unit 9 that captures the viewer A, and an image processing unit 16 that detects the position of the viewer A's eyes based on the image of the viewer A captured by the imaging unit 9. .
  • the video processing unit 7c determines the adjustment target region and the corresponding pixel using the eye position detected by the image processing unit 16.
  • the imaging unit 9 can be, for example, a camera fixed to the front display panel 3.
  • the image processing unit 16 processes an image including the viewer A photographed by the imaging unit 9 and calculates the position of the viewer A's eyes.
  • the image processing unit 16 recognizes human eyes appearing in a captured image using pattern matching or the like.
  • the image processing unit 16 calculates the eye position based on the recognized position and size in the eye image.
  • the position of the eye can be represented by a coordinate value in a three-dimensional space, for example.
  • the image processing unit 16 may detect the relative position of the viewer's eyes with respect to the surface of the front display panel 3.
  • the video processing unit 7c adjusts based on the eye position detected by the image processing unit 16, the video of the front display panel 3 indicated by the front video signal F1, and the video of the rear display panel 2 indicated by the rear video signal B1.
  • An area can be determined.
  • the adjustment target area in the video display area D1 displayed on the rear display panel 2 can be determined from the video display area D2 displayed on the front display panel 3 and the position of the eyes. That is, the video processing unit 7 acquires the position information of the viewer A's eyes from the image processing unit 16 and projects the video display area of the front display panel 3 on the display surface of the rear display panel 2 from the position of the eyes.
  • a projected part can be calculated and used as an adjustment target area.
  • the pixel where the line connecting the display area D2 displayed on the front display panel 3 and the eye position intersects the display surface of the rear display panel 2 is specified, and the specified pixel is within the display area D1.
  • this pixel can be included in the adjustment target region.
  • the display on the front display panel 3 does not fail and the display on the rear display panel 2 is also natural. Can be displayed in any form.
  • the adjustment target area determination process using the eye position by the video processing unit 7c is not limited to the above example.
  • the video processing unit 7c can calculate the viewing direction of the viewer A from the recognized eye position, and use this to determine the investigation target region.
  • the survey target area can be set so that the survey target area in the video displayed on the rear display panel 2 and the video display area displayed on the front display panel 3 overlap each other. .
  • the video processing unit 7 can be formed by a circuit electrically connected to the panel drive circuits 5 and 6 and the backlight drive circuit 4.
  • the video processing unit 7 can be realized by a semiconductor chip provided in at least one of the backlight 1, the front display panel 3, and the back display panel 2.
  • the processing of the video processing unit 7 may be executed by a processor executing a program.
  • the method of determining the adjustment target area is not limited to the examples described in the first to sixth embodiments.
  • all the pixels in the image of the rear display panel 2 corresponding to the non-transparent pixels in the image of the front display panel 3 can be set as the adjustment target area.
  • FIG. 12 is a diagram illustrating a configuration example of a display device including three or more display panels.
  • a first front display panel 3-1 and a second front display panel 3-2 are provided on the opposite side of the backlight 1 of the rear display panel 2, that is, on the viewer side.
  • a panel drive circuit 6-1 that outputs a drive signal to the first front display panel 3-1 based on a signal from the video processing unit 7, and a panel that outputs a drive signal to the second front display panel 3-2
  • a drive circuit 6-2 is provided.
  • the video processing unit 7 includes a first front video signal including a pixel value of a video displayed on the first front display panel 6-1 and a second front surface including a pixel value of a video displayed on the second front display panel 6-2.
  • the video signal and the rear video signal are received from the video source 8.
  • the video processing unit 7 corrects the pixel value of the rear video signal based on the first front video signal, the second front video signal, and the rear video signal. For example, in the video indicated by the rear video signal, the video processing unit 7 adjusts an area D12 that overlaps the video display area D2 of the first front video signal and an area D13 that overlaps the video display area D3 of the second front video signal. It can be a target area.
  • the video processing unit 7 when the light transmission amount of the pixel in the adjustment target region D12 of the rear display panel 2 and the light transmission amount of the corresponding pixel region D2 of the first front display panel 6-1 are combined with each other, the video processing unit 7 The pixel value of the pixel in the adjustment target region D12 can be corrected so that the light transmission amount corresponds to the pixel value in the region D2 indicated by the signal. The pixel value in the adjustment target area D13 can be similarly corrected.
  • the video processing unit 7 has a light transmission amount in the overlapping area that is the second most on the viewer side.
  • the pixel values of the rear video signal and the first front video signal can be corrected so that the light transmission amount corresponds to the pixel value indicated by the front video signal.
  • a plurality of front display panels are provided, but a plurality of back display panels can be provided.
  • the video processing unit 7 uses the area corresponding to the video display area of the panel in front of each rear display panel as the adjustment target area, and sets the pixel value. It can be corrected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

表示装置(10)は、バックライト(1)と、背面表示パネル(2)と、前面表示パネル(3)と、映像処理部(7)とを備える。映像処理部(7)は、背面表示パネル(2)に表示すべき映像の背面映像信号と、前面表示パネル(3)に表示すべき映像の前面映像信号とに基づいて、背面映像信号の調整対象領域の画素の画素値を修正して背面表示パネル(2)へ出力する。映像処理部(7)は、背面表示パネル(2)の調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前面表示パネル(3)の対応画素の光透過量とを合わせると、前面映像信号の対応画素の画素値が示す光透過量となるように調整対象領域の画素の画素値を修正して出力する。

Description

表示装置
 本願開示は、複数の表示パネルで光源からの光の透過量を制御することによって画像を表示する技術に関する。
 従来、視聴者から見て異なった奥行き位置にある複数の表示面に二次元画像を表示させ、三次元立体像を生成する表示装置が提案されている。例えば、特開2001-54144号公報には、三次元表示方法として、視聴者から見て異なった奥行き位置にある複数の表示面に対して、表示対象物体を前記視聴者の視線方向から射影した二次元像を生成し、前記生成された二次元像を前記視聴者から見て異なった奥行き位置にある複数の表示面にそれぞれ表示することが記載されている。この表示方法では、表示面に表示される二次元像の透過度を表示面毎にそれぞれ独立に変化させて、各表示面に表示される二次元像の輝度をそれぞれ独立に変化させる。
特開2001-54144号公報
 上記従来のような表示方法では、視聴者から見て前方の表示面における光透過量を、後方の表示面における光透過量より多くすることはできない。例えば、後方の表示面である色が非透過に制御される場合、前方の表示面でその色を表示することはできない。そのため、前方の表示面の表示内容と、後方の表示面の表示内容が異なる場合、前方の表示面の色が、本来表示すべき色と異なるものとなることがある。このため、表示品位が低下することがある。
 本願は、複数の表示パネルを備える表示装置において、表示品位の低下を抑えることができる構成を開示する。
 本願開示の表示装置は、バックライトと、前記バックライトに重ねて設けられ、前記バックライトの光の透過量を画素ごとに調節する背面表示パネルと、前記背面表示パネルの前記バックライトと反対側に重ねて設けられ、前記背面表示パネルを透過した前記バックライトからの光の透過量を画素ごとに調節する前面表示パネルと、映像処理部とを備える。前記映像処理部は、前記背面表示パネルに表示すべき映像の画素ごとの光透過量に対応する画素値を含む背面映像信号と、前記前面表示パネルに表示すべき映像の画素ごとの光透過量に対応する画素値を含む前面映像信号とに基づいて、前記背面映像信号が示す映像における調整対象領域の画素の画素値を修正して前記背面表示パネルへ出力する。前記映像処理部は、前記背面表示パネルの調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前記前面表示パネルの対応画素の光透過量とを合わせると、前記前面映像信号が示す前記対応画素の画素値に対応する光透過量となるように前記調整対象領域の画素の画素値を修正して出力する。
 本願開示によれば、複数の表示パネルを備える表示装置において、表示品位の低下を抑えることができる。
図1は、実施形態1における表示装置10の構成例を示す図である。 図2は、映像処理部7の構成例を示す機能ブロック図である。 図3は、調整対象領域の画素値修正処理の具体例を説明するための図である。 図4は、実施形態2における表示装置10aの構成例を示す図である。 図5は、図4の映像処理部7aの構成例を示す機能ブロック図である。 図6Aは、実施形態1、2における効果の一例を説明するための図である。 図6Bは、実施形態1、2における効果の一例を説明するための図である。 図7は、背面映像信号B1の画素値の色を修正せずに出力した場合の映像の例を示す図である。 図8は、実施形態4における映像処理部7bの構成例を示す機能ブロック図である。 図9は、前面映像信号F1及び背面映像信号B1の画素値を修正した場合の映像の例を示す図である。 図10は、実施形態5における調査対象領域の一例を説明するための図である。 図11は、実施形態6における表示装置10cの構成例を示す図である。 図12は、表示パネルを3枚以上備える表示装置の構成例を示す図である。
 本発明の一実施形態における表示装置は、バックライトと、前記バックライトに重ねて設けられ、前記バックライトの光の透過量を画素ごとに調節する背面表示パネルと、前記背面表示パネルの前記バックライトと反対側に重ねて設けられ、前記背面表示パネルを透過した前記バックライトからの光の透過量を画素ごとに調節する前面表示パネルと、映像処理部とを備える。前記映像処理部は、前記背面表示パネルに表示すべき映像の画素ごとの光透過量に対応する画素値を含む背面映像信号と、前記前面表示パネルに表示すべき映像の画素ごとの光透過量に対応する画素値を含む前面映像信号とに基づいて、前記背面映像信号が示す映像における調整対象領域の画素の画素値を修正して前記背面表示パネルへ出力する。前記映像処理部は、前記背面表示パネルの調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前記前面表示パネルの対応画素の光透過量とを合わせると、前記前面映像信号が示す前記対応画素の画素値に対応する光透過量となるように前記調整対象領域の画素の画素値を修正して出力する。
 上記構成によれば、映像処理部により、背面映像信号は、背面表示パネルの調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前面表示パネルの対応画素の光透過量とを合わせると、前面映像信号の対応画素の画素値に対応する光透過量となるように修正されて、背面表示パネルへ出力される。これにより、背面表示パネルの調整領域の画素と、前面表示パネルの対応画素を通過した光の透過量は、前面映像信号のこの対応画素の画素値に対応する光透過量と略同じになる。そのため、前面表示パネルは、前面映像信号が示す画像を、背面表示パネルの光透過量に影響されることなく、表示することができる。そのため、表示品位の低下を抑えることができる。
 前記映像処理部は、前記背面映像信号の映像及び前記前面映像信号の映像それぞれにおいて、画素の光透過量を調整することにより画像が表示される表示領域と、画素に光を透過させる透過領域とを判断し、前記背面映像信号の映像の表示領域であって前記前面映像信号の映像の表示領域と重なる領域を前記調整対象領域とすることができる。
 これにより、前面表示パネルと背面表示パネルで表示領域が互いに重なる領域について、画素値の調整をすることができる。表示品位に影響がでやすい領域について画素値の調整をできるため、効率よく表示品位の低下を抑えることができる。
 前記映像処理部は、前記背面映像信号の前記調整対象領域の画素値を、光透過量が最大となる値に修正することができる。これにより、背面表示パネルの調整対象領域の画素を通り、前面表示パネルの対応画素を通った光の透過量は、前面映像信号の対応画素の画素値の示す透過量と略同じにすることができる。
 前記映像処理部は、前記対応画素において、前記前面映像信号の画素値が示す光透過量が所定量又は所定量より少ない画素がある場合、当該画素に対応する前記調整対象領域の画素値を修正しないで前記背面映像信号の示す画素値のまま出力する。前面表示パネルの対応画素において光透過量が少ない場合は、背面表示パネルの対応する画素の透過量を調整しなくても表示品位に影響が少ない。そのため、上記構成により、調整対象領域の画素であっても、画素値の修正が不要な画素では、修正しないようにすることができる。また、背面表示パネルの調整対象領域の画素値の修正に伴う表示品位低下のリスクを低減することができる。
 前記映像処理部は、前記背面映像信号の前記調整領域の画素値を、前記対応画素の前記前面映像信号の画素値と同じ値になるよう修正して前記背面表示パネルへ出力し、さらに、前記対応画素の光透過量が最大となるように前記前面映像信号の前記対応画素の画素値を修正して前記前面表示パネルへ出力することができる。これにより、背面表示パネルの調整対象領域の画素を通り、前面表示パネルの対応画素を通った光の透過量は、修正前の前面映像信号の対応画素の画素値が示す透過量と略同じにすることができる。
 前記背面映像信号及び前記前面映像信号は、各画素について、複数の色の光透過量をそれぞれに対応する画素値を含み、映像処理部は、前記調整領域における各画素の複数の色それぞれの画素値を修正し出力することができる。これにより、色ごとに、画素値を調整することができる。
 前記調整領域は、前記対応画素の領域より広い範囲に設定されてもよい。これにより、前面表示パネル及び背面表示パネルの表示面に垂直な方向に対して角度を持った方向から見た場合の表示品位の低下も抑えることができる。
 前記表示装置は、視聴者を撮影する撮像部と、前記撮像部が撮影した前記視聴者の画像に基づいて、前記視聴者の目の位置を検出する画像処理部とをさらに備えてもよい。この場合、前記映像処理部は、前記画像部で検出された目の位置を用いて、前記調整対象領域を決定することができる。これにより、視聴者が、前面表示パネル及び背面表示パネルの表示面に垂直な方向に対して角度を持った方向から見た場合の表示品位の低下を、より抑えることができる。
 前記背面表示パネル及び/又は前記前面表示パネルは、複数設けられてもよい。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一または相当部分には同一符号を付してその説明は繰り返さない。なお、説明を分かりやすくするために、以下で参照する図面においては、構成が簡略化または模式化して示されたり、一部の構成部材が省略されたりしている。また、各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。
 <実施形態1>
 図1は、実施形態1における表示装置10の構成例を示す図である。表示装置10は、バックライト1からの光を、複数の表示パネルを透過させて映像を表示する。そのため、表示装置10は、バックライト1、背面表示パネル2、前面表示パネル3、及びこれらを駆動する信号を供給するバックライト駆動回路4、パネル駆動回路5、6、並びに映像処理部7を備える。映像源8は、映像処理部7に表示用の映像信号を出力する。映像処理部7は、例えば、映像源8からの映像信号を、これらの駆動回路4、5、6用に映像処理して送りだす映像処理回路とすることができる。
 背面表示パネル2は、バックライト1に重ねて設けられる。前面表示パネル3は、背面表示パネル2のバックライト1と反対側に重ねて設けられる。この例では、これら背面表示パネル2と前面表示パネル3は、法線方向が共通であり、前面表示パネル3と背面表示パネル3の間は一定の空間がある。背面表示パネル2及び前面表示パネル3は、バックライト1からの光の透過量を画素ごとに調節する。すなわち、背面表示パネル2及び前面表示パネル3は、バックライト1からの光の透過、非透過を制御して表示を行うものである。
 背面表示パネル2及び前面表示パネル3のそれぞれは、例えば、ゲート信号を供給する複数のゲート線と、ゲート線と交差し、データ信号を供給する複数のデータ線を備える。ゲート線とソース線との各交点に対応する画素がマトリクス状に配置される。各画素には、ゲート線及びソース線に接続されるスイッチング素子が設けられる。複数のゲート線がゲート信号により順次選択される。選択されたゲート線に繋がる画素群に、データ線を介して、各画素における光透過量を示す電圧信号が印加される。これにより、各画素の光透過量が制御される。背面表示パネル2及び前面表示パネル3は、例えば、液晶ディスプレイ又はMEMSディスプレイ(Micro Electro Mechanical System Display)のパネルを用いることができる。
 本実施形態では、一例として、背面表示パネル2及び前面表示パネル3は、色を空間分割で表現するものとする。例えば、カラーフィルタ方式の液晶パネルがそれにあたる。この場合、背面表示パネル2及び前面表示パネル3では、R(赤)色の光を発光する画素、G(緑)色を発光する画素、及びB(青)色の光を発光する画素が並んで設けられる。なお、本実施形態では、一例として、前面表示パネル3と背面表示パネル2は、同じ面積、同じ解像度で、パネル面の法線方向が等しい構成としている。
 バックライト1は、少なくとも赤、青、緑の波長スペクトルをもつ面光源とすることができる。例えば、白色LEDや冷陰極管等を光源とすることができる。バックライト1には、これらを面内に敷き詰めて面光源とする、いわゆる直下型面光源や、これらをバー状にして発光面の一片ないしは複数の辺から入光させ、光学シートによって発光面に光を取りだすエッジ型面光源がある。
 パネル駆動回路5、6は、映像処理部7の出力に従い、背面表示パネル2、前面表示パネル3へ駆動信号を出力する。パネル駆動回路5、6は、例えば、ゲート線にゲート信号を供給するゲートドライバと、データ線にデータ信号を供給するソースドライバを含むことができる。
 バックライト駆動回路4は、映像処理部7で処理された映像信号に基づく信号を受けて、バックライトへ駆動信号を出力する。バックライド駆動回路4は、例えば、バックライトを駆動するドライバと、このドライバへの信号を生成する信号生成回路を含む構成とすることができる。信号生成回路は、映像処理部7からパネル駆動と同期した信号を受信してドライバを駆動するための信号を生成する。ドライバは、生成された信号を受けてバックライトを駆動する。
 本実施形態における表示装置10では、バックライト1からの光が背面表示パネル2及び前面表示パネル3を通る。これらの表示パネル2、3を透過した光を視聴者Aが見る。バックライト1、前面表示パネル3及び背面表示パネル2は表示面が平行になるように配置され、前面表示パネル3と背面表示パネル2の間は一定の空間がある。すなわち、前面表示パネル3の法線と背面表示パネル2の法線は同じ方向となっている。これにより、視聴者Aは、前面表示パネル3による前面表示と背面表示パネル2による背面表示の距離感の差を感じることができる。
 前面表示パネル3が表示する映像は、表示面上で動的に設定可能な表示領域D2と透過領域T2を含むことができる。表示領域D2では、バックライト1から光の透過量(又は光の遮断)を画素ごとに制御することで、視聴者Aから見て前面表示パネル3の表示面に表示物が見えるように画像が表示される。透過領域T2は可能な限りバックライト1からの光を透過させることで、視聴者Aは前面表示パネル3越しに、背面表示パネル2による背面表示を見ることができる。背面表示パネル2で表示される画像も、同様に表示領域D1、透過領域T1を含むことができる。
 映像処理部7は、背面表示パネル3に表示すべき映像を示す背面映像信号と、前面表示パネル3に表示すべき映像を示す前面映像信号とを映像源から受け付け、これらの信号を処理して、バックライト駆動回路4、及びパネル駆動回路5、6へ出力する。
 図2は、映像処理部7の構成例を示す機能ブロック図である。図2に示す例では、映像処理部7は、前面映像処理部11、背面映像処理部12、及び、バックライトデータ生成部13を備える。映像源8は、前面表示パネル3用及び背面表示パネル2用に、例えば、60fpsのフルカラーの前面映像信号F1及び背面映像信号B1を出力する。映像源8は、特に限定されないが、映像源8の例として、チューナー、映像再生機、汎用コンピュータ等の表示装置10の外部機器等が挙げられる。
 前面映像信号F1は、前面表示パネル3に表示すべき映像の画素ごとの光透過量の画素値を含む。背面映像信号B1は、背面表示パネル2に表示すべき映像の画素ごとの光透過量を示す画素値を含む。前面映像信号F1及び背面映像信号B1の画素値は、例えば、各画素の表示階調値(輝度値)を8bitで表したデータとすることができる。本実施形態では、各画素が発光する色(例えば、R(赤)、G(緑)、B(青)のいずれかの色)がカラーフィルタにより設定されている。そのため、各画素の画素値は、複数の色(RGB)のうちいずれかの色の階調を示す値となる。この各色の階調値(輝度値)により、画素における各色の光の透過量が制御される。このように、画素値は、画素における複数の色(RGB)それぞれの光透過量に対応した値とすることができる。
 前面映像処理部11は、映像源8から前面映像信号F1を受け、前面表示パネル3のパネル駆動回路6及び背面映像処理部12に前面映像信号F1を出力する。前面映像処理部11は、例えば、前面映像信号F1の階調値を、パネル駆動回路6にあう形式に変換して出力することもできる。また、前面映像処理部11は、パネル駆動回路6の動作タイミングを示す信号を生成し、パネル駆動回路6へ出力することもできる。
 背面映像処理部12は、映像源8から背面映像信号B1を、前面映像処理部11から前面映像信号F1を受け、映像処理を行い、背面表示パネル2のパネル駆動回路5に背面生成映像信号BG1を出力する。背面映像処理部12は、背面映像信号B1が示す映像の画素値のうち、調整対象領域における画素の画素値を修正して背面表示パネル2のパネル駆動回路5へ出力することができる。調整対象領域は、例えば、入力した背面映像信号B1及び前面映像信号F1に基づいて決定することができる。また、修正後の画素値も、入力した背面映像信号B1及び前面映像信号F1を基に決定することができる。
 例えば、背面映像処理部12は、背面映像信号F1が示す映像の表示領域D1であって前面映像信号F1が示す映像の表示領域D2と表示面に垂直な方向において重なる領域を調整対象領域とすることができる。
 なお、映像処理部7では、映像中の各画素の表示階調値により、表示領域を特定することができる。例えば、R、G、Bが全て最大値(透過量が最大であることを示す値)である画素の領域は透過領域と判断し、その他の領域は表示領域と判断することができる。また、上記のようなR、G、B全てが最大値の場合以外に、例えば、特定の表示階調値が透過領域であるとして、予めシステムに登録することもできる。
 調整対象領域が決定すると、背面映像処理部12は、背面表示パネル2の調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前面表示パネル3の対応画素の光透過量とを合わせると、前面映像信号F1の対応画素の画素値が示す光透過量となるように調整対象領域の画素の画素値を修正する。
 一例として、背面映像処理部12は、背面映像信号B1の調整対象領域の画素値を、光透過量が最大となる値に修正することができる。図3は、この処理の具体例を説明するための図である。この例では、背面映像処理部12は、入力された背面映像信号B1に対し、視聴者Aから見て、前面映像信号F1の映像の表示領域D2を、背面映像信号B1の映像における表示領域D1に射影した領域D12、D13を透過領域にする処理を行う。背面映像処理部12は、こうして生成した映像を、背面生成映像信号BG1としてパネル駆動回路5に出力(送信)する。以上の処理を行うことにより、視聴者Aは前面表示パネルに表示された映像の色を正しく見ることができる。
 バックライトデータ生成部13は、入力された映像信号に従って、バックライトデータを生成し、バックライト駆動回路に生成したデータを出力する。例えば、バックライトデータ生成部13は、前面映像信号F1と背面生成映像信号BG1を入力し、前面映像信号F1の映像及び背面生成映像信号BG1を表示するためのバックライト点灯のタイミングを示すデータBL1を、バックライトデータとして生成することができる。
 <実施形態2>
 図4は、実施形態2における表示装置10aの構成例を示す図である。実施形態1の表示装置1は、背面表示パネル2及び前面表示パネル3は、各画素が複数の色(例えば、RGB)のうちいずれか色を表示する構成であるのに対して、本実施形態の表示装置10aでは、1つの画素が、複数の色(例えば、RGB)を所定期間に時分割で表示する構成である。背面表示パネル2a及び前面表示パネル3aは、いわゆるフィールドシーケンシャル駆動により色を表現するものである。背面表示パネル2a及び前面表示パネル3aは、例えば、液晶パネル又はMEMSディスプレイのパネルを用いることができる。
 バックライト1aは、少なくとも赤、青、緑の波長スペクトルをもつ面光源であり、赤、青、緑の点灯を独立に制御できるものである。バックライト1aは、例えば、RGBの点灯を個別に制御可能なLED21を面内に敷き詰めて面光源とする、いわゆる直下型面光源とすることができる。或いは、これらLED21をバー状にして発光面の一辺又は複数の辺から入光させ、光学シートによって発光面に光を取りだすエッジ型面光源でバックライト1aを構成することもできる。
 フィールドシーケンシャル駆動は、例えば、複数色からなるカラー画像を表示するための1フィールドを少なくとも2分割したサブフィールド毎に、液晶表示パネルの複数の画素行を第1行から順次選択して、これらの行の画素に上記複数色のうちの1色の画素値データを書込み、サブフィールド毎に、表示パネルに書込んだ画素値データに対応する色の照明光をバックライトから出射させる処理を含む。
 図5は、図4の映像処理部7aの構成例を示す機能ブロック図である。映像処理部7aは、サブフィールド生成部14、15をさらに備える。前面映像処理部11は、映像源8から受け付けた前面映像信号F1を、サブフィールド生成部14及び背面映像処理部12へ出力する。背面映像処理部12は、映像源8から背面映像信号B1を、前面映像処理部11から前面映像信号F1を受け、映像処理を行い生成した背面生成映像信号BG1を、サブフィールド生成部15に出力する。背面映像処理部12の上記映像処理は、実施形態1と同様とすることができる。例えば、図3で説明した処理と同様の処理を実行することができる。
 サブフィールド生成部14、15は、前面映像信号F1又は背面生成映像信号BG1を受けて、フィールドシーケンシャル駆動用のサブフィールド画像FS1、BS1を生成する。また、サブフィールド生成部14、15は、パネル駆動用の同期信号の生成と、各サブフィールドにおけるバックライト制御信号を生成する。サブフィールド画像FS1、BS1は、パネル駆動回路5a、6aに、バックライト制御信号はバックライトデータ生成部13aに出力される。バックライトデータ生成部13aは、入力されたバックライト制御信号に従って、バックライトデータを生成し、バックライト駆動回路4aに生成したデータを出力する。
 サブフィールド生成部15は、背面映像処理部12によって生成された背面生成映像信号BG1を用いてサブフィールド画像を生成する。背面生成映像信号BG1においては、背面表示パネル2aの調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前面表示パネル3aの対応画素の光透過量とを合わせると、前面映像信号F1の対応画素の画素値が示す光透過量となるように調整対象領域の画素の画素値が修正されている。そのため、背面生成映像信号BG1を基に生成されるサブフィールド画像BS1も、調整対象領域の画素の画素値が修正されたものとなる。その結果、前面表示パネル3aに表示される映像は、背面表示パネル2aの色に影響されず、前面映像信号F1で意図された色を表示することができる。
 図6A及び図6Bは、上記実施形態1、2における効果の一例を説明するための図である。図6Aは、背面映像信号B1を修正しない場合の表示態様の例を示す図であり、図6Bは、図3で説明した処理により背面映像信号B1を修正した場合の表示態様の例を示す図である。図6A、図6Bに示す例において、前面表示パネル3の画素P1、P2は、光透過量を制御して色を表示する表示領域D2であり、画素P3は、光透過量をなるべく高くして光を透過させる透過領域T2である。背面表示パネル2の画素P4~P6は、いずれも表示領域D1である。
 図6Aの背面表示パネル2の画素P4~P6は、例えば、緑(G)及び青(B)の成分の光透過を遮断し、赤(R)の光を透過させるように画素値が設定されているとする。前面表示パネル2の画素P1では緑と青を遮断して赤の光を透過するように画素値が設定され、画素P2では赤と緑を遮断して青の光を透過するように画素値が設定されているとする。
 図6A及び図6Bに示す場合、視聴者から見て前方の表示面(前面表示パネル3)に表示する表示物と後方の表示面(背面表示パネル2)に表示する表示物が視聴者の視線上で重なる。このとき、図6Aの例では、背面表示パネル2の画素P4~P6では、緑と青の光透過が遮断されるので、前面表示パネル3で緑と青の光を透過させるよう画素値を設定していても、緑と青の光は透過しない。このように、背面映像信号の修正を行わない場合、背面表示パネル2で非透過に設定された色の光を、前方表示パネル3の対応する画素で表示させることができなくなる。そのため、表示品位が低くなる。
 これに対して、図6Bに示す例では、背面表示パネル2の表示領域において、前面表示パネル3の表示領域と重なる画素P4、P5で、光透過量を最大にするよう背面映像信号が修正されている。これにより、前方の表示面の表示に不透明な部分がある場合、前方の表示面の不透明領域を、視聴者の視線方向に沿って後方の表示面に射影した部分の表示を透明にすることができる。その結果、前方の表示面に表示色を出すことができる。このように、本実施形態では、複数枚の表示パネルを同軸上に平行に重ね、同軸上で最背面に位置する光源で全てのパネルにフルカラー表示を行う表示装置において、表示品位の低下を抑えることが可能になる。
 <実施形態3>
 本実施形態は、映像処理部7による処理の変形例である。上記実施形態1、2では、背面映像信号B1の表示領域D1において、前面映像信号F1の表示領域D2と重なる部分の画素値は、透明(光透過量が最大)となるよう修正されていた。これに対して、本実施形態では、背面映像処理部12は、前面表示パネル3の対応画素において、光透過量が所定量より少ない画素(例えば、透過量が最大の画素)がある場合、当該画素に対応する背面表示パネル2の調整対象領域の画素値を修正しないで、背面映像信号B1の示す画素値のまま出力する処理を実行する。これにより、前方表示面の画素の透過量が少ない場合は、この画素と重なる背面映像信号B1の表示領域D1の画素値は修正されずにそのまま出力される。
 例えば、前面表示パネル3及び背面表示パネル2の各々において、表示する色の色座標が、R:0~1, G:0~1, B:0~1(本例では、光透過量が最大のときの色を示す値を1とし、光透過量が最小のときの色を示す値を0とする)の範囲としたときに、前面映像信号F1の映像における1つの画素の色を(Rf, Gf, Bf)、その画素に対応する背面映像信号B1の映像への射影部分の色を(Rb, Gb, Bb)とすると、視聴者が見る前面表示パネル3の該当点の表示色は、その重ね合わせになるので、(Rf * Rb, Gf * Gb, Bf * Bb)となる。つまり、前面映像信号F1の映像の色を視聴者に正確に表示するには、例えば、下記式(1)~(3)を満たせばよい。
 Rf = Rf * Rb   ――――(1)
 Gf = Gf * Gb   ――――(2)
 Bf = Bf * Bb   ――――(3)
 Rb=Gb=Bb=1とすることにより、上記式(1)~(3)を満たすようにしたのが上記実施形態1、2である。ここで、例えば、Rf = 0 のときは、Rbは1でなくてもよい。このとき、Rbは、そのまま背面映像信号B1の画素値が示す色を出力するようにすることができる。これにより、例えば、視聴者の視線が少しずれて、背面表示パネル2の映像において、その部分が見えた場合であっても、元々の背面映像信号B1の示す画素値の成分が残っているので、不自然さを軽減することができる。
 図7は、このように、背面映像信号B1の画素値の色を修正せずに出力した場合の映像の例を示す図である。図7に示す例では、前面映像信号F1の表示領域D21では、Rf = 0すなわち赤の光非透過、表示領域D22では、Gf = 0すなわち緑の光非透過である。この場合、背面映像生成信号BG1の映像の表示領域D1において、前面映像信号F1の表示領域D22と重なる領域D12では、Gb = 1(緑の光を最大透過)と修正せず、背面映像信号B1の画素値を維持している。同様に、背面映像生成信号BG1の映像の表示領域D1において表示領域D21と重なる領域D13では、Rb = 1(赤の光最大透過)と修正せず、背面映像信号B1の画素値を維持している。
 上記の場合の、映像処理部7の処理の流れの一例を説明する。映像処理部7の背面映像処理部12は、まず、背面映像信号B1において調整対象領域を特定する。調整対象領域の特定は、例えば、上記実施形態1と同様に、前面映像信号F1の映像における表示領域D21、D22と、背面映像信号B1の映像における表示領域D1とが重なる部分とすることができる。背面映像処理部12は、前面映像信号F1において、調整対象領域の各画素に対応する対応画素(図7の例では表示領域D21、D22の画素)の画素値が0(光の透過量が最小となる値)であるか否かを判断する。対応画素において、前面映像信号F1の画素値が0である画素がある場合、背面映像処理部12は、その画素に対応する背面映像信号B1の画素(図7の例では、D12、D13)の画素値は修正しないでそのままとすることができる。背面映像処理部12は、画素値が0でない対応画素に対応する背面映像信号B1の画素の画素値は、例えば、1(光の透過量が最大となる値)に修正することができる。
 これにより、前面表示パネル3で光透過量が最大(すなわち、画素値=0)となる画素と重なる背面表示パネル2の画素は、透明にせず、背面映像信号B1が示す画素値を維持することができる。なお、背面映像処理部12は、対応画素の画素値が0(光の透過量が最小となる値)であるか否かの判断の代わりに、対応画素の画素値が示す透過量が所定量より少ないか否かを判断することもできる。これにより、前面表示パネル3においてある程度光透過量が少ない画素と重なる背面表示パネル2の画素も透明にせず、元の背面映像信号B1の示す画素値を維持することができる。
 本実施形態によれば、前面表示パネル3の映像における表示領域の背面表示パネル2への射影領域、すなわち調整対象領域の色は、前面表示パネル3の色が重畳されたものとすることができる。
 実施形態1~3のように、複数の表示パネルが重なる構成においては、前面表示パネル3においては、背面表示パネル2の射影領域の表示色にない色を表示することはできない。例えば、背面表示パネル2の全面に赤が表示された場合、前面表示パネル3には、青や緑を表示することはできない。上記実施形態1及び2では、背面表示パネル2の調整対象領域において全ての色の光透過を最大にすることで、前面表示パネル3で全ての色を表示可能としていた。この場合、背面表示パネルの調整対象領域は真っ白になるが、視聴者からは、前面表示パネル2に遮られて見えないようになっている。しかし、視聴者の視線が表示面に垂直な方向からずれると、背面表示パネル2の調整対象領域の一部が視聴者に見える場合がある。このような場合、不自然な表示となる。これに対して、本実施形態では、背面表示パネル2の表示色に加えて、前面表示パネル3に必要な色だけ出すことができる。そのため、ずれた視線に対しても、不自然な表示を抑えることができる。
 <実施形態4>
 本実施形態は、映像処理部7による処理の他の変形例である。実施形態1~3では、映像処理部7が、前面映像信号F1と背面映像信号B1のうち背面映像信号B1を修正する構成であるが、映像処理部7は、背面映像信号B1及び前面映像信号F1を修正する構成であってもよい。
 図8は、実施形態4における映像処理部7bの構成例を示す機能ブロック図である。図8に示す例では、映像処理部7bにおいて、背面映像処理部12は、映像源8から受け付けた背面映像信号B1を前面映像処理部11へ出力する。前面映像処理部11は、前面映像信号F1及び背面映像信号B1を受け付けて、これらの映像信号を処理して、前面映像生成信号FG1を生成し、サブフィールド生成部14へ出力する。
 前面映像処理部11は、例えば、背面映像信号B1が示す映像における調査対象領域の画素に対応する対応画素の画素値を、光透過量が最大となる値に修正する。このように修正した信号は、前面映像生成信号FG1として、サブフィールド生成部14へ出力される。この場合、背面映像処理部12は、背面映像信号B1の調整領域の画素値を、前面映像信号F1の対応画素の画素値と同じ値になるよう修正する。修正された信号は、背面映像生成信号BG1として、サブフィールド生成部15へ出力される。
 Rf = Rf * Rb   ――――(1)
 Gf = Gf * Gb   ――――(2)
 Bf = Bf * Bb   ――――(3)
 これにより、例えば、実施形態3でも述べた上記式(1)~(3)を満たすような背面映像生成信号BG1及び前面映像生成信号FG1を生成することができる。上記式(1)を例に挙げると、前面映像処理部11が前面映像生成信号FG1を生成する処理は、式(1)の右辺のRfを1に修正することに相当し、背面映像処理部12が背面映像生成信号BG1を生成する処理は、式(1)の右辺のRbをRfに変更する処理に相当する。これらの処理により、式(1)の右辺は、左辺Rfに等しくなる。このようにすることで、視聴者の視線がずれて背面表示パネル2の修正部分が見えたときでも、上記実施形態3の場合よりも、背面映像信号B1の成分が強く残るため、不自然さをより軽減できる。
 図9は、上記のように、前面映像信号F1の表示領域D21、D22の画素値を透過量が最大になるように修正し、背面映像信号B1の対応する画素値を前面映像信号F1の画素値と同じなるよう修正した場合の映像の例を示す図である。図9に示す例では、前面映像信号F1では、表示領域D21において赤の光透過率 Rf = 0.5に、D22において緑の光透過率 Gf = 0.5に設定されているとする。この場合、前面映像処理部11は、表示領域D21における赤の成分Rfを0.5から1(透過量が最大)に変更し、背面映像処理部12は、表示領域D21に対応する背面映像信号B1の領域D13の画素の赤色の画素値Rbを元のRfの値0.5に変更している。同様に、前面映像信号F1の表示領域D22における緑の成分Gfを0.5から1(透過量が最大)に変更し、表示領域D22に対応する背面映像信号B1の領域D12の画素の緑色の画素値Gbを元のGfの値0.5に変更している。これにより、前面映像生成信号FG1の表示領域D22における赤の光の透過量は最大(1)になり、背面映像生成信号BG1における対応する領域D12の赤の光の透過量は、元の前面映像信号F1の示す領域D22における赤の成分の透過量(0.5)となっている。同様に、前面映像生成信号FG1の表示領域D21における緑の光の透過量は最大(1)になり、背面映像生成信号BG1における対応する領域D13の緑の光の透過量は、前面映像信号F1の示す領域D21における緑の成分の透過量(0.5)となっている。
 <実施形態5>
 本実施形態は、調整対象領域の設定の変形例である。図10は、実施形態5における調査対象領域の一例を説明するための図である。図10に示す例では、背面表示パネル3の映像において設定される調整対象領域D120は、前面表示パネル3に表示される映像の表示領域D2よりも広い領域となっている。
 上記の実施形態1~4では、前面表示パネル3の映像の表示領域D2と、背面表示パネル2の映像の表示領域D1とが、表示面に垂直な方向において重なる領域を調整対象領域としていた。すなわち、前面表示パネル3に表示される映像の表示領域D2を表示面に垂直な方向に沿って背面表示パネル2の映像へ射影した領域と表示領域D1とが重なる領域を調整対象領域としていた。
 これに対して、本実施形態では、表示領域D2を表示面に垂直な方向に沿って背面表示パネル2の映像へ射影した領域が拡大して設定される。すなわち、映像処理部7は、調整対象領域を、対応画素の領域より広い範囲に設定する。このようにすることで、視聴者の視線が多少ずれた場合でも、前面表示は破綻なく表示することが可能になる。
 調整対象領域の設定は、映像処理部7において、背面映像処理部12が、入力された背面映像信号B1を修正する箇所を特定する処理として実行される。例えば、背面映像処理部12は、背面映像信号B1の表示領域と、前面映像信号F1の表示領域とが重なる領域を拡大した領域を調整対象領域とすることができる。具体的には、背面映像処理部12は、背面映像信号B1で示される映像の表示領域D1と、前面映像信号F1で示される映像の表示領域D2とが重複する領域を特定する。この重複する領域を画像処理により拡大変換した領域を、調整対象領域に決定することができる。
 <実施形態6>
 本実施形態における表示装置は、カメラ等の撮像部を用いて視聴者の目の位置を検出し、検出した目の位置を用いて、調整対象領域及び対応画素を決定する形態である。図11は、実施形態6における表示装置10cの構成例を示す図である。表示装置10cは、視聴者Aを撮影する撮像部9と、撮像部9が撮影した視聴者Aの画像に基づいて、視聴者Aの目の位置を検出する画像処理部16とを、さらに備える。映像処理部7cは、画像処理部16で検出された目の位置を用いて、調整対象領域及び対応画素を決定する。
 撮像部9は、例えば、前面表示パネル3に固定されたカメラとすることができる。画像処理部16は、撮像部9で撮影された視聴者Aを含む画像を処理して、視聴者Aの目の位置を算出する。例えは、画像処理部16は、撮影された画像中に写っている人間の目を、パターンマッチング等を用いて認識する。画像処理部16は、認識した目の画像における位置及び大きさに基づいて、目の位置を算出する。目の位置は、例えば、三次元空間における座標値により表すことができる。画像処理部16は、例えば、前面表示パネル3の表面に対する視聴者の目の相対位置を検出してもよい。
 映像処理部7cは、画像処理部16が検出した目の位置と、前面映像信号F1が示す前面表示パネル3の映像、及び背面映像信号B1が示す背面表示パネル2の映像に基づいて、調整対象領域を決定することができる。例えば、前面表示パネル3に表示される映像の表示領域D2と、目の位置とから、背面表示パネル2に表示される映像の表示領域D1における調整対象領域を決定することができる。すなわち、映像処理部7は、画像処理部16から視聴者Aの目の位置情報を取得し、目の位置から、前面表示パネル3の映像の表示領域を背面表示パネル2の表示面に投射した射影部分を算出し、これを調整対象領域とすることができる。具体的には、前面表示パネル3に表示された表示領域D2と目の位置を結ぶ線が背面表示パネル2の表示面と交差する画素を特定し、特定された画素が表示領域D1内であれば、この画素を調整対象領域に含めることができる。
 このように、視聴者の目の位置を用いて調整対象領域を決定することで、観察者の視線が動いても、前面表示パネル3の表示を破綻させず、背面表示パネル2の表示も自然な形で表示することが可能になる。
 なお、映像処理部7cによる目の位置を用いた調整対象領域の決定処理は、上記例に限られない。例えば、映像処理部7cは、認識された目の位置から、視聴者Aの視線方向を計算し、これを用いて調査対象領域を決定することができる。例えば、計算された視線方向において、背面表示パネル2に表示される映像中の調査対象領域及び前面表示パネル3に表示される映像の表示領域が互いに重なるように調査対象領域を設定することができる。
 上記実施形態1~6において、映像処理部7は、パネル駆動回路5、6及びバックライト駆動回路4に電気的に接続された回路により形成することができる。例えば、バックライト1、前面表示パネル3、背面表示パネル2の少なくとも1つに設けられる半導体チップにより映像処理部7を実現することができる。或いは、映像処理部7の処理は、プロセッサがプログラムを実行することにより実行されてもよい。
 なお、調整対象領域の決定方法は、上記実施形態1~6に挙げた例に限られない。例えば、前面表示パネル3の映像における透明でない画素に対応する背面表示パネル2の映像における画素は、全て調整対象領域とすることができる。
 また、上記実施形態1~6は、表示パネルが2枚の形態であるが、表示装置は、表示パネルを3枚以上備えてもよい。図12は、表示パネルを3枚以上備える表示装置の構成例を示す図である。図12に示す例では、背面表示パネル2のバックライト1と反対側、すなわち視聴者側に、第1前面表示パネル3-1及び第2前面表示パネル3-2が重ねて設けられる。さらに、映像処理部7からの信号に基づいて第1前面表示パネル3-1へ駆動信号を出力するパネル駆動回路6-1、及び、第2前面表示パネル3-2へ駆動信号を出力するパネル駆動回路6-2が設けられる。
 映像処理部7は、第1前面表示パネル6-1で表示する映像の画素値を含む第1前面映像信号と、第2前面表示パネル6-2で表示する映像の画素値を含む第2前面映像信号と、背面映像信号とを、映像源8から受信する。映像処理部7は、これらの第1前面映像信号、第2前面映像信号、及び背面映像信号に基づいて、背面映像信号の画素値を修正する。映像処理部7は、例えば、背面映像信号が示す映像において、第1前面映像信号の映像の表示領域D2と重なる領域D12及び第2前面映像信号の映像の表示領域D3と重なる領域D13を、調整対象領域とすることができる。
 映像処理部7は、例えば、背面表示パネル2の調整対象領域D12の画素の光透過量と、第1前面表示パネル6-1の対応画素の領域D2の光透過量とを合わせると、前面映像信号が示す領域D2の画素値に対応する光透過量となるように調整対象領域D12の画素の画素値を修正することができる。調整対象領域D13の画素値も同様に修正することができる。第1前面映像信号の映像の表示領域と、第2前面映像信号の映像の表示領域とが重なる場合は、映像処理部7は、この重なる領域における光透過量が、最も視聴者側の第2前面映像信号が示す画素値に対応する光透過量となるように、背面映像信号及び第1前面映像信号の画素値を修正することができる。
 なお、図12に示す例では、複数の前面表示パネルが設けられる例であるが、背面表示パネルを複数設けることもできる。この場合、映像処理部7は、例えば、複数の背面表示パネルの背面映像信号それぞれにおいて、各背面表示パネルより前面にあるパネルの映像の表示領域に対応する領域を調整対象領域として、画素値を修正することができる。
1 バックライト
2 背面表示パネル
3 前面表示パネル
7 映像処理部
10 表示装置

Claims (9)

  1.  バックライトと、
     前記バックライトに重ねて設けられ、前記バックライトの光の透過量を画素ごとに調節する背面表示パネルと、
     前記背面表示パネルの前記バックライトと反対側に重ねて設けられ、前記背面表示パネルを透過した前記バックライトからの光の透過量を画素ごとに調節する前面表示パネルと、
     前記背面表示パネルに表示すべき映像の画素ごとの光透過量に対応する画素値を含む背面映像信号と、前記前面表示パネルに表示すべき映像の画素ごとの光透過量に対応する画素値を含む前面映像信号とに基づいて、前記背面映像信号が示す映像における調整対象領域の画素の画素値を修正して前記背面表示パネルへ出力する映像処理部を備え、
     前記映像処理部は、前記背面表示パネルの調整対象領域の画素の光透過量と、当該調整対象領域の画素と対応する位置にある前記前面表示パネルの対応画素の光透過量とを合わせると、前記前面映像信号が示す前記対応画素の画素値に対応する光透過量となるように前記調整対象領域の画素の画素値を修正して出力する、表示装置。
  2.  前記映像処理部は、前記背面映像信号の映像及び前記前面映像信号の映像それぞれにおいて、画素の光透過量を調整することにより画像が表示される表示領域と、画素に光を透過させる透過領域とを判断し、前記背面映像信号の映像の表示領域であって前記前面映像信号の映像の表示領域と重なる領域を前記調整対象領域とする、請求項1に記載の表示装置。
  3.  前記映像処理部は、前記背面映像信号の前記調整対象領域の画素値を、光透過量が最大となる値に修正する、請求項1又は2に記載の表示装置。
  4.  前記映像処理部は、前記対応画素において、前記前面映像信号の画素値が示す光透過量が所定量又は所定量より少ない画素がある場合、当該画素に対応する前記調整対象領域の画素値を修正しないで前記背面映像信号の示す画素値のまま出力する、請求項1又は2に記載の表示装置。
  5.  前記映像処理部は、前記背面映像信号の前記調整対象領域の画素値を、前記前面映像信号の前記対応画素の画素値と同じ値になるよう修正して前記背面表示パネルへ出力し、さらに、前記対応画素の光透過量が最大となるように前記前面映像信号の前記対応画素の画素値を修正して前記前面表示パネルへ出力する、請求項1又は2に記載の表示装置。
  6.  前記背面映像信号及び前記前面映像信号は、各画素について、複数の色の光透過量にそれぞれ対応する画素値を含み、
     映像処理部は、前記調整対象領域における各画素の複数の色それぞれの画素値を修正し出力する、請求項1~5のいずれか1項に記載の表示装置。
  7.  前記調整対象領域は、前記対応画素の領域より広い範囲に設定される、請求項1~6のいずれか1項に記載の表示装置。
  8.  視聴者を撮影する撮像部と、
     前記撮像部が撮影した前記視聴者の画像に基づいて、前記視聴者の目の位置を検出する画像処理部とをさらに備え、
     前記映像処理部は、前記画像処理部で検出された目の位置を用いて、前記調整対象領域を決定する、請求項1~7のいずれか1項に記載の表示装置。
  9.  前記背面表示パネル及び/又は前記前面表示パネルが、複数設けられた、請求項1~8のいずれか1項に記載の表示装置。
PCT/JP2015/080079 2014-10-30 2015-10-26 表示装置 WO2016068066A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014221647 2014-10-30
JP2014-221647 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016068066A1 true WO2016068066A1 (ja) 2016-05-06

Family

ID=55857405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080079 WO2016068066A1 (ja) 2014-10-30 2015-10-26 表示装置

Country Status (1)

Country Link
WO (1) WO2016068066A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122494A (ja) * 1985-11-22 1987-06-03 Ricoh Co Ltd 立体視装置
JPH08136884A (ja) * 1994-11-04 1996-05-31 Matsushita Electric Ind Co Ltd 3次元画像表示装置
JP2004192294A (ja) * 2002-12-11 2004-07-08 Nippon Telegr & Teleph Corp <Ntt> オブジェクト表示方法及びその実施装置
JP2008233534A (ja) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd 液晶表示装置
JP2009229896A (ja) * 2008-03-24 2009-10-08 Stanley Electric Co Ltd 液晶表示装置
WO2011083649A1 (ja) * 2010-01-05 2011-07-14 三洋電機株式会社 マルチレイヤディスプレイ装置、および画像処理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122494A (ja) * 1985-11-22 1987-06-03 Ricoh Co Ltd 立体視装置
JPH08136884A (ja) * 1994-11-04 1996-05-31 Matsushita Electric Ind Co Ltd 3次元画像表示装置
JP2004192294A (ja) * 2002-12-11 2004-07-08 Nippon Telegr & Teleph Corp <Ntt> オブジェクト表示方法及びその実施装置
JP2008233534A (ja) * 2007-03-20 2008-10-02 Sanyo Electric Co Ltd 液晶表示装置
JP2009229896A (ja) * 2008-03-24 2009-10-08 Stanley Electric Co Ltd 液晶表示装置
WO2011083649A1 (ja) * 2010-01-05 2011-07-14 三洋電機株式会社 マルチレイヤディスプレイ装置、および画像処理システム

Similar Documents

Publication Publication Date Title
JP5963002B2 (ja) マルチビュー無眼鏡立体映像表示装置とその最適視聴距離の制御方法
JP6061852B2 (ja) 映像表示装置および映像表示方法
US6970290B1 (en) Stereoscopic image display device without glasses
US20110007136A1 (en) Image signal processing apparatus and image display
JP6018057B2 (ja) 映像表示装置および映像表示方法
WO2012176445A1 (ja) 映像表示装置
JP2009080144A (ja) 立体映像表示装置および立体映像表示方法
JP2010273013A (ja) 立体表示装置および方法
JP2007171228A (ja) 画像表示システム
JP2007017768A (ja) 表示装置
KR101981530B1 (ko) 입체영상 표시장치와 그 구동방법
JP2011186224A5 (ja)
US20130127816A1 (en) Display apparatus and driving method thereof
KR20180006545A (ko) 표시 장치
KR20170002614A (ko) 디스플레이에 대한 구동 값들의 생성
US20110205625A1 (en) Passive eyewear stereoscopic viewing system with scanning polarization
TWI471607B (zh) 混合多工式立體顯示器及混合多工式立體影像之顯示方法
US9420269B2 (en) Stereoscopic image display device and method for driving the same
US9402072B2 (en) Signal processing device and video display device including the same
JP2014032338A (ja) 画像表示装置及び画像表示方法
US8952957B2 (en) Three-dimensional display apparatus
WO2016068066A1 (ja) 表示装置
KR20190124376A (ko) 입체 영상 표시 장치 및 그 구동 방법
US20140240626A1 (en) Autostereoscopic display system
US9137520B2 (en) Stereoscopic image display device and method of displaying stereoscopic image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15854025

Country of ref document: EP

Kind code of ref document: A1