WO2016067977A1 - 短絡素子及びこれを用いた補償回路 - Google Patents

短絡素子及びこれを用いた補償回路 Download PDF

Info

Publication number
WO2016067977A1
WO2016067977A1 PCT/JP2015/079602 JP2015079602W WO2016067977A1 WO 2016067977 A1 WO2016067977 A1 WO 2016067977A1 JP 2015079602 W JP2015079602 W JP 2015079602W WO 2016067977 A1 WO2016067977 A1 WO 2016067977A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
heating
circuit
electrode
circuit element
Prior art date
Application number
PCT/JP2015/079602
Other languages
English (en)
French (fr)
Inventor
貴史 藤畑
幸市 向
亨 柿沼
響子 新田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020167036230A priority Critical patent/KR102418683B1/ko
Priority to CN201580055637.3A priority patent/CN107077992B/zh
Publication of WO2016067977A1 publication Critical patent/WO2016067977A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material

Definitions

  • the present invention relates to a short-circuit element in which a heating resistor and a fuse element are provided on a substrate, and a compensation circuit that eliminates only abnormal parts in an electronic device using the short-circuit element.
  • LED lighting devices that use a large number of light emitting diodes (LEDs: Light Emitting Diodes) as light sources, even if some of the light emitting diodes fail, they can be used in series as a lighting device without any problems.
  • a short-circuit element is connected in parallel to each of the LED elements, and when the LED is abnormal, the short-circuit element is short-circuited at a predetermined voltage, and light-emitting diodes other than the failed light-emitting diode continuously emit light (for example, , See Patent Document 1).
  • a battery pack incorporates a number of protection circuits such as overcharge protection and overdischarge protection, It has a function of shutting off the output of the battery pack in a predetermined case.
  • Some types of protection elements perform overcharge protection or overdischarge protection operation of the battery pack by turning on / off the output using an FET switch built in the battery pack.
  • FET switch When the FET switch is short-circuited for some reason, a lightning surge or the like is applied and an instantaneous large current flows, or the output voltage drops abnormally due to the life of the battery cell, or excessively abnormal Even when the voltage is output, the battery pack and the electronic device must be protected from accidents such as ignition.
  • a protection element made of a fuse element having a function of cutting off the current path by an external signal is used.
  • a soluble conductor is connected between the first electrode, the heating element extraction electrode, and the second electrode on the current path, and the current path Some of the fusible conductors on the current path are fused by self-heating due to overcurrent or by a heating element provided inside the protection element.
  • the current path is interrupted by collecting the molten liquid soluble conductor on the conductor layer connected to the heating element (see, for example, Patent Document 2).
  • a battery pack containing a plurality of battery cells used as a driving power source for an electric vehicle or the like a plurality of connected battery cells in the battery pack are separated from the current line, and the separated battery cells are separated.
  • a circuit portion corresponding to is short-circuited, a current interruption element or a battery cell short-circuit element is used (see, for example, Patent Document 3).
  • the applicant of the present invention operates a heating element by a signal from the outside as a short-circuit element that can correspond to the LED lighting device disclosed in Patent Document 1, and melts a soluble conductor.
  • a short-circuit element composed of a fuse element having a function of interrupting a current path and a function of short-circuiting a circuit (see, for example, Japanese Patent Application Nos. 2013-20756, 2013-23171, and 2013-24643). ).
  • the short-circuit element basically includes a heating element that generates heat when energized, a soluble conductor that is melted by heat generation of the heating element, a short-circuit part that is short-circuited by melting of the soluble conductor, and the soluble conductor.
  • a fuse portion for interrupting the current path by melting and stopping energization of the heating element is provided.
  • This short-circuit element is mounted on a circuit having an abnormality detection function, and in principle operates as follows. (1) It operates by an external signal when an abnormality is detected, and the heating element generates heat when energized. (2) The soluble conductor is melted by the heat generated by the heating element, and the short circuit portion is short-circuited. (3) The heat generation of the heating element melts the fusible conductor, interrupts the current path of the fuse portion, and stops energization of the heating element.
  • the short-circuit part and the fuse part are heated in the same way by one heating element, the fusible conductors of the short-circuit part and the fuse part melt at the same time, and there is little time difference between the shut-off operation and the short-circuit operation.
  • the short circuit operation of (2) may fail, for example, the conduction resistance after the short circuit becomes unstable.
  • the shut-off operation and the short-circuit operation are performed by simultaneously energizing two heaters with a switch using a single power source. Although there is no mention of the time difference until each operation is completed, the currents of the two heaters continue to flow after the operation is completed, and it is necessary to detect the completion of the operation with another detection circuit and switch it off again. is there.
  • the object of the present invention is to realize a more reliable short circuit operation and stabilization of the conduction resistance after a short circuit, and to reliably form a bypass path, and an object of the present invention is to provide a compensation circuit using this.
  • the fusible conductor for short-circuiting the short-circuit portion in the signal path and the fusible conductor of the fuse portion in the heater path are separated from each other, and each fusible portion of the short-circuit portion and the fuse portion is subjected to heating by heater energization.
  • the meltable conductor melting events of the short circuit part and the fuse part are made independent, and the time difference from the melting of the fusible conductor of the short circuit part to the melting of the fusible conductor of the fuse part, that is, the short circuit
  • the short-circuiting and fusing function expression is stabilized, and a reliable short-circuit operation as a short-circuiting element is realized.
  • the present invention is a short-circuit element, and includes an insulating substrate, a heat generating portion formed of a heating resistor provided on the insulating substrate, and a first electrode and a second electrode provided adjacent to each other on the insulating substrate.
  • a short-circuit portion comprising a first soluble conductor that melts and short-circuits the first electrode and the second electrode by being heated by the heat generated by the heat-generating resistor, and the insulating substrate has the above-mentioned
  • a third electrode provided adjacent to the first electrode and electrically connected to the heating resistor, and connected in series with the heating resistor between the first electrode and the third electrode
  • a second soluble conductor that forms a current path for a current that flows through the heating resistor by being provided in a heated state and that melts by being heated by the heat generated by the heating resistor and blocks the current path;
  • the above heat generation The heat generated by the above-described heating resistor, characterized by having a a heating amount was made different structure such that
  • the heat generating portion may have a structure in which the heating amount is made different using, for example, two heat generating resistors having different heat generation amounts.
  • the heat generating part has a difference in heating amount so as to melt the first soluble conductor faster than the second soluble conductor by using two heat generating resistors having different resistance values. It can be set as the structure.
  • the two heating resistors having different resistance values can be formed by using different pattern widths.
  • the two heat generating resistors having different heat generation amounts can be formed of resistance materials having different specific resistances.
  • the heating unit has a difference in the heating amount by using, for example, one heating resistor having a short-circuiting heating region and a fuse heating region having different heating amounts. It is possible to have a structured.
  • the heat generation amount of the short-circuit heating region and the fuse heating region may be different.
  • the heating area for the short-circuit portion is disposed immediately below the short-circuit portion, and the heating area for the fuse portion is shifted from directly below the fuse portion, so that the heating amount is different. It can be set as the structure which gave.
  • the heating resistor has a difference in the heating amount by making the distance from the short-circuit heating region to the short-circuit portion shorter than the distance from the fuse heating region to the fuse portion. It can be a structure.
  • the heat-generating part is composed of, for example, one heat-generating resistor provided close to the short-circuit part, and the first of the short-circuit parts close to the heat-generating resistor. It is possible to have a structure in which the amount of heating is different so that one soluble conductor is melted faster than the second soluble conductor.
  • the first soluble conductor that short-circuits the first electrode and the second electrode is at least one electrode of the first electrode and the second electrode. It can be provided above.
  • the present invention is a compensation circuit for forming a bypass current path that bypasses the electronic component in the event of an abnormality of the electronic component mounted on the circuit having an abnormality detection function, the shorting element comprising an insulating substrate,
  • the heat generating portion formed of the heat generating resistor provided on the insulating substrate, the first and second electrodes provided adjacent to each other on the insulating substrate, and the heat generated by the heat generating resistor are melted to be melted.
  • the first electrode and the second electrode are short-circuited by a first soluble conductor that short-circuits the first electrode, and the insulating substrate is provided adjacent to the first electrode.
  • a third electrode that is electrically connected; and a current that flows through the heating resistor by being provided in series with the heating resistor between the first electrode and the third electrode.
  • Configure the path and generate heat A fuse part composed of a second soluble conductor that is melted by being heated by the heat generated by the antibody and interrupts the current path, and the heat generating part is heated by the heat generating resistor. It has a structure in which the amount of heating is different so that the soluble conductor is melted faster than the second soluble conductor, and the short-circuit portion is connected in parallel to the electronic component.
  • the bypass current path may be formed by a bypass resistor corresponding to an internal resistance of the electronic component connected in series to the short-circuit element and the short-circuit element.
  • the fusible conductor for short-circuiting the short-circuit portion in the signal path and the fusible conductor of the fuse portion in the heater path are separated from each other, and each fusible portion of the short-circuit portion and the fuse portion is subjected to heating by heater energization.
  • a short-circuit element that realizes more reliable short-circuit operation and stabilization of the conduction resistance after the short-circuit, and can reliably form a bypass path, and a compensation circuit using the short-circuit element Can be provided.
  • FIG. 1A and 1B are diagrams showing the structure of a short-circuit element to which the present invention is applied.
  • FIG. 1A is a plan view of the short-circuit element
  • FIG. 1B is a cross-sectional view taken along line AA of the short-circuit element in FIG. 2A and 2B are circuit diagrams showing an equivalent circuit configuration of the short-circuit element.
  • FIG. 2A shows a circuit state when the short-circuit element is not operated
  • FIG. 2B shows a circuit state when the short-circuit element is operated.
  • FIG. 3 is a plan view of a short-circuit element including a heat generating portion using two heat generating resistors having different heat generation amounts as heat generating resistors.
  • FIG. 4A and 4B are plan views showing the operating state of the short-circuit element, and FIG. 4A shows a state in which the first electrode and the second electrode are short-circuited due to melting of the first soluble conductor in the short-circuit portion.
  • FIG. 4B shows a state in which the current path through which the second fusible conductor of the fuse portion melts and the heat generating portion is energized is interrupted.
  • 5A and 5B are diagrams showing another configuration example of the heat generating part in the short-circuit element, and FIG. 5A is a cross-sectional view of a main part of the heat generating part configured by two heat generating resistors formed with different pattern widths. 5B is an equivalent circuit diagram showing a circuit configuration of the heat generating portion.
  • FIG. 6A and 6B are diagrams showing another configuration example of the heat generating part in the short-circuit element
  • FIG. 6A is a cross-sectional view of the main part of the heat generating part configured by two heat generating resistors formed of resistance materials having different specific resistances.
  • FIG. 6B is an equivalent circuit diagram showing a circuit configuration of the heat generating portion.
  • 7A, FIG. 7B, and FIG. 7C are diagrams showing another configuration example of the heat generating portion in the short-circuit element
  • FIG. 7A is a plan view of the heat generating portion in which one heat generating resistor is formed in a trapezoidal pattern, FIG. FIG.
  • FIG. 7C is a plan view of a heat generating part in which one heat generating resistor is formed in a T-shaped pattern
  • FIG. 7C is a plan view of the heat generating part in which one heat generating resistor is formed in an L-shaped pattern
  • 8A and 8B are diagrams showing another configuration example of the heat generating part in the short-circuit element.
  • FIG. 8A shows the distance between the heat generating area for the short circuit part and the first soluble conductor and the second heat generating area for the fuse part and the second heat generating area. Sectional drawing of the short circuit element provided with the heat generating part of the structure which has the level
  • FIG. 8B has arrange
  • FIG. 9 is a diagram showing another configuration example of the heat generating part in the short circuit element, and is a plan view of the short circuit element including a heat generating part including one heat generating resistor provided in the vicinity of the short circuit part.
  • FIG. 10 is a circuit diagram of an LED illumination device in which a compensation circuit is configured by incorporating a short-circuit element according to the present invention.
  • FIG. 11A, 11B, and 11C are circuit diagrams showing the operation of the compensation circuit in the LED lighting device.
  • FIG. 11A shows a current flow during normal operation of the light emitting diode
  • FIG. 11B shows light emission.
  • FIG. 11C shows a current flow in a state where the short-circuit element is operated to form a bypass current path when an abnormality occurs when the diode is electrically opened.
  • FIGS. 1A and 1B show a short-circuit element 100 having a structure as shown in FIGS. 1A and 1B.
  • 1A shows a plan view of the short-circuit element 100
  • FIG. 1B shows a cross-sectional view taken along the line AA of the short-circuit element 100 in FIG. 1A.
  • the short-circuit element 100 is a short-circuit element mounted on a circuit having an abnormality detection function, and a heat-generating part 10 that generates heat when energized from the outside at the time of abnormality detection, and a soluble conductor is generated by the heat generation of the heat-generation part 10.
  • a short-circuit unit 20 that melts to form a bypass current path and a fuse unit 30 that melts a soluble conductor by heat generated by the heat generating unit 10 and interrupts the current path of the heat generating unit 10 are provided.
  • the heating unit 10 is composed of a heating resistor 2 provided on the insulating substrate 1.
  • the insulating substrate 1 is formed in a substantially square shape using an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like.
  • the insulating substrate 1 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board, but it is necessary to pay attention to the temperature at which the fuse is blown.
  • the heating resistor 2 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like.
  • the heating resistance is obtained by mixing a powder of these alloys, compositions, or compounds with a resin binder or the like, forming a paste on the insulating substrate 1 using a screen printing technique, and firing the pattern.
  • the body 2 is formed.
  • the heating resistor 2 is covered with an insulating layer 3 on the insulating substrate 1.
  • the insulating layer 3 is made of, for example, a glass layer that efficiently transfers heat from the heating resistor 2.
  • the short-circuit portion 20 is melted by being heated by the heat generated by the first electrode 4A and the second electrode 4B provided adjacent to each other on the insulating layer 3 and the heat-generating portion 10. It consists of the 1st soluble conductor 5 which short-circuits 4 A of 1st electrodes, and the said 2nd electrode 4B.
  • the fuse portion 30 is provided on the insulating substrate 1 and electrically connects between the second electrode 4B and the third electrode 4C formed at a predetermined interval and the second electrode 4B. Are connected in series and connected in series with the heating resistor 2 between the second electrode 4B and the fourth electrode 4D, thereby forming a current path for the current flowing through the heating resistor 2.
  • the second fusible conductor 6 is melted by being heated by the heat generated by the heating resistor 2 and interrupts the current path.
  • the first and second fusible conductors 5 and 6 are made of a low melting point metal that is rapidly melted by the heat generated by the heating resistor 2, and for example, Pb-free solder mainly composed of Sn can be suitably used.
  • the 1st, 2nd soluble conductors 5 and 6 may be a laminated body of a low melting point metal and a high melting point metal such as Ag, Cu or an alloy containing these as a main component.
  • a soluble conductor may be formed by depositing a high melting point metal on a low melting point metal by using a plating technique, or may be formed by using another known lamination technique or film forming technique.
  • the first and second possible conductors 5 and 6 are used.
  • a flux 7 is applied on the molten conductors 5 and 6.
  • the first soluble conductor 5 for short-circuiting the first electrode 4A and the second electrode 4B of the short-circuit portion 20 is divided into two soluble conductors 5A and 5B. Although it is provided on both the first electrode 4A and the second electrode 4B, it may be provided on at least one of the first electrode 4A and the second electrode 4B.
  • the short-circuit element 100 includes the heat generating unit 10, the short-circuit unit 20, and the fuse unit 30 provided on the insulating substrate 1.
  • the heating unit 10 in the short-circuit element 100 causes the first soluble conductor 5 to move faster than the second soluble conductor 6 by Joule heat generated by passing a current through the heating resistor 2. It has a structure that gives a difference in heating amount so as to melt.
  • the heat generating unit 10, the short-circuit unit 20, and the fuse unit 30 are provided between the second electrode 4 ⁇ / b> B of the short-circuit unit 20 and the third electrode 4 ⁇ / b> C of the fuse unit 30.
  • the second soluble conductor 6 of the fuse part 30 is connected to the second electrode 4B, and the second soluble conductor 6 and the heating resistor 2 are connected in series between the second electrode 4B and the fourth electrode 4D.
  • the short circuit element 100 is comprised.
  • the first electrode 4A is provided with a first external connection terminal T1
  • the second electrode 4B is provided with a second external connection terminal T2
  • the fourth electrode 4D is provided with a third external connection terminal.
  • a connection terminal T3 is provided, the short-circuit portion 20 is connected to the first external connection terminal T1 and the second electrode 4B, and the second external connection terminal T2 and the third external connection terminal T3 are The heating resistor 2 and the first fusible conductor 5 of the fuse portion 30 are connected in series.
  • the short-circuit portion 20 is configured between the first external connection terminal T1 and the second external connection terminal T2, that is, the first electrode 4A.
  • the second electrode 4B are normally insulated, and the circuit state during operation of the short-circuit element 100 is energized from the third external connection terminal T3 to generate heat as shown in FIG. 2B.
  • the heating resistor 2 of the portion 10 generates heat, the first soluble conductor 5 is first heated and melted, and between the first electrode 4A and the second electrode 4B, that is, the first The external connection terminal T1 and the second external connection terminal T2 are short-circuited.
  • the fuse part 30 flows to the heating resistor 2 through the second fusible conductor 6 connected in series with the heating resistor 2 when the short-circuit element 100 is not in operation.
  • a current path of the current is configured between the second external connection terminal T2 and the third external connection terminal T3, that is, between the second electrode 4B and the fourth electrode 4D, as shown in FIG. 2B.
  • the heating resistor 2 of the heat generating portion 10 generates heat, so that the second soluble conductor 6 is melted by being heated later than the first soluble conductor 5. Then, the current path is interrupted.
  • the heating resistor has a structure in which the first soluble conductor 5 is melted faster than the second soluble conductor 6. 2 can be constructed using two heat generating resistors 2A and 2B having different heat generation amounts.
  • the heating resistor 2A provided immediately below the first soluble conductor 5 (5A, 5B) of the short-circuit portion 10 is the heating resistor provided immediately below the second soluble conductor 6 of the fuse portion 30.
  • the heat generation resistor 2A having a larger heat generation amount than the heat generation resistor 2B is provided immediately below.
  • the first fusible conductor 5 (5A, 5B) of the short-circuit portion 20 is melted earlier than the second fusible conductor 6 of the fuse portion 30 in which the heating resistor 2B is provided immediately below.
  • the applied voltage is constant, that is, in a state where they are connected in parallel, the amount of heat generation is inversely proportional to the resistance value. Can be.
  • the resistance value is proportional to the length if the cross-sectional area of the pattern of the heating resistors is constant, and the length is constant. If there is, it is inversely proportional to the cross-sectional area, so that the resistance values of the heating resistors 2A and 2B can be different from each other by changing the cross-sectional area or length of the pattern of the heating resistors.
  • the heating resistors 2A and 2B are formed with different pattern widths, and the pattern width of the heating resistor 2A is made wider than the pattern width of the heating resistor 2B.
  • a parallel connection circuit is configured in which the resistance value R1 of the heating resistor 2A is smaller than the resistance value R2 of the heating resistor 2B, and the amount of heat generated by the heating resistor 2A is increased. The amount of heat generated by the resistor 2B can be made larger.
  • the example sample has a larger time difference between the short circuit time and the fuse cutting time than the conventional sample, and is about 4.5 times longer on average, and the operation as a short circuit element is stable. I understand.
  • the two heating resistors 2A and 2B may be formed of resistance materials having different specific resistances to have different resistance values.
  • the specific resistance of the resistive material can be adjusted by containing silver.
  • a parallel connection circuit is configured in which the resistance value R1 of the heating resistor 2A is smaller than the resistance value R2 of the heating resistor 2B, and the amount of heat generated by the heating resistor 2A is set as the heating resistor.
  • the calorific value of 2B can be increased.
  • the two heat generating resistors 2A and 2B having different heat generation amounts are used as the heat generating resistor 2 so that the first soluble conductor 5 is melted earlier than the second soluble conductor 6.
  • the short-circuit element 100 can reliably provide a time difference between the short-circuit time and the fuse cutting time, and can realize a more reliable short-circuit operation.
  • the two heating resistors 2A and 2B have been described as having a constant applied voltage, that is, connected in parallel, but may be connected in series and through which a constant current flows. That is, in the configuration in which a constant current flows, the larger the resistance value of the heating resistor, the greater the amount of heat generated. Therefore, by increasing the resistance value of the heating resistor 2A, the first soluble conductor 5 is increased. It is possible to construct a structure that gives a difference in the amount of heating so as to be melted faster than the second soluble conductor 6.
  • the heating unit 10 has a structure in which the heating amount is made different by using one heating resistor having the heating region for the short circuit portion and the heating region for the fuse portion having different heating amounts. It can also be.
  • the heat generating part 10 melts the short-circuiting heat generating area 2C for heating to melt the first soluble conductor 5 and the second soluble conductor 6.
  • One heating resistor 2 having a fuse portion heat generating region 2D for heating is formed in a trapezoidal pattern, and the resistance value of the short portion heat generating region 2C is made smaller than that of the fuse portion heat generating region 2D.
  • the heating amount is changed so that the first soluble conductor 5 is melted earlier than the second soluble conductor 6. It can be set as the structure which gives.
  • the short-circuit heating region 2 ⁇ / b> C that performs heating for melting the first soluble conductor 5 and the heating for melting the second soluble conductor 6 are performed.
  • One heating resistor 2 having a fuse portion heat generating area 2D is formed in a T-shaped pattern, and the resistance value is reduced by making the length of the short-circuit heat generating area 2C shorter than that of the fuse portion heat generating area 2D.
  • the amount of heating is such that the first soluble conductor 5 is melted faster than the second soluble conductor 6 by reducing the size and allowing a larger amount of current to flow to the heat generating region 2C side for the short-circuit portion. It can be set as the structure which gives a difference.
  • a short-circuit heating region 2 ⁇ / b> C for heating to melt the first soluble conductor 5 and a heating for melting the second soluble conductor 6 are performed.
  • One heating resistor 2 having a fuse portion heat generating region 2D is formed in an L-shaped pattern, the short-circuiting heat generating region 2C is disposed immediately below the short-circuiting portion 20, and the fuse portion heat-generating region 2D is A structure in which the first fusible conductor 5 is made to have a difference in heating amount so as to be melted earlier than the second fusible conductor 6 by being shifted from the position immediately below the fuse portion 30. Can do.
  • the heat generating part 10 has a space between the heat generating area 2C for the short circuit part and the first fusible conductor 5 and the heat generating area 2D for the fuse part with the second soluble conductor 6.
  • the heating amount is varied so that the first soluble conductor 5 is melted faster than the second soluble conductor 6. It can also be a structure.
  • the heating unit 10 has a heating resistor 2A for melting the first soluble conductor 5 disposed on the upper surface of the insulating substrate 1, and the second soluble conductor 6
  • the heating amount is set so that the first soluble conductor 5 is melted earlier than the second soluble conductor 6. It can be set as the structure which gives a difference.
  • the heat generating part 10 is composed of one heat generating resistor 2 provided close to the short circuit part 20 as shown in FIG. 9, for example, and the short circuit part 20 close to the heat generating resistor 2. It is also possible to have a structure in which the heating amount is varied so that the first fusible conductor 5 is melted faster than the second fusible conductor 6 of the fuse portion 30.
  • the short-circuit element 100 having the above-described configuration, a difference in heating amount is provided so that the first soluble conductor 5 is melted faster than the second soluble conductor 6 due to the heat generated by the heating resistor 2. Since the heat generating part 10 has the above structure, a time difference can be provided between the short circuit time and the fuse cutting time with certainty, and a more reliable short circuit operation can be realized.
  • the first fusible conductor 5 for short-circuiting the first electrode 4A and the second electrode 4B of the short-circuit portion 20 includes the first electrode 4A and the second electrode 4B. Are provided on both electrodes of the first electrode 4B, but may be provided on at least one of the first electrode 4A and the second electrode 4B.
  • the short-circuit element 100 having such a configuration is used as a short-circuit element that forms a bypass current path that bypasses the electronic component when an electronic component mounted in a circuit having an abnormality detection function is abnormal.
  • the short-circuit element 100 is incorporated in the LED lighting device 200 and forms a bypass current path that bypasses the light emitting diode 201 even when an abnormality occurs in one light emitting diode 201.
  • the compensation circuit 250 is configured.
  • the LED lighting device 200 includes a plurality of light emitting diodes 201 connected in series on a current path, and the light emitting diode 201 and the first external connection terminal T1 of the short circuit element 100 are connected to the light emitting diode 201 via the bypass resistor 202.
  • the second external connection terminal T2 is connected to the cathode of the light emitting diode 201
  • the third external connection terminal T3 is connected to the anode of the light emitting diode 201, whereby the light emitting diode 201 and the short-circuit element are connected.
  • 100 constitutes the LED unit 210.
  • the LED lighting apparatus 200 is configured by connecting a plurality of LED units 210 in series.
  • the bypass resistor 202 has a resistance value corresponding to the internal resistance of the light emitting diode 201. Further, the resistance value of the heating resistor 2 of the heat generating part 10 of the short-circuit element 100 is larger than the internal resistance of the light emitting diode 201. Therefore, when the light emitting diode 201 is operating normally, in the LED lighting device 200, as shown in FIG. 11A, the current I does not flow to the short circuit element 100 side but flows to the light emitting diode 201 side.
  • the short-circuit element 100 has a structure in which the heating amount is different so that the first soluble conductor 5 is melted faster than the second soluble conductor 6 due to heat generated by the heating resistor 2.
  • the heating unit 10 has a time difference between the short-circuiting time and the fuse cutting time, so that a more reliable short-circuiting operation can be performed.
  • an abnormality has occurred in one light-emitting diode 201.
  • the compensation circuit 250 that reliably forms a bypass current path that bypasses the light emitting diode 201 is configured.
  • a bypass current path that bypasses the failed light emitting diode 201 is formed, and current can be passed through the other light emitting diodes 201 to continue light emission.
  • the other light emitting diodes 201 are connected in series via the bypass resistor 202, and the light emitting diodes 201 other than the failed light emitting diode 201 can continue to emit light.
  • the bypass resistor 202 has a resistance value corresponding to the internal resistance of the light emitting diode 201, the resistance value of the current path of the plurality of light emitting diodes 201 connected in series is the same before and after the operation of the compensation circuit 250. Therefore, the driving state of the light emitting diodes 201 other than the failed light emitting diode 201 does not change.
  • the compensation circuit 250 that forms a bypass current path that bypasses the light emitting diode 201 even when an abnormality occurs in one light emitting diode 201 has been described.
  • a plurality of connected battery cells are separated from the current line in a battery pack containing a plurality of battery cells used as a driving power source for an electric vehicle or the like.
  • the present invention is applied to various compensation circuits that form a bypass current path that bypasses the electronic component when the electronic component mounted on the circuit having the abnormality detection function is abnormal, such as short-circuiting a circuit portion corresponding to the separated battery cell. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

信号経路における短絡部(20)を短絡するための可溶導体(5)と発熱部(10)の通電経路におけるヒューズ部(30)の可溶導体(6)を分離し、かつ発熱部(10の通電による加熱の作用において短絡部(20)とヒューズ部(30)の各可溶導体(5,6)間で加熱量に差を生じさせる構造を持たせ、短絡部(20)の可溶導体(5)の溶融の動作時間がヒューズ部(30)の可溶導体の溶断の動作時間より常に早くなるという関係を構造によって担保することで、短絡素子(100)としての安定した短絡動作を保証する。これにより、より確実な短絡動作と短絡後の導通抵抗の安定化を実現し、確実にバイパス経路を形成することができるようにした短絡素子、およびこれを用いた補償回路を提供する。

Description

短絡素子及びこれを用いた補償回路
 本発明は、基板上に発熱抵抗体とヒューズエレメントを設けた短絡素子、及び、これを用いて電子機器内の異常部品のみを排除する補償回路に関する。本出願は、日本国において2014年10月31日に出願された日本特許出願番号特願2014-223363を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 従来より、多数の発光ダイオード(LED:Light Emitting Diode)を光源として使用するLED照明装置では、一部の発光ダイオードが故障しても、照明装置として支障なく使用できるようにするために、直列接続されたLED素子の個々に短絡素子を並列に接続し、LEDの異常時に所定の電圧で短絡素子が短絡して、故障した発光ダイオード以外の発光ダイオードは継続して発光するようにしている(例えば、特許文献1参照)。
 上記特許文献1の開示技術では、電極の間に金属層と絶縁障壁層とを交互に多数積層させてなるトンネル接合素子が短絡素子として用いられている。
 また、充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
 この種の保護素子には、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行うものがある。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加されて瞬間的な大電流が流れた場合、あるいはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大な異常電圧を出力した場合であっても、バッテリパックや電子機器は、発火等の事故から保護されなければならない。
 そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。
 このようなリチウムイオン二次電池等向けの保護回路の保護素子としては、電流経路上の第1の電極、発熱体引出電極、第2の電極間に亘って可溶導体を接続して電流経路の一部をなし、この電流経路上の可溶導体を、過電流による自己発熱、あるいは保護素子内部に設けた発熱体によって溶断するものがある。このような保護素子では、溶融した液体状の可溶導体を発熱体に繋がる導体層上に集めることにより電流経路を遮断する(例えば、特許文献2参照)。
 また、例えば電機自動車等の駆動用電源として用いられる複数の電池セルを収納してなるバッテリパックでは、当該バッテリパック内において複数接続された電池セルを電流ライン上から切り離して、この切り離した電池セルに相当する回路部分を短絡させる際に、電流遮断素子や電池セル短絡素子が使用されている(例えば、特許文献3参照)。
特開2007-12381号公報 特開2010-003665号公報 特開2001-35331号公報
 ところで、本件出願人は、上記特許文献1に開示されているLED照明装置に対応することが可能な短絡素子にとして、外部からの信号により発熱体を動作させ、可溶導体を溶融させることにより、電流経路を遮断する機能と、回路を短絡する機能を有するヒューズ素子からなる短絡素子を先に提案している(例えば、特願2013-20756、特願2013-23171、特願2013-24643参照)。
 上記短絡素子は、基本的に、通電により発熱する発熱体と、上記発熱体の発熱により溶融される可溶導体と、上記可溶導体の溶融により短絡される短絡部と、上記可溶導体の溶融により電流経路を遮断して上記発熱体の通電を停止させるヒューズ部を備える。
 そして、この短絡素子は、異常検知機能を有する回路に搭載され、原理的に、次のように動作する。
(1)異常検知時に外部からの信号により動作し、通電により発熱体が発熱する。
(2)上記発熱体の発熱により可溶導体が溶融し、短絡部が短絡する。
(3)上記発熱体の発熱により可溶導体が溶融してヒューズ部の電流経路を遮断し、上記発熱体の通電を停止する。
(4)動作完了
 このような動作を行う短絡素子では、(3)の遮断動作により発熱体の通電を停止すると、発熱体の温度は下がってしまうので、(2)の短絡動作よりも早く(3)の遮断動作が行われてしまうと、正常に(2)の短絡動作を行うことができなくなってしまう。したがって、(2)、(3)の動作順序を必ず守る必要がある。
 しかしながら、1つの発熱体により短絡部とヒューズ部が同じように加熱されるので、短絡部とヒューズ部の可溶導体が同時に溶融してしまい、遮断動作と短絡動作に時間的な差が少ないために、短絡後の導通抵抗が不安定になる等、(2)の短絡動作に失敗する虞がある。
 また、上記特許文献3の開示技術では、遮断動作と短絡動作を一つの電源を用いてスイッチで2つのヒーターを同時に通電して行っている。各動作が完了するまでの時間的な差について言及されていないが、2つのヒーターは動作完了後も電流は流れるままとなり、別の検出回路で動作の完了を検出してスイッチを改めて切る必要がある。
 そこで、本発明の目的は、上述の如き実状に鑑み、より確実な短絡動作と短絡後の導通抵抗の安定化を実現し、確実にバイパス経路を形成することができるようにした短絡素子、およびこれを用いた補償回路を提供することにある。
 本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
 本発明では、信号経路における短絡部を短絡するための可溶導体とヒーター経路におけるヒューズ部の可溶導体を分離する構造とし、かつヒーター通電による加熱の作用において短絡部とヒューズ部の各可溶導体間で加熱量に差を生じさせる構造を持たせ、短絡部の可溶導体の溶融の動作時間がヒューズ部の可溶導体の溶断の動作時間より常に早くなるという関係を構造によって担保することで、短絡素子としての安定した短絡動作を保証する。
 すなわち、ヒーター通電時に、短絡部、ヒューズ部それぞれの可溶導体溶融の事象を独立にし、かつ短絡部の可溶導体が溶融してからヒューズ部の可溶導体が溶融するまでの時間差、すなわち短絡動作とヒューズ溶断動作の時間差を常に一定に確保することにより、短絡と溶断の機能発現(短絡後ヒーター切断)が安定化し、短絡素子としての確実な短絡動作を実現する。
 本発明は、短絡素子であって、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、上記絶縁基板に互いに隣接して設けられた第1の電極および第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、上記絶縁基板に上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、上記第1の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有することを特徴とする。
 本発明に係る短絡素子において、上記発熱部は、例えば、発熱量の異なる2つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有するものとすることができる。
 例えば、上記発熱部は、互いに抵抗値が異なる2つの発熱抵抗体を用いることにより、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造とすることができる。上記互いに抵抗値が異なる2つの発熱抵抗体は、異なるパターン幅にすることにより形成することができる。また、上記発熱量の異なる2つの発熱抵抗体は、比抵抗が異なる抵抗材料で形成することができる。
 また、本発明に係る短絡素子において、上記発熱部は、例えば、上記加熱量の異なる短絡部用発熱領域とヒューズ部用発熱領域を有する1つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有するものとすることができる。
 例えば、上記発熱抵抗体は、上記短絡部用発熱領域と上記ヒューズ部用発熱領域の発熱量が異なるものとすることができる。例えば、上記発熱抵抗体は、上記短絡部用発熱領域は上記短絡部の直下に配置され、上記ヒューズ部用発熱領域は上記ヒューズ部の直下からずらして配置されることにより、上記加熱量に差を持たせた構造とすることができる。また、上記発熱抵抗体は、上記短絡部用発熱領域から上記短絡部までの距離を上記ヒューズ部用発熱領域から上記ヒューズ部までの距離よりも短くすることにより上記加熱量に差を持たせた構造とすることができる。
 また、本発明に係る短絡素子において、上記発熱部は、例えば、上記短絡部に近接して設けられた1つの発熱抵抗体からなり、上記発熱抵抗体に近接している上記短絡部の上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有するものとすることができる。
 さらに、本発明に係る短絡素子において、上記第1の電極と上記第2の電極とを短絡する上記第1の可溶導体は、上記第1の電極と上記第2の電極の少なくとも一方の電極上に設けられているものとすることができる。
 本発明は、異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を短絡素子により形成する補償回路であって、上記短絡素子は、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、上記絶縁基板に互いに隣接して設けられた第1、第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、上記絶縁基板に上記第1の電極と隣接して設けられるとともに、上記発熱抵抗体に電気的に接続された第3の電極と、上記第1の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有し、上記電子部品に上記短絡部が並列接続されていることを特徴とする。
 本発明に係る補償回路において、上記バイパス電流経路は、上記短絡素子に直列接続された上記電子部品の内部抵抗相当のバイパス抵抗と上記短絡素子にて形成されるものとすることができる。
 本発明では、信号経路における短絡部を短絡するための可溶導体とヒーター経路におけるヒューズ部の可溶導体を分離する構造とし、かつヒーター通電による加熱の作用において短絡部とヒューズ部の各可溶導体間で加熱量に差を生じさせる構造を持たせることにより、短絡部の可溶導体の溶融の動作時間がヒューズ部の可溶導体の溶断の動作時間より常に早くなるという関係を構造によって担保し、短絡素子としての安定した短絡動作を保証することができる。
 したがって、本発明によれば、より確実な短絡動作と短絡後の導通抵抗の安定化を実現し、確実にバイパス経路を形成することができるようにした短絡素子、およびこれを用いた補償回路を提供することができる。
図1A、図1Bは本発明を適用した短絡素子の構造を示す図であり、図1Aは短絡素子の平面図、図1Bは図1Aにおける短絡素子のA-A線断面矢視図である。 図2A、図2Bは上記短絡素子の等価的な回路構成を示す回路図であり、図2Aは短絡素子の非作動時における回路状態を示し、図2Bは短絡素子の作動時における回路状態を示す。 図3は発熱抵抗体として発熱量の異なる2つの発熱抵抗体を用いた発熱部を備える短絡素子の平面図である。 図4A、図4Bは上記短絡素子の動作状態を示す平面図であり、図4Aは短絡部の第1の可溶導体の溶融により第1の電極と第2の電極とが短絡された状態を示し、図4Bはヒューズ部の第2の可溶導体が溶融して発熱部に通電する電流経路が遮断された状態を示す。 図5A、図5Bは上記短絡素子における発熱部の他の構成例を示す図であり、図5Aは異なるパターン幅で形成された2つの発熱抵抗体により構成した発熱部の要部断面図、図5Bは発熱部の回路構成を示す等価回路図である。 図6A、図6Bは上記短絡素子における発熱部の他の構成例を示す図であり、図6Aは比抵抗が異なる抵抗材料で形成された2つの発熱抵抗体により構成した発熱部の要部断面図、図6Bは発熱部の回路構成を示す等価回路図である。 図7A、図7B、図7Cは上記短絡素子における発熱部の他の構成例を示す図であり、図7Aは1つの発熱抵抗体を台形状のパターンに形成した発熱部の平面図、図7Bは1つの発熱抵抗体をT字形状のパターンに形成した発熱部の平面図、図7Cは1つの発熱抵抗体をL字形状のパターンに形成した発熱部の平面図である。 図8A、図8Bは上記短絡素子における発熱部の他の構成例を示す図であり、図8Aは短絡部用発熱領域と第1の可溶導体との間隔をヒューズ部用発熱領域と第2の可溶導体との間隔よりも狭くした段差を有する構造の発熱部を備える短絡素子の断面図、図8Bは第1の可溶導体を溶融させるための発熱抵抗体を絶縁基板の上面に配置し、第2の可溶導体を溶融させるための発熱抵抗体を絶縁基板の下面に配置した構造の発熱部を備える短絡素子の断面図である。 図9は、上記短絡素子における発熱部の他の構成例を示す図であり、上記短絡部に近接して設けられた1つの発熱抵抗体からなる発熱部を備える短絡素子の平面図である。 図10は本発明に係る短絡素子を組み込んで補償回路を構成したLED照明装置の回路図である。 図11A、図11B、図11Cは上記LED照明装置における補償回路の動作を示す回路図であり、図11Aは発光ダイオードが正常に作動している正常時における電流の流れを示し、図11Bは発光ダイオードが電気的に開放された異常時における電流の流れを示し、図11Cは短絡素子が動作してバイパス電流経路が形成された状態における電流の流れを示す。
 以下、本発明を実施するための形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることはもちろんである。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 本発明は、例えば、図1A、図1Bに示すような構造の短絡素子100に適用される。図1Aは、短絡素子100の平面図を示し、図1Bは、図1Aにおける短絡素子100のA-A線断面矢視図を示す。
 この短絡素子100は、異常検知機能を有する回路に搭載される短絡素子であって、異常検知時に外部から通電されることにより発熱する発熱部10と、上記発熱部10の発熱により可溶導体が溶融してバイパス電流経路を形成する短絡部20と、上記発熱部10の発熱により可溶導体が溶融して上記発熱部10の電流経路を遮断するヒューズ部30を備える。
 上記発熱部10は、絶縁基板1上に設けられた発熱抵抗体2からなる。
 上記絶縁基板1は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材を用いて略方形状に形成されている。絶縁基板1は、その他にも、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意する必要がある。
 上記発熱抵抗体2は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばW、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板1上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって上記発熱抵抗体2は形成される。 上記発熱抵抗体2は、上記絶縁基板1上において絶縁層3により被覆されている。上記絶縁層3は、発熱抵抗体2の熱を効率よく伝える例えばガラス層からなる。
 また、上記短絡部20は、上記絶縁層3上に互いに隣接して設けられた第1の電極4Aおよび第2の電極4Bと、上記発熱部10の発熱により加熱されることによって溶融して上記第1の電極4Aと上記第2の電極4Bとを短絡する第1の可溶導体5とからなる。
 さらに、上記ヒューズ部30は、上記絶縁基板1上に設けられ、上記第2の電極4Bと所定の間隔をもって形成された第3の電極4Cと上記第2の電極4Bとの間を電気的に接続しており、上記第2の電極4Bと第4の電極4Dの間に上記発熱抵抗体2と直列接続された状態で設けられることにより上記発熱抵抗体2に流す電流の電流経路を構成し、上記発熱抵抗体2の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体6からなる。
 第1、第2の可溶導体5,6は、発熱抵抗体2の発熱により速やかに溶融される低融点金属からなり、例えばSnを主成分とするPbフリーハンダを好適に用いることができる。また、第1、第2の可溶導体5,6は、低融点金属と、Ag、Cu又はこれらを主成分とする合金等の高融点金属との積層体であってもよい。高融点金属と低融点金属とを積層することによって、リフロー実装する場合に、リフロー温度が低融点金属層の溶融温度を超えて、低融点金属が溶融しても、可溶導体が溶断するに至らない。かかる可溶導体は、低融点金属に高融点金属をメッキ技術を用いて成膜することによって形成してもよく、他の周知の積層技術、膜形成技術を用いることによって形成してもよい。
 なお、第1、第2の可溶導体5,6の酸化防止、及び第1、第2の可溶導体5,6の溶融時における濡れ性を向上させるために、第1、第2の可溶導体5,6の上にはフラックス7が塗布されている。この短絡素子100では、上記短絡部20の第1の電極4Aと上記第2の電極4Bとを短絡するための上記第1の可溶導体5は、2分割された可溶導体5A、5Bとして上記第1の電極4Aと第2の電極4Bの両電極上に設けられているが、上記第1の電極4Aと上記第2の電極4Bの少なくとも一方の電極上に設けられていればよい。
 以上のように、この短絡素子100は、上記絶縁基板1上に設けられた上記発熱部10、短絡部20及びヒューズ部30を備える。
 そして、この短絡素子100における上記発熱部10は、上記発熱抵抗体2に電流を流すことにより発生するジュール熱によって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造を有している。
 上記発熱部10、短絡部20及びヒューズ部30は、図2A、図2Bの回路図に示すように、上記短絡部20の第2の電極4Bと上記ヒューズ部30の第3の電極4Cの間に上記ヒューズ部30の第2の可溶導体6が接続され、第2の電極4Bと第4の電極4Dの間に上記第2の可溶導体6と上記発熱抵抗体2が直列接続された短絡素子100を構成している。上記第1の電極4Aには第1の外部接続端子T1が設けられ、上記第2の電極4Bには第2の外部接続端子T2が設けられ、上記第4の電極4Dには第3の外部接続端子T3が設けられており、上記第1の外部接続端子T1と第2の電極4Bに上記短絡部20が接続され、上記第2の外部接続端子T2と第3の外部接続端子T3に上記発熱抵抗体2と上記ヒューズ部30の第1の可溶導体5とが直列接続されている。
 上記短絡部20は、この短絡素子100の非作動時における回路状態を図2Aに示すように、第1の外部接続端子T1と第2の外部接続端子T2の間、すなわち、第1の電極4Aと第2の電極4Bの間が通常は絶縁状態になっており、また、この短絡素子100の作動時における回路状態を図2Bに示すように、第3の外部接続端子T3から通電されて発熱部10の発熱抵抗体2が発熱することにより、まず、第1の可溶導体5が加熱されて溶融し、上記第1の電極4Aと上記第2の電極4Bの間、すなわち、第1の外部接続端子T1と第2の外部接続端子T2の間が短絡されるようになっている。
 そして、上記ヒューズ部30は、図2Aに示すように、この短絡素子100の非作動時には、発熱抵抗体2と直列接続された第2の可溶導体6を介して上記発熱抵抗体2に流す電流の電流経路を第2の外部接続端子T2と第3の外部接続端子T3の間、すなわち、上記第2の電極4Bと上記第4の電極4Dの間に構成しており、図2Bに示すように、この短絡素子100の作動時に、上記発熱部10の発熱抵抗体2が発熱することにより、上記第1の可溶導体5よりも遅れて加熱されて第2の可溶導体6が溶融し、上記電流経路を遮断するようになっている。
 ここで、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造は、例えば、図3に示すように、上記発熱抵抗体2として発熱量の異なる2つの発熱抵抗体2A,2Bを用いて構築することができる。
 すなわち、上記短絡部10の第1の可溶導体5(5A,5B)の直下に設けられる発熱抵抗体2Aは、上記ヒューズ部30の第2の可溶導体6の直下に設けられる発熱抵抗体2Bよりも大きな発熱量としておくことにより、上記2つの発熱抵抗体2A,2Bを同時に通電して発熱させても、上記発熱抵抗体2Bよりも発熱量の大きな発熱抵抗体2Aが直下に設けられた上記短絡部20の第1の可溶導体5(5A,5B)は、上記発熱抵抗体2Bが直下に設けられた上記ヒューズ部30の第2の可溶導体6よりも早く溶融され、図4Aに示すように、上記短絡部20の第1の可溶導体5(5A,5B)の溶融により上記第1の電極4Aと上記第2の電極4Bとが短絡されてから、図4Bに示すように、上記ヒューズ部30の第2の可溶導体6が溶融して上記電流経路を遮断することになる。
 上記2つの発熱抵抗体2A,2Bは、印加電圧が一定、すなわち、並列接続された状態では、抵抗値に発熱量が反比例するので、互いに抵抗値が異なるものとことするにより、発熱量の異なるものとすることができる。
 そして、同じ抵抗材料で上記2つの発熱抵抗体2A,2Bを形成する場合、抵抗値は、発熱抵抗体のパターンの断面積が一定であれば長さに比例し、また、長さが一定であれば断面積に反比例するので、発熱抵抗体のパターンの断面積又は長さを異なることなるものとすることにより、発熱抵抗体2A,2Bは、互いに抵抗値が異なるものとすることができる。
 例えば、図5Aに示すように、発熱抵抗体2A,2Bは、異なるパターン幅で形成され、発熱抵抗体2Aのパタ-ン幅を発熱抵抗体2Bのパタ-ン幅よりも広くしておくことにより、図5Bの等価回路図に示すように、発熱抵抗体2Aの抵抗値R1を発熱抵抗体2Bの抵抗値R2よりも小さくした並列接続回路を構成し、発熱抵抗体2Aの発熱量を発熱抵抗体2Bの発熱量よりも大きくすることができる。
 ここで、図5A、図5Bに示す異なるパターン幅で形成された発熱抵抗体2A,2Bを備える発熱部10を設けた短絡素子100の実施例サンプルと従来構造の発熱部を設けた短絡素子の従来例サンプルについて、発熱部の印加電力は同じにしてそれぞれの短絡時間とヒューズ切断時間を測定した結果を、次の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この表1より、実施例サンプルは、従来例サンプルよりも短絡時間とヒューズ切断時間との時間差が大きく、平均で4.5倍ほど長くなっており、短絡素子としての動作が安定していることがわかる。
 また、上記2つの発熱抵抗体2A,2Bは、比抵抗の異なる抵抗材料で形成することにより互いに抵抗値が異なるものとすることもできる。例えば、銀を含有させることにより抵抗材料の比抵抗を調整することができる。
 そして、例えば、図6Aに示すように、発熱抵抗体2A,2Bは、同形状のものであっても、発熱抵抗体2Aを発熱抵抗体2Bより比抵抗が小さい抵抗材料で形成することにより、図6Bの等価回路図に示すように、発熱抵抗体2Aの抵抗値R1を発熱抵抗体2Bの抵抗値R2よりも小さくした並列接続回路を構成し、発熱抵抗体2Aの発熱量を発熱抵抗体2Bの発熱量よりも大きくすることができる。
 このように、上記発熱抵抗体2として発熱量の異なる2つの発熱抵抗体2A,2Bを用いて、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造を構築することにより、短絡素子100は、短絡時間とヒューズ切断時間に確実に時間差を設けることができ、より確実な短絡動作を実現させることができる。
 以上の説明では、上記2つの発熱抵抗体2A,2Bは、印加電圧が一定、すなわち、並列接続されるものとして説明したが、直列接続され一定電流が流されるものであってもよい。すなわち、一定電流が流される構成の場合には発熱抵抗体の抵抗値が大きい程、発熱量が多くなるので、発熱抵抗体2Aの抵抗値を大きくすることにより、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造を構築することができる。
 ここで、上記発熱部10は、上記加熱量の異なる上記短絡部用発熱領域と上記ヒューズ部用発熱領域を有する1つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有するものとすることもできる。
 すなわち、上記発熱部10は、例えば図7Aに示すように、上記第1の可溶導体5を溶融させるための加熱を行う短絡部用発熱領域2Cと、上記第2の可溶導体6を溶融させるための加熱を行うヒューズ部用発熱領域2Dを有する1つの発熱抵抗体2を台形状のパターンに形成し、上記ヒューズ部用発熱領域2Dよりも短絡部用発熱領域2Cの抵抗値を小さくして、上記短絡部用発熱領域2C側に多くの電流を流すようにすることによって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。
 また、例えば図7Bに示すように、上記第1の可溶導体5を溶融させるための加熱を行う短絡部用発熱領域2Cと、上記第2の可溶導体6を溶融させるための加熱を行うヒューズ部用発熱領域2Dを有する1つの発熱抵抗体2をT字形状のパターンを形成し、上記ヒューズ部用発熱領域2Dよりも短絡部用発熱領域2Cの長さを短くすることにより抵抗値を小さくして、上記短絡部用発熱領域2C側に多くの電流を流すようにすることによって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。
 さらに、例えば図7Cに示すように、上記第1の可溶導体5を溶融させるための加熱を行う短絡部用発熱領域2Cと、上記第2の可溶導体6を溶融させるための加熱を行うヒューズ部用発熱領域2Dを有する1つの発熱抵抗体2をL字形状のパターンを形成し、上記短絡部用発熱領域2Cは上記短絡部20の直下に配置され、上記ヒューズ部用発熱領域2Dは上記ヒューズ部30の直下からずらして配置されることによって、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。
 また、上記発熱部10は、例えば図8Aに示すように、短絡部用発熱領域2Cと第1の可溶導体5との間隔をヒューズ部用発熱領域2Dを第2の可溶導体6との間隔よりも狭くした段差を有する絶縁層3の構造を採用することにより、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることもできる。
 また、上記発熱部10は、例えば図8Bに示すように、第1の可溶導体5を溶融させるための発熱抵抗体2Aを絶縁基板1の上面に配置し、第2の可溶導体6を溶融させるための発熱抵抗体2Bを絶縁基板1の下面に配置した構造とすることにより、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせる構造とすることができる。
 さらに、上記発熱部10は、例えば図9に示すように、上記短絡部20に近接して設けられた1つの発熱抵抗体2からなり、上記発熱抵抗体2に近接している上記短絡部20の上記第1の可溶導体5を上記ヒューズ部30の第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせた構造を有するものとすることもできる。
 上述の如き構成の短絡素子100では、上記発熱抵抗体2の発熱により、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせた構造を上記発熱部10が有しているので、短絡時間とヒューズ切断時間に確実に時間差を設けることができ、より確実な短絡動作を実現させることができる。
 なお、上記短絡素子100では、上記短絡部20の第1の電極4Aと上記第2の電極4Bとを短絡するための上記第1の可溶導体5は、上記第1の電極4Aと第2の電極4Bの両電極上に設けられているが、上記第1の電極4Aと上記第2の電極4Bの少なくとも一方の電極上に設けられていればよい。
 このような構成の短絡素子100は、異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を形成する短絡素子として用いられる。
 すなわち、短絡素子100は、例えば、図10に示すように、LED照明装置200に組み込まれ、一つの発光ダイオード201に異常が起きた場合にも、当該発光ダイオード201を迂回するバイパス電流経路を形成する補償回路250を構成する。
 このLED照明装置200は、 電流経路上に直列接続された複数の発光ダイオード201を備え、発光ダイオード201と、短絡素子100の第1の外部接続端子T1がバイパス抵抗202を介して発光ダイオード201のアノードに接続され、第2の外部接続端子T2が上記発光ダイオード201のカソードに接続され、第3の外部接続端子T3が上記発光ダイオード201のアノードに接続されることにより、発光ダイオード201と短絡素子100によりLEDユニット210を構成している。そして、このLED照明装置200は、複数のLEDユニット210が直列に接続されて構成されている。
 バイパス抵抗202は、発光ダイオード201の内部抵抗相当の抵抗値を有する。また、短絡素子100の発熱部10の発熱抵抗体2の抵抗値は、発光ダイオード201の内部抵抗よりも大きい。したがって、発光ダイオード201が正常に作動している場合、このLED照明装置200では、図11Aに示すように、電流Iは短絡素子100側へは流れず、発光ダイオード201側に流れる。
 しかし、発光ダイオード201に異常が現れて、電気的に開放されてしまうと、図11Bに示すように、このLED照明装置200では、電流Iが短絡素子100のヒューズ部30側へ流れる。これにより、短絡素子100は、発熱部10の発熱抵抗体2が発熱し、第1の可溶導体5が溶融することによって、図11Cに示すように、第1の外部接続端子T1と第2の外部接続端子T2の間、すなわち、短絡部10の両電極4A、4Bが短絡され、バイパス電流経路が形成される。そして、上記発熱部10の発熱抵抗体2の発熱により、上記短絡部10の両電極4A、4Bが短絡されてから、第2の可溶導体6が溶断することにより、発熱部10の発熱抵抗体2への給電は停止される。
 上記短絡素子100は、上記発熱抵抗体2の発熱により、上記第1の可溶導体5を上記第2の可溶導体6よりも早く溶融させるように加熱量に差を持たせた構造を上記発熱部10が有しており、短絡時間とヒューズ切断時間に確実に時間差を設け、より確実な短絡動作を行うことができ、このLED照明装置200において、一つの発光ダイオード201に異常が起きた場合にも、当該発光ダイオード201を迂回するバイパス電流経路を確実に形成する補償回路250を構成している。
 この照明装置200では、上記補償回路250が動作することにより、故障した発光ダイオード201を迂回するバイパス電流経路が形成され、他の発光ダイオード201に電流を流して発光を継続することができる。すなわち、バイパス抵抗202を介して他の発光ダイオード201が直列接続された状態となり、故障した発光ダイオード201以外の発光ダイオード201は継続して発光することができる。上記バイパス抵抗202は、発光ダイオード201の内部抵抗相当の抵抗値を有するので、直列接続された複数の発光ダイオード201の電流経路の抵抗値は、上記補償回路250の動作前と動作後で同じ状態を維持することになり、故障した発光ダイオード201以外の発光ダイオード201の駆動状態が変化することはない。
 なお、LED照明装置200において、一つの発光ダイオード201に異常が起きた場合にも、当該発光ダイオード201を迂回するバイパス電流経路を形成する補償回路250について説明したが、上記短絡素子100は、LED照明装置200への適用のみに限定されることなく、例えば電機自動車等の駆動用電源として用いられる複数の電池セルを収納してなるバッテリパック内において複数接続された電池セルを電流ライン上から切り離して、この切り離した電池セルに相当する回路部分を短絡させるなど、異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を形成する各種補償回路に適用することができる。
 1 絶縁基板、2 発熱抵抗体、2A,2B 発熱抵抗体、2C 短絡部用発熱領域、2D ヒューズ部用発熱領域、3 絶縁層、4A 第1の電極、4B 第2の電極、4C 第3の電極、4D 第4の電極、5 第1の可溶導体、6 第2の可溶導体、7 フラックス、10 発熱部、20 短絡部、30 ヒューズ部、100 短絡素子、200 LED照明装置、201 発光ダイオード、202 バイパス抵抗、250 補償回路、T1 第1の外部接続端子、T2 第2の外部接続端子、T3 第3の外部接続端子

Claims (13)

  1.  絶縁基板と、
     上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、
     上記絶縁基板上に互いに隣接して設けられた第1の電極および第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、
     上記絶縁基板に設けられ、上記発熱抵抗体に電気的に接続された第3の電極と、上記第2の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、
     上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有することを特徴とする短絡素子。
  2.  上記発熱部は、発熱量の異なる2つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有することを特徴とする請求項1記載の短絡素子。
  3.  上記発熱量の異なる2つの発熱抵抗体は、互いに抵抗値が異なることを特徴とする請求項2記載の短絡素子。
  4.  上記発熱量の異なる2つの発熱抵抗体は、異なるパターン幅で形成されていることを特徴とする請求項3記載の短絡素子。
  5.  上記発熱量の異なる2つの発熱抵抗体は、比抵抗が異なる抵抗材料で形成されていることを特徴とする請求項3記載の短絡素子。
  6.  上記発熱部は、上記加熱量の異なる短絡部用発熱領域とヒューズ部用発熱領域を有する1つの発熱抵抗体を用いて上記加熱量に差を持たせた構造を有することを特徴とする請求項1記載の短絡素子。
  7.  上記発熱抵抗体は、上記短絡部用発熱領域と上記ヒューズ部用発熱領域の発熱量が異なることを特徴とする請求項6記載の短絡素子。
  8.  上記発熱抵抗体は、上記短絡部用発熱領域は上記短絡部の直下に配置され、上記ヒューズ部用発熱領域は上記ヒューズ部の直下からずらして配置されていることを特徴とする請求項7記載の短絡素子。
  9.  上記発熱抵抗体は、上記短絡部用発熱領域から上記短絡部までの距離を上記ヒューズ部用発熱領域から上記ヒューズ部までの距離よりも短くしたことを特徴とする請求項7記載の短絡素子。
  10.  上記発熱部は、上記短絡部に近接して設けられた1つの発熱抵抗体からなり、上記発熱抵抗体に近接している上記短絡部の上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有することを特徴とする請求項1記載の短絡素子。
  11.  上記第1の電極と上記第2の電極とを短絡する上記第1の可溶導体は、上記第1の電極と上記第2の電極の少なくとも一方の電極上に設けられていることを特徴とする請求項1乃至請求項10のいずれか1項記載の短絡素子。
  12.  異常検知機能を有する回路に搭載された電子部品の異常時に上記電子部品を迂回するバイパス電流経路を短絡素子により形成する補償回路であって、
     上記短絡素子は、絶縁基板と、上記絶縁基板に設けられた発熱抵抗体からなる発熱部と、上記絶縁基板上に互いに隣接して設けられた第1の電極および第2の電極と、上記発熱抵抗体の発熱により加熱されることによって溶融して上記第1の電極と上記第2の電極とを短絡する第1の可溶導体とからなる短絡部と、上記絶縁基板に設けられ、上記発熱抵抗体に電気的に接続された第3の電極と、上記第2の電極と上記第3の電極の間に上記発熱抵抗体と直列接続された状態で設けられることにより上記発熱抵抗体に流す電流の電流経路を構成し、上記発熱抵抗体の発熱により加熱されることによって溶融して上記電流経路を遮断する第2の可溶導体とからなるヒューズ部とを備え、上記発熱部は、上記発熱抵抗体の発熱により、上記第1の可溶導体を上記第2の可溶導体よりも早く溶融させるように加熱量に差を持たせた構造を有する
     ことを特徴とする補償回路。
  13.  上記バイパス電流経路は、上記短絡素子に直列接続された上記電子部品の内部抵抗相当のバイパス抵抗と上記短絡素子にて形成されることを特徴とする請求項12記載の補償回路。
PCT/JP2015/079602 2014-10-31 2015-10-20 短絡素子及びこれを用いた補償回路 WO2016067977A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167036230A KR102418683B1 (ko) 2014-10-31 2015-10-20 단락 소자 및 이것을 사용한 보상 회로
CN201580055637.3A CN107077992B (zh) 2014-10-31 2015-10-20 短路元件和使用其的补偿电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223363A JP6339921B2 (ja) 2014-10-31 2014-10-31 短絡素子及びこれを用いた補償回路
JP2014-223363 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016067977A1 true WO2016067977A1 (ja) 2016-05-06

Family

ID=55857318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079602 WO2016067977A1 (ja) 2014-10-31 2015-10-20 短絡素子及びこれを用いた補償回路

Country Status (5)

Country Link
JP (1) JP6339921B2 (ja)
KR (1) KR102418683B1 (ja)
CN (1) CN107077992B (ja)
TW (1) TWI652713B (ja)
WO (1) WO2016067977A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154868A (ja) * 2010-01-27 2011-08-11 Kyocera Corp 抵抗温度ヒューズ
JP2014044955A (ja) * 2013-10-01 2014-03-13 Dexerials Corp 保護素子及びバッテリーパック
JP2014170728A (ja) * 2013-02-08 2014-09-18 Dexerials Corp 短絡素子、およびこれを用いた回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032094A (ja) * 1996-07-16 1998-02-03 Iwasaki Electric Co Ltd 照明装置
JP4244452B2 (ja) 1999-07-19 2009-03-25 ソニー株式会社 バッテリパック
JP4464554B2 (ja) * 2000-12-14 2010-05-19 北陸電気工業株式会社 ヒューズ素子及びチップ型ヒューズ
JP2007012381A (ja) 2005-06-29 2007-01-18 Sony Corp Led照明装置
JP5072796B2 (ja) 2008-05-23 2012-11-14 ソニーケミカル&インフォメーションデバイス株式会社 保護素子及び二次電池装置
JP2012164756A (ja) * 2011-02-04 2012-08-30 Denso Corp 電子制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011154868A (ja) * 2010-01-27 2011-08-11 Kyocera Corp 抵抗温度ヒューズ
JP2014170728A (ja) * 2013-02-08 2014-09-18 Dexerials Corp 短絡素子、およびこれを用いた回路
JP2014044955A (ja) * 2013-10-01 2014-03-13 Dexerials Corp 保護素子及びバッテリーパック

Also Published As

Publication number Publication date
TW201621956A (zh) 2016-06-16
JP2016091722A (ja) 2016-05-23
KR20170077062A (ko) 2017-07-05
CN107077992A (zh) 2017-08-18
CN107077992B (zh) 2019-03-15
TWI652713B (zh) 2019-03-01
KR102418683B1 (ko) 2022-07-07
JP6339921B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6249602B2 (ja) 保護素子
JP5656466B2 (ja) 保護素子、及び、保護素子の製造方法
WO2015020111A1 (ja) 保護素子及びバッテリパック
KR20150115936A (ko) 단락 소자, 및 이것을 사용한 회로
JP6371118B2 (ja) 保護素子、及びバッテリパック
JP6580504B2 (ja) 保護素子
KR20210089766A (ko) 보호 소자 및 배터리 팩
WO2014123139A1 (ja) 短絡素子、およびこれを用いた回路
US20220200111A1 (en) Protecting device and battery pack
JP6621255B2 (ja) 保護素子、ヒューズ素子
JP6173859B2 (ja) 短絡素子
JP6161967B2 (ja) 短絡素子、およびこれを用いた回路
KR102233539B1 (ko) 단락 소자 및 단락 회로
WO2015111683A1 (ja) 遮断素子及び遮断素子回路
JP2018156959A (ja) 保護素子及びバッテリパック
JP6246503B2 (ja) 短絡素子、およびこれを用いた回路
KR20160046762A (ko) 차단 소자 및 차단 소자 회로
KR102527559B1 (ko) 단락 소자
JP6339921B2 (ja) 短絡素子及びこれを用いた補償回路
JP6254777B2 (ja) 短絡素子、およびこれを用いた回路
KR102370805B1 (ko) 단락 소자
JP2016021299A (ja) 短絡素子、及びそれを用いたled回路、バッテリ保護回路、短絡回路
JP2019201003A (ja) 保護素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167036230

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855772

Country of ref document: EP

Kind code of ref document: A1