WO2016067457A1 - Transfer system and method for controlling same - Google Patents

Transfer system and method for controlling same Download PDF

Info

Publication number
WO2016067457A1
WO2016067457A1 PCT/JP2014/079088 JP2014079088W WO2016067457A1 WO 2016067457 A1 WO2016067457 A1 WO 2016067457A1 JP 2014079088 W JP2014079088 W JP 2014079088W WO 2016067457 A1 WO2016067457 A1 WO 2016067457A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
workpiece
lifting
drive source
lifting means
Prior art date
Application number
PCT/JP2014/079088
Other languages
French (fr)
Japanese (ja)
Inventor
裕規 ▲高▼山
掃部 雅幸
修平 倉岡
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to KR1020197020586A priority Critical patent/KR20190086788A/en
Priority to CN201480083067.4A priority patent/CN107073717B/en
Priority to KR1020177014758A priority patent/KR20170078789A/en
Priority to JP2016556162A priority patent/JP6518263B2/en
Priority to PCT/JP2014/079088 priority patent/WO2016067457A1/en
Publication of WO2016067457A1 publication Critical patent/WO2016067457A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the present invention relates to a transfer system for transferring a workpiece and a control method thereof, and more particularly to a transfer system suitable for transferring a heavy workpiece and a control method thereof.
  • Workpieces that are transported using the transport system include metal molds for manufacturing metal parts, materials before metal parts are molded, or metal parts that make up products. These works weigh hundreds of kilograms. There is something to have.
  • the workpiece When transporting such heavy workpieces, for example, the workpiece is lifted by an overhead crane installed in the factory, and the operator operates the traveling mechanism of the overhead crane to move the lifted workpiece to a predetermined position. ing.
  • Patent Document 1 proposes a technique for reducing a load on a robot by providing a balancer in a robot so that the work weight is supported by the balancer. .
  • the present invention has been made in view of the above-described problems of the prior art, and enables the transfer of workpieces of various weights using the robot while preventing an increase in size and cost of the robot. It is an object to provide a transport system and a control method thereof.
  • a first aspect of the present invention is a transport system for transporting a workpiece, in order to enable lifting means for lifting the workpiece and horizontal movement of the lifting means.
  • Guide means a robot for moving the workpiece in a state of being lifted by the lifting means, and a control means for controlling the lifting means and the robot.
  • the drive source of the means is controlled by current control, and the drive source of the robot is controlled by position control.
  • the control unit supplies a predetermined current value determined in advance according to the weight of the workpiece and the lifting speed of the workpiece to the drive source of the lifting unit. It is comprised so that it may provide, It is characterized by the above-mentioned.
  • control means includes a robot controller for controlling the robot, and the drive source of the lifting means is an external shaft of the robot. As controlled by the robot controller.
  • the robot control means includes a lifting means controller for controlling the lifting means and a robot controller for controlling the robot.
  • the driving source of the lifting means and the driving source of the robot are cooperatively controlled by communicating between the lifting means controller and the robot controller.
  • the drive source of the lifting means and the drive source of the robot are both servomotors. .
  • the robot is configured to hold the workpiece by holding a workpiece holding jig attached to the workpiece. It is characterized by that.
  • a seventh aspect of the present invention provides a control method for a transport system for transporting a workpiece, the robot holding the workpiece with a holding step, and before or after the holding step.
  • a lifting step of lifting the workpiece by the lifting means; and a moving step of driving the robot to move the workpiece in a state of being lifted by the lifting means, and driving the lifting means in the moving step The power source is controlled by current control, and the driving source of the robot is controlled by position control.
  • the holding step is performed before the lifting step, and the drive source of the lifting means is current controlled in both the lifting step and the moving step.
  • the drive source of the robot is controlled by position control.
  • a predetermined current value determined in advance according to the weight of the workpiece and the lifting speed of the workpiece is applied to the drive source of the lifting means. It is characterized by that.
  • the drive source of the lifting means is controlled by a robot controller of the robot as an external axis of the robot. .
  • the drive source of the lifting means and the drive source of the robot are a controller for the lifting means, a controller for the robot, It is controlled by performing communication between them.
  • the drive source of the lifting means and the drive source of the robot are both servomotors. .
  • the thirteenth aspect of the present invention is characterized in that, in any of the seventh to twelfth aspects, in the holding step, a work holding jig mounted on the work is held by the robot.
  • “current control” is a control method for controlling the drive current of the drive source, not the amount of operation of the drive source (for example, the amount of rotation of the servo motor). Is used to control the driving force of the driving means of the lifting means when raising, lowering, or resting.
  • position control is a control method for controlling the operation position of the drive source by controlling the operation amount of the drive source (for example, the rotation amount of the servo motor). The position of the held work is controlled.
  • a transport system and a control method thereof that can transport workpieces of various weights using a robot while preventing an increase in size and cost of the robot.
  • the workpiece transfer system and its control method according to this embodiment are particularly suitable for transferring a heavy workpiece.
  • the transfer system 1 is incorporated in a robot cell, and includes a crane (lifting means) 2 for lifting the workpiece W.
  • the crane 2 is slidably mounted on a first guide rail 3 installed on the ceiling of the robot cell, and can move in the horizontal direction along the first guide rail 3.
  • first guide rail 3 two second guide rails 4 are installed in parallel in a direction orthogonal to the extending direction of the first guide rail 3.
  • the first guide rail 3 is slidably mounted on the two second guide rails 4 and is movable along the second guide rail 4 in the horizontal direction.
  • the first guide rail 3 and the second guide rail 4 constitute guide means for enabling the crane 2 to move horizontally in the XY directions.
  • the guide means in the present embodiment simply allows the crane 2 to move horizontally, and does not have a drive mechanism for causing the crane 2 to travel in the horizontal direction. It is also possible to add a drive mechanism for causing 2 itself to travel in the horizontal direction.
  • the transfer system 1 further includes a robot 5 for holding the workpiece W.
  • the robot arm 6 of the robot 5 has a hand 7 at its tip.
  • the hand 7 is configured to releasably hold the workpiece holding jig 8 attached to the workpiece W.
  • the robot 5 includes a servo motor (drive source) 9 for driving the robot arm 6 and the hand 7, and the servo motor 9 is provided corresponding to each joint of the robot arm 6 and the holding mechanism of the hand 7. ing.
  • the crane 2 includes a lifting servo motor (drive source) 11 for winding or unwinding the rope 10.
  • each servo motor 9 of the robot 5 is controlled by a robot controller (control means) 12.
  • the operation of the lifting / lowering servomotor 11 of the crane 2 is controlled by a robot controller 12 as an external shaft of the robot 5. That is, each of the servo motors 9 of the robot 5 and the lifting / lowering servo motors 11 of the crane 2 are controlled by the robot controller 12.
  • the robot controller 12 is configured to control the lifting / lowering servomotor 11 of the crane 2 by current control and to control the servomotor 9 of the robot 5 by position control.
  • the “current control” is a control method for controlling the drive current of the servo motor, not the rotation amount of the servo motor.
  • the work W is raised or lowered by the crane 2,
  • the driving force of the lifting / lowering servomotor 11 at the time of stopping is controlled. That is, the lifting / lowering servomotor 11 of the crane 2 is controlled by current control, and the workpiece W is moved upward with a force (constant for each operation) that balances with the workpiece weight (including the weight of the workpiece holding jig 8). Keep pulling on.
  • “Position control” is a control method for controlling the operating position of the servo motor by controlling the rotation amount of the servo motor. In this embodiment, the position control of the work W held by the robot 5 is controlled. It is.
  • the robot controller 12 is configured to apply a predetermined current value, which is determined in advance according to the weight of the workpiece W and the lifting / lowering speed of the workpiece W (including speed 0), to the lifting / lowering servomotor 11 of the crane 2. Yes.
  • the predetermined current value applied to the lifting / lowering servomotor 11 of the crane 2 is obtained in advance by experiments.
  • the lifting / lowering servomotor 11 of the crane 2 is not “position control” but “current control”.
  • a control method in which a drive current of I 0 (A) is supplied to the lifting / lowering servo motor 11 of the crane 2. It is.
  • a predetermined current value I 0 (A) is given to the lifting / lowering servomotor 11 of the crane 2 regardless of the position of the moving workpiece W.
  • the servo motor 9 of the robot 5 is controlled by position control so that the workpiece W moves at a speed V 0 (mm / s).
  • the lifting / lowering servomotor 11 of the crane 2 has a predetermined value determined in advance according to the weight W i (kg) of the work W and the transport speed V 0 (mm / s).
  • an unscheduled external force is not applied to the servo motor 9 of the robot 5 during the transfer work of the workpiece W.
  • the safety mechanism that the robot 5 has as a standard operates to stop the operation of the servo motor 9. .
  • the coefficients a and b are determined by the specifications of the crane 2 including the lifting servo motor 11.
  • Figure 3 is a graph showing the relationship between the current value I m and the Z-axis direction velocity V z in the lifting servo motor 11 of the crane 2 during cooperative operation, it is obtained by experiments.
  • the workpiece is moved up and down under a substantially constant value of the tension generated on the rope of the crane 2 and the workpiece weight.
  • FIG. 3 shows a case where the workpiece W is raised and a case where the workpiece W is lowered.
  • the workpiece W has a workpiece weight W 1 (kg) and the workpiece W has a workpiece weight W 2 (kg) (W 1 > W 2 ).
  • the case where the workpiece W is lowered indicates the case of the workpiece W having a workpiece weight of W 1 (kg).
  • the coefficients c, d, and e are determined by the specifications of the crane 2 including the lifting servo motor 11.
  • I b is a function of the workpiece weight W i, if workpiece weight W i and Z-axis velocity V z is known, it is possible to obtain the I m.
  • the workpiece W with the workpiece holding jig 8 mounted thereon is mounted on the mounting table 13 in the robot cell.
  • the work holding jig 8 is provided with a grip portion 14 that is gripped by the hand 7 of the robot 5.
  • the robot 5 is driven by the robot controller 12, and the grip portion 14 of the work holding jig 8 is held by the hand 7 of the robot 5 as shown in FIG. 4B (holding process).
  • the crane 2 can bear all the total load of the load due to the workpiece weight and the load generated as the workpiece is lifted. Therefore, it is possible to reliably prevent the robot 5 from being overloaded.
  • the robot controller 12 controls the robot 5 and the crane 2 to move the workpiece W to a predetermined position as shown in FIG. 4D ( Moving process).
  • FIG. 5 shows a movement path when the work W lifted up to the first position P1 by the crane 2 is moved to the sixth position P6 by the robot.
  • the movement path of the workpiece W is shown expanded in the same plane, but the actual movement path extends three-dimensionally in the xyz direction.
  • the workpiece W at the first position P1 is moved in the horizontal direction by the robot 5 and moved to the second position P2.
  • a current value that balances the workpiece weight and tension is applied to the lifting / lowering servomotor 11 of the crane 2 using the above-described equation (2).
  • the workpiece W at the second position P2 is moved to the third position P3 at a position higher than the second position P2.
  • the current value corresponding to the speed in the Z-axis direction of the workpiece W calculated using the above-described equation (3) is used as the lifting / lowering servomotor 11 of the crane 2.
  • the crane 2 can bear the total load of the load due to the workpiece weight and the load generated as the workpiece is raised. Therefore, it is possible to reliably prevent the robot 5 from being overloaded.
  • the workpiece W is moved in the horizontal direction from the third position P3 to the fourth position P4.
  • the same control as the movement process from the first position P1 to the second position P2 is performed. Thereby, generation
  • the workpiece W at the fourth position P4 is moved to the fifth position P5 at a position lower than the fourth position P4.
  • the current value corresponding to the speed in the Z-axis direction of the workpiece W calculated using the above-described equation (4) is used as the lifting / lowering servomotor 11 of the crane 2.
  • the crane 2 can be burdened with the total load of the load due to the work weight and the negative load generated as the work descends. Thereby, it is possible to reliably prevent the robot 5 from being overloaded.
  • the robot 5 since the work W is held by the robot 5 and moved while the work weight is borne on the crane 2, the robot 5 is prevented from being increased in size and cost. However, the workpiece W having various weights exceeding the loadable weight of the robot 5 can be transported without any trouble. In addition, by preventing the robot 5 from becoming large, it is possible to prevent an increase in the area occupied by the robot cell including the robot 5.
  • the robot controller 12 controls the lifting / lowering servomotor 11 of the crane 2 by current control and the servomotor 9 of the robot 5 by position control.
  • the operation of the lifting servo motor 11 and the operation of the servo motor 9 of the robot 5 can be reliably synchronized. Therefore, it is possible to reliably prevent an overload from being applied to one or both of the lifting / lowering servomotor 11 of the crane 2 and the servomotor 9 of the robot 5.
  • the crane 2 is passively moved in the horizontal direction in accordance with the horizontal movement of the workpiece W by the robot 5, so that the operation of the drive source of the traveling drive means of the crane 2 is performed. And means for synchronizing the operation of the servo motor 9 of the robot 5 are not required. That is, in this embodiment, the crane 2 simply moves in the horizontal direction following the operation of the robot 5, so the horizontal speed of the crane 2 automatically matches the horizontal speed of the workpiece W.
  • both the servo motors 9 of the robot 5 and the lifting / lowering servo motors 11 of the crane 2 are controlled by the robot controller 12, so that the control means of the transport system 1 is compact.
  • the coordinated control of all the servo motors 9 and 11 can be performed smoothly.
  • a crane controller 15 for controlling the lifting / lowering servomotor 11 of the crane (lifting means) 2 is provided separately from the robot controller 12. You may make it perform cooperative control by communicating between the controller 15 and the robot controller 12.
  • the crane controller 15 controls the lifting / lowering servomotor 11 of the crane 2 by current control
  • the robot controller 12 controls the servomotor 9 of the robot 5 by position control.
  • the crane controller 15 and the robot controller 12 share a command (information) related to the weight of the work W to be transported and the lifting speed (Z-axis direction speed), thereby realizing cooperative control between the controllers 12 and 15.
  • the operation of the lifting / lowering servo motor 11 of the crane 2 and the operation of the servo motor 9 of the robot 5 can be reliably synchronized as in the above-described embodiment. Therefore, it is possible to reliably prevent an overload from being applied to one or both of the lifting / lowering servomotor 11 of the crane 2 and the servomotor 9 of the robot 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

A transfer system (1) is provided with: a hoisting means (2) for hoisting a workpiece (W); guide means (3, 4) for making it possible to horizontally move the hoisting means (2); a robot (5) that moves the workpiece (W) in a state wherein the workpiece is hoisted by means of the hoisting means (2); and a control means (12) that controls the hoisting means (2) and the robot (5). The control means (12) controls a drive source (11) of the hoisting means (2) by means of current control, and also controls a drive source (9) of the robot (5) by means of position control. Workpieces having various weights can be transferred using the robot, while preventing the size and cost of the robot from increasing.

Description

搬送システムおよびその制御方法Transport system and control method thereof
 本発明は、ワークを搬送するための搬送システムおよびその制御方法に係わり、特に、重量の大きいワークの搬送に適した搬送システムおよびその制御方法に関する。 The present invention relates to a transfer system for transferring a workpiece and a control method thereof, and more particularly to a transfer system suitable for transferring a heavy workpiece and a control method thereof.
 搬送システムを用いて搬送するワークには、金属部品を製造する金型、金属部品の成型前の素材、或いは製品を構成する金属部品などがあり、これらのワークには、数百キロの重量を有するものがある。 Workpieces that are transported using the transport system include metal molds for manufacturing metal parts, materials before metal parts are molded, or metal parts that make up products. These works weigh hundreds of kilograms. There is something to have.
 そのような重量ワークを搬送する際には、例えば、工場内に設置された天井クレーンでワークを吊り上げ、天井クレーンの走行機構を作業員が操作して、吊り上げたワークを所定の位置まで移動させている。 When transporting such heavy workpieces, for example, the workpiece is lifted by an overhead crane installed in the factory, and the operator operates the traveling mechanism of the overhead crane to move the lifted workpiece to a predetermined position. ing.
 近年、従来は作業員が行なっていた種々の作業をロボットに行なわせることで、生産工程や搬送工程の無人化・省人化を図ることが求められている。そのため、製造工場内での重量ワークの搬送についても、ロボットを利用することが検討されている。 In recent years, there has been a demand for unmanned and labor-saving production processes and transport processes by causing a robot to perform various operations that have been performed by workers. For this reason, the use of robots is also being considered for transporting heavy workpieces in manufacturing plants.
 しかしながら、重量の大きいワークをロボットで搬送するためには、可搬重量が大きい高剛性アームを備えたロボットを設計・製造する必要があり、ロボット自身が大型化すると共に、その製造コストが増大するという問題がある。 However, in order to transport a heavy workpiece with a robot, it is necessary to design and manufacture a robot equipped with a highly rigid arm with a large payload, and the robot itself becomes larger and its manufacturing cost increases. There is a problem.
 この問題を解決するための技術が検討されており、例えば特許文献1には、ロボットにバランサを併設して、バランサにワーク重量を支持させ、ロボットへの負荷を軽減する技術が提案されている。 A technique for solving this problem has been studied. For example, Patent Document 1 proposes a technique for reducing a load on a robot by providing a balancer in a robot so that the work weight is supported by the balancer. .
特開平9-1492号公報Japanese Patent Laid-Open No. 9-1492
 しかしながら、特許文献1に記載の技術のように、バランサにワーク重量を支持させる構成の場合、取扱い可能なワーク重量の範囲がバランサの仕様により限定されてしまい、汎用性に乏しいという問題がある。 However, as in the technique described in Patent Document 1, in the configuration in which the work weight is supported by the balancer, the range of the work weight that can be handled is limited by the balancer specifications, and there is a problem that the versatility is poor.
 本発明は、上述した従来の技術の問題点に鑑みてなされたものであって、ロボットの大型化・高コスト化を防止しつつ、ロボットを利用して様々な重量のワークを搬送可能とする搬送システムおよびその制御方法を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and enables the transfer of workpieces of various weights using the robot while preventing an increase in size and cost of the robot. It is an object to provide a transport system and a control method thereof.
 上記課題を解決するために、本発明の第1の態様は、ワークを搬送するための搬送システムであって、前記ワークを吊り上げるための吊上げ手段と、前記吊上げ手段の水平移動を可能とするための案内手段と、前記吊上げ手段により吊り上げられた状態にある前記ワークを移動させるためのロボットと、前記吊上げ手段および前記ロボットを制御するための制御手段と、を備え、前記制御手段は、前記吊上げ手段の駆動源を電流制御により制御すると共に、前記ロボットの駆動源を位置制御により制御するように構成されている、ことを特徴とする。 In order to solve the above-described problem, a first aspect of the present invention is a transport system for transporting a workpiece, in order to enable lifting means for lifting the workpiece and horizontal movement of the lifting means. Guide means, a robot for moving the workpiece in a state of being lifted by the lifting means, and a control means for controlling the lifting means and the robot. The drive source of the means is controlled by current control, and the drive source of the robot is controlled by position control.
 本発明の第2の態様は、第1の態様において、前記制御手段は、前記ワークの重量および前記ワークの昇降速度に応じて予め決められた所定の電流値を前記吊上げ手段の前記駆動源に付与するように構成されている、ことを特徴とする。 According to a second aspect of the present invention, in the first aspect, the control unit supplies a predetermined current value determined in advance according to the weight of the workpiece and the lifting speed of the workpiece to the drive source of the lifting unit. It is comprised so that it may provide, It is characterized by the above-mentioned.
 本発明の第3の態様は、第1または第2の態様において、前記制御手段は、前記ロボットを制御するためのロボットコントローラを有し、前記吊上げ手段の前記駆動源は、前記ロボットの外部軸として前記ロボットコントローラによって制御される、ことを特徴とする。 According to a third aspect of the present invention, in the first or second aspect, the control means includes a robot controller for controlling the robot, and the drive source of the lifting means is an external shaft of the robot. As controlled by the robot controller.
 本発明の第4の態様は、第1または第2の態様において、前記ロボット制御手段は、前記吊上げ手段を制御するための吊上げ手段コントローラと、前記ロボットを制御するためのロボットコントローラとを有し、前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、前記吊上げ手段コントローラと前記ロボットコントローラとの間で通信を行なうことにより協調制御される、ことを特徴とする。 According to a fourth aspect of the present invention, in the first or second aspect, the robot control means includes a lifting means controller for controlling the lifting means and a robot controller for controlling the robot. The driving source of the lifting means and the driving source of the robot are cooperatively controlled by communicating between the lifting means controller and the robot controller.
 本発明の第5の態様は、第1乃至第4のいずれかの態様において、前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、いずれも、サーボモータである、ことを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the drive source of the lifting means and the drive source of the robot are both servomotors. .
 本発明の第6の態様は、第1乃至第5のいずれかの態様において、前記ロボットは、前記ワークに装着されたワーク保持治具を保持することにより前記ワークを保持するように構成されている、ことを特徴とする。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the robot is configured to hold the workpiece by holding a workpiece holding jig attached to the workpiece. It is characterized by that.
 上記課題を解決するために、本発明の第7の態様は、ワークを搬送するための搬送システムの制御方法であって、ロボットで前記ワークを保持する保持工程と、前記保持工程の前または後に吊上げ手段によって前記ワークを吊り上げる吊上げ工程と、前記ロボットを駆動して、前記吊上げ手段により吊上げられた状態にある前記ワークを移動させる移動工程と、を備え、前記移動工程において、前記吊上げ手段の駆動源を電流制御により制御すると共に、前記ロボットの駆動源を位置制御により制御する、ことを特徴とする。 In order to solve the above-mentioned problem, a seventh aspect of the present invention provides a control method for a transport system for transporting a workpiece, the robot holding the workpiece with a holding step, and before or after the holding step. A lifting step of lifting the workpiece by the lifting means; and a moving step of driving the robot to move the workpiece in a state of being lifted by the lifting means, and driving the lifting means in the moving step The power source is controlled by current control, and the driving source of the robot is controlled by position control.
 本発明の第8の態様は、第7の態様において、前記保持工程は、前記吊上げ工程の前に実施され、前記吊上げ工程および前記移動工程の両工程において、前記吊上げ手段の駆動源を電流制御により制御すると共に、前記ロボットの駆動源を位置制御により制御する、ことを特徴とする。 According to an eighth aspect of the present invention, in the seventh aspect, the holding step is performed before the lifting step, and the drive source of the lifting means is current controlled in both the lifting step and the moving step. And the drive source of the robot is controlled by position control.
 本発明の第9の態様は、第7または第8の態様において、前記ワークの重量および前記ワークの昇降速度に応じて予め決められた所定の電流値を前記吊上げ手段の前記駆動源に付与する、ことを特徴とする。 According to a ninth aspect of the present invention, in the seventh or eighth aspect, a predetermined current value determined in advance according to the weight of the workpiece and the lifting speed of the workpiece is applied to the drive source of the lifting means. It is characterized by that.
 本発明の第10の態様は、第7乃至第9のいずれかの態様において、前記吊上げ手段の前記駆動源を、前記ロボットの外部軸として前記ロボットのロボットコントローラによって制御する、ことを特徴とする。 According to a tenth aspect of the present invention, in any one of the seventh to ninth aspects, the drive source of the lifting means is controlled by a robot controller of the robot as an external axis of the robot. .
 本発明の第11の態様は、第7乃至第9のいずれかの態様において、前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、前記吊上げ手段用のコントローラと前記ロボット用のコントローラとの間で通信を行なうことにより制御される、ことを特徴とする。 According to an eleventh aspect of the present invention, in any one of the seventh to ninth aspects, the drive source of the lifting means and the drive source of the robot are a controller for the lifting means, a controller for the robot, It is controlled by performing communication between them.
 本発明の第12の態様は、第7乃至第11のいずれかの態様において、前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、いずれも、サーボモータである、ことを特徴とする。 According to a twelfth aspect of the present invention, in any one of the seventh to eleventh aspects, the drive source of the lifting means and the drive source of the robot are both servomotors. .
 本発明の第13の態様は、第7乃至第12のいずれかの態様において、前記保持工程において、前記ワークに装着されたワーク保持治具を前記ロボットで保持する、ことを特徴とする。 The thirteenth aspect of the present invention is characterized in that, in any of the seventh to twelfth aspects, in the holding step, a work holding jig mounted on the work is held by the robot.
 本発明において、「電流制御」とは、駆動源の動作量(例えば、サーボモータの回転量)ではなく、駆動源の駆動電流を制御する制御方式であり、本発明においては、吊上げ手段によってワークを上昇させ、または下降させ、或いは静止させるときの吊上げ手段の駆動源の駆動力を制御するものである。 In the present invention, “current control” is a control method for controlling the drive current of the drive source, not the amount of operation of the drive source (for example, the amount of rotation of the servo motor). Is used to control the driving force of the driving means of the lifting means when raising, lowering, or resting.
 本発明において、「位置制御」とは、駆動源の動作量(例えば、サーボモータの回転量)を制御して、駆動源の動作位置を制御する制御方法であり、本発明においては、ロボットに保持されたワークの位置を制御するものである。 In the present invention, “position control” is a control method for controlling the operation position of the drive source by controlling the operation amount of the drive source (for example, the rotation amount of the servo motor). The position of the held work is controlled.
 本発明によれば、ロボットの大型化・高コスト化を防止しつつ、ロボットを利用して様々な重量のワークを搬送可能とする搬送システムおよびその制御方法を提供することができる。 According to the present invention, it is possible to provide a transport system and a control method thereof that can transport workpieces of various weights using a robot while preventing an increase in size and cost of the robot.
本発明の一実施形態による搬送システムの概略構成を示した図。The figure which showed schematic structure of the conveyance system by one Embodiment of this invention. 図1に示した搬送システムのクレーンの昇降用サーボモータにおける電流値と張力との関係(静止時)を示したグラフ。The graph which showed the relationship between the electric current value and tension | tensile_strength in the servomotor for raising / lowering the crane of the conveyance system shown in FIG. 図1に示した搬送システムのクレーンの昇降用サーボモータにおける電流値と張力との関係(静止時および動作時)を示したグラフ。The graph which showed the relationship between the electric current value and tension | tensile_strength in the servomotor for raising / lowering the crane of the conveyance system shown in FIG. 図1に示した搬送システムを用いたワーク搬送作業を説明するための図であり、載置台上にワークが載置された状態を示した図。It is a figure for demonstrating the workpiece conveyance operation | work using the conveyance system shown in FIG. 1, and the figure which showed the state by which the workpiece | work was mounted on the mounting base. 図1に示した搬送システムを用いたワーク搬送作業を説明するための図であり、ロボットによりワークを保持した状態を示した図。It is a figure for demonstrating the workpiece conveyance operation | work using the conveyance system shown in FIG. 1, and the figure which showed the state holding the workpiece | work with the robot. 図1に示した搬送システムを用いたワーク搬送作業を説明するための図であり、ロボットで保持したワークを載置台から吊り上げた状態を示した図。It is a figure for demonstrating the workpiece conveyance operation | work using the conveyance system shown in FIG. 1, and the figure which showed the state which lifted the workpiece | work hold | maintained with the robot from the mounting base. 図1に示した搬送システムを用いたワーク搬送作業を説明するための図であり、吊り上げたワークをロボットで移動する状態を示した図。It is a figure for demonstrating the workpiece conveyance operation | work using the conveyance system shown in FIG. 1, and the state which moved the lifted workpiece | work with a robot. 図1に示した搬送システムを用いてワークを搬送する際の移動経路の一例を示した図。The figure which showed an example of the movement path | route at the time of conveying a workpiece | work using the conveyance system shown in FIG. 図1に示した実施形態の一変形例による搬送システムの概略構成を示した図。The figure which showed schematic structure of the conveyance system by the modification of embodiment shown in FIG.
 以下、本発明の一実施形態によるワークの搬送システムおよびその制御方法について、図面を参照して説明する。 Hereinafter, a workpiece transfer system and a control method thereof according to an embodiment of the present invention will be described with reference to the drawings.
 本実施形態によるワークの搬送システムおよびその制御方法は、特に、重量の大きなワークの搬送に適したものである。 The workpiece transfer system and its control method according to this embodiment are particularly suitable for transferring a heavy workpiece.
 図1に示したように本実施形態による搬送システム1は、ロボットセルに組み込まれており、ワークWを吊り上げるためのクレーン(吊上げ手段)2を備えている。クレーン2は、ロボットセルの天井に設置された第1のガイドレール3にスライド可能に装着されており、第1のガイドレール3に沿って水平方向に移動可能である。 As shown in FIG. 1, the transfer system 1 according to the present embodiment is incorporated in a robot cell, and includes a crane (lifting means) 2 for lifting the workpiece W. The crane 2 is slidably mounted on a first guide rail 3 installed on the ceiling of the robot cell, and can move in the horizontal direction along the first guide rail 3.
 第1のガイドレール3の上方には、第1のガイドレール3の延在方向に直交する方向に2本の第2のガイドレール4が平行に設置されている。第1のガイドレール3は、2本の第2のガイドレール4にスライド可能に装着されており、第2のガイドレール4に沿って水平方向に移動可能である。第1のガイドレール3および第2のガイドレール4は、クレーン2のXY方向への水平移動を可能とするための案内手段を構成している。 Above the first guide rail 3, two second guide rails 4 are installed in parallel in a direction orthogonal to the extending direction of the first guide rail 3. The first guide rail 3 is slidably mounted on the two second guide rails 4 and is movable along the second guide rail 4 in the horizontal direction. The first guide rail 3 and the second guide rail 4 constitute guide means for enabling the crane 2 to move horizontally in the XY directions.
 なお、本実施形態における案内手段は、単にクレーン2の水平移動を可能とするものであり、クレーン2自体を水平方向に走行させるための駆動機構を有するものではないが、変形例としては、クレーン2自体を水平方向に走行させるための駆動機構を付加することもできる。 Note that the guide means in the present embodiment simply allows the crane 2 to move horizontally, and does not have a drive mechanism for causing the crane 2 to travel in the horizontal direction. It is also possible to add a drive mechanism for causing 2 itself to travel in the horizontal direction.
 本実施形態による搬送システム1は、さらに、ワークWを保持するためのロボット5を備えている。ロボット5のロボットアーム6は、その先端にハンド7を備えている。ハンド7は、ワークWに装着されたワーク保持治具8を解放可能に保持するように構成されている。 The transfer system 1 according to the present embodiment further includes a robot 5 for holding the workpiece W. The robot arm 6 of the robot 5 has a hand 7 at its tip. The hand 7 is configured to releasably hold the workpiece holding jig 8 attached to the workpiece W.
 ロボット5は、ロボットアーム6およびハンド7を駆動するためのサーボモータ(駆動源)9を備えており、サーボモータ9は、ロボットアーム6の各関節およびハンド7の保持機構に対応して設けられている。クレーン2は、そのロープ10を巻き上げまたは繰り出すための昇降用サーボモータ(駆動源)11を備えている。 The robot 5 includes a servo motor (drive source) 9 for driving the robot arm 6 and the hand 7, and the servo motor 9 is provided corresponding to each joint of the robot arm 6 and the holding mechanism of the hand 7. ing. The crane 2 includes a lifting servo motor (drive source) 11 for winding or unwinding the rope 10.
 ロボット5の各サーボモータ9は、ロボットコントローラ(制御手段)12によってその動作が制御される。また、クレーン2の昇降用サーボモータ11は、ロボット5の外部軸として、ロボットコントローラ12によってその動作が制御される。すなわち、ロボット5の各サーボモータ9およびクレーン2の昇降用サーボモータ11のいずれもが、ロボットコントローラ12によって制御される。 The operation of each servo motor 9 of the robot 5 is controlled by a robot controller (control means) 12. The operation of the lifting / lowering servomotor 11 of the crane 2 is controlled by a robot controller 12 as an external shaft of the robot 5. That is, each of the servo motors 9 of the robot 5 and the lifting / lowering servo motors 11 of the crane 2 are controlled by the robot controller 12.
 そして、本実施形態においては、ロボットコントローラ12は、クレーン2の昇降用サーボモータ11を電流制御により制御すると共に、ロボット5のサーボモータ9を位置制御により制御するように構成されている。 In this embodiment, the robot controller 12 is configured to control the lifting / lowering servomotor 11 of the crane 2 by current control and to control the servomotor 9 of the robot 5 by position control.
 ここで、「電流制御」とは、サーボモータの回転量ではなく、サーボモータの駆動電流を制御する制御方式であり、本実施形態においては、クレーン2によってワークWを上昇させ、または下降させ、或いは静止させる際の昇降用サーボモータ11の駆動力を制御するものである。すなわち、クレーン2の昇降用サーボモータ11を電流制御で制御して、ワーク重量(ワーク保持治具8の重量を含む。以下同様。)とバランスする力(動作毎に一定)でワークWを上方に引っ張り続ける。 Here, the “current control” is a control method for controlling the drive current of the servo motor, not the rotation amount of the servo motor. In the present embodiment, the work W is raised or lowered by the crane 2, Alternatively, the driving force of the lifting / lowering servomotor 11 at the time of stopping is controlled. That is, the lifting / lowering servomotor 11 of the crane 2 is controlled by current control, and the workpiece W is moved upward with a force (constant for each operation) that balances with the workpiece weight (including the weight of the workpiece holding jig 8). Keep pulling on.
 また、「位置制御」は、サーボモータの回転量を制御して、サーボモータの動作位置を制御する制御方法であり、本実施形態においては、ロボット5で保持したワークWの位置を制御するものである。 “Position control” is a control method for controlling the operating position of the servo motor by controlling the rotation amount of the servo motor. In this embodiment, the position control of the work W held by the robot 5 is controlled. It is.
 ロボットコントローラ12は、ワークWの重量およびワークWの昇降速度(速度0を含む。)に応じて予め決められた所定の電流値をクレーン2の昇降用サーボモータ11に付与するように構成されている。クレーン2の昇降用サーボモータ11に付与する所定の電流値は、実験によって予め求めておく。 The robot controller 12 is configured to apply a predetermined current value, which is determined in advance according to the weight of the workpiece W and the lifting / lowering speed of the workpiece W (including speed 0), to the lifting / lowering servomotor 11 of the crane 2. Yes. The predetermined current value applied to the lifting / lowering servomotor 11 of the crane 2 is obtained in advance by experiments.
 ところで、もし仮にクレーン2の昇降用サーボモータ11およびロボット5のサーボモータ9の両方を位置制御で駆動した場合、クレーン2の動作とロボット5の動作とが完全に同期していれば問題ないが、何らかの理由(クレーンの位置決め精度が十分でない等)により、両者の動作にズレが生じた場合には、クレーン2の昇降用サーボモータ11およびロボット5のサーボモータ9に、外力としての予定外の負荷が加えられる可能性がある。 By the way, if both the lifting / lowering servo motor 11 of the crane 2 and the servo motor 9 of the robot 5 are driven by position control, there is no problem as long as the operation of the crane 2 and the operation of the robot 5 are completely synchronized. If for any reason (the positioning accuracy of the crane is not sufficient, etc.), there is a shift in the movement between the two, the lifting servomotor 11 of the crane 2 and the servomotor 9 of the robot 5 will be unscheduled as external forces. A load may be applied.
 これに対して、上述したように本実施形態による搬送システム1においては、クレーン2によってワークWを搬送する際に、クレーン2の昇降用サーボモータ11を「位置制御」ではなく「電流制御」で駆動する。例えば、重量W(kg)のワークWを速度V(mm/s)でクレーン2によって吊り上げるときは、クレーン2の昇降用サーボモータ11にI(A)の駆動電流を流すという制御方法である。このとき、クレーン2の昇降用サーボモータ11には、移動中のワークWの位置とは無関係に、所定の電流値I(A)が与えられる。一方、ロボット5のサーボモータ9は、位置制御によって、ワークWが速度V(mm/s)で移動するように制御される。 On the other hand, as described above, in the transport system 1 according to the present embodiment, when the work W is transported by the crane 2, the lifting / lowering servomotor 11 of the crane 2 is not “position control” but “current control”. To drive. For example, when a workpiece W having a weight W i (kg) is lifted by the crane 2 at a speed V 0 (mm / s), a control method in which a drive current of I 0 (A) is supplied to the lifting / lowering servo motor 11 of the crane 2. It is. At this time, a predetermined current value I 0 (A) is given to the lifting / lowering servomotor 11 of the crane 2 regardless of the position of the moving workpiece W. On the other hand, the servo motor 9 of the robot 5 is controlled by position control so that the workpiece W moves at a speed V 0 (mm / s).
 上記の通り、本実施形態による搬送システムにおいては、クレーン2の昇降用サーボモータ11に、ワークWの重量W(kg)および搬送速度V(mm/s)に応じて予め決められた所定の電流値I(A)を流し、一方で、ロボット5のサーボモータ9は、所定の電流値I(A)を決定する際の前提条件としての速度V(mm/s)のワーク移動を達成するように制御されるので、クレーン2の位置決め精度が十分でない場合であっても、そもそもクレーン2は位置制御していないので、特に問題は生じない。 As described above, in the transport system according to the present embodiment, the lifting / lowering servomotor 11 of the crane 2 has a predetermined value determined in advance according to the weight W i (kg) of the work W and the transport speed V 0 (mm / s). current value I 0 flowing (a) of, on the one hand, the work of the servomotor 9 of the robot 5, the speed V 0 which as a prerequisite in determining the predetermined current value I 0 (a) (mm / s) Since the movement is controlled so as to achieve the movement, even if the positioning accuracy of the crane 2 is not sufficient, the crane 2 is not position-controlled in the first place, so that no particular problem occurs.
 なお、本実施形態による搬送システム1では、上記の通り、ワークWの搬送作業中にロボット5のサーボモータ9に予定外の外力が加えられることはないが、万が一、予期しない何らかの理由によってロボット5のサーボモータ9に予定外の外力が加えられ、サーボモータ9に過負荷が発生した場合には、ロボット5が標準的に備えている安全機構が作動して、サーボモータ9の動作を停止する。 In the transfer system 1 according to the present embodiment, as described above, an unscheduled external force is not applied to the servo motor 9 of the robot 5 during the transfer work of the workpiece W. When an unscheduled external force is applied to the servo motor 9 and an overload occurs in the servo motor 9, the safety mechanism that the robot 5 has as a standard operates to stop the operation of the servo motor 9. .
 以下では、本実施形態による搬送システム1におけるクレーン2の昇降用サーボモータ11の電流制御について、さらに詳細に説明する。 Hereinafter, the current control of the lifting / lowering servomotor 11 of the crane 2 in the transport system 1 according to the present embodiment will be described in more detail.
 まず、クレーン2で吊り上げたワークWの上下位置(Z軸方向位置)を固定した状態における昇降用サーボモータ11の電流制御について、図2を参照して説明する。 First, the current control of the lift servomotor 11 in a state where the vertical position (Z-axis direction position) of the workpiece W lifted by the crane 2 is fixed will be described with reference to FIG.
 図2は、ワークW(クレーン2)の上下位置(Z軸方向位置)を固定した静止状態において、クレーン2の昇降用サーボモータ11における電流値Iと張力Tとの関係を示したグラフであり、実験により得られたものである。具体的には、クレーン2のロープ10を地面に固定した状態で、電流値Iを変化させたときの張力Tを測定したものである。 2, in a stationary state of fixing the vertical position of the workpiece W (crane 2) the (Z-axis direction position), a graph showing the relationship between the current value I s and the tension T in the lifting servo motor 11 of the crane 2 Yes, it was obtained by experiment. Specifically, the rope 10 of the crane 2 while being fixed to the ground, is obtained by measuring the tension T when changing the current value I s.
 図2のグラフから分かるように、静止状態においては、電流値Iと張力Tとは概ね線形関係にあることが実験的に示された。すなわち、ロープ10に生じる張力Tと昇降用サーボモータ11における電流値Iとを、以下の式で表すことができる。 As it is seen from the graph of FIG. 2, in a stationary state, to be in a generally linear relationship between the current value I s and the tension T has been shown experimentally. That is, a current value I s in the tension T and the lifting servo motor 11 occurring in the rope 10 can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上式(1)において、係数a、bは、昇降用サーボモータ11を含むクレーン2の仕様によって決まるものである。 In the above equation (1), the coefficients a and b are determined by the specifications of the crane 2 including the lifting servo motor 11.
 ワーク重量をWとすると、T=Wのとき、クレーン2の張力Tがワーク重量Wとバランスした状態となる。このときのサーボモータ電流Iは、下記のように求められる。 When the workpiece weight and W i, when T = W i, a state of tension T of the crane 2 are balanced and the workpiece weight W i. Servo motor current I b in this case is determined as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、クレーン2で吊り上げたワークWを、その上下位置(Z軸方向位置)を変更することなく、ロボット5によって水平方向に移動させる際には、ワーク重量Wによって生じる張力Tとバランスする駆動力を昇降用サーボモータ11に発生させるために、上記式(2)にワーク重量Wを入れて求めた電流値Iを昇降用サーボモータ11に付与する。 Then, the workpiece W lifting by crane 2, without changing its vertical position (Z-axis direction position), when moving in the horizontal direction by the robot 5 is balanced with the tension T caused by workpiece weight W i drive in order to generate a force to lift servo motor 11, to impart current value I b obtained by putting the workpiece weight W i in equation (2) to the lifting servo motor 11.
 これにより、ワークWを水平方向に搬送する作業において、ワーク重量Wによる負荷はクレーン2が負担することとなり、ロボット5に負荷がかかることを防止することができる。 Thus, in the task of conveying the workpiece W in the horizontal direction, the load due to workpiece weight W i becomes the crane 2 to be borne, it is possible to prevent that such a load on the robot 5.
 次に、クレーン2で吊り上げたワークWの上下位置(Z方向位置)を変化させる場合、すなわち、クレーン2とロボット5とが協調動作を行いながらワークWを昇降させる場合の昇降用サーボモータ12の電流制御について、図3を参照して説明する。 Next, when the vertical position (Z-direction position) of the workpiece W lifted by the crane 2 is changed, that is, when the workpiece W is moved up and down while the crane 2 and the robot 5 perform the cooperative operation, The current control will be described with reference to FIG.
 図3は、協調動作時のクレーン2の昇降用サーボモータ11における電流値IとZ軸方向速度Vとの関係を示したグラフであり、実験により得られたものである。なお、本実施形態においては、クレーン2のロープに生じる張力とワーク重量とが概一定値のもとでワーク上下動を実現する。 Figure 3 is a graph showing the relationship between the current value I m and the Z-axis direction velocity V z in the lifting servo motor 11 of the crane 2 during cooperative operation, it is obtained by experiments. In the present embodiment, the workpiece is moved up and down under a substantially constant value of the tension generated on the rope of the crane 2 and the workpiece weight.
 図3は、ワークWを上昇させた場合と、ワークWを下降させた場合とを示している。また、ワークWを上昇させた場合については、ワーク重量がW(kg)のワークWの場合と、ワーク重量がW(kg)(W>W)のワークWの場合とを示している。ワークWを下降させた場合については、ワーク重量がW(kg)のワークWの場合を示している。 FIG. 3 shows a case where the workpiece W is raised and a case where the workpiece W is lowered. In the case where the workpiece W is raised, the workpiece W has a workpiece weight W 1 (kg) and the workpiece W has a workpiece weight W 2 (kg) (W 1 > W 2 ). ing. The case where the workpiece W is lowered indicates the case of the workpiece W having a workpiece weight of W 1 (kg).
 図3から分かるように、クレーン2の昇降用サーボモータ11の電流値IとワークW(ロボット)のZ軸方向速度Vの間に、下記の関係があることが実験的に示された。 As can be seen from Figure 3, during the Z-axis direction speed V z of the current value I m and the workpiece W lifting servo motor 11 of the crane 2 (robot), that there is the following relation shown experimentally .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上式(3)、(4)において各係数c、d、eは、昇降用サーボモータ11を含むクレーン2の仕様によって決まる。 In the above equations (3) and (4), the coefficients c, d, and e are determined by the specifications of the crane 2 including the lifting servo motor 11.
 Iはワーク重量Wの関数であるため、ワーク重量WとZ軸方向速度Vが既知であれば、Iを求めることができる。 Since I b is a function of the workpiece weight W i, if workpiece weight W i and Z-axis velocity V z is known, it is possible to obtain the I m.
 そして、本実施形態においては、ワークWを上下動させる際、クレーン2の昇降用サーボモータ11の電流Iのもと協調動作を行うことで、ロボット5側がワーク重量Wを負担せずに搬送動作が可能である。 Then, in the present embodiment, when the vertically moving the workpiece W, by performing the current I m under cooperative operation of the lifting servo motor 11 of the crane 2, the robot 5 side without bear workpiece weight W i A transfer operation is possible.
 次に、本実施形態による搬送システム1を用いてワークWを搬送する際の搬送システム1の制御方法について、図面を参照して説明する。 Next, a control method of the transport system 1 when transporting the workpiece W using the transport system 1 according to the present embodiment will be described with reference to the drawings.
 図4Aに示したように、ロボットセル内の載置台13の上に、ワーク保持治具8が装着されたワークWが載置されている。ワーク保持治具8には、ロボット5のハンド7で把持する把手部14が設けられている。ロボットコントローラ12によってロボット5を駆動し、図4Bに示したようにロボット5のハンド7でワーク保持治具8の把手部14を把持する(保持工程)。 As shown in FIG. 4A, the workpiece W with the workpiece holding jig 8 mounted thereon is mounted on the mounting table 13 in the robot cell. The work holding jig 8 is provided with a grip portion 14 that is gripped by the hand 7 of the robot 5. The robot 5 is driven by the robot controller 12, and the grip portion 14 of the work holding jig 8 is held by the hand 7 of the robot 5 as shown in FIG. 4B (holding process).
 次に、ロボットコントローラ12によってロボット5およびクレーン2を制御して、図4Cに示したように、載置台13上のワークWを、初期位置P0から第1位置P1まで速度Vで吊り上げる(吊上げ工程)。 Then, by controlling the robot 5 and the crane 2 by the robot controller 12, as shown in FIG. 4C, the workpiece W on the mounting table 13, it lifted at a speed V z from the initial position P0 to the first position P1 (lifting Process).
 この吊上げ工程においては、上述した式(3)に基づいて算出した、ワークWのZ軸方向速度Vに対応する電流値Iを、クレーン2の昇降用サーボモータ11に付与する。 In this lifting step, it is calculated based on the equation (3) described above, the current value I m corresponding to the Z-axis direction speed V z of the workpiece W, is applied to the lifting servo motor 11 of the crane 2.
 これにより、初期位置P0から第1位置P1への吊上げ工程において、ワーク重量による負荷と、ワーク上昇に伴って発生する負荷との合計負荷を、クレーン2にすべて負担させることができる。従って、ロボット5に過負荷が発生することを確実に防止することができる。 Thus, in the lifting process from the initial position P0 to the first position P1, the crane 2 can bear all the total load of the load due to the workpiece weight and the load generated as the workpiece is lifted. Therefore, it is possible to reliably prevent the robot 5 from being overloaded.
 吊上げ工程において載置台13からワークWを第1位置P1まで吊り上げたら、ロボットコントローラ12によってロボット5およびクレーン2を制御して、図4Dに示したように、所定の位置までワークWを移動させる(移動工程)。 When the workpiece W is lifted from the mounting table 13 to the first position P1 in the lifting step, the robot controller 12 controls the robot 5 and the crane 2 to move the workpiece W to a predetermined position as shown in FIG. 4D ( Moving process).
 図5は、クレーン2で第1位置P1まで吊り上げたワークWを、ロボットによって第6位置P6まで移動する際の移動経路を示している。なお、図5においては、説明の便宜上、ワークWの移動経路を同一平面内に展開して表示しているが、実際の移動経路は、xyz方向に3次元的に延在するものである。 FIG. 5 shows a movement path when the work W lifted up to the first position P1 by the crane 2 is moved to the sixth position P6 by the robot. In FIG. 5, for the sake of convenience of explanation, the movement path of the workpiece W is shown expanded in the same plane, but the actual movement path extends three-dimensionally in the xyz direction.
 まず、第1位置P1にあるワークWを、ロボット5によって水平方向に移動させ、第2位置P2まで移動する。第1位置P1から第2位置P2への移動工程においては、上述した式(2)を用いて、ワーク重量と張力とをバランスさせる電流値を、クレーン2の昇降用サーボモータ11に付与する。 First, the workpiece W at the first position P1 is moved in the horizontal direction by the robot 5 and moved to the second position P2. In the movement process from the first position P1 to the second position P2, a current value that balances the workpiece weight and tension is applied to the lifting / lowering servomotor 11 of the crane 2 using the above-described equation (2).
 次に、第2位置P2にあるワークWを、第2位置P2よりも高い位置にある第3位置P3に移動する。第2位置P2から第3位置P3への移動工程においては、上述した式(3)を用いて算出した、ワークWのZ軸方向速度に対応する電流値を、クレーン2の昇降用サーボモータ11に付与する。 Next, the workpiece W at the second position P2 is moved to the third position P3 at a position higher than the second position P2. In the movement process from the second position P2 to the third position P3, the current value corresponding to the speed in the Z-axis direction of the workpiece W calculated using the above-described equation (3) is used as the lifting / lowering servomotor 11 of the crane 2. To grant.
 これにより、第2位置P2から第3位置P3への移動工程において、ワーク重量による負荷と、ワーク上昇に伴って発生する負荷との合計負荷を、クレーン2に負担させることができる。従って、ロボット5に過負荷が発生することを確実に防止することができる。 Thereby, in the movement process from the second position P2 to the third position P3, the crane 2 can bear the total load of the load due to the workpiece weight and the load generated as the workpiece is raised. Therefore, it is possible to reliably prevent the robot 5 from being overloaded.
 次に、第3位置P3から第4位置P4までワークWを水平方向に移動する。この移動工程においては、第1位置P1から第2位置P2への移動工程と同様の制御を実施する。これにより、ロボット5における過負荷の発生を確実に防止することができる。 Next, the workpiece W is moved in the horizontal direction from the third position P3 to the fourth position P4. In this movement process, the same control as the movement process from the first position P1 to the second position P2 is performed. Thereby, generation | occurrence | production of the overload in the robot 5 can be prevented reliably.
 次に、第4位置P4にあるワークWを、第4位置P4よりも低い位置にある第5位置P5に移動する。第4位置P4から第5位置P5への移動工程においては、上述した式(4)を用いて算出した、ワークWのZ軸方向速度に対応する電流値を、クレーン2の昇降用サーボモータ11に付与する。 Next, the workpiece W at the fourth position P4 is moved to the fifth position P5 at a position lower than the fourth position P4. In the moving process from the fourth position P4 to the fifth position P5, the current value corresponding to the speed in the Z-axis direction of the workpiece W calculated using the above-described equation (4) is used as the lifting / lowering servomotor 11 of the crane 2. To grant.
 これにより、第4位置P4から第5位置P4への移動工程において、ワーク重量による負荷と、ワーク下降に伴って発生するマイナスの負荷との合計負荷を、クレーン2に負担させることができる。これにより、ロボット5に過負荷が発生することを確実に防止することができる。 Thereby, in the movement process from the fourth position P4 to the fifth position P4, the crane 2 can be burdened with the total load of the load due to the work weight and the negative load generated as the work descends. Thereby, it is possible to reliably prevent the robot 5 from being overloaded.
 次に、第5位置P5にあるワークWを、第5位置P5の直下にある第6位置に移動する。この移動工程においては、第4位置P4から第5位置への移動工程と同様の制御を実施する。これにより、ロボット5における過負荷の発生を確実に防止することができる。 Next, the work W at the fifth position P5 is moved to the sixth position immediately below the fifth position P5. In this movement process, the same control as the movement process from the fourth position P4 to the fifth position is performed. Thereby, generation | occurrence | production of the overload in the robot 5 can be prevented reliably.
 以上述べたように、本実施形態によれば、ワーク重量をクレーン2に負担させつつ、ワークWをロボット5で保持して移動するようにしたので、ロボット5の大型化・高コスト化を防止しながら、ロボット5の可搬重量を超える様々な重量のワークWを支障なく搬送することができる。なお、ロボット5の大型化を防止することで、ロボット5を含むロボットセルの専有面積の増大を防止することもできる。 As described above, according to the present embodiment, since the work W is held by the robot 5 and moved while the work weight is borne on the crane 2, the robot 5 is prevented from being increased in size and cost. However, the workpiece W having various weights exceeding the loadable weight of the robot 5 can be transported without any trouble. In addition, by preventing the robot 5 from becoming large, it is possible to prevent an increase in the area occupied by the robot cell including the robot 5.
 また、本実施形態によれば、ロボットコントローラ12は、クレーン2の昇降用サーボモータ11を電流制御により制御すると共に、ロボット5のサーボモータ9を位置制御により制御するようにしたので、クレーン2の昇降用サーボモータ11の動作とロボット5のサーボモータ9の動作とを確実に同期させることができる。従って、クレーン2の昇降用サーボモータ11およびロボット5のサーボモータ9の一方または両方に過負荷が加えられることを確実に防止することができる。 According to the present embodiment, the robot controller 12 controls the lifting / lowering servomotor 11 of the crane 2 by current control and the servomotor 9 of the robot 5 by position control. The operation of the lifting servo motor 11 and the operation of the servo motor 9 of the robot 5 can be reliably synchronized. Therefore, it is possible to reliably prevent an overload from being applied to one or both of the lifting / lowering servomotor 11 of the crane 2 and the servomotor 9 of the robot 5.
 また、本実施形態によれば、クレーン2で吊り上げられたワークWをロボット5で水平方向に移動させることにより、クレーン2が水平方向に受動的に移動するようにしたので、クレーン2を水平方向に走行させるための走行駆動手段が不要となる。 Moreover, according to this embodiment, since the workpiece | work W lifted with the crane 2 was moved to the horizontal direction with the robot 5, the crane 2 was moved passively to the horizontal direction, Therefore No traveling drive means for traveling the vehicle is required.
 また、本実施形態によれば、上記の通りロボット5によるワークWの水平移動に応じてクレーン2が水平方向に受動的に移動するようにしたので、クレーン2の走行駆動手段の駆動源の動作とロボット5のサーボモータ9の動作とを同期させるための手段が不要となる。すなわち、本実施形態においては、クレーン2は単にロボット5の動作に追従して水平方向に移動するだけなので、クレーン2の水平方向速度はワークWの水平方向速度と自動的に一致する。 In addition, according to the present embodiment, as described above, the crane 2 is passively moved in the horizontal direction in accordance with the horizontal movement of the workpiece W by the robot 5, so that the operation of the drive source of the traveling drive means of the crane 2 is performed. And means for synchronizing the operation of the servo motor 9 of the robot 5 are not required. That is, in this embodiment, the crane 2 simply moves in the horizontal direction following the operation of the robot 5, so the horizontal speed of the crane 2 automatically matches the horizontal speed of the workpiece W.
 また、本実施形態によれば、ロボット5の各サーボモータ9およびクレーン2の昇降用サーボモータ11の両方を、ロボットコントローラ12によって制御するようにしたので、搬送システム1の制御手段をコンパクトなものにできると共に、すべてのサーボモータ9、11の協調制御を円滑に行なうことができる。 In addition, according to the present embodiment, both the servo motors 9 of the robot 5 and the lifting / lowering servo motors 11 of the crane 2 are controlled by the robot controller 12, so that the control means of the transport system 1 is compact. In addition, the coordinated control of all the servo motors 9 and 11 can be performed smoothly.
 上述した実施形態の一変形例としては、図6に示したように、クレーン(吊上げ手段)2の昇降用サーボモータ11を制御するためのクレーンコントローラ15を、ロボットコントローラ12とは別に設け、クレーンコントローラ15とロボットコントローラ12との間で通信を行なうことにより協調制御するようにしても良い。 As a modification of the above-described embodiment, as shown in FIG. 6, a crane controller 15 for controlling the lifting / lowering servomotor 11 of the crane (lifting means) 2 is provided separately from the robot controller 12. You may make it perform cooperative control by communicating between the controller 15 and the robot controller 12. FIG.
 本例においては、クレーンコントローラ15がクレーン2の昇降用サーボモータ11を電流制御により制御すると共に、ロボットコントローラ12がロボット5のサーボモータ9を位置制御により制御する。搬送対象のワークWの重量および昇降速度(Z軸方向速度)に関する指令(情報)を、クレーンコントローラ15とロボットコントローラ12とで共有することにより、両コントローラ12、15間における協調制御を実現する。 In this example, the crane controller 15 controls the lifting / lowering servomotor 11 of the crane 2 by current control, and the robot controller 12 controls the servomotor 9 of the robot 5 by position control. The crane controller 15 and the robot controller 12 share a command (information) related to the weight of the work W to be transported and the lifting speed (Z-axis direction speed), thereby realizing cooperative control between the controllers 12 and 15.
 本例においても、上述した実施形態と同様、クレーン2の昇降用サーボモータ11の動作とロボット5のサーボモータ9の動作とを確実に同期させることができる。従って、クレーン2の昇降用サーボモータ11およびロボット5のサーボモータ9の一方または両方に過負荷が加えられることを確実に防止することができる。 Also in this example, the operation of the lifting / lowering servo motor 11 of the crane 2 and the operation of the servo motor 9 of the robot 5 can be reliably synchronized as in the above-described embodiment. Therefore, it is possible to reliably prevent an overload from being applied to one or both of the lifting / lowering servomotor 11 of the crane 2 and the servomotor 9 of the robot 5.
 1 搬送システム
 2 クレーン(吊上げ手段)
 3 第1のガイドレール(案内手段)
 4 第2のガイドレール(案内手段)
 5 ロボット
 6 ロボットアーム
 7 ハンド
 8 ワーク保持治具
 9 ロボットのサーボモータ(駆動源)
 10 クレーンのロープ
 11 クレーンの昇降用サーボモータ(駆動源)
 12 ロボットコントローラ(制御手段)
 13 載置台
 14 ワーク保持治具の把手部
 15 クレーンコントローラ
 W ワーク
 
1 Transport system 2 Crane (lifting means)
3 First guide rail (guide means)
4 Second guide rail (guide means)
5 Robot 6 Robot arm 7 Hand 8 Work holding jig 9 Robot servo motor (drive source)
10 Crane Rope 11 Crane Lifting Servo Motor (Drive Source)
12 Robot controller (control means)
13 Mounting base 14 Handle part of work holding jig 15 Crane controller W Work

Claims (13)

  1.  ワークを搬送するための搬送システムであって、
     前記ワークを吊り上げるための吊上げ手段と、
     前記吊上げ手段の水平移動を可能とするための案内手段と、
     前記吊上げ手段により吊り上げられた状態にある前記ワークを移動させるためのロボットと、
     前記吊上げ手段および前記ロボットを制御するための制御手段と、を備え、
     前記制御手段は、前記吊上げ手段の駆動源を電流制御により制御すると共に、前記ロボットの駆動源を位置制御により制御するように構成されている、搬送システム。
    A conveyance system for conveying a workpiece,
    Lifting means for lifting the workpiece;
    Guiding means for enabling horizontal movement of the lifting means;
    A robot for moving the workpiece in a state of being lifted by the lifting means;
    Control means for controlling the lifting means and the robot,
    The said control means is a conveyance system comprised so that the drive source of the said lifting means may be controlled by electric current control, and the drive source of the said robot may be controlled by position control.
  2.  前記制御手段は、前記ワークの重量および前記ワークの昇降速度に応じて予め決められた所定の電流値を前記吊上げ手段の前記駆動源に付与するように構成されている、請求項1記載の搬送システム。 2. The transport according to claim 1, wherein the control unit is configured to apply a predetermined current value determined in advance according to a weight of the workpiece and a lifting speed of the workpiece to the drive source of the lifting unit. system.
  3.  前記制御手段は、前記ロボットを制御するためのロボットコントローラを有し、
     前記吊上げ手段の前記駆動源は、前記ロボットの外部軸として前記ロボットコントローラによって制御される、請求項1または2に記載の搬送システム。
    The control means has a robot controller for controlling the robot,
    The transport system according to claim 1, wherein the drive source of the lifting means is controlled by the robot controller as an external axis of the robot.
  4.  前記ロボット制御手段は、前記吊上げ手段を制御するための吊上げ手段コントローラと、前記ロボットを制御するためのロボットコントローラとを有し、
     前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、前記吊上げ手段コントローラと前記ロボットコントローラとの間で通信を行なうことにより協調制御される、請求項1または2に記載の搬送システム。
    The robot control means has a lifting means controller for controlling the lifting means, and a robot controller for controlling the robot,
    The transport system according to claim 1 or 2, wherein the drive source of the lifting means and the drive source of the robot are cooperatively controlled by performing communication between the lifting means controller and the robot controller.
  5.  前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、いずれも、サーボモータである、請求項1乃至4のいずれか一項に記載の搬送システム。 The transfer system according to any one of claims 1 to 4, wherein each of the drive source of the lifting means and the drive source of the robot is a servo motor.
  6.  前記ロボットは、前記ワークに装着されたワーク保持治具を保持することにより前記ワークを保持するように構成されている、請求項1乃至5のいずれか一項に記載の搬送システム。 The transfer system according to any one of claims 1 to 5, wherein the robot is configured to hold the workpiece by holding a workpiece holding jig attached to the workpiece.
  7.  ワークを搬送するための搬送システムの制御方法であって、
     ロボットで前記ワークを保持する保持工程と、
     前記保持工程の前または後に吊上げ手段によって前記ワークを吊り上げる吊上げ工程と、
     前記ロボットを駆動して、前記吊上げ手段により吊上げられた状態にある前記ワークを移動させる移動工程と、を備え、
     前記移動工程において、前記吊上げ手段の駆動源を電流制御により制御すると共に、前記ロボットの駆動源を位置制御により制御する、搬送システムの制御方法。
    A control method of a transfer system for transferring a workpiece,
    A holding step of holding the workpiece by a robot;
    A lifting step of lifting the workpiece by a lifting means before or after the holding step;
    A moving step of driving the robot and moving the workpiece in a state of being lifted by the lifting means,
    In the moving step, a control method of the transport system, wherein the drive source of the lifting means is controlled by current control and the drive source of the robot is controlled by position control.
  8.  前記保持工程は、前記吊上げ工程の前に実施され、
     前記吊上げ工程および前記移動工程の両工程において、前記吊上げ手段の駆動源を電流制御により制御すると共に、前記ロボットの駆動源を位置制御により制御する、請求項7記載の搬送システムの制御方法。
    The holding step is performed before the lifting step,
    8. The method of controlling a transfer system according to claim 7, wherein in both the lifting step and the moving step, the drive source of the lifting means is controlled by current control, and the drive source of the robot is controlled by position control.
  9.  前記ワークの重量および前記ワークの昇降速度に応じて予め決められた所定の電流値を前記吊上げ手段の前記駆動源に付与する、請求項7または8に記載の搬送システムの制御方法。 9. The method of controlling a transfer system according to claim 7 or 8, wherein a predetermined current value determined in advance according to the weight of the workpiece and the lifting speed of the workpiece is applied to the drive source of the lifting means.
  10.  前記吊上げ手段の前記駆動源を、前記ロボットの外部軸として前記ロボットのロボットコントローラによって制御する、請求項7乃至9のいずれか一項に記載の搬送システムの制御方法。 10. The method of controlling a transport system according to claim 7, wherein the drive source of the lifting means is controlled by a robot controller of the robot as an external axis of the robot.
  11.  前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、前記吊上げ手段用のコントローラと前記ロボット用のコントローラとの間で通信を行なうことにより協調制御される、請求項7乃至9のいずれか一項に記載の搬送システムの制御方法。 The drive source of the lifting means and the drive source of the robot are coordinated and controlled by performing communication between the controller for the lifting means and the controller for the robot. The method for controlling the transport system according to one item.
  12.  前記吊上げ手段の前記駆動源および前記ロボットの前記駆動源は、いずれも、サーボモータである、請求項7乃至11のいずれか一項に記載の搬送システムの制御方法。 The method for controlling a transport system according to any one of claims 7 to 11, wherein each of the drive source of the lifting means and the drive source of the robot is a servo motor.
  13.  前記保持工程において、前記ワークに装着されたワーク保持治具を前記ロボットで保持する、請求項7乃至12のいずれか一項に記載の搬送システムの制御方法。
     
    The method of controlling a transfer system according to any one of claims 7 to 12, wherein in the holding step, a workpiece holding jig mounted on the workpiece is held by the robot.
PCT/JP2014/079088 2014-10-31 2014-10-31 Transfer system and method for controlling same WO2016067457A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197020586A KR20190086788A (en) 2014-10-31 2014-10-31 Transfer system and method for controlling same
CN201480083067.4A CN107073717B (en) 2014-10-31 2014-10-31 Conveying system and control method thereof
KR1020177014758A KR20170078789A (en) 2014-10-31 2014-10-31 Transfer system and method for controlling same
JP2016556162A JP6518263B2 (en) 2014-10-31 2014-10-31 Transport system and control method thereof
PCT/JP2014/079088 WO2016067457A1 (en) 2014-10-31 2014-10-31 Transfer system and method for controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079088 WO2016067457A1 (en) 2014-10-31 2014-10-31 Transfer system and method for controlling same

Publications (1)

Publication Number Publication Date
WO2016067457A1 true WO2016067457A1 (en) 2016-05-06

Family

ID=55856839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079088 WO2016067457A1 (en) 2014-10-31 2014-10-31 Transfer system and method for controlling same

Country Status (4)

Country Link
JP (1) JP6518263B2 (en)
KR (2) KR20190086788A (en)
CN (1) CN107073717B (en)
WO (1) WO2016067457A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126807A (en) * 2017-02-06 2018-08-16 トヨタ車体株式会社 Workpiece transport device
JP2019072804A (en) * 2017-10-17 2019-05-16 ユニパルス株式会社 Article movement device system
JP2022048198A (en) * 2017-10-17 2022-03-25 ユニパルス株式会社 Control part
JP2023024974A (en) * 2022-01-13 2023-02-21 ユニパルス株式会社 Suspending main body part and moving part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224593A (en) * 1988-07-13 1990-01-26 Fujitsu Ltd Transferring apparatus of member
JPH0664899A (en) * 1992-08-17 1994-03-08 Nippon Yusoki Co Ltd Lift control device for fork-lift
JP2011051048A (en) * 2009-08-31 2011-03-17 Yaskawa Electric Corp Carrying system, robot device, and carrying method
JP2013193155A (en) * 2012-03-19 2013-09-30 Yaskawa Electric Corp Robot system, and claw gripping mechanism of robot hand
JP2014124761A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Articulated robot, conveyance system, and control method of articulated robot

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0664889A (en) * 1992-08-18 1994-03-08 Shimizu Corp Movable lifting jig device
JP2000198091A (en) * 1999-01-08 2000-07-18 Hitachi Zosen Corp Robot system for cooperating a plurality of arms
DK176294B1 (en) * 2005-02-16 2007-06-18 Guldmann V As Method and apparatus for determining load holding current strength
CN102145857B (en) * 2011-01-31 2013-10-23 徐州重型机械有限公司 Crane, and revolution controlling system and method thereof
CN102514503A (en) * 2011-12-19 2012-06-27 苏州先锋物流装备科技有限公司 Electric pallet truck with speed-limiting device
US20130245823A1 (en) * 2012-03-19 2013-09-19 Kabushiki Kaisha Yaskawa Denki Robot system, robot hand, and robot system operating method
JP5981811B2 (en) * 2012-09-06 2016-08-31 川崎重工業株式会社 Transport system and transport method of transport system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224593A (en) * 1988-07-13 1990-01-26 Fujitsu Ltd Transferring apparatus of member
JPH0664899A (en) * 1992-08-17 1994-03-08 Nippon Yusoki Co Ltd Lift control device for fork-lift
JP2011051048A (en) * 2009-08-31 2011-03-17 Yaskawa Electric Corp Carrying system, robot device, and carrying method
JP2013193155A (en) * 2012-03-19 2013-09-30 Yaskawa Electric Corp Robot system, and claw gripping mechanism of robot hand
JP2014124761A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Articulated robot, conveyance system, and control method of articulated robot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126807A (en) * 2017-02-06 2018-08-16 トヨタ車体株式会社 Workpiece transport device
JP2019072804A (en) * 2017-10-17 2019-05-16 ユニパルス株式会社 Article movement device system
JP7015499B2 (en) 2017-10-17 2022-02-03 ユニパルス株式会社 Goods moving device system
JP2022048198A (en) * 2017-10-17 2022-03-25 ユニパルス株式会社 Control part
JP7174942B2 (en) 2017-10-17 2022-11-18 ユニパルス株式会社 control unit
JP2023024974A (en) * 2022-01-13 2023-02-21 ユニパルス株式会社 Suspending main body part and moving part
JP7450969B2 (en) 2022-01-13 2024-03-18 ユニパルス株式会社 Hanging main body and moving part

Also Published As

Publication number Publication date
KR20170078789A (en) 2017-07-07
CN107073717A (en) 2017-08-18
CN107073717B (en) 2023-08-11
JP6518263B2 (en) 2019-05-22
JPWO2016067457A1 (en) 2017-08-10
KR20190086788A (en) 2019-07-23

Similar Documents

Publication Publication Date Title
JP5532760B2 (en) Conveying system, robot apparatus, and workpiece manufacturing method
KR101759214B1 (en) Transportation system, and transportation method for transportation system
WO2016067457A1 (en) Transfer system and method for controlling same
JP6378484B2 (en) Robot and crane collaboration system
JP6773123B2 (en) Transport system
KR102302007B1 (en) Linear motion-rotational motion device
KR101286765B1 (en) Transferring device for Accuracy Movement of Gantry Robot
CN105563476A (en) Three-freedom-degree mechanical arm
WO2020090079A1 (en) Automatic workpiece carrying machine
JP6128085B2 (en) Lifting device and auxiliary drive unit
JP5421172B2 (en) Welding line
CN208117839U (en) A kind of manipulator of carrier vehicle tire
CN214933430U (en) Accompanying device
JP2017185596A (en) Robot system
JP2015121867A (en) Machine tool with numerical controller
JP6492472B2 (en) Work conveying device, method for manufacturing rolling bearing, and method for manufacturing mechanical parts and electric / electronic parts
CN205734102U (en) Truss robot for numerical control machining center
US10474122B2 (en) Machining tool with numerical control device
CN216464733U (en) Robot welding lift counterfort frock that shifts
JP2001105272A (en) Work carry-in-and-out device
KR20240007812A (en) Heavy-duty precision assembly device and control method thereof
CN114918720A (en) Integrated rapid-installation feeding and discharging truss machine for lathe machining
CN116040459A (en) Method and device for reducing swing period of lifting appliance and improving lifting accuracy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201480083067.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016556162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014758

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14905225

Country of ref document: EP

Kind code of ref document: A1