WO2016066956A1 - Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée - Google Patents

Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée Download PDF

Info

Publication number
WO2016066956A1
WO2016066956A1 PCT/FR2015/052901 FR2015052901W WO2016066956A1 WO 2016066956 A1 WO2016066956 A1 WO 2016066956A1 FR 2015052901 W FR2015052901 W FR 2015052901W WO 2016066956 A1 WO2016066956 A1 WO 2016066956A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
polyester
mixture
monomer
reactor
Prior art date
Application number
PCT/FR2015/052901
Other languages
English (en)
Inventor
Nicolas JACQUEL
René SAINT-LOUP
Françoise Fenouillot-Rimlinger
Jean-Pierre Pascault
Alain Rousseau
Original Assignee
Roquette Freres
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres filed Critical Roquette Freres
Priority to KR1020177010817A priority Critical patent/KR102536027B1/ko
Priority to SG11201703370TA priority patent/SG11201703370TA/en
Priority to ES15797131T priority patent/ES2923856T3/es
Priority to CN201580058584.0A priority patent/CN107148438B/zh
Priority to EP15797131.8A priority patent/EP3212692B1/fr
Priority to JP2017523298A priority patent/JP6688792B2/ja
Priority to MX2017005664A priority patent/MX369523B/es
Priority to CA2965900A priority patent/CA2965900C/fr
Priority to US15/522,726 priority patent/US10400062B2/en
Publication of WO2016066956A1 publication Critical patent/WO2016066956A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/127Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • C08G63/863Germanium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences

Definitions

  • the present invention relates to a process for the manufacture of polyester comprising at least one 1,4: 3,6-dianhydrohexitol unit, by means of a catalytic system making it possible to reduce the coloration of the polyester thus formed.
  • the invention also relates to a polyester composition comprising said catalytic system.
  • PET polyethylene terephthalate
  • PET polyethylene glycol and terephthalic acid units
  • PET can be a transparent polymer and thus be useful for making objects whose optical properties are important. It can also be opaque and white in the case where this polymer is semi-crystalline, if the crystallinity and the size of the crystallites are important. It is therefore necessary in both cases that the PET has the lowest color possible.
  • “Monomeric units” means, according to the invention, units included in the polyester which can be obtained after polymerization of a monomer.
  • the ethylene glycol and terephthalic acid units included in the PET they may be obtained by esterification reaction of ethylene glycol and terephthalic acid, or by a trans-esterification reaction of ethylene glycol and terephthalic acid ester.
  • the development of polyesters from short-term renewable resources has become an ecological and economic imperative in the face of the depletion and rising prices of fossil fuels such as oil.
  • One of the important concerns today in the field of polyesters is therefore to provide polyesters of natural origin (biosourcés). This is particularly true for polyesters comprising aliphatic diol and aromatic acid units.
  • PET PET modified glycols
  • polyesters comprising, in addition to ethylene glycol and terephthalic acid units, cyclohexanedimethanol (CHDM) units.
  • CHDM cyclohexanedimethanol
  • modified PETs have also been developed by introducing into the polyester units 1,4: 3,6-dianhydrohexitol, especially isosorbide (PEIT).
  • PEIT isosorbide
  • These modified polyesters have higher glass transition temperatures than unmodified PETs or PETgs comprising CHDM.
  • 1,4-3,6-dianhydrohexitols have the advantage that they can be obtained from renewable resources such as starch.
  • These modified polyesters are particularly useful for the manufacture of bottles, films, thick sheets, fibers or articles requiring high optical properties.
  • a problem of these PEITs is that they can have a generally important coloration, generally greater than that of PETg or PET, and this even when the amounts of isosorbide used in the manufacture of polyester are very low.
  • This process comprises a first esterification step and a second polycondensation step, in which is used during the esterification step a primary antioxidant and a secondary antioxidant during the polycondensation step.
  • a catalyst system comprising germanium and cobalt based catalysts are used.
  • the Applicant has found by carrying out studies on the polymerization catalysts for the manufacture of polyesters containing 1,4: 3,6-dianhydrohexitol units (see examples below), that the polyesters obtained from these processes are not not fully satisfactory, especially in terms of coloring.
  • This coloration may be either very yellow as is the case when using exclusively a germanium-based polycondensation catalyst, or gray when using a catalytic system comprising catalysts based on germanium and based on cobalt .
  • the subject of the invention is thus a process for producing a polyester containing at least one 1,4: 3,6-dianhydrohexitol unit comprising at least:
  • a step of introducing into a monomer reactor comprising at least one monomer (A) which is a diacid or a diester and at least one monomer (B) which is a 1,4-3,6-dianhydrohexitol;
  • a step of introduction into the reactor of a catalytic system comprising either a catalyst comprising the germanium element and a catalyst comprising the aluminum element, either a catalyst comprising the germanium and aluminum elements or a mixture of these catalysts;
  • a step of recovering a polyester composition comprising the polyester and the catalytic system.
  • Catalyst systems combining a germanium catalyst with an aluminum-based catalyst have already been described for the manufacture of PET-type polyesters in the application WO 2004/048437.
  • the colors of a polyester obtained from a germanium catalyst with a polyester obtained from a catalyst system comprising a germanium catalyst, an aluminum catalyst and a lithium-based catalyst. If the polycondensation time is significantly reduced, the coloration of the polyester is not improved. On the contrary, the polyester obtained is even more yellow or, in the case where a cobalt-based catalyst is added in the catalytic system, darker.
  • the polyester recovered at the end of the process according to the invention has a lower coloration than that of a polyester obtained from a similar process which differs in the catalytic system used.
  • the invention relates to a process for producing a polyester containing at least one 1,4-3,6-dianhydrohexitol unit.
  • This process comprises a step of introducing into a monomer reactor.
  • the monomers introduced into the reactor comprise at least one monomer (A) which is a diacid or a diester and at least one monomer (B) which is a 1,4, 3,6-dianhydrohexitol.
  • diacid or diester a dicarboxylic acid or diester of carboxylic acid.
  • the monomer (A) is a diacid or a mixture of diacids. Some diacids, such as phthalic acid or maleic acid, may also be in anhydride form.
  • the diacid may be an aromatic diacid, an aliphatic diacid or a mixture of these diacids.
  • the diacid is aromatic. It may be chosen from terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, a furanedicarboxylic acid, and a mixture of these diacids. .
  • the aromatic acid is terephthalic acid.
  • the monomer (A) may also be an aliphatic diacid or a mixture of these diacids.
  • the aliphatic diacid may be a saturated or unsaturated aliphatic diacid.
  • the saturated aliphatic diacid can be linear, branched or cyclic.
  • linear saturated aliphatic diacid it may be chosen from succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and their mixtures.
  • the linear saturated aliphatic diacid is chosen from succinic acid, adipic acid and their mixture, most preferably succinic acid.
  • saturated cyclic aliphatic diacid there may be mentioned 1,4-cyclohexanedioic acid.
  • the monomer (A) may also be an unsaturated aliphatic diacid such as fumaric acid or maleic acid or itaconic acid or a mixture of these diacids.
  • the diester is preferably a methyl and / or ethyl diester.
  • the diester may be chosen from the diesters of the diacids mentioned above.
  • the diester is an aromatic diacid diester, preferably a diester of terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid , furanedicarboxylic acid, or a mixture of these diesters, most preferably a diester of terephthalic acid.
  • the monomer (B) is a 1,4: 3,6-dianhydrohexitol.
  • the 1,4: 3,6-dianhydrohexitols have the disadvantage of causing the coloration of the polyester when using the monomers and manufacturing processes conventionally used for their manufacture.
  • the 1,4: 3,6-dianhydrohexitol may be isosorbide, isomannide, isoidide, or a mixture thereof, preferably isosorbide. Isosorbide, isomannide and isoidide can be obtained respectively by dehydration of sorbitol, mannitol and iditol. As regards isosorbide, it is marketed by the Applicant under the brand name POLYSORB ® P.
  • the monomers introduced into the reactor further comprise a diol (C) other than 1,4: 3,6-dianhydrohexitols.
  • the diol (C) can be:
  • An aliphatic diol in particular a linear aliphatic diol (C1), a cycloaliphatic diol (C2), a branched aliphatic diol (C3) or;
  • the diol (C1) is advantageously chosen from ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, or a mixture of these diols, preferably ethylene glycol, 1,4-butanediol and a mixture of these diols, very preferably ethylene glycol.
  • the diol (C2) may be cyclobutanediol, for example tetramethylcyclobutanediol, bis-hydroxymethyltricyclodecane or cyclohexanedimethanol, in particular 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol or 1,3-cyclohexanedimethanol or a mixture of these. diols or isomers of these diols. Indeed, these diols can be in cis or trans configuration. When different isomers exist for the same monomer, unless explicitly specified, when speaking of this monomer, it may be an isomer of this monomer or a mixture of isomers.
  • the diol (C3) can be 2-methyl-1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-2-butyl-1,3-propanediol , propylene glycol, neopentyl glycol or a mixture of these diols.
  • the diol (C) is advantageously chosen from aliphatic diols, preferentially chosen from ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,4-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol and mixtures of these diols, most preferably ethylene glycol, 1, 4-butanediol, 1,4-cyclohexanedimethanol and mixtures of these diols, most preferably ethylene glycol, 1,4-cyclohexanedimethanol and the mixture of these diols.
  • the diol (C) is introduced into the reactor, the monomer (A) is terephthalic acid, the monomer (A) is
  • the diol (C) is introduced into the reactor, the monomer (A) is terephthalic acid, the monomer (B) is isosorbide and the diol (C) is a mixture of ethylene glycol and 1,4-cyclohexanedimethanol.
  • the molar percentage of monomers (A) relative to the total number of moles of monomers (A), (B) and optionally (C) ranges from 25 to 50%, preferably from 33 to 49%, most preferably from 40 to 48%.
  • the molar percentage of (B), relative to the total number of moles of monomers (B) and (C), ranges from 1 to 50%, preferably from 2 to 30%, most preferably 5 to 20%.
  • the monomers (B) and (C) can be introduced into the reactor in the form of an aqueous solution.
  • Monomers other than the monomers (A), (B) and optionally (C), so-called “additional monomers” may also be added.
  • hydroxy acid monomers bearing a hydroxide function and a carboxylic acid function.
  • the hydroxy acid may be glycolic acid, lactic acid, hydroxybutyric acid, hydroxycaproic acid, hydroxyvaleric acid, 7-hydroxyheptanoic acid or 8-hydroxyoctanoic acid, 9-hydroxynonanoic acid, hydroxymethylfurancarboxylic acid, hydroxybenzoic acid or a mixture of these hydroxy acids.
  • Additional monomers that may be used include dilactones such as glycolide or lactide.
  • the amount of hydroxy acid monomer is, based on the total sum of the monomers, less than 10 mol%.
  • the monomers introduced into the reactor may be free of hydroxy acid monomers.
  • the additional monomers may also comprise chain-lengthening monomers, which in turn are generally introduced into the reactor before or during the formation of the polyester produced during the polymerization stage, or before a second stage called the "post-stage" stage.
  • polymerization "consisting reacting the polyester formed in the polymerization step with the chain extender monomer.
  • This post-polymerization step may in particular be a reactive extrusion step of the chain-extending monomer with the polyester recovered after the polymerization step.
  • chain-extending monomers is meant a monomer comprising two functions other than the hydroxyl, carboxylic acid and carboxylic acid ester functions, and capable of reacting with these same functions.
  • the functions may be isocyanate, isocyanurate, lactam, lactone, carbonate, epoxy, oxazoline and imide functions, said functions possibly being identical or different.
  • chain extender monomers usable in the present invention mention may be made of:
  • diisocyanates preferably methylenediphenyl diisocyanate (MDI), isophorone diisocyanate (IPDI), dicyclohexylmethane diisocyanate (H12MDI), toluene diisocyanate (TDI), naphthalene diisocyanate (NDI), hexamethylene; diisocyanate (HMDI) or lysine diisocyanate (LDI), the aliphatic diisocyanate of molar mass 600 g / mol obtained from dibasic fatty acid dimers (DDI®1410 Diisocyanate),
  • dialkylcarbonates especially dianhydrohexitol dialkylcarbonates, and in particular isosorbide dialkylcarbonates,
  • dicarbamoylcaprolactams preferably 1, 1'-carbonyl-bis-caprolactam, dicarbamoylcaprolactones,
  • heterocyclic compounds preferably bis-oxazolines, bis-oxazolin-5-ones and bis-azalactones,
  • methylenic or ethylenic diester derivatives preferably methyl or ethyl carbonate derivatives
  • the amount of chain-lengthening monomers is, based on the sum total of the monomers introduced, less than 10 mol%.
  • the monomers introduced into the reactor may be free of chain extender monomer.
  • the additional monomers may also be polyfunctional monomers.
  • polyfunctional monomers is meant a monomer capable of reacting with the hydroxide and / or carboxylic acid and / or carboxylic acid ester functions and whose functionality is greater than 2.
  • the polyfunctional monomers may be introduced into the reactor before the reaction. polymerization or post-polymerization step as described above (the polyfunctional monomer then replacing the chain-extending monomer), preferably before the polymerization step.
  • branching agents may be hydroxide, carboxylic acid, anhydride, isocyanate, isocyanurate, caprolactam, caprolactone, carbonate, epoxy, oxazoline and imide functions, said functions possibly being identical or different, preferably carboxylic acid, hydroxide, epoxide or isocyanate, most preferably carboxylic acid or hydroxide.
  • the functionality of these branching agents can be from 3 to 6, preferably from 3 to 4.
  • branching agents conventionally used, mention may be made of: malic acid, citric or isocitric acid, tartaric acid, trimesic acid, tricarballylic acid, cyclopentane tetracarboxylic acid, trimellitic anhydride, pyromellitic mono or dianhydride, glycerol, pentaerythritol, dipentaerythritol, monoanhydrosorbitol, monoanhydromannitol, epoxidized oils, dihydroxystearic acid, trimethylolpropane, ethers of these polyols, for example glycerol propoxylate (marketed under the name Voranol 450 by Dow Chemical), polymers having lateral epoxide functional groups, triisocyanates, tetraisocyanates and the respective homopolymers of di-, existing tri- and tetraisocyanates, polyanhydrides, alkoxysilanes, preferably tetrae
  • the molar amount of additional monomer is less than 20%, preferably less than 10%, or even less than 5%.
  • the monomers introduced into the reactor may be free of additional monomers.
  • the process according to the invention also comprises a step of introducing into the reactor a catalytic system comprising:
  • a catalyst comprising the germanium element and a catalyst comprising the aluminum element
  • the catalyst comprising the germanium element it may be chosen from the following compounds: the aliphatic carboxylic acid salts such as formate, acetate, propionate, butyrate, oxalate, acrylate, methacrylate, the salts of aromatic carboxylic acids such as benzoate, halogenated carboxylic acid salts such as trichloroacetate, trifluoroacetate, hydroxycarbonate salts such as lactate, citrate, oxalate, mineral salts such as carbonate, sulfate, nitrate, phosphate, phosphonate, phosphinate , hydrogen sulphate, hydrogen carbonate, hydrogen phosphate, sulphite, thiosulfate, hydrochloride, hydrobromide, chloride, chlorate, bromide, bromate, organosulfonates such as 1-propane sulphonate, 1-pentane sulphonate, naphthalene
  • the catalyst comprising the aluminum element may be chosen from the following compounds: aliphatic carboxylic acid salts such as formate, acetate, propionate, butyrate, oxalate, acrylate, methacrylate, salts of aromatic carboxylic acids such as benzoate, salts of halogenated carboxylic acids such as trichloroacetate, trifluoroacetate, hydroxycarbonate salts such as lactate, citrate, oxalate, mineral salts such as carbonate, sulfate, nitrate, phosphate, phosphonate, phosphinate, hydrogen sulfate, hydrogen carbonate, hydrogen phosphate, sulfite, thiosulfate, hydrochloride, hydrobromide, chloride, chlorate, bromide, bromate, organosulfonates such as 1-propane sulfonate, 1-pentane sulfonate, naphthalene sulfonate, organic s
  • the catalytic system comprises a mixture of the catalysts described in the two previous variants.
  • the catalytic system may be chosen so that the molar element ratio Ge: Al is from 0.05: 1 to 500: 1, advantageously from 0.2 to 300: 1, preferably from 0.33: 1 to 1 , 25: 1. It is specified that this elementary ratio only takes into consideration the metals included in the catalytic system.
  • the catalysts may be selected and present in amounts such that the molar element ratio Ge: Al is that described above.
  • the catalyst comprising the germanium and aluminum element is chosen such that the molar element ratio Ge: Al is that described above.
  • the catalyst system may further include additional metals.
  • the catalytic system comprises the cobalt element, that is to say that:
  • the catalytic system further comprises an additional catalyst comprising the cobalt element
  • At least one of the catalysts comprising the germanium element and / or the aluminum element further comprises the cobalt element.
  • a catalytic system comprising the cobalt element makes it possible in particular to obtain polyester compositions having improved b * coloring.
  • additional catalyst comprising the cobalt element
  • aliphatic carboxylic acid salts such as formate, acetate, propionate, butyrate, oxalate, acrylate, methacrylate
  • carboxylic acid salts aromatics such as benzoate
  • halogenated carboxylic acid salts such as trichloroacetate, trifluoroacetate
  • hydroxycarbonate salts such as lactate, citrate, oxalate
  • mineral salts such as carbonate, sulfate, nitrate, phosphate, phosphonate, phosphinate, hydrogen sulfate, hydrogencarbonate, hydrogen phosphate, sulphite, thiosulfate, hydrochloride, hydrobromide, chloride, chlorate, bromide, bromate, organosulfonates such
  • this catalyst may be a mixed oxide of aluminum, germanium and cobalt; a mixed oxide of aluminum and cobalt; or a mixed oxide of germanium and cobalt.
  • a catalytic system of a catalyst system comprising a catalyst comprising the germanium element and a catalyst comprising the aluminum element.
  • the total mass quantity of metal included in the catalytic system introduced into the reactor, relative to the total mass quantity of polymer obtained ranges from 50 to 500 ppm.
  • the catalyst system may be introduced into the reactor before or during the polymerization step, preferably before the polymerization step. It can be introduced by different stages of introduction, for example by introducing different catalysts at different times. Preferably, when the catalyst system comprises different catalysts, they are introduced simultaneously into the reactor, most preferably simultaneously and before the polymerization step.
  • the catalyst or catalysts may be used in the state or in the form of solution (s), in particular aqueous or alcoholic solution, preferably in the form of a solution in a monomer such as ethylene glycol, in which is (are) diluted (s). or dispersed (s) the catalyst (s).
  • the process according to the invention also comprises a step of polymerizing the monomers to form the polyester.
  • this polymerization step is carried out by molten means, that is to say by keeping the reaction medium in the molten state in the reactor, in the absence of solvent.
  • This polymerization step can be done by supplying heat of heat.
  • This polymerization step can also be done under vacuum.
  • the polymerization step of the monomers comprises: A first stage during which the reaction medium is stirred at a temperature ranging from 220 to 310 ° in order to form oligomers, advantageously from 245 to 275%;
  • a second stage during which the oligomers formed are stirred under vacuum at a temperature ranging from 240 to 330 ° in order to form the polyester, advantageously from 255 to 275 ° C.
  • the reaction medium may be stirred with any type of stirrer conventionally used for the synthesis of polyesters.
  • the stirring rate can be kept constant during the polymerization step or the stirring rate can be reduced during the reaction, as the viscosity of the polyester increases.
  • the first stage can be carried out at atmospheric pressure or under pressure, generally at a pressure ranging from 1.1 to 10 bar.
  • Oligomers formed in the first stage generally have a number average molecular weight of less than 5000 g / mol, often less than 4000 g / mol. They generally have a viscosity index of less than 20 ml / g.
  • the monitoring of this first stage can be done by controlling the evolution of the quantity of distillates extracted from the reactor.
  • the second stage of the polymerization step it is carried out under vacuum, preferably at a pressure of less than 10 mbar, most preferably less than 1 mbar.
  • the monitoring of the polymerization reaction can be done by controlling the evolution of the amount of torque measured on the stirrer or by any other system for evaluating the viscosity of the molten reaction medium.
  • the catalytic system comprising the catalyst or catalysts described above, is introduced into the reactor before the first stage of the polymerization stage.
  • the process comprises a reactor deoxygenation step carried out prior to the monomer polymerization step, and in particular before the first oligomer formation stage, advantageously by placing the reactor under an inert gas such as nitrogen.
  • This deoxygenation step is generally carried out at low temperature, that is to say often at a temperature below 100 ° C. This can be done by performing at least one once a sequence of a vacuum stage, for example between 100 and 700 mbar in the reactor followed by a stage of introduction of an inert gas into the reactor, for example between 1, 2 and 2 bars.
  • This empty cycle-introduction of inert gas can be done for example from 3 to 5 times.
  • this vacuum-nitrogen cycle is carried out at a temperature between 60 and 80 ° C so that the reagents, and especially the monomers (B), are completely melted.
  • This deoxygenation step has the advantage of further improving the coloring properties of the polyester obtained at the end of the process.
  • the antioxidants may be primary and / or secondary antioxidants.
  • the primary antioxidant can be a sterically hindered phenol such as the compounds Hostanox® 0 3, Hostanox® 010, Hostanox® 016, Ultranox® 210, Ultranox®276, Dovernox® 10, Dovernox® 76, Dovernox® 31 14, Irganox® 1010, Irganox® 1076 or a phosphonate such as Nrgamod® 195.
  • the secondary antioxidant may be trivalent phosphorus compounds such as Ultranox® 626, Doverphos® S-9228, Hostanox® P-EPQ, or Irgafos 168.
  • polymerization additive into the reactor at least one compound capable of limiting spurious etherification reactions, such as sodium acetate, tetramethylammonium hydroxide, or tetraethylammonium hydroxide.
  • the method according to the invention also comprises a step of recovering a polyester composition comprising the polyester and the catalytic system.
  • This composition can be recovered by extracting it from the reactor in the form of a melted polymer rod. After cooling, this rod can be converted into granules using conventional granulation techniques.
  • the polyester obtained at the end of the polycondensation step may, after cooling, be semi-crystalline or amorphous.
  • the method according to the invention may also comprise, after the step of recovering the polyester composition, a solid state polycondensation step (PCS). Those skilled in the art can easily perform this PCS step from semicrystalline polyesters.
  • the subject of the invention is also the polyester composition obtainable according to the process of the invention, in which the polyester contains at least one 1,4: 3,6-dianhydrohexitol unit, the composition further comprising a catalytic system comprising either a catalyst comprising the germanium element and a catalyst comprising the aluminum element, or a catalyst comprising the germanium and aluminum elements or a mixture of these catalysts
  • the metals included in the catalytic system may have a molar element ratio Ge: Al which ranges from 0.05: 1 to 500: 1, advantageously from 0.2 to 300: 1 preferably from 0.33: 1 to 1, 25: 1.
  • the amounts of catalyst in the polyester composition are also close but may be slightly lower than those introduced into the reactor due to the possible catalyst stripping loss described above. However, these losses can be considered relatively small.
  • the total mass of metal included in the catalytic system of the polyester composition based on the total mass quantity of polyester, is generally from 30 to 500 ppm.
  • the metal amounts of the catalysts included in the polyester can be determined by elemental analysis.
  • “Monomeric units” means, according to the invention, units included in the polyester which can be obtained after polymerization of a monomer.
  • the ethylene glycol and terephthalic acid units included in a PET they may be obtained by esterification reaction of ethylene glycol and terephthalic acid, or by a transesterification reaction of ethylene glycol and terephthalic acid ester.
  • the polyester included in the composition according to the invention may comprise, relative to all the diol units (B) and optionally (C) of the polyester, from 0.1 to 100% of units 1, 4: 3, 6-dianhydrohexitol (100% is the case where no monomer (C) is used during the process), advantageously from 1 to 50%, preferably from 2 to 30%, most preferably from 5 to 20%.
  • the polyester included in the composition comprises, with respect to the sum of the monomeric units:
  • the polyester included in the composition comprises, with respect to the sum of the monomeric units:
  • the number of diacid units and the number of diol units are generally substantially identical.
  • the ratio of diol units / diacid units included in the polyester may range from 1.15 / 1 to 0.85 / 1, often from 1.08 / 1 to 0.92 / 1.
  • the amounts of different units in the polyester can be determined by H.syl NMR.
  • the polyester composition has a clarity L * greater than 45, preferably greater than 55.
  • the clarity L * can reach or even exceed 65.
  • the polyester composition has a color b * of between -10 and 10, preferably between -6. and 6. This parameter makes it possible to quantify the coloration going from blue (if b * is negative) to yellow (if b * is positive).
  • the parameters L * and b * can be determined using a spectrophotometer, using the CIE Lab model.
  • the polyester composition may have a relative viscosity greater than 35 mIg, preferably greater than 50 mIg.
  • the viscosity number can be determined according to the method described in the Examples section.
  • the number-average molecular weight of the polyester included in the polyester composition according to the invention may range from 5000 to 50000 g / mol.
  • the molar mass of the polyester can be determined by conventional methods, for example by steric exclusion chromatography (SEC) in a mixture of chloroform and 1,1,1,3,3,3-hexafluoro-2-propanol. in a 98/2 volume ratio.
  • SEC steric exclusion chromatography
  • the signal detection can then be performed by a differential refractometer calibrated with methyl polymethacrylate standards.
  • the glass transition temperature of the polyester is greater than or equal to 80 ° C.
  • the glass transition temperature of the polyester can be measured by conventional methods, especially using differential scanning calorimetry (DSC) using a heating rate of 10 K / min. The experimental protocol is detailed in the examples section below.
  • the polyester has a glass transition temperature ranging from 80 to 190 ° C.
  • the invention also relates to a composition
  • a composition comprising the polyester according to the invention and at least one additive or at least one additional polymer or at least one mixture thereof.
  • the polyester composition according to the invention may comprise the polymerization additives possibly used during the process. It may also comprise other additives and / or additional polymers which are generally added during a subsequent thermomechanical mixing step.
  • charges or fibers of organic or inorganic nature there may be mentioned charges or fibers of organic or inorganic nature, nanometric or non-functional, functionalized or not. It can be silicas, zeolites, fibers or glass beads, clays, mica, titanates, silicates, graphite, calcium carbonate, carbon nanotubes, wood fibers, of carbon fibers, polymer fibers, proteins, cellulosic fibers, lignocellulosic fibers and non-destructured granular starch. These fillers or fibers can improve the hardness, rigidity or permeability to water or gases.
  • the composition may comprise from 0.1 to 75% by mass fillers and / or fibers relative to the total weight of the composition, for example from 0.5 to 50%.
  • the additive useful for the composition according to the invention may also comprise opacifying agents, dyes and pigments. They can be selected from cobalt acetate and the following compounds: HS-325 Sandoplast® RED BB (which is a compound carrying an azo function also known as Solvent Red 195), HS-510 Sandoplast® Blue 2B which is an anthraquinone, Polysynthren® Blue R, and Clariant® RSB Violet.
  • the composition may also include as an additive a process agent, or processing aid, to reduce the pressure in the processing tool.
  • a release agent to reduce adhesion to polyester forming materials such as molds or calender rolls can also be used.
  • These agents can be selected from esters and fatty acid amides, metal salts, soaps, paraffins or hydrocarbon waxes. Specific examples of these agents are zinc stearate, calcium stearate, aluminum stearate, stearamide, erucamide, behenamide, beeswax or candelilla waxes.
  • composition according to the invention may also comprise other additives such as stabilizing agents, for example light stabilizing agents, UV stabilizing agents and heat stabilizing agents, fluidifying agents, flame retardants and antistatic agents.
  • stabilizing agents for example light stabilizing agents, UV stabilizing agents and heat stabilizing agents, fluidifying agents, flame retardants and antistatic agents.
  • the composition may further comprise an additional polymer, different from the polyester according to the invention.
  • This polymer may be chosen from polyamides, polyesters other than the polyester according to the invention, polystyrene, styrene copolymers, styrene-acrylonitrile copolymers, styrene-acrylonitrile-butadiene copolymers, polymethyl methacrylates and acrylic copolymers.
  • poly (ether-imides) polyphenylene oxide such as (2,6-dimethylphenylene) polyoxide, phenylene polysulfate, poly (ester-carbonates), polycarbonates, polysulfones, polysulfone ethers, polyether ketone and mixtures of these polymers.
  • the composition may also comprise, as additional polymer, a polymer making it possible to improve the impact properties of the polymer, in particular functional polyolefins such as functionalized ethylene or propylene polymers and copolymers, core-shell copolymers or block copolymers.
  • the composition according to the invention may also comprise polymers of natural origin, such as starch, cellulose, chitosans, alginates, proteins such as gluten, pea proteins, casein, collagen, gelatin, lignin, these polymers of natural origin may or may not be physically or chemically modified.
  • the starch can be used in destructured or plasticized form.
  • the plasticizer may be water or a polyol, in particular glycerol, polyglycerol, isosorbide, sorbitans, sorbitol, mannitol or else urea.
  • the composition according to the invention can be manufactured by conventional methods for transforming thermoplastics. These conventional methods include at least one step of melt blending or softening of the polymers and a step of recovering the composition. This method can be carried out in internal mixers with blades or rotors, external mixers, co-rotating or counter-rotating twin screw extruders. However, it is preferred to carry out this mixture by extrusion, in particular by using a co-rotating extruder.
  • the mixture of the constituents of the composition can be carried out under an inert atmosphere.
  • the various constituents of the composition can be introduced by means of introducing hoppers located along the extruder.
  • the invention also relates to an article comprising the polyester or the composition according to the invention.
  • This article can be of any type and be obtained using conventional transformation techniques.
  • This may be, for example, fibers or yarns useful for the textile industry or other industries. These fibers or yarns can be woven to form fabrics or nonwovens.
  • the article according to the invention can also be a film, a sheet. These films or sheets can be manufactured by calendering techniques, cast film extrusion, extrusion blow molding.
  • the article according to the invention may also be a container for transporting gases, liquids and / or solids. It can be bottles, gourds, bottles, for example bottles of sparkling water or not, bottles of juice, bottles of soda, bottles, bottles of alcoholic beverages, bottles, for example medicine bottles, bottles of cosmetics, dishes, for example for ready meals, microwave dishes or lids. These containers can be of any size. They can be manufactured by extrusion blow molding, thermoforming or injection blow molding.
  • These articles can also be optical articles, that is to say articles requiring good optical properties such as lenses, disks, transparent or translucent panels, optical fibers, films for LCD screens or even windows.
  • optical articles have the advantage of being able to be placed near sources of light and therefore of heat, while maintaining excellent dimensional stability and good resistance to light.
  • the articles may also be multilayer articles, at least one layer of which comprises the polymer or the composition according to the invention. These articles can be manufactured by a process comprising a coextrusion step in the case where the materials of the different layers are brought into contact in the molten state.
  • a coextrusion step in the case where the materials of the different layers are brought into contact in the molten state.
  • They can also be manufactured by a process comprising a step of applying a polyester layer in the molten state to a layer based on organic polymer, metal or adhesive composition in the solid state. This step may be carried out by pressing, overmolding, lamination or lamination, extrusion-rolling, coating, extrusion-coating or coating.
  • the invention also relates to the use of the catalytic system previously described in a polymerization process for reducing the coloration of a polyester containing at least one 1,4: 3,6-dianhydrohexitol unit. It is specified that all the embodiments described above, which concern the method and the polyester composition according to the invention, are applicable to the use according to the invention.
  • the reduced viscosity in solution is evaluated using a Ubbelohlde capillary viscometer at 25 ° C. in an equimassic mixture of phenol and orthodichlorobenzene after dissolution of the polymer at 130 ° C. with stirring.
  • the polymer concentration introduced is 5 g / l.
  • the color of the polymer was measured on the granules using a Konica Minolta CM-2300d spectrophotometer.
  • Germanium dioxide > 99.99%) from Sigma Aldrich
  • poly (ethylelene-co-isosorbide) terephthalate resin has a reduced solution viscosity of 55.8 mJg and a molar mass of 300 g. . mol "1
  • Table 1 Summary of manufacturing tests for poly (ethylene-co-isosorbide) terephthalate
  • Tests CEx 5, Cex6 and Cex7 show the interest of the mixture Ge / AI compared to other mixtures of metals:
  • the addition of aluminum to titanium does not make it possible to obtain a catalytic synergy comparable to the Ge / Al pair, the polymerization is much longer and the final polymer is very colored. It is specified that 8 ppm Ti is a customary amount used for PET synthesis.
  • Example 7 shows another way of conducting the invention this time using a mixture of diols including ethylene glycol, isosorbide and cyclohexanedimethanol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

L'invention a pour objet un procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol comprenant : • une étape d'introduction dans un réacteur de monomères comprenant au moins un monomère (A) qui est un diacide ou un diester et au moins un monomère (B) qui est un 1,4 : 3,6-dianhydrohexitol; • une étape d'introduction dans le réacteur d'un système catalytique comprenant soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, soit un catalyseur comprenant les éléments germanium et aluminium ou soit un mélange de ces catalyseurs; • une étape de polymérisation desdits monomères pour former le polyester; • une étape de récupération d'une composition de polyester comprenant le polyester et le système catalytique. L'invention concerne également une composition de polyester contenant un système catalytique comprenant soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, soit un catalyseur comprenant les éléments germanium et aluminium ou soit un mélange de ces catalyseurs et son utilisation pour réduire la coloration du polyester..

Description

Procédé de fabrication d'un polyester contenant au moins un motif 1 ,4 : 3,6- dianhydrohexitol à coloration améliorée
Domaine de l'invention
La présente invention se rapporte à un procédé de fabrication de polyester comprenant au moins un motif 1 ,4 : 3,6-dianhydrohexitol, à l'aide d'un système catalytique permettant de réduire la coloration du polyester ainsi formé. L'invention a également pour objet une composition de polyester comprenant ledit système catalytique.
Arrière-plan technologique de l'invention
Du fait de leurs nombreux avantages, les matières plastiques sont devenues incontournables pour la fabrication en série d'objets. En effet, du fait de leur caractère thermoplastique, on peut fabriquer à cadence élevée toute sorte d'objets à partir de ces matières plastiques. Certains polyesters aromatiques sont thermoplastiques et ont des propriétés thermiques leur permettant d'être utilisés directement pour la fabrication de matériaux. Ils comprennent des motifs diol aliphatique et diacide aromatique. Parmi ces polyesters aromatiques, on peut citer le polyéthylène téréphtalate (PET), qui est un polyester comprenant des motifs éthylène glycol et acide téréphtalique, servant par exemple à la fabrication de récipients, d'emballages ou encore de fibres textiles. Le PET peut être un polymère transparent et être ainsi utile à la fabrication d'objets dont les propriétés optiques sont importantes. Il peut également être opaque et blanc dans le cas où ce polymère est semi-cristallin, si la cristallinité et la taille des cristallites sont importantes. Il est donc nécessaire dans les deux cas que le PET présente une coloration la plus faible possible.
Par « motifs monomériques », on entend selon l'invention des motifs compris dans le polyester qui peuvent être obtenus après polymérisation d'un monomère. En ce qui concerne les motifs éthylène glycol et acide téréphtalique compris dans le PET, ils peuvent soit être obtenus par réaction d'estérification d'éthylène glycol et d'acide téréphtalique, soit par une réaction de trans-estérification d'éthylène glycol et d'ester d'acide téréphtalique. Le développement de polyesters issus de ressources biologiques renouvelables à court terme est devenu un impératif écologique et économique, face à l'épuisement et à la montée des prix des ressources fossiles telles que le pétrole. L'une des préoccupations importantes aujourd'hui dans le domaine des polyesters est donc de fournir des polyesters d'origine naturelle (biosourcés). Ceci est particulièrement vrai pour les polyesters comprenant des motifs diol aliphatique et acide aromatique. Ainsi, des groupes comme Danone ou Coca-Cola commercialisent aujourd'hui des bouteilles de boisson en PET partiellement biosourcé, ce PET étant fabriqué à partir d'éthylène glycol biosourcé. Un inconvénient de ce PET est qu'il n'est que partiellement biosourcé, puisque l'acide téréphtalique est quant à lui généralement issu de ressources fossiles. Toutefois, des procédés de synthèse d'acide téréphtalique biosourcé et d'ester d'acide téréphtalique biosourcé ont été récemment développés, ce qui permet la fabrication de PET totalement biosourcé. On peut ainsi citer la demande WO 2013/034743 A1 qui décrit notamment de tels PET. Toutefois, pour certaines applications ou dans certaines conditions d'utilisation, ces polyesters ne présentent pas toutes les propriétés requises. C'est ainsi que des PET modifiés glycol (PETg) ont été développés. Ce sont généralement des polyesters comprenant, en plus des motifs éthylène glycol et acide téréphtalique, des motifs cyclohexanediméthanol (CHDM). L'introduction de ce diol dans le PET lui permet d'adapter les propriétés à l'application visée, par exemple d'améliorer sa résistance au choc ou ses propriétés optiques, notamment lorsque le PETg est amorphe.
D'autres PET modifiés ont également été développés en introduisant dans le polyester des motifs 1 ,4 : 3,6-dianhydrohexitol, notamment de l'isosorbide (PEIT). Ces polyesters modifiés présentent des températures de transition vitreuse plus élevées que les PET non modifiés ou les PETg comprenant du CHDM. En outre, les 1 ,4 : 3,6-dianhydrohexitols présentent l'avantage de pouvoir être obtenus à partir de ressources renouvelables telles que l'amidon. Ces polyesters modifiés sont notamment utiles pour la fabrication de bouteilles, de films, de feuilles épaisses, de fibres ou d'articles nécessitant des propriétés optiques élevées. Cependant, un problème de ces PEIT est qu'ils peuvent présenter une coloration généralement importante, généralement supérieure à celles des PETg ou des PET, et ceci même lorsque les quantités d'isosorbide utilisées dans la fabrication du polyester sont très faibles.
En vue de résoudre ce problème de coloration élevée, un procédé de préparation de PEIT par polymérisation en fondu a déjà été décrit dans la demande de brevet US 2006/0173154 A1 . Ce procédé comprend une première étape d'estérification et une seconde étape de polycondensation, dans lequel est utilisé lors de l'étape d'estérification un antioxydant primaire ainsi qu'un antioxydant secondaire lors de l'étape de polycondensation. Dans les exemples, un système catalytique comprenant des catalyseurs à base de germanium et à base de cobalt sont utilisés.
Dans les demandes de brevet WO2013/183873 et WO2013/183874 sont décrits des procédés de fabrication de polyesters comprenant une étape d'estérification de monomères comprenant de l'acide téréphtalique, du CHDM, de l'isosorbide et composé diol additionnel en présence d'un catalyseur d'estérification qui est un composé à base de zinc. Ce catalyseur permet d'améliorer la cinétique de réaction de polymérisation et/ou d'augmenter la viscosité du polymère obtenu à partir de ce procédé. Dans les procédés qui sont exemplifiés dans ces deux demandes, sont introduits, lors de l'étape de polycondensation, un catalyseur à base de germanium.
La Demanderesse a pu constater en réalisant des études sur les catalyseurs de polymérisation pour la fabrication de polyesters contenant des motifs 1 ,4 : 3,6- dianhydrohexitol (voir exemples ci-après), que les polyesters obtenus à partir de ces procédés ne sont pas pleinement satisfaisants, notamment en termes de coloration. Cette coloration peut être soit très jaune comme c'est le cas lorsque l'on utilise exclusivement un catalyseur de polycondensation à base de germanium, ou gris lorsque l'on utilise un système catalytique comprenant des catalyseurs à base de germanium et à base de cobalt. Il reste donc un besoin de trouver de nouveaux procédés de fabrication de polyesters contenant des motifs 1 ,4 : 3,6-dianhydrohexitol dont la coloration est améliorée.
Résumé de l'invention
L'invention a ainsi pour objet un procédé de fabrication d'un polyester contenant au moins un motif 1 ,4 : 3,6-dianhydrohexitol comprenant au moins :
• une étape d'introduction dans un réacteur de monomères comprenant au moins un monomère (A) qui est un diacide ou un diester et au moins un monomère (B) qui est un 1 ,4 : 3,6-dianhydrohexitol ;
• une étape d'introduction dans le réacteur d'un système catalytique comprenant soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, soit un catalyseur comprenant les éléments germanium et aluminium ou soit un mélange de ces catalyseurs ;
• une étape de polymérisation desdits monomères pour former le polyester ;
• une étape de récupération d'une composition de polyester comprenant le polyester et le système catalytique.
Des systèmes catalytiques associant un catalyseur à base de germanium avec un catalyseur à base d'aluminium ont déjà été décrits pour la fabrication de polyesters de type PET dans la demande WO 2004/048437. Dans cette demande sont comparées les couleurs d'un polyester obtenu à partir d'un catalyseur à base de germanium avec un polyester obtenu à partir d'un système catalytique comprenant un catalyseur à base de germanium, un catalyseur à base d'aluminium et un catalyseur à base de lithium. Si le temps de polycondensation est diminué de manière très importante, la coloration du polyester n'est pas améliorée. Au contraire, le polyester obtenu est même plus jaune ou, dans le cas où un catalyseur à base de cobalt est ajouté dans le système catalytique, plus sombre.
De manière surprenante, comme démontré dans les exemples, le polyester récupéré à l'issue du procédé selon l'invention présente une coloration plus faible que celle d'un polyester obtenu à partir d'un procédé similaire qui diffère dans le système catalytique utilisé.
Description détaillée de l'invention
L'invention porte sur un procédé de fabrication d'un polyester contenant au moins un motif 1 ,4 : 3,6-dianhydrohexitol.
Ce procédé comprend une étape d'introduction dans un réacteur de monomères. Les monomères introduits dans le réacteur comprennent au moins un monomère (A) qui est un diacide ou un diester et au moins un monomère (B) qui est un 1 ,4 : 3,6- dianhydrohexitol.
Par diacide ou diester, on entend selon l'invention un diacide carboxylique ou diester d'acide carboxylique. Selon un mode de réalisation préféré, le monomère (A) est un diacide ou un mélange de diacides. Certains diacides, tels que l'acide phtalique ou l'acide maléique, peuvent également se présenter sous forme anhydride. Le diacide peut être un diacide aromatique, un diacide aliphatique ou un mélange de ces diacides.
De préférence, le diacide est aromatique. Il peut être choisi parmi l'acide téréphtalique, l'acide isophtalique, l'acide phtalique, l'acide 2,6-naphtalène dicarboxylique, l'acide 1 ,4-naphtalène dicarboxylique, un acide furanedicarboxylique, et un mélange de ces diacides. De préférence, l'acide aromatique est l'acide téréphtalique. Le monomère (A) peut également être un diacide aliphatique ou un mélange de ces diacides. Le diacide aliphatique peut être un diacide aliphatique saturé ou insaturé. Le diacide aliphatique saturé peut être linéaire, ramifié ou cyclique. En ce qui concerne le diacide aliphatique saturé linéaire, il peut être choisi parmi l'acide succinique, l'acide glutarique, l'acide adipique, l'acide pimélique, l'acide subérique, l'acide azélaïque, l'acide sébacique et leurs mélanges. De préférence, le diacide aliphatique saturé linéaire est choisi parmi l'acide succinique, l'acide adipique et leur mélange, tout préférentiellement l'acide succinique. Comme diacide aliphatique cyclique saturé, on peut citer l'acide 1 ,4 cyclohexanedioïque.
Le monomère (A) peut également être un diacide aliphatique insaturé tel que l'acide fumarique ou l'acide maléique ou l'acide itaconique ou un mélange de ces diacides.
En ce qui concerne le cas où le monomère (A) est un diester (ou un mélange de diesters), le diester est de préférence un diester méthylique et/ou éthylique. Le diester peut être choisi parmi les diesters des diacides précédemment cités. De préférence, le diester est un diester de diacide aromatique, de préférence un diester d'acide téréphtalique, d'acide isophtalique, d'acide phtalique, d'acide 2,6-naphtalène dicarboxylique, d'acide 1 ,4-naphtalène dicarboxylique, d'acide furanedicarboxylique, ou un mélange de ces diesters, tout préférentiellement un diester d'acide téréphtalique.
Selon l'invention, on peut également utiliser comme monomères (A) un mélange de diacide(s) et de diester(s).
Le monomère (B) est un 1 ,4 : 3,6-dianhydrohexitol. Comme expliqué précédemment, les 1 ,4 : 3,6-dianhydrohexitols ont l'inconvénient de provoquer la coloration du polyester lorsque l'on utilise les monomères et les procédés de fabrication classiquement utilisés pour leur fabrication. Le 1 ,4 : 3,6-dianhydrohexitol peut être l'isosorbide, l'isomannide, l'isoidide, ou un de leurs mélanges, de préférence est l'isosorbide. L'isosorbide, l'isomannide et l'isoidide peuvent être obtenus respectivement par déshydratation de sorbitol, de mannitol et d'iditol. En ce qui concerne l'isosorbide, il est commercialisé par la Demanderesse sous le nom de marque POLYSORB® P.
De préférence, les monomères introduits dans le réacteur comprennent en outre un diol (C), différent des 1 ,4 : 3,6-dianhydrohexitols.
Le diol (C) peut être :
• un diol aliphatique, notamment un diol aliphatique linéaire (C1 ), un diol cycloaliphatique (C2), un diol aliphatique ramifié (C3) ou ;
• un diol aromatique (C4) ;
· ou un mélange de ces diols.
Le diol (C1 ) est avantageusement choisi parmi l'éthylène glycol, 1 ,3-propanediol, 1 ,4- butanediol, 1 ,5-pentanediol, 1 ,6-hexanediol, 1 ,8-octanediol, 1 ,10-decanediol, ou un mélange de ces diols, préférentiellement l'éthylène glycol, le 1 ,4-butanediol et un mélange de ces diols, très préférentiellement l'éthylène glycol. Le diol (C2) peut être du cyclobutanediol, par exemple du tétraméthylcyclobutanediol, du bis-hydroxymethyl tricyclodécane ou du cyclohexanedimethanol, notamment du 1 ,4-cyclohexanedimethanol, du 1 ,2-cyclohexanedimethanol ou du 1 ,3- cyclohexanedimethanol ou un mélange de ces diols ou d'isomères de ces diols. En effet, ces diols peuvent être en configuration cis ou trans. Lorsque différents isomères existent pour un même monomère, sauf explicitement précisé, lorsque l'on parle de ce monomère, il peut s'agir d'un isomère de ce monomère ou d'un mélange d'isomères.
Le diol (C3) peut quant à lui être du 2-methyl-1 ,3-propanediol, du 2,2,4-trimethyl-1 ,3- pentanediol, du 2-ethyl-2-butyl-1 ,3-propanediol, du propylèneglycol, du néopentylglycol ou un mélange de ces diols.
Le diol (C) est avantageusement choisi parmi les diols aliphatiques, préférentiellement choisi parmi l'éthylène glycol, le 1 ,3-propanediol, le 1 ,4-butanediol, le 1 ,5-pentanediol, le 1 ,6-hexanediol, le 1 ,8-octanediol, le 1 ,10-decanediol, le 1 ,4- cyclohexanedimethanol, le 1 ,2-cyclohexanedimethanol, le 1 ,3- cyclohexanedimethanol et les mélanges de ces diols, très préférentiellement l'éthylène glycol, le 1 ,4-butanediol, le 1 ,4-cyclohexanedimethanol et les mélanges de ces diols, de manière toute préférée l'éthylène glycol, le 1 ,4-cyclohexanedimethanol et le mélange de ces diols. Selon une première variante avantageuse dans laquelle on introduit dans le réacteur le diol (C), le monomère (A) est l'acide téréphtalique, le monomère (B) est l'isosorbide et le monomère (C) est l'éthylène glycol.
Selon une seconde variante avantageuse dans laquelle on introduit dans le réacteur le diol (C), le monomère (A) est l'acide téréphtalique, le monomère (B) est l'isosorbide et le diol (C) est un mélange d'éthylène glycol et de 1 ,4- cyclohexanedimethanol.
Avantageusement, le pourcentage molaire de monomères (A) par rapport au nombre total de moles de monomères (A), (B) et le cas échéant (C) va de 25 à 50%, de préférence de 33 à 49%, tout préférentiellement de 40 à 48%.
De préférence, lorsque des monomères (C) sont introduits dans le réacteur, le pourcentage molaire de (B), par rapport au nombre total de moles de monomères (B) et (C), va de 1 à 50%, de préférence de 2 à 30%, tout préférentiellement de 5 à 20%.
Les monomères (B) et (C) peuvent être introduits dans le réacteur sous forme d'une solution aqueuse.
Des monomères différents des monomères (A), (B) et le cas échéant (C), dits « monomères additionnels » peuvent également être ajoutés.
Il peut s'agir de monomères hydroxyacides porteurs d'une fonction hydroxyde et d'une fonction acide carboxylique. A titre d'exemple, l'hydroxyacide peut être l'acide glycolique, l'acide lactique, l'acide hydroxybutyrique, l'acide hydroxycaproique, l'acide hydroxyvalérique, l'acide 7-hydroxyheptanoïque, l'acide 8-hydroxyoctanoïque, l'acide 9-hydroxynonanoïque, l'acide hydroxyméthylfurancarboxylique, l'acide hydroxybenzoïque ou un mélange de ces hydroxyacides. On peut également citer comme monomère additionnel utilisable les dilactones telles que le glycolide ou le lactide.
De préférence, la quantité de monomères hydroxyacide est, par rapport à la somme totale des monomères, inférieure à 10% molaire. Les monomères introduits dans le réacteur peuvent être exempts de monomères hydroxyacide.
Les monomères additionnels peuvent également comprendre des monomères allongeurs de chaîne, qui sont quant à eux généralement introduits dans le réacteur avant ou pendant la formation du polyester fabriqué lors de l'étape de polymérisation, ou encore avant une seconde étape dite « étape de post-polymérisation » consistant à faire réagir le polyester formé lors de l'étape de polymérisation avec le monomère allongeur de chaîne. Cette étape de post-polymérisation peut notamment être une étape d'extrusion réactive du monomère allongeur de chaîne avec le polyester récupéré après l'étape de polymérisation.
Par « monomères allongeurs de chaîne », on entend un monomère comprenant deux fonctions autres que les fonctions hydroxyle, acide carboxylique et ester d'acide carboxylique, et susceptible de réagir avec ces mêmes fonctions. Les fonctions peuvent être des fonctions isocyanate, isocyanurate, lactame, lactone, carbonate, époxy, oxazoline et imide, lesdites fonctions pouvant être identiques ou différentes. A titre de monomères allongeur de chaînes utilisables dans la présente invention, on peut citer :
les diisocyanates, de préférence le méthylènediphényl-diisocyanate (MDI), l'isophorone-diisocyanate (IPDI), le dicyclohexylméthane-diisocyanate (H12MDI), le toluène-diisocyanate (TDI), le naphthalène-diisocyanate (NDI), l'hexaméthylène-diisocyanate (HMDI) ou la lysine-diisocyanate (LDI), le diisocyanate aliphatique de masse molaire 600 g/mol obtenu à partir de dimères de diacide gras (DDI®1410 Diisocyanate),
les dimères, trimères et tetramères de diisocyanates,
les prépolymères dits « isocyanate-free » résultant d'une réaction d'un diol ou d'une aminé sur un diisocyanate dans des conditions telles que le prépolymère contienne une fonction isocyanate à chacune de ses extrémités (polymère α,ω- fonctionnel ou téléchélique) sans que du diisocyanate libre ne puisse être détecté,
les dialkylcarbonates, notamment les dialkylcarbonates de dianhydrohexitols, et en particulier les dialkylcarbonates d'isosorbide,
les dicarbamoylcaprolactames, de préférence le 1 ,1 '-carbonyl-bis- caprolactame, les dicarbamoylcaprolactones,
les diépoxydes,
les composés comportant une fonction époxyde et une fonction halogénure, de préférence l'épichlorhydrine,
les composés hétérocycliques, de préférence les bis-oxazolines, les bis- oxazolin-5-ones et les bis-azalactones,
les dérivés de diesters méthyléniques ou éthyléniques, de préférence les dérivés de carbonates de méthyle ou d'éthyle,
les mélanges quelconques d'au moins deux quelconques des produits précités. De préférence, la quantité de monomères allongeurs de chaîne est, par rapport à la somme totale des monomères introduits, inférieure à 10% molaire. Les monomères introduits dans le réacteur peuvent être exempts de monomère allongeur de chaîne.
Les monomères additionnels peuvent également être des monomères polyfonctionnels. Par « monomères polyfonctionnel », on appelle un monomère susceptible de réagir avec les fonctions hydroxyde et/ou acide carboxylique et/ou ester d'acide carboxylique et dont la fonctionnalité est supérieure à 2. Les monomères polyfonctionnels peuvent être introduits dans le réacteur avant l'étape de polymérisation ou de post-polymérisation telle que décrite précédemment (le monomère polyfonctionnel remplaçant alors le monomère allongeur de chaîne), préférentiellement avant l'étape de polymérisation. Les fonctions réactives de ces agents de branchement peuvent être des fonctions hydroxyde, acide carboxylique, anhydride, isocyanate, isocyanurate, caprolactame, caprolactone, carbonate, époxy, oxazoline et imide, lesdites fonctions pouvant être identiques ou différentes, de préférence acide carboxylique, hydroxyde, époxyde ou isocyanate, tout préférentiellement acide carboxylique ou hydroxyde. La fonctionnalité de ces agents de branchements peut être de 3 à 6, de préférence de 3 à 4. Parmi les agents de branchements classiquement utilisés on peut citer : l'acide malique, l'acide citrique ou isocitrique, l'acide tartrique, l'acide trimesique, l'acide tricarballylique, l'acide cyclopentane tétracarboxylique, l'anhydride trimellitique, le mono ou dianhydride pyromellitique, le glycérol, le pentaérythritol, le dipentaérythritol, le monoanhydrosorbitol, le monoanhydromannitol, les huiles époxydées, l'acide dihydroxystéarique, le triméthylolpropane, des éthers de ces polyols comme par exemple le propoxylate de glycérol (commercialisé sous le nom de Voranol 450 par Dow Chemical), des polymères présentant des fonctions époxydes latérales, les triisocyanates, les tétraisocyanates ainsi que les homopolymères respectifs des di-, tri- et tétraisocyanates existants, les polyanhydrides, les alcoxysilanes, de préférence le tétraéthoxysilane. De préférence, la quantité de monomères polyfonctionnels est, par rapport à la somme totale des monomères, inférieure à 10% molaire. Les monomères introduits dans le réacteur peuvent être exempts de monomères polyfonctionnels.
Avantageusement, par rapport à la totalité des monomères introduits dans le réacteur, la quantité molaire de monomère additionnel est inférieure à 20%, préférentiellement inférieure à 10%, voire inférieure à 5%. Les monomères introduits dans le réacteur peuvent être exempts de monomères additionnels. Le procédé selon l'invention comprend également une étape d'introduction dans le réacteur d'un système catalytique comprenant :
• soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium ;
· soit un catalyseur comprenant les éléments germanium et aluminium ;
• ou soit un mélange de ces catalyseurs.
Selon la première variante, en ce qui concerne le catalyseur comprenant l'élément germanium, il peut être choisi parmi les composés suivants : les sels d'acides carboxyliques aliphatiques tels que formiate, acétate, propionate, butyrate, oxalate, acrylate, méthacrylate, les sels d'acides carboxyliques aromatiques tels que benzoate, les sels d'acides carboxyliques halogenés tels que trichloracétate, trifluoroacétate, les sels hydroxycarbonates tels que lactate, citrate, oxalate, les sels minéraux tels que carbonate, sulfate, nitrate, phosphate, phosphonate, phosphinate, hydrogénosulfate, hydrogénocarbonate, hydrogénophosphate, sulfite, thiosulfate, hydrochlorure, hydrobromure, chlorure, chlorate, bromure, bromate, les organosulfonates tels que le 1 -propane sulfonate, 1 -pentane sulfonate, naphtalène sulfonate, les sulfates organiques tels que le lauryle sulfate, les alkoxydes tels que méthoxy, éthoxy, propoxy, iso-propoxy, butoxy, les acétylacétonates, les oxydes, les oxydes mixtes comprenant d'autres métaux ou les hydroxydes, de préférence le dioxyde de germanium.
Le catalyseur comprenant l'élément aluminium peut être choisi parmi les composés suivants : les sels d'acides carboxyliques aliphatiques tels que formiate, acétate, propionate, butyrate, oxalate, acrylate, méthacrylate, les sels d'acides carboxyliques aromatiques tels que benzoate, les sels d'acides carboxyliques halogenés tels que trichloracétate, trifluoroacétate, les sels hydroxycarbonates tels que lactate, citrate, oxalate, les sels minéraux tels que carbonate, sulfate, nitrate, phosphate, phosphonate, phosphinate, hydrogénosulfate, hydrogénocarbonate, hydrogénophosphate, sulfite, thiosulfate, hydrochlorure, hydrobromure, chlorure, chlorate, bromure, bromate, les organosulfonates tels que le 1 -propane sulfonate, 1 - pentane sulfonate, naphtalène sulfonate, les sulfates organiques tels que le lauryle sulfate, les alkoxydes tels que méthoxy, éthoxy, propoxy, iso-propoxy, butoxy, les acétylacétonates, les oxydes, les oxydes mixtes comprenant d'autres métaux ou les hydroxydes, de préférence le triethoxyde d'aluminium. Selon la deuxième variante, le système catalytique comprend un catalyseur comprenant les éléments germanium et aluminium, par exemple comprend un oxyde mixte d'aluminium et de germanium.
Selon une troisième variante, le système catalytique comprend un mélange des catalyseurs décrits dans les deux variantes précédentes.
Le système catalytique peut être choisi de manière à ce que le ratio élémentaire molaire Ge : Al aille de 0,05 : 1 à 500 : 1 , avantageusement de 0,2 à 300 :1 , de préférence de 0,33 : 1 à 1 ,25 : 1 . Il est précisé que ce ratio élémentaire prend uniquement en considération les métaux compris dans le système catalytique. Selon les première et troisième variantes, les catalyseurs peuvent être choisis et présents dans des quantités telles que le ratio élémentaire molaire Ge : Al soit celui décrit précédemment.
Selon la deuxième variante, le catalyseur comprenant l'élément germanium et aluminium est choisi de telle manière que le ratio élémentaire molaire Ge : Al soit celui décrit précédemment.
Le système catalytique peut comprendre en outre des métaux additionnels.
Selon un mode de réalisation avantageux de l'invention, le système catalytique comprend l'élément cobalt, c'est-à-dire que :
• le système catalytique comprend en outre un catalyseur additionnel comprenant l'élément cobalt ;
• ou au moins un des catalyseurs comprenant l'élément germanium et/ou l'élément aluminium comprend en outre l'élément cobalt.
L'utilisation d'un système catalytique comprenant l'élément cobalt permet notamment d'obtenir des compositions de polyester présentant une coloration b* améliorée. A titre d'exemple de catalyseur additionnel comprenant l'élément cobalt, on peut citer les composés suivants : les sels d'acides carboxyliques aliphatiques tels que formiate, acétate, propionate, butyrate, oxalate, acrylate, méthacrylate, les sels d'acides carboxyliques aromatiques tels que benzoate, les sels d'acides carboxyliques halogenés tels que trichloracétate, trifluoroacétate, les sels hydroxycarbonates tels que lactate, citrate, oxalate, les sels minéraux tels que carbonate, sulfate, nitrate, phosphate, phosphonate, phosphinate, hydrogénosulfate, hydrogénocarbonate, hydrogénophosphate, sulfite, thiosulfate, hydrochlorure, hydrobromure, chlorure, chlorate, bromure, bromate, les organosulfonates tels que le 1 -propane sulfonate, 1 -pentane sulfonate, naphtalène sulfonate, les sulfates organiques tels que le lauryle sulfate, les alkoxydes tels que méthoxy, éthoxy, propoxy, iso-propoxy, butoxy, les acétylacétonates, les oxydes, les oxydes mixtes comprenant d'autres métaux ou les hydroxydes, de préférence l'acétate de cobalt.
Lorsqu'au moins un des catalyseurs comprenant l'élément germanium et/ou l'élément aluminium comprend en outre l'élément cobalt, ce catalyseur peut être un oxyde mixte d'aluminium, de germanium et de cobalt ; un oxyde mixte d'aluminium et de cobalt ; ou un oxyde mixte de germanium et de cobalt. Pour des raisons de simplicité et disponibilité des catalyseurs, on préfère utiliser un système catalytique d'un système catalytique comprenant un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium. Avantageusement, la quantité massique totale de métal compris dans le système catalytique introduit dans le réacteur, rapportée à la quantité massique totale de polymère obtenu, va de 50 à 500 ppm.
Le système catalytique peut être introduit dans le réacteur avant ou pendant l'étape de polymérisation, préférentiellement avant l'étape de polymérisation. Il peut être introduit par différents stades d'introduction, par exemple en introduisant différents catalyseurs à différents moments. De préférence, lorsque le système catalytique comprend différents catalyseurs, ils sont introduits simultanément dans le réacteur, tout préférentiellement simultanément et avant l'étape de polymérisation. Le ou les catalyseurs peuvent être utilisés en l'état ou sous forme de solution(s), notamment aqueuse ou alcoolique, de préférence sous forme de solution dans un monomère tel que l'éthylène glycol, dans laquelle est (sont) dilué(s) ou dispersé(s) le ou les catalyseurs.
Le procédé selon l'invention comprend également une étape de polymérisation des monomères pour former le polyester. Avantageusement, cette étape de polymérisation se fait par voie fondue, c'est-à-dire en maintenant le milieu réactionnel à l'état fondu dans le réacteur, en l'absence de solvant. Cette étape de polymérisation peut se faire par apport de chaleur de chaleur. Cette étape de polymérisation peut également se faire sous vide.
De préférence, l'étape de polymérisation des monomères comprend : • un premier stade pendant lequel le milieu réactionnel est agité à une température allant de 220 à 310 ^ afin de former des oligomères, avantageusement de 245 à 275^ ;
• un second stade pendant lequel les oligomères formés sont agités sous vide à une température allant de 240 à 330 ^ afin de former le polyester, avantageusement de 255 à 275 'C.
Le milieu réactionnel peut être agité par tout type d'agitateur classiquement utilisé pour la synthèse de polyesters. La vitesse d'agitation peut être maintenue constante lors de l'étape de polymérisation ou la vitesse d'agitation peut être réduite au cours de la réaction, au fur et à mesure que la viscosité du polyester augmente.
Le premier stade peut se faire à pression atmosphérique ou sous pression, généralement à une pression allant de 1 , 1 à 10 bar.
Les oligomères formés lors du premier stade présentent généralement une masse molaire moyenne en nombre inférieure à 5000 g/mol, souvent inférieure à 4000 g/mol. Ils présentent généralement un indice de viscosité inférieur à 20mL/g.
Le suivi de ce premier stade peut se faire en contrôlant l'évolution de la quantité de distillais extraits du réacteur.
En ce qui concerne le second stade de l'étape de polymérisation, il se fait sous vide, de préférence à une pression inférieure à 10 mbar, tout préférentiellement inférieure à 1 mbar.
Le suivi de la réaction de polymérisation peut se faire en contrôlant l'évolution de la quantité de couple mesuré sur l'agitateur ou par tout autre système permettant d'évaluer la viscosité du milieu réactionnel fondu.
Avantageusement, le système catalytique, comprenant le ou les catalyseurs précédemment décrits, est introduit dans le réacteur avant le premier stade de l'étape de polymérisation.
De préférence, le procédé comprend une étape de désoxygénation du réacteur réalisée préalablement à l'étape de polymérisation des monomères, et notamment avant le premier stade de formation des oligomères, avantageusement en plaçant le réacteur sous atmosphère d'un gaz inerte tel que l'azote. Cette étape de désoxygénation est généralement réalisée à basse température, c'est-à-dire souvent à une température inférieure à 100°C. Ceci peut se faire en réalisant au moins une fois une séquence d'un stade de vide, par exemple entre 100 et 700 mbar dans le réacteur suivi d'un stade d'introduction d'un gaz inerte dans le réacteur, par exemple entre 1 ,2 et 2 bars. Ce cycle vide-introduction de gaz inerte peut se faire par exemple de 3 à 5 fois. De préférence, ce cycle vide-azote est réalisé à une température entre 60 et 80 °C afin que les réactifs, et notamment les monomères (B), soient totalement fondus. Cette étape de désoxygénation présente l'avantage d'améliorer encore les propriétés de coloration du polyester obtenu à la fin du procédé.
Lorsque le réacteur est mis sous vide, notamment lors du second stade de polymérisation des oligomères, il est à noter qu'une petite partie des monomères peut être extraite du réacteur et donc être perdue. Il s'agit en particulier d'une petite partie des monomères les plus volatils et en excès. Cette perte de monomères peut également aboutir à l'entraînement d'une légère perte de catalyseur.
En outre, on peut également introduire dans le réacteur avant l'étape de polymérisation des additifs dits « additifs de polymérisation ». Parmi les additifs de polymérisation, on peut citer les anti-oxydants qui permettent de réduire encore la coloration du polyester obtenu. Les anti-oxydants peuvent être des anti-oxydants primaires et/ou secondaires. L'anti-oxydant primaire peut être un phénol encombré stériquement tels que les composés Hostanox® 0 3, Hostanox® 0 10, Hostanox® 0 16, Ultranox® 210, Ultranox®276, Dovernox® 10, Dovernox® 76, Dovernox® 31 14, Irganox® 1010, Irganox® 1076 ou un phosphonate tel que Nrgamod® 195. L'anti-oxydant secondaire peut être des composés phosphorés trivalents tels que Ultranox® 626, Doverphos® S-9228, Hostanox® P-EPQ, ou l'Irgafos 168.
Il est également possible d'introduire comme additif de polymérisation dans le réacteur au moins un composé susceptible de limiter les réactions parasites d'éthérification, tel que l'acétate de sodium, le tétraméthylammonium hydroxyde, ou le tétraéthylammonium hydroxyde.
Le procédé selon l'invention comprend également une étape de récupération d'une composition de polyester comprenant le polyester et le système catalytique. On peut récupérer cette composition en l'extrayant du réacteur sous forme d'un jonc de polymère fondu. Après refroidissement, ce jonc peut être transformé en granulés en utilisant les techniques classiques de granulation.
Le polyester obtenu à l'issue de l'étape de polycondensation peut, après refroidissement, être semi-cristallin ou amorphe. Le procédé selon l'invention peut également comprendre, après l'étape de récupération de la composition de polyester, une étape de polycondensation à l'état solide (PCS). L'Homme du métier peut aisément réaliser cette étape de PCS à partir de polyesters semi-cristallins. L'invention a également pour objet la composition de polyester, susceptible d'être obtenue selon le procédé de l'invention, dans laquelle le polyester contient au moins un motif 1 ,4 : 3,6-dianhydrohexitol, la composition comprenant en outre un système catalytique comprenant soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, soit un catalyseur comprenant les éléments germanium et aluminium ou soit un mélange de ces catalyseurs
Le système catalytique compris dans la composition de polyester, est identique à celui décrit précédemment pour le procédé selon l'invention. Ainsi, dans la composition de polyester selon l'invention, les métaux compris dans le système catalytique peuvent présenter un ratio élémentaire molaire Ge : Al qui va de 0,05 : 1 à 500 : 1 , avantageusement de 0,2 à 300 :1 , de préférence de 0,33 : 1 à 1 ,25 : 1 .
Les quantités de catalyseur dans la composition de polyester sont également proches mais peuvent être légèrement inférieures à celles introduites dans le réacteur, du fait de l'éventuelle perte par entraînement de catalyseur décrite précédemment. Toutefois, on peut considérer que ces pertes sont relativement faibles. La quantité massique totale de métal compris dans le système catalytique de la composition de polyester, rapportée à la quantité massique totale de polyester, va généralement de 30 à 500 ppm.
Les quantités en métal des catalyseurs comprises dans le polyester peuvent être déterminées par analyse élémentaire. Par « motifs monomériques », on entend selon l'invention des motifs compris dans le polyester qui peuvent être obtenus après polymérisation d'un monomère. A titre d'exemple, en ce qui concerne les motifs éthylène glycol et acide téréphtalique compris dans un PET, ils peuvent soit être obtenus par réaction d'estérification d'éthylène glycol et d'acide téréphtalique, soit par une réaction de transestérification d'éthylène glycol et d'ester d'acide téréphtalique.
Le polyester compris dans la composition selon l'invention peut comprendre, par rapport à la totalité des motifs de diols (B) et le cas échéant (C) du polyester, de 0,1 à 100% de motifs 1 ,4 : 3,6-dianhydrohexitol (100% est le cas où aucun monomère (C) n'est employé lors du procédé), avantageusement de 1 à 50%, de préférence de 2 à 30%, tout préférentiellement de 5 à 20%.
Selon une première variante toute préférée, le polyester compris dans la composition comprend, par rapport à la somme des motifs monomériques :
· de 45 à 55% de motifs acide téréphtalique ;
• de 1 à 25% d'isosorbide ;
• de 20 à 54% d'éthylène glycol.
Selon une seconde variante toute préférée, le polyester compris dans la composition comprend, par rapport à la somme des motifs monomériques :
· de 45 à 55% de motifs acide téréphtalique ;
• de 1 à 25%de motifs isosorbide ;
• de 1 à 53% de motifs éthylène glycol ;
• de 1 à 53% de motifsl ,4-cyclohexanedimethanol.
Le nombre de motifs diacide et le nombre de motifs diols sont généralement sensiblement identiques. Le ratio de motifs diols/motifs diacide compris dans le polyester peut aller de 1 ,15/1 à 0,85/1 , souvent de 1 ,08/1 à 0,92/1 .
Les quantités en différents motifs dans le polyester peuvent être déterminées par RMN H.
L'homme de l'art peut aisément trouver les conditions d'analyse pour déterminer les quantités en chacun des motifs du polyester. Par exemple, à partir d'un spectre RMN d'un poly(éthylène-co-isosorbide téréphtalate), les déplacements chimiques relatifs à l'éthylène glycol sont compris entre 4,4 et 5,0 ppm, les déplacements chimiques relatifs au cycle téréphtalate sont compris entre 7,8 et 8,4 ppm et les déplacements chimiques relatifs à l'isosorbide sont compris entre 4,1 ppm et 5,8 ppm. L'intégration de chaque signal permet de déterminer la quantité de chaque motif du polyester.
De préférence, la composition de polyester présente une clarté L* supérieure à 45, de préférence supérieure à 55.
Dans le cas où une étape de polycondensation à l'état solide est réalisée, la clarté L* peut atteindre voire dépasser 65. De préférence, la composition de polyester présente une coloration b* compris entre -10 et 10, de préférence entre -6 et 6. Ce paramètre permet de quantifier la coloration allant du bleu (si b* est négatif) au jaune (si b* est positif). Les paramètres L* et b* peuvent être déterminés à l'aide d'un spectrophotomètre, en utilisant le modèle CIE Lab.
La composition de polyester peut présenter une viscosité relative supérieure à 35 mIJg, de préférence supérieure à 50 mIJg. L'indice de viscosité peut être déterminé selon la méthode décrite dans la partie exemples.
La masse molaire moyenne en nombre du polyester compris dans la composition de polyester selon l'invention peut aller de 5000 à 50000 g/mol.
La masse molaire du polyester peut être déterminée par les méthodes classiques, comme par exemple par chromatographie d'exclusion stérique (SEC) dans un mélange de chloroforme et d'1 ,1 ,1 ,3,3,3-Hexafluoro-2-propanol dans un ratio volumique 98/2. La détection du signal peut alors être effectuée par un réfractomètre différentiel calibré avec des étalons de polyméthacrylate de méthyle.
De préférence, la température de transition vitreuse du polyester est supérieure ou égale à 80 'C. La température de transition vitreuse du polyester peut être mesurée par les méthodes classiques, notamment en utilisant la calorimétrie différentielle à balayage (DSC) en utilisant une vitesse de chauffe de 10K/min. Le protocole expérimental est détaillé dans la partie exemples ci-après. Avantageusement, le polyester présente une température de transition vitreuse allant de 80 à 190°C.
L'invention porte également sur une composition comprenant le polyester selon l'invention et au moins un additif ou au moins un polymère additionnel ou au moins un mélange de ceux-ci.
La composition de polyester selon l'invention peut comprendre les additifs de polymérisation éventuellement utilisés lors du procédé. Elle peut également comprendre d'autres additifs et/ou polymères additionnels qui sont généralement ajoutés lors d'une étape de mélange thermomécanique ultérieure.
A titre d'exemple d'additif, on peut citer les charges ou les fibres de nature organique ou inorganique, nanométriques ou non, fonctionnalisées ou non. Il peut s'agir de silices, de zéolithes, de fibres ou de billes de verre, d'argiles, de mica, de titanates, de silicates, de graphite, de carbonate de calcium, de nanotubes de carbone, de fibres de bois, de fibres de carbone, de fibres de polymère, de protéines, de fibres cellulosiques, de fibres ligno-cellulosiques et d'amidon granulaire non déstructuré. Ces charges ou fibres peuvent permettre d'améliorer la dureté, la rigidité ou la perméabilité à l'eau ou aux gaz. La composition peut comprendre de 0,1 à 75% en masse charges et/ou fibres par rapport au poids total de la composition, par exemple de 0,5 à 50%. L'additif utile à la composition selon l'invention peut également comprendre des agents opacifiants, des colorants et des pigments. Ils peuvent être choisis parmi l'acétate de cobalt et les composés suivants : HS-325 Sandoplast® RED BB (qui est un composé porteur d'une fonction azo également connu sous le nom Solvent Red 195), HS-510 Sandoplast® Blue 2B qui est une anthraquinone, Polysynthren® Blue R, et Clariant® RSB Violet.
La composition peut également comprendre comme additif un agent de procédé, ou processing aid, pour diminuer la pression dans l'outil de mise en œuvre. Un agent de démoulage permettant de réduire l'adhésion aux matériels de mise en forme du polyester, tels que les moules ou les cylindres de calandreuses peut également être utilisé. Ces agents peuvent être sélectionnés parmi les esters et les amides d'acide gras, les sels métalliques, les savons, les paraffines ou les cires hydrocarbonées. Des exemples particuliers de ces agents sont le stéarate de zinc, le stéarate de calcium, le stéarate d'aluminium, les stéaramide, les érucamide, les béhénamide, les cires d'abeille ou de candelilla.
La composition selon l'invention peut comprendre également d'autres additifs tels que les agents stabilisants, par exemple les agents stabilisants lumière, les agents stabilisants UV et les agents stabilisants thermique, les agents fluidifiants, les agents retardateurs de flamme et les agents antistatiques.
La composition peut comprendre en outre un polymère additionnel, différent du polyester selon l'invention. Ce polymère peut être choisi parmi les polyamides, les polyesters autres que le polyester selon l'invention, le polystyrène, les copolymères de styrène, les copolymères styrène-acrylonitrile, les copolymères styrène- acrylonitrile-butadiène, les polyméthacrylates de méthyle, les copolymères acryliques, les poly(éther-imides), les polyoxyde de phénylène tels que le polyoxyde de (2,6- diméthylphenylène), les polysulfate de phénylène, les poly (ester-carbonates), les polycarbonates, les polysulfones, les polysulfone ethers, les polyéther cétone et les mélanges de ces polymères. La composition peut également comprendre comme polymère additionnel un polymère permettant d'améliorer les propriétés au choc du polymère, notamment les polyoléfines fonctionnelles telles que les polymères et copolymères d'éthylène ou de propylène fonctionnalisés, des copolymères cœur-écorce ou des copolymères à bloc. La composition selon l'invention peut également comprendre des polymères d'origine naturelle, tels que l'amidon, la cellulose, les chitosans, les alginates, les protéines telles que le gluten, les protéines de pois, la caséine, le collagène, la gélatine, la lignine, ces polymères d'origine naturelle pouvant ou non être modifiés physiquement ou chimiquement. L'amidon peut être utilisé sous forme déstructurée ou plastifiée. Dans le dernier cas, le plastifiant peut être de l'eau ou un polyol, notamment le glycérol, le polyglycérol, l'isosorbide, les sorbitans, le sorbitol, le mannitol ou encore de l'urée. Pour préparer la composition, on peut notamment utiliser le procédé décrit dans le document WO 2010/010282 A1 . La composition selon l'invention peut être fabriquée par les méthodes classiques de transformation des thermoplastiques. Ces méthodes classiques comprennent au moins une étape de mélange à l'état fondu ou ramolli des polymères et une étape de récupération de la composition. On peut réaliser ce procédé dans des mélangeurs internes à pales ou à rotors, des mélangeurs externes, des extrudeuses mono-vis, bi-vis co-rotatives ou contrarotatives. Toutefois, on préfère réaliser ce mélange par extrusion, notamment en utilisant une extrudeuse co-rotative.
Le mélange des constituants de la composition peut se faire sous atmosphère inerte.
Dans le cas d'une extrudeuse, on peut introduire les différents constituants de la composition à l'aide de trémies d'introduction situées le long de l'extrudeuse. L'invention porte également sur un article comprenant le polyester ou la composition selon l'invention.
Cet article peut être de tout type et être obtenu en utilisant les techniques classiques de transformation.
Il peut s'agir par exemple de fibres ou de fils utiles à l'industrie textile ou d'autres industries. Ces fibres ou fils peuvent être tissés pour former des tissus ou encore des non-tissés.
L'article selon l'invention peut également être un film, une feuille. Ces films ou feuilles peuvent être fabriqués par les techniques de calandrage, d'extrusion film cast, d'extrusion soufflage de gaine. L'article selon l'invention peut aussi être un récipient pour transporter des gaz, des liquides ou/et des solides. Il peut s'agir de biberons, de gourdes, de bouteilles, par exemple de bouteilles d'eau gazeuse ou non, de bouteilles de jus, de bouteilles de soda, de bombonnes, de bouteilles de boissons alcoolisées, de flacons, par exemple de flacons de médicament, de flacons de produits cosmétiques, des plats, par exemple pour plats cuisinés, de plats pour micro-ondes ou encore de couvercles. Ces récipients peuvent être de toute taille. Ils peuvent être fabriqués par extrusion soufflage, thermoformage ou injection soufflage.
Ces articles peuvent également être des articles optiques, c'est-à-dire des articles nécessitant de bonnes propriétés optiques tels que des lentilles, des disques, des panneaux transparents ou translucides, des fibres optiques, des films pour les écrans LCD ou encore des vitres. Ces articles optiques présentent l'avantage de pouvoir être placés à proximité de sources de lumière et donc de chaleur, tout en conservant une excellente stabilité dimensionnelle et une bonne tenue à la lumière.
Les articles peuvent également être des articles multicouches, dont au moins une couche comprend le polymère ou la composition selon l'invention. Ces articles peuvent être fabriqués par un procédé comprenant une étape de co-extrusion dans le cas où les matériaux des différentes couches sont mis en contact à l'état fondu. A titre d'exemple, on peut citer les techniques de co-extrusion de tube, co-extrusion de profilé, de co-extrusion soufflage (en anglais « blowmolding ») de bouteille, de flacon ou de réservoir, généralement regroupés sous le terme de co-extrusion soufflage de corps creux, co-extrusion gonflage appelée également soufflage de gaine (en anglais « film blowing ») et co-extrusion à plat (« en anglais « cast coextrusion »).
Ils peuvent également être fabriqués selon un procédé comprenant une étape d'application d'une couche de polyester à l'état fondu sur une couche à base de polymère organique, de métal ou de composition adhésive à l'état solide. Cette étape peut être réalisée par pressage, par surmoulage, stratification ou laminage (en anglais « lamination »), extrusion-laminage, couchage (en anglais « coating »), extrusion-couchage ou enduction.
L'invention porte également sur l'utilisation du système catalytique précédemment décrit dans un procédé de polymérisation pour réduire la coloration d'un polyester contenant au moins un motif 1 ,4 : 3,6-dianhydrohexitol. II est précisé que tous les modes de réalisation décrits précédemment, qui concernent le procédé et la composition de polyester selon l'invention, sont applicables à l'utilisation selon l'invention.
L'invention va maintenant être illustrée dans les exemples ci-après. Il est précisé que ces exemples ne limitent en rien la présente invention. EXEMPLES
Les propriétés des polymères ont été étudiées avec les techniques suivantes :
La viscosité réduite en solution est évaluée à l'aide d'un viscosimètre capillaire Ubbelohlde à 25°C dans un mélange équimassique de phénol et d'ortho- dichlorobenzène après dissolution du polymère à 130°C sous agitation. Pour ces mesures, la concentration de polymère introduite est de 5g/L.
La couleur du polymère a été mesurée sur les granulés à l'aide d'un spectrophotomètre Konica Minolta CM-2300d.
Pour les exemples illustratifs présentés ci-dessous les réactifs suivants ont été utilisés :
Monomères
Monomère (A) : Acide téréphtalique (pureté 99+%) de Accros
Monomère (B) : Isosorbide (pureté >99,5%) Polysorb® P de Roquette Frères
Monomère (C) : Ethylène glycol (pureté >99,8%) de Sigma-AIdrich
Catalyseurs
Butoxyde de titane (>97%) de Sigma Aldrich
Dioxyde de germanium (>99,99%) de Sigma Aldrich
Triethoxyde d'aluminum (>97%) de Sigma Aldrich
n-Butylétain hydroxyde oxyde (95%) de ABCR GmbH
Trioxyde de molybdène (>99,5%) de Sigma Aldrich
Acétate de cobalt tétrahydrate (99,999%) de Sigma Aldrich
Additifs de polymérisation
Irgamod® 195 de BASF SE : Anti-oxydant
Irganox 1010 de BASF SE : Anti-oxydant
Hostanox PEPQ de Clariant : Anti-oxydant
Acide phosphorique (99,999+%) de Sigma Aldrich : Anti-oxydant
Acétate de sodium trihydrate (pureté >99,0%) : additif de polymérisation limitant les réactions d'éthérification
Tetraéthylammonium hydroxyde en solution à 40% dans l'eau de Sigma Aldrich : additif de polymérisation limitant les réactions d'éthérification Préparation des polyesters : Exemple 1 :
Dans un réacteur de 7,5L sont ajoutés 893,8 g (14,4 mol) d'éthylène glycol, 701 ,1 g (4,8 mol) d'isosorbide, 2656,1 g (16,0 mol) d'acide téréphtalique, 0,181 g d'acétate de sodium et 0,707 g d'Irgamod 195. 0,394 g de dioxyde de germanium (soit Ge=80ppm) et 1 ,216 g de triéthoxyde d'aluminium (soit Al=60ppm) sont également introduits en tant que catalyseurs.
Pour extraire l'oxygène résiduel des cristaux d'isosorbide, 4 cycles vide-azote sont effectués entre 60 et 80 °C. Le mélange réactionnel est ensuite chauffé à 260 °C (4qC/min) sous 5,7 bars de pression et sous agitation constante (150 tr/min). Le taux d'estérification est estimé à partir de la quantité de distillât collectée. Puis, la pression est réduite à 0,7 mbar en 90 minutes et la température amenée à 270 ^. Ces conditions de vide et de température ont été maintenues jusqu'à obtenir une augmentation de couple de 15Nm par rapport au couple initial. Le temps de polycondensation nécessaire est reporté dans le Tableau ci-dessous. Enfin, un jonc de polymère est coulé par la vanne de fond du réacteur, refroidi dans un bac d'eau thermo-régulé et découpé sous forme de granulés d'environ 15 mg.
La résine de poly(éthylèlène-co-isosorbide) téréphtalate ainsi obtenue a une viscosité réduite en solution de 55,8 mIJg et masse molaire en nombre de 10 300 g. mol"1. Les granulés de polymère obtenus sont jaune pâle et présentent les caractéristiques de coloration suivantes : L*=56,7, a*=0,0 et b*=9,4. Exemple 2-6 et Contre-Exemples 1-7 :
Pour la série d'exemple de 2 à 13, des conditions de synthèse identiques ont été utilisées à l'exception de la nature et des proportions de catalyseurs. Ces conditions sont données dans le Tableau 1 .
Tableau 1 : Récapitulatif des essais de fabrication de poly(éthylène-co-isosorbide) téréphtalate
Figure imgf000024_0001
Exemple 7 :
Dans un réacteur de 7,5L sont ajoutés 422,1 g (6,8 mol) d'éthylène glycol, 418,2 g (2,9 mol) d'isosorbide, 1 143,6g (7,9 mol) de 1 ,4-cyclohexanedimethanol, 2656,0 g (16,0 mol) d'acide téréphtalique, 0,60 g de tetraethylammonium hydroxyde et 1 ,94 g d'Irganox 1010. 0,703 g de dioxyde de germanium (soit Ge=126ppm) et 0,538g d'acétate de cobalt tétrahydrate (33ppm) sont également introduits en tant que catalyseurs.
Pour extraire l'oxygène résiduel des cristaux d'isosorbide, 4 cycles vide-azote sont effectués entre 60 et 80 °C. Le mélange réactionnel est ensuite chauffé à 250 °C (4°C/min) sous 2,5 bars de pression et sous agitation constante (150 tr/min). Le taux d'estérification est estimé à partir de la quantité de distillât collectée. Puis, la pression est réduite à Pression atmosphérique en 30min. A pression atmosphérique, 0,71 g de triéthoxyde d'aluminium (soit Al=30ppm), 0,42g d'acide phosphorique et 1 ,95g d'Hostanox PEPQ sont ajoutés dans le réacteur. La pression est ensuite réduite à 0,7 mbar en 30 minutes et la température amenée à 265 °C. Ces conditions de vide et de température ont été maintenues pendant 220min jusqu'à obtenir une augmentation de couple de 12Nm par rapport au couple initial. Enfin, un jonc de polymère est coulé par la vanne de fond du réacteur, refroidi dans un bac d'eau thermo-régulé et découpé sous forme de granulés d'environ 15 mg. La résine ainsi obtenue a une viscosité réduite en solution de 61 ,5 mIJg. Les granulés de polymère obtenus sont gris et présentent les caractéristiques de coloration suivantes : L*= 48,8 a*= -0,4 et b*= 0,3. Les exemples montrent que l'utilisation d'aluminium en complément du germanium permet de réduire de manière importante la coloration du polymère final (à ηΓβϋ constante). Ceci est remarquable en comparant les essais CEX1 avec Ex1 pour lesquels on observe une augmentation du paramètre L* ainsi qu'une diminution des paramètres a* et b*. Les mêmes observations réalisées avec des taux plus élevés de catalyseurs 200ppm de Ge (Cex2, Ex3, Ex4) ou avec du Co en plus du Ge et de l'Ai (Ex6 et CEx3) conduisent à des observations similaires en terme de coloration.
Les essais CEx 5, Cex6 et Cex7 montrent l'intérêt du mélange Ge/AI par rapport à d'autres mélanges de métaux :
- Le mélange Ge/Mo (CEx. 5) qui est un autre système catalytique utilisé dans WO 2004/048437 conduit à un polymère noir.
- Dans l'exemple CEx6 l'ajout de l'aluminium au titane ne permet pas d'obtenir une synergie catalytique comparable au couple Ge/AI, la polymérisation est beaucoup plus longue et le polymère final et très coloré. Il est précisé que 8ppm de Ti est une quantité usuelle utilisée pour la synthèse de PET.
- Enfin l'essai CEx 7 montre que l'utilisation d'étain en combinaison avec l'aluminium ne permet pas non plus d'obtenir un polymère avec une faible coloration.
L'exemple 7 montre une autre façon de conduire l'invention cette fois en utilisant un mélange de diols comprenant de l'éthylène glycol, de l'isosorbide et du cyclohexanediméthanol.

Claims

Revendications
Procédé de fabrication d'un polyester contenant au moins un motif 1 ,4 : 3,6- dianhydrohexitol comprenant au moins :
une étape d'introduction dans un réacteur de monomères comprenant au moins un monomère (A) qui est un diacide ou un diester et au moins un monomère (B) qui est un 1 ,4 : 3,6-dianhydrohexitol ;
une étape d'introduction dans le réacteur d'un système catalytique comprenant soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, soit un catalyseur comprenant les éléments germanium et aluminium ou soit un mélange de ces catalyseurs ; une étape de polymérisation desdits monomères pour former le polyester ; une étape de récupération d'une composition de polyester comprenant le polyester et le système catalytique.
Procédé de fabrication selon la revendication 1 , caractérisé en ce que le monomère (A) est un monomère aromatique, préférentiellement choisi parmi l'acide téréphtalique, l'acide isophtalique, l'acide phtalique, l'acide 2,6- naphtalène dicarboxylique, l'acide 1 ,4-naphtalène dicarboxylique, un acide furanedicarboxylique, un mélange de ces diacides, un diester de ces diacides et un mélange de ces diesters.
Procédé de fabrication selon la revendication 2, caractérisé en ce que le monomère (A) est l'acide téréphtalique ou un diester d'acide téréphtalique.
Procédé de fabrication selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdits monomères comprennent en outre au moins un diol (C), différent des 1 ,4 : 3,6-dianhydrohexitols, notamment un diol choisi parmi les diols aliphatiques, préférentiellement un choisi parmi l'éthylène glycol, 1 ,3-propanediol, 1 ,4-butanediol, 1 ,5-pentanediol, 1 ,6-hexanediol, 1 ,8- octanediol, 1 ,10-decanediol, le 1 ,4-cyclohexanedimethanol, le 1 ,
2- cyclohexanedimethanol, le 1 ,
3-cyclohexanedimethanol et un mélange de ces diols, très préférentiellement l'éthylène glycol, le 1 ,4-butanediol, le 1 ,4- cyclohexanedimethanol et un mélange de ces diols, de manière toute préférée l'éthylène glycol, le 1 ,
4-cyclohexanedimethanol et un mélange de ces diols.
5. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'étape de polymérisation desdits monomères comprend :
• un premier stade pendant lequel le milieu réactionnel est agité à une température allant de 220 à 310°C afin de former des oligomères, avantageusement de 245 à 275^ ;
• un second stade pendant lequel les oligomères formés sont agités sous vide à une température allant de 240 à 330 °C afin de former le polyester, avantageusement de 255 à 275 'Ό.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le système catalytique est introduit dans le réacteur avant l'étape de polymérisation.
7. Procédé de fabrication selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le système catalytique est choisi de manière à ce que le ratio élémentaire molaire Ge : Al aille de 0,05 : 1 à 500 : 1 , avantageusement de 0,2 à 300 :1 , de préférence de 0,33 : 1 à 1 ,25 : 1 .
8. Procédé de fabrication selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le système catalytique comprend en outre un catalyseur additionnel comprenant l'élément cobalt ou au moins un des catalyseurs comprenant l'élément germanium et/ou l'élément aluminium comprend en outre l'élément cobalt.
9. Procédé de fabrication selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la quantité massique totale de métal compris dans le système catalytique, rapportée à la quantité massique totale de polymère obtenu, va de 50 à 500 ppm.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que une étape de désoxygénation du réacteur est réalisée préalablement à l'étape de polymérisation des monomères, avantageusement en plaçant le réacteur sous atmosphère d'un gaz inerte tel que l'azote, par exemple en réalisant au moins une fois une séquence d'un stade de vide dans le réacteur suivi d'un stade d'introduction d'un gaz inerte dans le réacteur.
1 1 . Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le pourcentage molaire de monomère (A) par rapport au nombre total de moles de monomères (A), (B) et le cas échéant (C) va de 25 à 50%, de préférence de 33 à 49%, tout préférentiellement de 40 à 48%.
12. Procédé selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que le 1 ,4 : 3,6-dianhydrohexitol est l'isosorbide.
13. Composition de polyester comprenant :
- un polyester contenant au moins un motif 1 ,4 : 3,6-dianhydrohexitol et
- un système catalytique comprenant soit un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, soit un catalyseur comprenant les éléments germanium et aluminium ou soit un mélange de ces catalyseurs.
14. Composition de polyester selon la revendication 13, caractérisée en ce qu'elle présente une clarté L* supérieure à 45, de préférence supérieure à 55.
15. Composition de polyester selon la revendication 13 ou 14, caractérisée en ce qu'elle présente une coloration b* entre - 10 et 10, de préférence entre - 6 et 6.
16. Composition de polyester selon l'une quelconque des revendications 13 à 15, caractérisée en ce qu'elle présente une viscosité réduite supérieure à 35 mL/g, de préférence supérieure à 50 mL/g.
17. Article comprenant la composition de polyester selon l'une quelconque des revendications 13 à 16.
18. Utilisation d'un système catalytique comprenant un catalyseur comprenant l'élément germanium et un catalyseur comprenant l'élément aluminium, d'un catalyseur comprenant les éléments germanium et aluminium ou d'un mélange de ces catalyseurs pour réduire la coloration d'un polyester contenant au moins un motif 1 ,4 : 3,6-dianhydrohexitol.
PCT/FR2015/052901 2014-10-29 2015-10-28 Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée WO2016066956A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020177010817A KR102536027B1 (ko) 2014-10-29 2015-10-28 착색이 개선된 적어도 하나의 1,4:3,6-디안하이드로헥시톨 단위를 함유하는 폴리에스테르의 제조 방법
SG11201703370TA SG11201703370TA (en) 2014-10-29 2015-10-28 Method for producing a polyester containing at least one 1,4:3,6-dianhydrohexitol unit with improved colouring
ES15797131T ES2923856T3 (es) 2014-10-29 2015-10-28 Procedimiento de fabricación de un poliéster que contiene al menos una unidad de 1,4: 3,6-dianhidrohexitol con coloración mejorada
CN201580058584.0A CN107148438B (zh) 2014-10-29 2015-10-28 用于生产具有改进的着色的含有至少一个1,4:3,6-双脱水己糖醇单元的聚酯的方法
EP15797131.8A EP3212692B1 (fr) 2014-10-29 2015-10-28 Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée
JP2017523298A JP6688792B2 (ja) 2014-10-29 2015-10-28 改良された着色を有する、少なくとも1つの1,4:3,6−ジアンヒドロヘキシトール単位を含有するポリエステルを生成する方法
MX2017005664A MX369523B (es) 2014-10-29 2015-10-28 Metodo para producir un poliester que contiene al menos una unidad 1,4:3,6-dianhidrohexitol con coloracion mejorada.
CA2965900A CA2965900C (fr) 2014-10-29 2015-10-28 Procede de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol a coloration amelioree
US15/522,726 US10400062B2 (en) 2014-10-29 2015-10-28 Method for producing a polyester containing at least one 1,4:3,6-dianhydrohexitol unit with improved colouring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460403 2014-10-29
FR1460403A FR3027906B1 (fr) 2014-10-29 2014-10-29 Procede de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol a coloration amelioree

Publications (1)

Publication Number Publication Date
WO2016066956A1 true WO2016066956A1 (fr) 2016-05-06

Family

ID=52130458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/052901 WO2016066956A1 (fr) 2014-10-29 2015-10-28 Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée

Country Status (12)

Country Link
US (1) US10400062B2 (fr)
EP (1) EP3212692B1 (fr)
JP (1) JP6688792B2 (fr)
KR (1) KR102536027B1 (fr)
CN (1) CN107148438B (fr)
CA (1) CA2965900C (fr)
ES (1) ES2923856T3 (fr)
FR (1) FR3027906B1 (fr)
MX (1) MX369523B (fr)
PT (1) PT3212692T (fr)
SG (1) SG11201703370TA (fr)
WO (1) WO2016066956A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018202918A1 (fr) * 2017-05-05 2018-11-08 Roquette Freres Procede de fabrication d'un materiau composite
WO2018202917A1 (fr) * 2017-05-05 2018-11-08 Roquette Freres Composite thermoplastique
FR3072094A1 (fr) * 2017-10-11 2019-04-12 Roquette Freres Polyester thermoplastique hautement incorpore en motif 1,4 : 3,6-dianhydro-l-iditol
WO2019158885A1 (fr) * 2018-02-19 2019-08-22 Roquette Freres Polyester thermoplastique présentant une résistance améliorée au phénomène de fissuration
JP2020506827A (ja) * 2017-01-13 2020-03-05 エスケー ケミカルズ カンパニー リミテッド 合成木材
WO2021123655A1 (fr) 2019-12-20 2021-06-24 Roquette Freres Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d'incorporation dudit motif améliorés
US11168158B2 (en) 2017-03-06 2021-11-09 Braskem America, Inc. Electron donors for ziegler-natta precatalyst preparation and catalyst system for olefin polymerization

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3054838B1 (fr) * 2016-08-03 2018-09-07 Roquette Freres Polyester thermoplastique semi-cristallin pour la fabrication de films bi-orientes
FR3054891B1 (fr) * 2016-08-05 2021-01-29 Roquette Freres Polyester thermoplastique amorphe pour la fabrication d'articles optiques
US10696778B1 (en) * 2017-01-26 2020-06-30 Novol, Inc. Methods of making polymers using isosorbide
US11780950B1 (en) 2017-01-26 2023-10-10 Monica Bhatia Methods of making polymers using isosorbide
EP3626759A1 (fr) * 2018-09-21 2020-03-25 Erfindergemeinschaft Lorenz + Grahneis GbR Résines haute température (résine ht-up) à base de matières premières cycliques et non cycliques (ht-up)
KR20200036301A (ko) * 2018-09-28 2020-04-07 에스케이케미칼 주식회사 고분자 수지 조성물
JPWO2022202672A1 (fr) 2021-03-22 2022-09-29

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020421A (en) * 1998-09-01 2000-02-01 Unitika Ltd. Polyester composition and method for producing the same
WO2004048437A2 (fr) 2002-11-26 2004-06-10 Teck Cominco Metals Ltd. Systeme de catalyseur multi-composant permettant produire des polyesters par polycondensation
WO2006032022A1 (fr) * 2004-09-14 2006-03-23 E.I. Dupont De Nemours And Company Procedes de production de polymeres poly(ethylene-co-isosorbide) tereephthalate de faible couleur
FR2888851A1 (fr) * 2005-07-25 2007-01-26 Tergal Fibres Sa Systeme catalytique pour la fabrication de polyester par polycondensation, procede de fabrication de polyester
WO2010010282A1 (fr) 2008-07-24 2010-01-28 Roquette Freres Procede de preparation de compositions a base de composant amylace et de polymere synthetique
WO2013034743A1 (fr) 2011-09-08 2013-03-14 Societe Anonyme Des Eaux Minerales D'evian Et En Abrege "S.A.E.M.E" Procédé pour la production d'un polymère de type pet d'origine biologique
JP2013166874A (ja) * 2012-02-16 2013-08-29 Toyobo Co Ltd 共重合ポリエステル樹脂、並びにこれを用いた塗料、コーティング剤、及び接着剤
WO2013183873A1 (fr) 2012-06-05 2013-12-12 에스케이케미칼주식회사 Résine polyester et procédé de production de cette dernière
WO2013183874A1 (fr) 2012-06-05 2013-12-12 에스케이케미칼주식회사 Résine polyester et procédé de production de cette dernière

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063464A (en) * 1998-04-23 2000-05-16 Hna Holdings, Inc. Isosorbide containing polyesters and methods for making same
JP2003306538A (ja) * 2002-04-15 2003-10-31 Toyobo Co Ltd ポリエステル、それからなるポリエステル成形物およびその製造方法
JP5511129B2 (ja) * 2007-06-25 2014-06-04 三井化学株式会社 ポリエステル樹脂の製造方法
FR2965814B1 (fr) * 2010-10-08 2012-11-16 Roquette Freres Plastification de polyesters aliphatiques par des esters alkyliques de dianhydrohexitols
KR101769560B1 (ko) * 2011-03-29 2017-08-18 에스케이케미칼주식회사 젖산과 아이소소바이드가 공중합된 폴리에스테르 수지 및 그 제조방법
EP2749399B1 (fr) * 2011-08-25 2016-11-30 Fujifilm Corporation Film polyester à étirage suivant deux axes, procédé permettant de produire celui-ci et module de cellules solaires
US9790321B2 (en) * 2013-05-21 2017-10-17 Ester Industries Limited Heat resistant polyethylene terephthalate and a process for the preparation of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020421A (en) * 1998-09-01 2000-02-01 Unitika Ltd. Polyester composition and method for producing the same
WO2004048437A2 (fr) 2002-11-26 2004-06-10 Teck Cominco Metals Ltd. Systeme de catalyseur multi-composant permettant produire des polyesters par polycondensation
WO2006032022A1 (fr) * 2004-09-14 2006-03-23 E.I. Dupont De Nemours And Company Procedes de production de polymeres poly(ethylene-co-isosorbide) tereephthalate de faible couleur
US20060173154A1 (en) 2004-09-14 2006-08-03 Charbonneau Larry F Process for making low color poly(ethylene-co-isosorbide) terephthalate polymer
FR2888851A1 (fr) * 2005-07-25 2007-01-26 Tergal Fibres Sa Systeme catalytique pour la fabrication de polyester par polycondensation, procede de fabrication de polyester
WO2010010282A1 (fr) 2008-07-24 2010-01-28 Roquette Freres Procede de preparation de compositions a base de composant amylace et de polymere synthetique
WO2013034743A1 (fr) 2011-09-08 2013-03-14 Societe Anonyme Des Eaux Minerales D'evian Et En Abrege "S.A.E.M.E" Procédé pour la production d'un polymère de type pet d'origine biologique
JP2013166874A (ja) * 2012-02-16 2013-08-29 Toyobo Co Ltd 共重合ポリエステル樹脂、並びにこれを用いた塗料、コーティング剤、及び接着剤
WO2013183873A1 (fr) 2012-06-05 2013-12-12 에스케이케미칼주식회사 Résine polyester et procédé de production de cette dernière
WO2013183874A1 (fr) 2012-06-05 2013-12-12 에스케이케미칼주식회사 Résine polyester et procédé de production de cette dernière

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506827A (ja) * 2017-01-13 2020-03-05 エスケー ケミカルズ カンパニー リミテッド 合成木材
US11168158B2 (en) 2017-03-06 2021-11-09 Braskem America, Inc. Electron donors for ziegler-natta precatalyst preparation and catalyst system for olefin polymerization
CN110582527A (zh) * 2017-05-05 2019-12-17 罗盖特公司 热塑性复合材料
WO2018202917A1 (fr) * 2017-05-05 2018-11-08 Roquette Freres Composite thermoplastique
FR3065958A1 (fr) * 2017-05-05 2018-11-09 Roquette Freres Procede de fabrication d'un materiau composite
FR3065957A1 (fr) * 2017-05-05 2018-11-09 Roquette Freres Composite thermoplastique
WO2018202918A1 (fr) * 2017-05-05 2018-11-08 Roquette Freres Procede de fabrication d'un materiau composite
CN110582527B (zh) * 2017-05-05 2022-06-17 罗盖特公司 热塑性复合材料
FR3072094A1 (fr) * 2017-10-11 2019-04-12 Roquette Freres Polyester thermoplastique hautement incorpore en motif 1,4 : 3,6-dianhydro-l-iditol
WO2019073169A1 (fr) * 2017-10-11 2019-04-18 Roquette Freres Polyester thermoplastique hautement incorpore en motif 1,4 : 3,6-dianhydro-l-iditol
US11866546B2 (en) 2017-10-11 2024-01-09 Roquette Freres Thermoplastic polyester with high incorporation of 1,4:3,6-dianhydro-L-iditol units
FR3078069A1 (fr) * 2018-02-19 2019-08-23 Roquette Freres Polyester thermoplastique presentant une resistance amelioree au phenomene de fissuration
CN111712527A (zh) * 2018-02-19 2020-09-25 罗盖特公司 具有改善的对开裂现象的抵抗性的热塑性聚酯
WO2019158885A1 (fr) * 2018-02-19 2019-08-22 Roquette Freres Polyester thermoplastique présentant une résistance améliorée au phénomène de fissuration
WO2021123655A1 (fr) 2019-12-20 2021-06-24 Roquette Freres Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d'incorporation dudit motif améliorés
FR3105232A1 (fr) 2019-12-20 2021-06-25 Roquette Freres Procédé de fabrication d’un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d’incorporation dudit motif améliorés

Also Published As

Publication number Publication date
CA2965900C (fr) 2023-03-14
CA2965900A1 (fr) 2016-05-06
US10400062B2 (en) 2019-09-03
ES2923856T3 (es) 2022-10-03
SG11201703370TA (en) 2017-05-30
MX369523B (es) 2019-11-11
CN107148438A (zh) 2017-09-08
MX2017005664A (es) 2017-07-26
FR3027906A1 (fr) 2016-05-06
CN107148438B (zh) 2020-02-28
JP2017533320A (ja) 2017-11-09
PT3212692T (pt) 2022-07-26
US20170335055A1 (en) 2017-11-23
EP3212692A1 (fr) 2017-09-06
FR3027906B1 (fr) 2017-01-06
KR102536027B1 (ko) 2023-05-24
JP6688792B2 (ja) 2020-04-28
KR20170076672A (ko) 2017-07-04
EP3212692B1 (fr) 2022-04-27

Similar Documents

Publication Publication Date Title
EP3212692B1 (fr) Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3, 6-dianhydrohexitol à coloration améliorée
EP3143068B1 (fr) Polyesters aromatiques thermoplastiques comprenant des motifs tétrahydrofuranediméthanol et acide furanedicarboxylique
WO2016189239A1 (fr) Polyester de haute viscosité aux propriétés choc améliorées
WO2015142181A1 (fr) Polyesters comprenant des motifs 2,5-furannedicarboxylate et des motifs diol saturé ayant une température élevée de transition vitreuse
WO2017093684A1 (fr) Copolyesters thermoplastiques comprenant du 1,4 : 3,6-dianhydrohexitol et divers diacides aromatiques
WO2015170049A1 (fr) Polyesters aromatiques thermoplastiques comprenant des motifs tétrahydrofuranediméthanol
WO2021123655A1 (fr) Procédé de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d'incorporation dudit motif améliorés
EP3694903B1 (fr) Polyester thermoplastique hautement incorpore en motif 1,4 : 3,6-dianhydro-l-iditol
EP3861050A1 (fr) Procédé de préparation d'un polyester de type poly(1,4:3,6-dianhydrohexitol-cocyclohexylène téréphtalate)
CA2986103C (fr) Polyester de haute viscosite aux proprietes choc ameliorees
EP3755736A1 (fr) Polyester thermoplastique présentant une résistance améliorée au phénomène de fissuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15797131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010817

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2965900

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015797131

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015797131

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017523298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/005664

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 11201703370T

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE