WO2016066468A1 - Couche de gaz engendré par caléfaction d'un liquide imbibé dans un matériau poreux pour la formation d'un palier a gaz hydrostatique ou pour la réduction du frottement d'un objet immergé dans un liquide - Google Patents
Couche de gaz engendré par caléfaction d'un liquide imbibé dans un matériau poreux pour la formation d'un palier a gaz hydrostatique ou pour la réduction du frottement d'un objet immergé dans un liquide Download PDFInfo
- Publication number
- WO2016066468A1 WO2016066468A1 PCT/EP2015/074164 EP2015074164W WO2016066468A1 WO 2016066468 A1 WO2016066468 A1 WO 2016066468A1 EP 2015074164 W EP2015074164 W EP 2015074164W WO 2016066468 A1 WO2016066468 A1 WO 2016066468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- porous solid
- liquid
- solid
- gas layer
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
- F16C32/0618—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via porous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/32—Other means for varying the inherent hydrodynamic characteristics of hulls
- B63B1/34—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
- B63B1/38—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/32—Other means for varying the inherent hydrodynamic characteristics of hulls
- B63B1/34—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction
- B63B1/38—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes
- B63B2001/387—Other means for varying the inherent hydrodynamic characteristics of hulls by reducing surface friction using air bubbles or air layers gas filled volumes using means for producing a film of air or air bubbles over at least a significant portion of the hull surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2210/00—Fluids
- F16C2210/02—Fluids defined by their properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2300/00—Application independent of particular apparatuses
- F16C2300/02—General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2326/00—Articles relating to transporting
- F16C2326/30—Ships, e.g. propelling shafts and bearings therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Definitions
- the present invention relates to a device comprising a porous solid for moving relative to a substrate, an assembly formed of the device and the substrate, a method for facilitating movement of the device relative to the substrate, and a method for moving the device relative to the substrate. substrate.
- International application WO-A-2013/188702 also relates to processes for levitating liquids on surfaces.
- This application notably describes a process for facilitating the circulation of a substance that is flowing, in particular a solid or a liquid, onto a microtextured surface impregnated with an evaporable liquid.
- the evaporation temperature of the evaporable liquid is lower than the temperature of the circulating substance.
- a lubricating layer of evaporation gas is thus formed between the circulating substance and the microtextured surface. This lubricating layer facilitates the movement of the circulating substance.
- the entire microtextured surface on which the circulating substance moves must, however, be impregnated with liquid. A large quantity of evaporable liquid is therefore necessary.
- the contact between the circulating substance and the formed gas layer is ephemeral. After this contact, the liquid layer evaporates. A renewal of the liquid by external input is necessary.
- Such a device also requires the maintenance of the microtextured surface and the circulating substance at different temperatures throughout the circulation of the latter. It is therefore necessary to cool the microtextured surface and / or to heat the circulating substance.
- calefaction or Leidenfrost effect
- Calefaction is a phenomenon of partial evaporation of a drop of an evaporable liquid, brought into contact with a sufficiently hot surface, to form a layer of gas between the surface and the drop.
- the gas layer is used to suspend the drop of liquid above the surface.
- the gas layer thermally insulates the drop from the surface, so that the drop of liquid does not evaporate completely, immediately in contact with the surface. This phenomenon occurs when the surface is hot enough, that is to say at a temperature greater than or equal to a so-called temperature of caulking or Leidenfrost of the evaporable liquid, itself higher than the evaporation temperature of the evaporable liquid.
- Such an effect is for example described in the article by D. Quere, Leidenfrost Dynamics, Annu. Rev. Fluid Mech. 2013. 45: 197-215.
- the international application WO-A-2013/187674 describes a submarine supercavitation device comprising a heated surface.
- a layer of water vapor forms in contact with the heated surface.
- This layer of gas reduces the friction of the water on the device and thus facilitates the movements of the latter. Nevertheless this device can be used in water only if it has a heated surface at least at the temperature of heating water.
- the present invention responds to this need by providing a device comprising a porous solid intended to move relative to a substrate and impregnated with an evaporable liquid.
- the evaporable liquid is adapted to form a layer of gas between the solid and the substrate by heating in contact with the substrate.
- a layer of gas is created by caulking between the solid and the substrate, which facilitates the movement of the solid relative to the latter.
- the gas layer acts as a lubricating layer. It allows the porous solid to slide more easily over or into the substrate, preventing or at least reducing the contacts between the porous solid and the substrate.
- the porous mobile solid is self-lubricated.
- self-lubricated it is understood that the porous solid alone provides the lubricating layer at the interface between the latter and the substrate.
- the porous member may be moved on a substrate having a temperature above the boiling temperature of the evaporable liquid and generate a layer of lubricating gas without the need for additional elements.
- the area of the substrate in contact with the lubricating gas layer is limited. Only the part of the substrate located in the close vicinity of the porous solid is in fact lubricated.
- this gas layer provides a thermal insulation of the evaporable liquid, present in the porous solid, relative to the substrate.
- the gas layer thus further reduces the amount of liquid consumed to create and maintain the gas layer between the solid and the substrate.
- the porosity of the solid allows it to form a reserve of evaporable liquid to maintain the gas layer during movement of the device relative to the substrate. It is then possible to have a device requiring no additional energy input.
- the porous solid preferably has pores with an average diameter of between 0.1 ⁇ and 100 ⁇ , better still between 1 ⁇ . and 20 ⁇ .
- Such an average diameter of the pores makes it possible to limit the evaporable liquid consumption of the device to form the gas layer and limits, or prevents, when it is filled with evaporable liquid, leakage by the pores of the gas from the gas layer. by limiting the risk of clogging of the pores. This also enables high pressures in the gas layer to be achieved so that the porous solid can withstand a greater weight without coming into contact with the substrate.
- the porous solid can be rigid.
- rigid is understood here a solid not deforming under the pressure of the gas layer formed by caulking evaporable liquid.
- a rigid solid may be self-supporting, that is to say that it has a substantially constant shape regardless of how it is placed on a plane substrate.
- the porous solid may be flexible and possibly fixed rigidly to a rigid body, in particular glued to the latter.
- flexible is understood here a solid being able to deform under the pressure of the gas layer formed by caulking evaporable liquid. This flexibility allows in particular the porous solid to adapt to possible irregularities of the substrate.
- the evaporable liquid may especially be water, nitrogen, alcohol or oxygen. Such liquids allow in particular to have a non-polluting and / or non-toxic device.
- the choice of the evaporable liquid may in particular be made according to the temperature of the substrate, which must allow the evaporation of the evaporable liquid.
- the device may comprise a reservoir containing the evaporable liquid allowing the supply, especially continuous, porous solid evaporable liquid.
- the reservoir can be disposed on the porous solid, the porous solid can then form the bottom of the reservoir. In this way, the porous solid can be fed with evaporable liquid without any external apparatus being necessary.
- the device may comprise a load carried by the porous solid, disposed on the reservoir if appropriate.
- the porous solid may comprise an upper part superimposed on a lower part, intended to be oriented towards the gas layer.
- the lower part of the porous solid is the part of the porous solid closest to the substrate.
- the upper part and the lower part may have different mean diameters of pores.
- the lower part may then have pores with a smaller average diameter than the upper part.
- Larger pores in the upper part of the porous solid make it possible to retain a larger amount of evaporable liquid therein.
- Smaller pores in the lower portion of the porous solid limit evaporative liquid consumption for formation of the gas layer. Pores of smaller size in the lower part, oriented towards the gas layer, can allow the gas layer to be maintained despite a weight exerted on it more important.
- the lower part is preferably of lower thickness than the upper part.
- the lower part and the upper part may be of different rigidity.
- the lower part is flexible and the upper rigid so that the porous solid is generally rigid.
- the present invention also relates to an assembly of a device as previously described in all its variants and a substrate adapted to be at a temperature greater than or equal to the calcfaction temperature of the evaporable liquid.
- the substrate is at a temperature greater than or equal to the temperature of heating of the evaporable liquid.
- the substrate may be a liquid substrate, the device being adapted to move in the liquid substrate or on the surface thereof.
- the substrate is a solid, the device being intended to move on a surface of the solid substrate.
- the solid substrate may be deformable or deformable, in particular rigid or flexible.
- the surface of the solid substrate may have a surface relief to guide the flow of the gas layer.
- the surface relief is preferably periodic and / or asymmetrical, in particular a sawtooth relief.
- the surface of the porous solid facing the substrate may have a surface relief to guide the flow of the gas layer.
- the surface relief is preferably asymmetrical and / or periodic, in particular a sawtooth relief.
- Such a surface relief on one of the Surface of the substrate and of the surface of the porous solid may in particular make it possible to create a flow of gas by promoting the evacuation in one direction of the gas layer between the porous solid and the substrate. This flow of gas can then cause the displacement of the porous solid on the substrate, without requiring the application of any force or any input of energy to the device.
- the present invention also relates to a method for facilitating the movement of a device as described above in all its combinations with respect to a substrate, the method comprising the steps of:
- Steps (i) and (ii) can be successive or simultaneous.
- the method may include a step of imbibing the porous solid with the evaporable liquid. This step can take place before or after step (i) and before step (ii).
- the method may also include a step of heating the substrate to a temperature greater than or equal to the boiling temperature of the evaporable liquid. This step can take place before or after step (i) and before step (ii).
- the substrate is at a temperature greater than or equal to the temperature of heating of the evaporable liquid without the need to heat the substrate.
- the present invention finally relates to a method for moving a device as described above, with respect to a substrate, the method comprising a step of facilitating the movement of the device relative to the substrate by implementing the method as described above. , and a step of moving the device relative to the substrate, in particular by exerting a force on the device.
- FIG. 1 represents an assembly 10 comprising a device 12 and a substrate 14.
- the device 12 moves on the surface of the substrate 14, in the direction of the arrow D.
- the device 12 comprises a porous solid 16 impregnated with an evaporable liquid .
- porous is meant here a material having a plurality of pores forming a network of capillary paths at least on the surface, and preferably in its volume, for retaining, by capillarity, liquid.
- the evaporable liquid is partially retained in the pores of the porous solid 16 by capillarity.
- porous solid 16 is a sintered glass puck.
- the porous solid 10 is therefore rigid.
- the porous solid 16 is here cylindrical. More specifically, it has the shape of a cylinder of revolution, of diameter L greater than the capillary length of the evaporable liquid, in particular greater than or equal to 20 mm and / or less than or equal to 50 cm, for example equal to 70 mm and of height e between 3 mm and 8 mm, for example equal to 5 mm.
- the pores of the porous solid 1 are for example of average diameter between 0.1 ⁇ and 100 ⁇ m, preferably between 1 ⁇ and 50 ⁇ , for example equal to 10 ⁇ .
- Such an average pore diameter makes it possible to have a high pressure in the gas layer with respect to the pressure in the evaporable liquid contained in the pores at the interface. This pressure difference is given, locally in each pore, at the interface between the gas layer 18 and the evaporable liquid, by the equation (1), called the Laplace overpressure APi Mp i ae :
- the evaporable liquid here is liquid nitrogen.
- Liquid nitrogen is preferred for applications at room temperature (i.e. between 5 and 40 ° C) where the substrate can not be heated or difficult, but where it has a temperature substantially equal to room temperature . Indeed, such a temperature of the substrate is greater than the temperature of curing liquid nitrogen.
- the substrate 14 is here a solid.
- the device 12 thus moves on a substantially flat surface of the substrate 14. A flatter surface possible is preferred in this application.
- the surface of the substrate 14 does not preferably have reliefs of height greater than 20 ⁇ .
- the substrate 14 is for example a glass plate or a polished metal plate.
- the porous solid 16, impregnated with liquid nitrogen, is placed on the substrate 14.
- the liquid nitrogen escaping from the pores of the porous solid 16 comes into contact with the surface of the substrate 14, whose temperature is greater than the temperature of the calefaction of liquid nitrogen.
- Liquid nitrogen then evaporates in contact with the substrate 14, to form, by caulking, a layer of gas 18 between the porous solid 16 and the substrate 14. More specifically, the gas layer 18 is formed here between the surface
- the surface 20 is hereinafter referred to as the lower surface.
- the gas layer 18 makes it possible to separate the lower surface 20 from the porous solid 16 and the flat surface of the substrate 14. This gas layer 18 thus makes it possible to reduce the friction between the latter and thus to facilitate the displacements of the porous solid 16 on the 14. These displacements may be due to a force external to the device 12 exerted on the porous solid 16, for example a user pushing the device 12.
- the device 12 comprises a motor element for driving its displacement. relative to the surface of the substrate 14.
- the gas layer 18 also thermally insulates the liquid nitrogen present in the porous solid 16 of the substrate 14 so that the lower surface 20 of the porous solid 16 is at a temperature lower than that of the substrate 14.
- the porous solid 16 preferably being at a temperature below the evaporation temperature of the liquid nitrogen.
- the porous solid 16 makes it possible to have an evaporable liquid flow towards the substrate 14 to supply the gas layer 18 continuously.
- the characteristics of the flux depend on the properties of the porous solid 16, in particular the average size of its pores and its pores. dimensions, and the pressure present at its lower surface 20.
- the thickness d of the gas layer 18 is for example between 5 ⁇ and
- Equation (2) shows that for a given mass carried by the gas layer, for example, it is possible to influence the thickness of this gas layer by modifying the dimensions of the porous solid, so as to obtain a thickness the desired gas layer.
- the assembly 10 of Figure 2 differs from that illustrated in Figure 1 in that it comprises a device 12 including a reservoir 22 containing liquid nitrogen.
- the reservoir 22 is here placed on the upper surface 24 of the porous solid 16, opposite the lower surface 20 facing the gas layer 18.
- the reservoir 22 is thus delimited laterally by a wall 26 while the porous solid 16 defines at least
- the porous solid 16 is thus in direct contact, by its upper surface 24, with the liquid nitrogen contained in the reservoir 22.
- the liquid nitrogen impregnates the porous solid 10 continuously, as and when as the porous solid 16 is drained from the liquid nitrogen by its lower surface 20 to maintain the gas layer 18.
- the reservoir 22 of FIG. 2 therefore makes it possible to increase the autonomy of the device 12 of FIG. .
- the device 12 of FIG. 2 also makes it possible to be able to transport the evaporable liquid contained in the reservoir 22 on the surface of the substrate 14, the flow rate of the evaporable liquid being small in the porous solid 16 towards the substrate 14, in order to maintain the gas layer. 18 between the porous solid 16 and the substrate 14.
- the overall example 10 of FIG. 3 differs from that of FIG. 1 in that the porous solid 6 is a flexible solid which is in contact on its entire upper surface 24 with a rigid body 27.
- the rigid body 27 prevents and too large deformations of the porous solid 16, especially under the effect of the pressure of the gas layer 18.
- the porous solid 16 may, for example, be rigidly fixed, in particular glued on the lower surface of the rigid body 26, oriented to the gas layer 18.
- the porous solid 16 may be compressible according to its thickness.
- the flexible porous solid 16 is here, for example, sponge, cotton, absorbent material or any flexible body having an equivalent absorption power. Such a flexible porous solid 16 can be compressed near a roughness to substantially match the shape of the latter and move on it. Thus such a device 12 can move on a surface having roughness.
- an evaporable liquid reservoir can be placed between the porous solid 16 and the rigid body 26, or on the rigid body 16, then feeding the porous solid 16 through at least one opening in the rigid body 26.
- the assembly 10 of FIG. 4 differs from that of FIG. 1 essentially in that the rigid porous solid 16 has two superimposed portions 16a, 16b of different average pore diameters.
- the two parts 16a and 1b can be fixed rigidly to one another, in particular glued together.
- the lower portion 16a the closest to the substrate 14, has an average pore diameter smaller than the upper portion 16b, opposite.
- the upper part 16b makes it possible to retain a larger quantity of evaporable liquid, filling the reservoir function for the lower part 16a.
- the smaller pigs of the lower part 16a make it possible for them to maintain the gas layer 18, despite a greater weight applied thereto, the pressure necessary for the gas of this gas layer 18 to escape through them. pores of the lower part 16a being higher.
- the lower part 16a because of its reduced size pores, therefore makes it possible to have a maximum possible pressure in the higher gas layer 18.
- the gas layer 18 formed depends essentially on the parameters of the lower part 16a of the porous solid 16, in particular its porosity and the mean diameter of its pores, rather than the parameters of the upper part 16b.
- the lower part 16a is less thick than the upper part 16b. This allows to have a good amount of evaporable liquid stored in the porous solid 6 while having a slow consumption of the latter.
- the lower portion 16a of the porous solid 16 or the upper portion 16b of the porous solid 16 is not rigid, but flexible and is preferably rigidly attached to the other rigid portion.
- FIG. 5 illustrates an assembly 10 in which the substrate 14 is heated, for example, by the fact that the evaporable liquid used is not liquid nitrogen but rather water or alcohol. In this case indeed, it may be necessary to heat the substrate 14 to a temperature greater than or equal to the temperature of the evaporation liquid, since the latter is greater than the ambient temperature.
- this is achieved by means of a heating resistor 28 included in the substrate 14 so as to heat the substrate 14 and, in particular, its upper surface on which the gas layer 18 is formed.
- the electrical resistance 28 is powered by a power supply 30.
- the overall example 10 of Figure 6 differs from that of Figure 1 by its substrate 14.
- the substrate 14 has an asymmetrical surface relief 32 on the surface of the substrate 14 which faces the porous solid 16.
- Such an asymmetric surface relief 32 creates an asymmetric gas flow in the gas layer 18, which leads to the device 12 moving in the direction D or accelerates this movement.
- the surface relief 32 is here a periodic relief, sawtooth.
- Each tooth 32 has, facing the porous solid 16, a large face 34 and a small face 36 forming between them an angle of between 60 and 120 °, better between 80 ° and 100 °, the large face 34 being less steep than the small face 36.
- the repetition period of the surface relief 32 and the height of the periodic relief are less than the capillary length of the evaporable liquid. This makes it possible to form a gas layer 18 sufficiently stable to allow easy movement of the device 12 on the substrate 14.
- the repetition period of the surface relief 32 is less than or equal to 10 mm, better still less than or equal to 5 mm and the height of the periodic relief 32 is less than or equal to 500 ⁇ , better still less than or equal to 300 ⁇ .
- the porous solid 16 is then driven in the direction of the downward slope of the large face 34, or in the direction D in FIG.
- FIG. 7 represents a variant of FIG. 6 in which the substrate 14 is substantially plane and the lower surface 20 of the porous solid 16 comprises a surface relief 32 as described with reference to FIG. 6. Frictions are reduced between the solid porous 16 and the substrate 14 in a similar manner to the variant illustrated in Figure 6.
- the surface relief 32 may not be periodic and nevertheless facilitate the displacement of the device 12 on the substrate 14.
- FIG. 8 shows another example of an assembly 10 in which the device 12 comprises a rigid porous solid 16 carrying a charge 38.
- the porous solid 16 acts as a charged door and facilitates the movement of this load 38 relative to the substrate 14.
- the load 38 has a mass of 3 kg.
- FIG. 9 illustrates yet another example of an assembly 10 comprising a device 12 moving relative to a substrate 14.
- the device 12 comprises a first cylinder 40 covered by a sleeve forming the porous solid 16.
- the porous solid is integral in rotation of the first cylinder 40.
- This device 12 is disposed inside a second cylinder forming the substrate 14.
- the first cylinder may for example be a rotor, and the second cylinder the corresponding stator, with respect to which the rotor rotates .
- the first cylinder 40 rotates in the second cylinder 14 along the arrow D.
- the evaporable liquid is for example liquid nitrogen.
- a layer of gas 18 is then formed in contact with the radially inner surface of the stator 14, which facilitates the rotation of the rotor 40 relative to the stator 14.
- FIG. 10 shows an assembly 10 that differs from the assemblies previously described in that the substrate 14 is liquid, the device 12 and in particular the porous solid 16 moving in this substrate 4.
- the substrate 14 being at a temperature greater than or equal to the calcfaction temperature of the evaporable liquid - for example liquid nitrogen - a gas layer 18 is formed between the liquid substrate 14 and the porous solid 16.
- this layer of gas 18 is formed at a surface 20, in the direction of advance of the porous solid 16. This gas layer also makes it possible to reduce the friction of the liquid substrate 14 on the porous solid 16.
- the porous solid 16 can thus facilitate the penetration or the displacement of the device 12, for example an underwater vehicle, in the liquid substrate 14.
- a charge may be placed on a reservoir containing the evaporable liquid and supplying the porous solid with evaporable liquid, the reservoir being disposed itself on the porous solid.
- the pressure in the tank can be adjusted, in particular to be higher than the atmospheric pressure. This makes it possible to increase the flow of evaporable liquid Q in the porous solid, by increasing the pressure difference AP between the upper surface and the lower surface of the porous solid.
- the flow of evaporable liquid Q in the porous solid towards the substrate passing through the lower surface follows the Darcy law given by equation (3) below:
- K being the permeability coefficient of the porous solid
- ⁇ the dynamic viscosity of the evaporable liquid
- AP the pressure difference between the upper surface and the lower surface of the porous solid, and e the thickness of the porous solid.
- the evaporable liquid is not limited to those presented in each variant.
- the surface of the substrate may be hot enough to allow the water or alcohol to become calcified without the need to heat the substrate. It may also be necessary to heat the substrate for applications where liquid nitrogen is implemented.
- the evaporable liquid may also be oxygen.
- the latter has paramagnetic properties. These paramagnetic properties make it possible to exert, at a distance, by applying a magnetic field, a force on the porous solid, in particular to orient the latter.
- the porous solid can be any porous material.
- the porous solid may in particular be a sintered material, in particular glass, bronze, steel, or a mixture thereof.
- the porous solid may be intrinsically or associated with a material having magnetic, dielectric or electrical conductivity properties. These properties make it possible in particular to orient the porous solid, for example by means of a magnetic field, in particular that of a magnet, and / or to set in motion the porous solid, for example with the aid of a electric field.
- the porous solid may be of variable average pore diameter in its thickness, in particular have a mean pore diameter gradient, the latter being lower on the lower surface than on the upper surface.
- the porous solid may have a shape other than cylindrical of revolution. It may especially be in the form of any cylinder.
- the lower surface of the porous solid and / or the surface of the substrate on which the porous solid is intended to move may / may have a surface relief to guide the gas layer formed by caulking.
- these surfaces can be U-shaped or V-shaped.
- the guiding of the gas layer can be asymmetrical, to cause a displacement of the porous solid with respect to the surface of the substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Dispersion Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Dispositif (12) comportant un solide poreux (16) destiné à se déplacer par rapport à un substrat (14) solide ou liquide et imbibé d'un liquide évaporable adapté à former une couche de gaz (18) entre le solide poreux (16) et le substrat (14) solide ou liquide par caléfaction au contact du substrat (14) solide ou liquide.
Description
COUCHE DE GAZ ENGENDRÉ PAR CALÉFACTION D'UN LIQUIDE IMBIBÉ DANS U N
MATÉRIAU POREUX POU R LA FORMATION D'U N PALI ER A GAZ HYDROSTATIQU E OU POU R LA RÉDUCTION DU FROTTEM ENT D'U N OBJ ET I M M ERGÉ DANS U N LIQU I DE
La présente invention concerne un dispositif comportant un solide poreux destiné à se déplacer relativement à un substrat, un ensemble formé du dispositif et du substrat, un procédé pour faciliter le déplacement du dispositif par rapport au substrat et un procédé pour déplacer le dispositif par rapport au substrat.
Il est connu, lorsqu'il s'agit de déplacer entre eux deux solides en contact, que l'ajout à leur interface d'une couche lubrifiante de graisse ou d'huile permet de réduire les frottements et de faciliter ainsi leur mouvement. Néanmoins, cet ajout d'une telle couche lubrifiante présente de nombreux inconvénients. Cet ajout est notamment salissant, peu écologique et non compatible avec tous les environnements, notamment difficilement compatible avec les environnements contrôlés, en présence de certains matériaux ou gaz.
Il est également connu un dispositif, appelé coussin d'air aérostatique, dans lequel de l'air comprimé est injecté dans une cavité à l'interface entre un solide et un substrat, solide ou liquide, par rapport auquel le solide se déplace. Le coussin d'air ainsi obtenu maintient le solide et le substrat espacés, réduisant par la même les frottements. Cependant, ce dispositif nécessite un approvisionnement permanent en air comprimé, ce qui est consommateur d'énergie, ou une étanchéité parfaite de la cavité, ce qui est difficile à réaliser.
La demande internationale WO-A-2013/188702 se rapporte par ailleurs à des procédés permettant la lévitation de liquides sur des surfaces. Cette demande décrit notamment un procédé pour faciliter la circulation d'une substance s' écoulant, notamment un solide ou un liquide, sur une surface microtexturée imprégnée d'un liquide évaporable. La température d'évaporation du liquide évaporable est inférieure à la température de la substance circulante. 11 se forme ainsi une couche lubrifiante de gaz d'évaporation du liquide évaporable entre la substance circulante et la surface microtexturée. Cette couche lubrifiante facilite le déplacement de la substance circulante. Toute la surface microtexturée sur laquelle se déplace la substance circulante doit toutefois être imprégnée de liquide. Une grande quantité de liquide évaporable est donc nécessaire. De plus, le contact entre la substance circulante et la couche de gaz formée est éphémère. Après ce contact, la couche de liquide s'évapore. Un renouvellement du liquide par un apport extérieur est donc nécessaire. Un tel dispositif nécessite également le maintien de la
surface microtexturée et de la substance circulante à des températures différentes pendant toute la circulation de cette dernière. 11 est donc nécessaire de refroidir la surface microtexturée et ou de chauffer la substance circulante.
L'utilisation de la caléfaction (ou effet Leidenfrost) pour faciliter le déplacement d'un liquide sur un solide a également été décrite.
La caléfaction est un phénomène d'évaporation partielle d'une goutte d'un liquide évaporable, mise en contact avec une surface suffisamment chaude, pour former une couche de gaz entre la surface et la goutte. La couche de gaz permet de mettre en suspension la goutte de liquide au-dessus de la surface. En outre, la couche de gaz isole thermiquement la goutte de la surface, de telle sorte que la goutte de liquide ne s'évapore pas totalement, immédiatement au contact de la surface. Ce phénomène apparaît lorsque la surface est suffisamment chaude, c'est à dire à une température supérieure ou égale à une température dite de caléfaction ou de Leidenfrost du liquide évaporable, elle-même supérieure à la température d'évaporation du liquide évaporable. Un tel effet est par exemple décrit dans l'article de D. Quéré, « Leidenfrost Dynamics », Annu. Rev. Fluid Mech. 2013. 45 : 197-215.
Un phénomène identique de formation d'une couche de gaz est observé lorsqu'un solide sublimable est posé sur une surface ayant une température supérieure ou égale à une température dite de caléfaction du solide sublimable. Cette température de caléfaction du solide sublimable est supérieure à sa température de sublimation.
Il est également connu, de l'article de Y. S. Song et al, « Vitrification and lévitation of a liquid droplet on liquid nitrogen », PNAS 2010, 107 : 4596-600, des dispositifs dans lesquels une goutte d'eau est en lévitation au-dessus d'azote liquide. Une couche de gaz est alors formée par l'évaporation d'azote liquide au niveau de sa surface en contact de la goutte d'eau, qui est à une température supérieure à la température de caléfaction de l'azote liquide. On parle alors parfois de phénomène de caléfaction « inversée ».
Par ailleurs, la demande internationale WO-A-2013/187674 décrit un dispositif sous-marin à supercavitation comportant une surface chauffée. Une couche de vapeur d'eau se forme au contact de la surface chauffée. Cette couche de gaz réduit les frottements de l'eau sur le dispositif et facilite ainsi les mouvements de ce dernier. Néanmoins ce
dispositif n'est utilisable dans l'eau que s'il présente une surface chauffée au moins à la température de caléfaction de l'eau.
Il existe donc un besoin pour un dispositif pouvant être déplacé facilement par rapport à un substrat tout en mettant en œuvre une quantité de lubrifiant réduite.
La présente invention répond à ce besoin en proposant un dispositif comportant un solide poreux destiné à se déplacer par rapport à un substrat et imbibé d'un liquide évaporable. Le liquide évaporable est adapté à former une couche de gaz entre le solide et le substrat par caléfaction au contact du substrat.
Une couche de gaz se crée par caléfaction entre le solide et le substrat, qui facilite le déplacement du solide par rapport à ce dernier.
La couche de gaz joue le rôle d'une couche lubrifiante. Elle permet au solide poreux de glisser plus facilement sur ou dans le substrat, en empêchant ou tout du moins en réduisant les contacts entre le solide poreux et le substrat.
Le solide poreux mobile est autolubrifié. Par « autolubrifié », on comprend que le solide poreux permet à lui seul d'apporter la couche de lubrification à l'interface entre ce dernier et le substrat.
L'élément poreux peut être déplacé sur un substrat ayant une température supérieure à la température de caléfaction du liquide évaporable et générer une couche de gaz lubrifiante sans qu'il ne soit nécessaire d'apporter d'élément supplémentaire.
De plus la zone du substrat en contact avec la couche de gaz lubrifiante est limitée. Seule la partie du substrat située au voisinage proche du solide poreux est en effet lubrifiée.
11 n'est plus nécessaire de disposer du lubrifiant ou du liquide évaporable sur tout le substrat avant le déplacement du dispositif, comme cela était le cas dans WO-A- 2013/188702.
En outre, cette couche de gaz procure une isolation thermique du liquide évaporable, présent dans le solide poreux, par rapport au substrat. La couche de gaz permet ainsi de réduire encore la quantité de liquide consommée pour créer et maintenir la couche de gaz entre le solide et le substrat.
La porosité du solide lui permet de constituer une réserve de liquide évaporable pour entretenir la couche de gaz durant le déplacement du dispositif par rapport au substrat.
Il est alors possible d'avoir un dispositif ne nécessitant aucun apport d'énergie complémentaire.
Le solide poreux a, de préférence, des pores de diamètre moyen compris entre 0,1 μιη et 100 μπι, mieux entre 1 μπ. et 20 μιη. Un tel diamètre moyen des pores permet de limiter la consommation de liquide évaporablc du dispositif pour former la couche de gaz et limite, voire empêche, lorsqu'il sont remplis de liquide évaporable, la fuite par les pores du gaz de la couche de gaz tout en limitant les risques d'obturation des pores. Cela permet également d'atteindre des pressions élevées dans la couche de gaz pour que le solide poreux puisse supporter un poids plus important, sans entrer en contact avec le substrat.
Le solide poreux peut être rigide.
Par « rigide », on comprend ici un solide ne se déformant pas sous la pression de la couche de gaz formée par caléfaction du liquide évaporablc. En particulier, un solide rigide peut être autoportant, c'est-à-dire qu'il présente une forme sensiblement constante quelle que soit la façon dont il est posé sur un substrat plan.
Le solide poreux peut être souple et éventuellement fixé rigidement à un corps rigide, notamment collé à ce dernier.
Par « souple », on comprend ici un solide étant capable de se déformer sous la pression de la couche de gaz formée par caléfaction du liquide évaporable. Cette souplesse permet notamment au solide poreux de s'adapter aux irrégularités éventuelles du substrat.
Le liquide évaporable peut notamment être de l'eau, de l'azote, de l'alcool ou de l'oxygène. De tels liquides permettent notamment d'avoir un dispositif non polluant et/ou non toxique. Le choix du liquide évaporable peut notamment être réalisé en fonction de la température du substrat, qui doit permettre la caléfaction du liquide évaporable.
Le dispositif peut comporter un réservoir contenant le liquide évaporable permettant l'apport, notamment continu, de liquide évaporable au solide poreux.
Le réservoir peut être disposé sur le solide poreux, le solide poreux pouvant alors former le fond du réservoir. De cette façon, le solide poreux peut être alimenté en liquide évaporable sans qu'aucun appareil externe ne soit nécessaire.
Le dispositif peut comporter une charge portée par le solide poreux, disposée sur le réservoir le cas échéant.
Le solide poreux peut comporter une partie supérieure superposée à une partie inférieure, destinée à être orientée vers la couche de gaz. En d'autres termes, la partie inférieure du solide poreux est la partie du solide poreux la plus proche du substrat.
La partie supérieure et la partie inférieure peuvent avoir des diamètres moyens de pores différents. La partie inférieure peut alors avoir des pores de diamètre moyen plus faible que la partie supérieure. Des pores plus grands dans la partie supérieure du solide poreux permettent de retenir une plus grande quantité de liquide évaporable dans cette dernière. Des pores plus petits dans la partie inférieure du solide poreux limitent la consommation de liquide évaporable pour la formation de la couche de gaz. Des pores de plus petite taille en partie inférieure, orientée vers la couche de gaz, peuvent permettre à la couche de gaz de se maintenir malgré un poids s' exerçant dessus plus important.
La partie inférieure est, de préférence, d'épaisseur plus faible que la partie supérieure.
La partie inférieure et la partie supérieure peuvent être de rigidité différente. Notamment, la partie inférieure est souple et la partie supérieure rigide de sorte que le solide poreux est globalement rigide.
La présente invention a également pour objet un ensemble d'un dispositif tel que décrit précédemment dans toutes ses variantes et d'un substrat adapté à être à une température supérieure ou égale à la température de calcfaction du liquide évaporable.
De préférence, le substrat est à une température supérieure ou égale à la température de caléfaction du liquide évaporable.
Le substrat peut être un substrat liquide, le dispositif étant destiné à se déplacer dans le substrat liquide ou à la surface de ce dernier.
En variante, le substrat est un solide, le dispositif étant destiné à se déplacer sur une surface du substrat solide. Le substrat solide peut être déformable ou indéformable, notamment rigide ou souple.
La surface du substrat solide peut présenter un relief de surface pour guider l'écoulement de la couche de gaz. Le relief de surface est de préférence périodique et/ou asymétrique, notamment un relief en dents de scie. En variante ou en sus, la surface du solide poreux faisant face au substrat peut présenter un relief de surface pour guider l'écoulement de la couche de gaz. Le relief de surface est de préférence asymétrique et/ou périodique, notamment un relief en dents de scie. Un tel relief de surface sur l'une de la
surface du substrat et de la surface du solide poreux peut notamment permettre de créer un flux de gaz en favorisant l'évacuation dans une direction, de la couche de gaz entre le solide poreux et le substrat. Ce flux de gaz peut alors entraîner le déplacement du solide poreux sur le substrat, sans nécessiter l'application d'aucune force, ni aucun apport d'énergie, sur le dispositif.
La présente invention concerne également un procédé pour faciliter le déplacement d'un dispositif tel que décrit ci-avant dans toutes ses combinaisons par rapport à un substrat, le procédé comportant les étapes consistant à :
(i) placer le solide poreux par rapport au substrat,
(ii) former une couche de gaz entre le solide et le substrat par caléfaction du liquide évaporable, le substrat étant à une température supérieure ou égale à la température de caléfaction du liquide évaporable.
Les étapes (i) et (ii) peuvent être successives ou simultanées.
Le procédé peut comporter une étape consistant à imbiber le solide poreux au moyen du liquide évaporable. Cette étape peut avoir lieu avant ou après l'étape (i) et avant l'étape (ii).
Le procédé peut également comporter une étape consistant à chauffer le substrat jusqu'à une température supérieure ou égale à la température de caléfaction du liquide évaporable. Cette étape peut avoir lieu avant ou après l'étape (i) et avant l'étape (ii).
En variante, le substrat est à une température supérieure ou égale à la température de caléfaction du liquide évaporable sans qu'il soit nécessaire de chauffer le substrat.
La présente invention a enfin pour objet un procédé pour déplacer un dispositif tel que décrit précédemment, par rapport à un substrat, le procédé comportant une étape consistant à faciliter le déplacement du dispositif par rapport au substrat en mettant en œuvre le procédé tel que décrit précédemment, et une étape consistant à déplacer le dispositif par rapport au substrat, notamment en exerçant un effort sur le dispositif.
L'invention pourra être mieux comprise à la lecture qui va suivre, de la description d'exemples non limitatifs de mise en œuvre de celle-ci et à l'examen des figures du dessin, schématiques et partielles, sur lequel :
- Les figures 1 à 10 représentent en coupe des exemples d'ensemble d'un dispositif et d'un substrat.
Dans la suite de la description, les éléments identiques ou de fonctions identiques portent le même signe de référence. À fin de concision de la présente description, ils ne sont pas décrits en regard de chacune des figures, seules les différences entre les modes de réalisations étant décrites.
La figure 1 représente un ensemble 10 comportant un dispositif 12 et un substrat 14. Le dispositif 12 se déplace à la surface du substrat 14, dans le sens de la flèche D. Le dispositif 12 comporte un solide poreux 16 imbibé d'un liquide évaporable.
Par « poreux », on comprend ici un matériau présentant une pluralité de pores formant un réseau de chemins capillaires au moins en surface, et de préférence dans son volume, permettant de retenir, par capillarité, du liquide. Ici, notamment, le liquide évaporable est partiellement retenu dans les pores du solide poreux 16 par capillarité.
Ici, le solide poreux 16 est un palet en verre fritte. Le solide poreux 10 est donc rigide.
Le solide poreux 16 est ici de forme cylindrique. Plus précisément, il a la forme d'un cylindre de révolution, de diamètre L supérieur à la longueur capillaire du liquide évaporable, notamment supérieur ou égale à 20 mm et/ou inférieure ou égale à 50 cm, par exemple égale à 70 mm et de hauteur e comprise entre 3 mm et 8 mm, par exemple égale à 5 mm.
Les pores du solide poreux 1 sont par exemple de diamètre moyen compris entre 0,1 μηι et 100 pm, de préférence entre 1 μιη et 50 μτα, par exemple égale à 10 μηα. Un tel diamètre moyen de pores permet d'avoir une pression élevée dans la couche de gaz par rapport à la pression dans le liquide évaporable contenu dans les pores à l'interface. Cette différence de pression est donnée, localement dans chaque pore, à l'interface entre la couche de gaz 18 et le liquide évaporable, par l'équation (1), dite de la surpression de Laplace APiMpia e :
Y
Plaplace = ~ ( ' ) où y est la tension de surface du liquide évaporable et r le rayon de courbure de l 'interface entre le liquide évaporable et la couche de gaz 18 dans le pore du solide poreux 16 considéré.
Le liquide évaporable est ici de l'azote liquide. L'azote liquide est préféré pour les applications à température ambiante (c'est-à-dire entre 5 et 40°C) où le substrat ne peut pas être chauffé ou difficilement, mais où il présente une température sensiblement égale à la température ambiante. En effet, une telle température du substrat est supérieure à la température de caléfaction de l'azote liquide.
Le substrat 14 est ici un solide. Le dispositif 12 se déplace ainsi sur une surface sensiblement plane du substrat 14. Une surface la plus plane possible est préférée dans cette application. Notamment, la surface du substrat 14 ne présente pas, de préférence, de reliefs de hauteur supérieure à 20 μπι.
Le substrat 14 est par exemple une plaque de verre ou une plaque métallique polie.
Le solide poreux 16, imbibé d'azote liquide, est posé sur le substrat 14. L'azote liquide s 'échappant des pores du solide poreux 16 entre en contact avec la surface du substrat 14, dont la température est supérieure à la température de caléfaction de l'azote liquide. De l'azote liquide s'évapore alors au contact du substrat 14, pour former, par caléfaction, une couche de gaz 18 entre le solide poreux 16 et le substrat 14. Plus précisément, la couche de gaz 18 se forme ici entre la surface 20 du solide poreux 16, orientée vers le substrat 14, et le substrat 14. La surface 20 est dénommée ci-après surface inférieure.
La couche de gaz 18 permet de séparer la surface inférieure 20 du solide poreux 16 et la surface plane du substrat 14. Cette couche de gaz 18 permet ainsi de réduire les frottements entre ces derniers et donc de faciliter les déplacements du solide poreux 16 sur la surface plane du substrat 14. Ces déplacements peuvent être le fait d'une force extérieure au dispositif 12 exercée sur le solide poreux 16, par exemple un utilisateur poussant le dispositif 12. En variante, le dispositif 12 comporte un élément moteur pour entraîner son déplacement par rapport à la surface du substrat 14.
La couche de gaz 18 permet également d'isoler thermiquement l'azote liquide présent dans solide poreux 16 du substrat 14 de sorte que la surface inférieure 20 du solide poreux 16 est à une température est inférieure à celle du substrat 14. De ce fait, l'écoulement et la consommation d'azote liquide pour former et maintenir la couche de gaz 18 sont limités, le solide poreux 16 étant, de préférence, à une température inférieure à la température d'évaporation de l'azote liquide.
Le solide poreux 16 permet d'avoir un flux de liquide évaporable vers le substrat 14 pour alimenter en continue la couche de gaz 18. Les caractéristiques du flux dépendent des propriétés du solide poreux 16, notamment de la taille moyenne de ses pores et de ses dimensions, et de la pression présente à sa surface inférieure 20.
L'épaisseur d de la couche de gaz 18 est par exemple comprise entre 5 μιη et
500 μιη, de préférence entre 10 μηι et 100 μιη. Une trop faible épaisseur d de la couche par rapport aux rugosités des surfaces inférieures 20 et du substrat 14 provoque la rupture de la couche de gaz 18 entre le solide poreux 16 et la surface du substrat 14, ce qui rend le solide poreux 16 plus difficile à déplacer sur le substrat 14. Une épaisseur de couche plus importante, difficile à obtenir, est nuisible à l'équilibre du solide poreux.
L'épaisseur d de la couche de gaz est, en première approximation, donnée par l'équation (2) suivante : ά = ΛΊ^
où A est une constante qui dépend notamment du liquide évaporable mis en œuvre et de la température du substrat 14, m la masse portée par la couche de gaz 18, comprenant notamment la masse du dispositif 12, et S l'aire de la surface inférieure 20 du solide poreux 16. Dans le cas d'un solide poreux 16 ayant la forme d'un cylindre de révolution, L est le diamètre de ce dernier. L'équation (2) montre que pour une masse donnée portée par la couche de gaz, par exemple, il est possible d'influer sur l'épaisseur de cette couche de gaz en modifiant les dimensions du solide poreux, pour ainsi obtenir une épaisseur de la couche de gaz souhaitée.
L'ensemble 10 de la figure 2 diffère de celui illustré sur la figure 1 en ce qu'il comporte un dispositif 12 incluant un réservoir 22 contenant l'azote liquide. Le réservoir 22 est ici posé sur la surface supérieure 24 du solide poreux 16, opposée à la surface inférieure 20 orientée vers la couche de gaz 18. Le réservoir 22 est ainsi délimité latéralement par une paroi 26 alors que le solide poreux 16 définit au moins partiellement le fond de ce réservoir 22. Le solide poreux 16 est ainsi en contact direct, par sa surface supérieure 24, avec l'azote liquide contenu dans le réservoir 22. L'azote liquide imbibe le solide poreux 10 en continu, au fur et à mesure que le solide poreux 16 se vide de l'azote liquide par sa surface inférieure 20 pour maintenir la couche de gaz 18.
Le réservoir 22 de la figure 2 permet donc d'augmenter l'autonomie du dispositif 12 de la figure ! .
Le dispositif 12 de la figure 2 permet également de pouvoir transporter le liquide évaporable contenu dans le réservoir 22 sur la surface du substrat 14, le débit du liquide évaporable étant faible dans le solide poreux 16 vers le substrat 14, pour maintenir la couche de gaz 18 entre le solide poreux 16 et le substrat 14.
L'exemple d'ensemble 10 de la figure 3 diffère de celui de la figure 1 en ce que le solide poreux 6 est un solide souple qui est en contact sur toute sa surface supérieure 24 avec un corps rigide 27. Le corps rigide 27 empêche ainsi des déformations trop importantes du solide poreux 16, notamment sous l'effet de la pression de la couche de gaz 18. Le solide poreux 16 peut, par exemple, être fixé rigidement, notamment collé sur la surface inférieure du corps rigide 26, orientée vers la couche de gaz 18.
Le solide poreux 16 peut être compressible selon son épaisseur.
Le solide poreux souple 16 est ici, par exemple, en éponge, en coton, en matériau absorbant ou tout corps souple présentant un pouvoir d'absorption équivalent. Un tel solide poreux 16 souple peut se comprimer à proximité d'une rugosité pour épouser sensiblement la forme de cette dernière et se déplacer sur celle-ci. Ainsi un tel dispositif 12 peut se déplacer sur une surface présentant des rugosités.
Il est à noter qu'un réservoir de liquide évaporable peut être disposé entre le solide poreux 16 et le corps rigide 26, ou sur le corps rigide 16, alimentant alors le solide poreux 16 à travers au moins une ouverture dans le corps rigide 26.
L'ensemble 10 de la figure 4 diffère de celui de la figure 1 essentiellement en ce que le solide poreux 16, rigide, y présente deux parties superposées 16a, 16b, de diamètres moyens de pores différents. Les deux parties 16a et 1 b peuvent être fixées rigidement l'une sur l'autre, notamment collées entre elles.
Par exemple, la partie inférieure 16a, la plus proche du substrat 14, a un diamètre moyen de pores inférieur à la partie supérieure 16b, opposée. Ainsi, la partie supérieure 16b permet de retenir une plus grande quantité de liquide évaporable, remplissant la fonction de réservoir pour la partie inférieure 16a. Les porcs plus petits de la partie inférieure 16a permettent eux d'assurer le maintien de la couche de gaz 18 malgré un poids plus important s'y appliquant, la pression nécessaire pour que le gaz de cette couche de gaz 18 s'échappe par les pores de la partie inférieure 16a étant plus élevée. La partie inférieure 16a, de par ses pores de tailles réduites, permet donc d'avoir une pression maximale possible dans la couche de gaz 18 plus élevée. Il est intéressant de noter, ici, que
la couche de gaz 18 formée dépend essentiellement des paramètres de la partie inférieure 16a du solide poreux 16, notamment de sa porosité et du diamètre moyen de ses pores, plutôt que des paramètres de la partie supérieure 16b.
De préférence, la partie inférieure 16a est moins épaisse que la partie supérieure 16b. Cela permet d'avoir une bonne quantité de liquide évaporable stockée dans le solide poreux 6 tout en ayant une consommation lente de ce dernier.
En variante, la partie inférieure 16a du solide poreux 16 ou la partie supérieure 16b du solide poreux 16 n'est pas rigide, mais souple et est, de préférence, fixée rigidement à l'autre partie rigide.
La figure 5 illustre un ensemble 10 dans lequel le substrat 14 est chauffé, par exemple, par ce que le liquide évaporable mis en œuvre n'est pas de l'azote liquide mais plutôt de l'eau ou de l'alcool. Dans ce cas en effet, il peut être nécessaire de chauffer le substrat 14 jusqu'à une température supérieure ou égale à la température de caléfaction du liquide évaporable, car cette dernière est supérieure à la température ambiante.
Dans l'exemple illustré sur la figure 5, ceci est réalisé au moyen d'une résistance chauffante 28 incluse dans le substrat 14 de manière à chauffer le substrat 14 et, notamment, sa surface supérieure sur laquelle se forme la couche de gaz 18. La résistance électrique 28 est alimentée par une alimentation électrique 30.
Bien entendu, d'autres moyens peuvent être mis en oeuvre pour chauffer le substrat 14.
L'exemple d'ensemble 10 de la figure 6 diffère de celui de la figure 1 par son substrat 14. Ici. en effet, le substrat 14 présente un relief de surface 32 asymétrique sur la surface du substrat 14 qui fait face au solide poreux 16, Un tel relief de surface 32 asymétrique crée un flux de gaz asymétrique dans la couche de gaz 18, ce qui entraîne le dispositif 12 en mouvement dans la direction D ou accélère ce mouvement.
Le relief de surface 32 est ici un relief périodique, en dent de scie. Chaque dent 32 présente, tournées vers le solide poreux 16, une grande face 34 et une petite face 36 formant entre elles un angle compris entre 60 et 120°, mieux entre 80° et 100°, la grande face 34 étant moins pentue que la petite face 36. De préférence, la période de répétition du relief de surface 32 et la hauteur du relief périodique sont inférieures à la longueur capillaire du liquide évaporable. Cela permet de pouvoir former une couche de gaz 18 suffisamment stable pour permettre un déplacement aisé du dispositif 12 sur le substrat 14.
Par exemple, la période de répétition du relief de surface 32 est inférieure ou égale à 10 mm, mieux inférieure ou égale à 5 mm et la hauteur du relief périodique 32 est inférieure ou égale à 500 μηι, mieux inférieure ou égale à 300 μιη. Le solide poreux 16 est alors entraîné en déplacement dans le sens de la pente descendante de la grande face 34, soit selon la direction D sur la figure 6.
La figure 7 représente une variante de la figure 6 dans laquelle le substrat 14 est sensiblement plan et la surface inférieure 20 du solide poreux 16 comporte un relief de surface 32 tel que décrit en relation avec la figure 6. Les frottements sont réduits entre le solide poreux 16 et le substrat 14 de manière analogue à la variante illustrée sur la figure 6.
En variante, le relief de surface 32 peut ne pas être périodique et faciliter néanmoins le déplacement du dispositif 12 sur le substrat 14.
La figure 8 présente un autre exemple d'ensemble 10 dans lequel le dispositif 12 comporte un solide poreux 16, rigide, portant une charge 38. Dans un tel dispositif 10, le solide poreux 16 joue le rôle de porte charge et facilite le déplacement de cette charge 38 par rapport au substrat 14. Par exemple, la charge 38 présente une masse de 3 kg.
La figure 9 illustre encore un autre exemple d'ensemble 10 comportant un dispositif 12 se déplaçant par rapport à un substrat 14. Ici, le dispositif 12 comporte un premier cylindre 40 recouvert par un manchon formant le solide poreux 16. Le solide poreux est solidaire en rotation du premier cylindre 40. Ce dispositif 12 est disposé à l'intérieur d'un deuxième cylindre formant le substrat 14. Le premier cylindre peut par exemple être un rotor, et le deuxième cylindre le stator correspondant, par rapport auquel tourne le rotor. Le premier cylindre 40 tourne dans le deuxième cylindre 14 selon la flèche D. Le liquide évaporable est par exemple de l'azote liquide. Une couche de gaz 18 se forme alors au contact de la surface radialement interne du stator 14, qui facilite la rotation du rotor 40 relativement au stator 14.
Enfin, la figure 10 présente un ensemble 10 se distinguant des ensembles précédemment décrits en ce que le substrat 14 est liquide, le dispositif 12 et notamment le solide poreux 16 se déplaçant dans ce substrat 4.
Dans ce cas, le substrat 14 étant à une température supérieure ou égale à la température de calcfaction du liquide évaporable - par exemple de l'azote liquide - une couche de gaz 18 se forme entre le substrat liquide 14 et le solide poreux 16. D est plus particulièrement intéressant que cette couche de gaz 18 se forme au niveau d'une surface
frontale 20, dans la direction d'avancement du solide poreux 16. Cette couche de gaz permet également de réduire les frottements du substrat liquide 14 sur le solide poreux 16. Le solide poreux 16 peut ainsi faciliter la pénétration ou le déplacement du dispositif 12, par exemple un engin sous-marin, dans le substrat liquide 14.
L'invention n'est pas limitée aux exemples de réalisations qui viennent d'être décrits, dont les caractéristiques peuvent se combiner au sein de variantes non illustrées.
Ainsi, par exemple, une charge peut être disposée sur un réservoir contenant le liquide évaporable et alimentant le solide poreux en liquide évaporable, le réservoir étant disposée lui-même sur le solide poreux.
La pression dans le réservoir peut être réglée, notamment pour être supérieure à la pression atmosphérique. Ceci permet d'augmenter le débit de liquide évaporable Q dans le solide poreux, en augmentant la différence de pression AP entre la surface supérieure et la surface inférieure du solide poreux. Le débit de liquide évaporable Q dans le solide poreux vers le substrat passant par la surface inférieure, suit la loi de Darcy donnée par l'équation (3) ci-dessous :
Q = ^ (3)
K étant le coefficient de perméabilité du solide poreux, μ la viscosité dynamique du liquide évaporable, A l'aire de la surface inférieure, AP la différence de pression entre la surface supérieure et la surface inférieure du solide poreux, et e l'épaisseur du solide poreux.
L'augmentation du débit Q permet notamment de porter des charges plus lourdes.
Par ailleurs, le liquide évaporable n'est pas limité à ceux présentés dans chaque variante. La surface du substrat peut être suffisamment chaude pour permettre la caléfaction de l'eau ou de l'alcool sans qu'il soit nécessaire de chauffer le substrat. Il peut également être nécessaire de chauffer le substrat pour des applications où l'azote liquide est mise en œuvre.
Le liquide évaporable peut également être de l'oxygène. Ce dernier présente des propriétés paramagnétiques. Ces propriétés paramagnétiques permettent d'exercer, à distance, par application d'un champ magnétique, une force sur le solide poreux, notamment pour orienter ce dernier.
Le solide poreux peut être en tout matériau poreux. Le solide poreux peut notamment être en un matériau fritte, notamment en verre, bronze, acier, ou en un mélange de ceux-ci.
Le solide poreux peut être intrinsèquement, ou être associé à un matériau possédant, des propriétés magnétiques, diélectriques ou de conductivité électrique. Ces propriétés permettent notamment d'orienter le solide poreux, par exemple à l'aide d'un champ magnétique, notamment celui d'un aimant, et/ou de mettre en mouvement le solide poreux, par exemple à l'aide d'un champ électrique.
Le solide poreux peut être à diamètre de pore moyen variable dans son épaisseur, notamment présenter un gradient de diamètre de pore moyen, ce dernier étant plus faible sur la surface inférieure que sur la surface supérieure.
Le solide poreux peut présenter une forme autre que cylindrique de révolution. Il peut notamment être de la forme d'un cylindre quelconque.
La surface inférieure du solide poreux et/ou la surface du substrat sur laquelle le solide poreux est destiné à se déplacer, peut/peuvent présenter un relief de surface pour guider la couche de gaz formée par caléfaction. Notamment, du fait de ce relief de surface, ces surfaces peuvent être en forme de U ou de V. Le guidage de la couche de gaz peut être asymétrique, pour provoquer un déplacement du solide poreux par rapport à la surface du substrat.
L'expression « comportant un » doit être comprise comme étant synonyme de
« comprenant au moins un ».
Claims
1. Dispositif (12) comportant un solide poreux (16) destiné à se déplacer par rapport à un substrat (14) et imbibé d"un liquide évaporable adapte à former une couche de gaz (18) entre le solide poreux (16) et le substrat (14) par caléfaction au contact du substrat (14).
2. Dispositif selon la revendication 1 , le solide poreux (16) ayant des pores de diamètre moyen compris entre 0,1 μτη et 100 μηι, mieux entre 1 μτη et 20 μηι.
3. Dispositif selon la revendication 1 ou 2, le solide poreux (16) étant rigide.
4. Dispositif selon la revendication 1 ou 2, le solide poreux (16) étant souple et, éventuellement, fixé rigidement à un corps rigide (26).
5. Dispositif selon l'une quelconque des revendications précédentes, comportant un réservoir (22) contenant le liquide évaporable permettant l'apport, notamment continu, de liquide évaporable au solide poreux (16), le réservoir étant disposé de préférence sur le solide poreux (16), le solide poreux (16) formant notamment le fond du réservoir (22).
6. Dispositif selon l'une quelconque des revendications précédentes, comportant une charge (38) porté par le solide poreux (16), disposée le cas échéant sur le réservoir (22).
7. Dispositif selon l'une quelconque des revendications précédentes, le solide poreux (16) comportant une partie supérieure (16b) superposée à une partie inférieure (16a), destinée à être orientée vers la couche de gaz, la partie inférieure (16a) et la partie supérieure (16b) ayant des diamètres moyens de pores différents, notamment la partie inférieure (16a) ayant des pores de diamètre moyen plus faible que ceux de la partie supérieure (16b).
8. Ensemble (10) d'un dispositif (12) selon l'une quelconque des revendications précédentes et d'un substrat (14), le substrat (14) étant adapté à être à une température supérieure ou égale à la température de caléfaction du liquide
évaporable, de préférence étant à une température supérieure ou égale à la température de caléfaction du liquide évaporable.
9. Ensemble selon la revendication 8, le substrat (14) étant liquide, le solide poreux (16) étant destiné à se déplacer dans le substrat (14) ou à la surface du substrat.
10. Ensemble selon la revendication 8, le substrat (14) étant solide, le solide poreux
(16) étant destiné à se déplacer sur une surface du substrat (14).
11. Ensemble selon la revendication 10, au moins l'un parmi la surface du substrat (14) et la surface (20) du solide poreux (16) faisant face au substrat (14) présentant un relief de surface (32) de préférence asymétrique et/ou périodique, notamment un relief en dents de scie.
12. Procédé pour faciliter le déplacement d'un dispositif (12) selon l'une quelconque des revendications 1 à 7 par rapport à un substrat (14) ou pour faciliter le déplacement d'un dispositif ( 12) d'un ensemble selon l'une des revendications 8 à 11 par rapport au substrat (14) de l'ensemble (10), le procédé comprenant les étapes consistant à :
(i) placer le solide poreux (16) par rapport au substrat (14),
(ii) former une couche de gaz (18) entre le solide poreux (16) et le substrat (14) par caléfaction du liquide évaporable, le substrat (14) étant à une température supérieure ou égale à la température de caléfaction du liquide évaporable.
13. Procédé scion la revendication 12, comprenant une étape consistant à imbiber le solide poreux (16) au moyen du liquide évaporable.
14. Procédé selon la revendication 12 ou 13, comprenant une étape consistant à chauffer le substrat (14) à une température supérieure ou égale à la température de caléfaction du liquide évaporable.
15. Procédé pour déplacer un dispositif (12) selon l'une quelconque des revendications 1 à 7 par rapport à un substrat (14) ou pour déplacer un dispositif (12) d'un
ensemble selon l'une des revendications 8 à 1 1 par rapport au substrat (14) de l'ensemble (10), comprenant une étape consistant à faciliter le déplacement du dispositif (12) par rapport au substrat en mettant en œuvre un procédé selon l'une des revendications 12 à 14, et une étape consistant à déplacer le dispositif ( 12) par rapport au substrat (14), notamment en exerçant un effort sur le solide poreux (16).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1460303 | 2014-10-27 | ||
FR1460303A FR3027535B1 (fr) | 2014-10-27 | 2014-10-27 | Lubrification par calefaction |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016066468A1 true WO2016066468A1 (fr) | 2016-05-06 |
Family
ID=52477833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/074164 WO2016066468A1 (fr) | 2014-10-27 | 2015-10-19 | Couche de gaz engendré par caléfaction d'un liquide imbibé dans un matériau poreux pour la formation d'un palier a gaz hydrostatique ou pour la réduction du frottement d'un objet immergé dans un liquide |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3027535B1 (fr) |
WO (1) | WO2016066468A1 (fr) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2316624A1 (de) * | 1973-04-03 | 1974-10-24 | Baumgartner | Lagerungseinrichtung fuer relativ zueinander bewegte teile |
DE3010431A1 (de) * | 1980-03-19 | 1981-09-24 | Johann B. Dr.-Ing. 8000 München Endres | Einrichtung zur verringerung des oberflaechenreibungswiderstandes bei stroemungskoerpern |
JPS6181283A (ja) * | 1984-09-27 | 1986-04-24 | Mitsubishi Heavy Ind Ltd | 摩擦抵抗軽減型船舶 |
EP0289886A1 (fr) * | 1987-05-05 | 1988-11-09 | INTERATOM Gesellschaft mit beschränkter Haftung | Procédé de fabrication de garnitures poreuses pour paliers hydrostatiques à gaz |
JP2004003530A (ja) * | 2002-04-17 | 2004-01-08 | Kansai Tlo Kk | ハイブリッド気体軸受 |
WO2004063006A1 (fr) * | 2003-01-10 | 2004-07-29 | Heinrich Schmid | Navire |
GB2429435A (en) * | 2005-08-23 | 2007-02-28 | Alexander Walter Swales | Ship or boat hull air lubrication system |
US20090266288A1 (en) * | 2008-04-29 | 2009-10-29 | Zuei-Ling Lin | Method of reducing frictional resistance between ship body and water by releasing gases in water |
WO2013131618A2 (fr) * | 2012-03-03 | 2013-09-12 | Karlsruher Institut für Technologie | Recouvrement superficiel contenant du gaz, système et utilisation |
-
2014
- 2014-10-27 FR FR1460303A patent/FR3027535B1/fr not_active Expired - Fee Related
-
2015
- 2015-10-19 WO PCT/EP2015/074164 patent/WO2016066468A1/fr active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2316624A1 (de) * | 1973-04-03 | 1974-10-24 | Baumgartner | Lagerungseinrichtung fuer relativ zueinander bewegte teile |
DE3010431A1 (de) * | 1980-03-19 | 1981-09-24 | Johann B. Dr.-Ing. 8000 München Endres | Einrichtung zur verringerung des oberflaechenreibungswiderstandes bei stroemungskoerpern |
JPS6181283A (ja) * | 1984-09-27 | 1986-04-24 | Mitsubishi Heavy Ind Ltd | 摩擦抵抗軽減型船舶 |
EP0289886A1 (fr) * | 1987-05-05 | 1988-11-09 | INTERATOM Gesellschaft mit beschränkter Haftung | Procédé de fabrication de garnitures poreuses pour paliers hydrostatiques à gaz |
JP2004003530A (ja) * | 2002-04-17 | 2004-01-08 | Kansai Tlo Kk | ハイブリッド気体軸受 |
WO2004063006A1 (fr) * | 2003-01-10 | 2004-07-29 | Heinrich Schmid | Navire |
GB2429435A (en) * | 2005-08-23 | 2007-02-28 | Alexander Walter Swales | Ship or boat hull air lubrication system |
US20090266288A1 (en) * | 2008-04-29 | 2009-10-29 | Zuei-Ling Lin | Method of reducing frictional resistance between ship body and water by releasing gases in water |
WO2013131618A2 (fr) * | 2012-03-03 | 2013-09-12 | Karlsruher Institut für Technologie | Recouvrement superficiel contenant du gaz, système et utilisation |
Also Published As
Publication number | Publication date |
---|---|
FR3027535A1 (fr) | 2016-04-29 |
FR3027535B1 (fr) | 2016-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2768215A1 (fr) | Systeme de lubrification d'un mecanisme, notamment d'un palier tournant dans un engin spatial | |
EP3049224B1 (fr) | Installation et procédé d'imprégnation par transfert d'une poudre dans un support poreux | |
CA2710173A1 (fr) | Actionneur rotolineaire a rouleaux satellites | |
EP0681924A1 (fr) | Article d'écriture à encre liquide, notamment à base de solvant | |
WO2020109745A1 (fr) | Procédé de fabrication additive assisté par un milieu contraint granulaire | |
FR2532382A1 (fr) | Guidage a rainures de lubrification pour mouvement rectiligne | |
WO2016066468A1 (fr) | Couche de gaz engendré par caléfaction d'un liquide imbibé dans un matériau poreux pour la formation d'un palier a gaz hydrostatique ou pour la réduction du frottement d'un objet immergé dans un liquide | |
FR2557939A1 (fr) | Dispositif de lubrification de palier | |
FR2995768A1 (fr) | Applicateur a bout rotatif a effet froid et distributeur comprenant ledit applicateur | |
FR2995056A1 (fr) | Systeme mecanique a embrayage unidirectionnel, alternateur et procede de fabrication d'un tel systeme | |
FR2596835A1 (fr) | Ensemble cylindre-piston rempli par un milieu de pression compressible | |
FR2554189A1 (fr) | Dispositif composite de palier a ferrofluide comportant un joint d'etancheite en ferrofluide | |
EP3542058B1 (fr) | Dispositif de lubrification sous vide pour volant d'inertie | |
FR3108384A1 (fr) | Moyen de perforation d’une cuve de gaz naturel à l’état liquide | |
FR2507265A1 (fr) | Dispositif pour faciliter le mouvement entre deux organes, tel qu'un palier ou une butee, a patins oscillants | |
EP0184484A1 (fr) | Machine à piston rotatif et couronne accouplée à la manivelle | |
CA2856877C (fr) | Organe mecanique | |
FR3069571B1 (fr) | Systeme a compression de film fluide et machine tournante comprenant un tel systeme | |
WO2024115866A1 (fr) | Dispositif à arbre rotatif avec refroidissement et lubrification intégrés. | |
EP1452767B1 (fr) | Guide-tige lubrifié et amortisseur comportant un tel guide-tige | |
FR3019596A1 (fr) | Dispositif de pompage | |
FR3072689A1 (fr) | Systeme et procede de formation d'un film mince lubrifiant solide sur une piece mecanique | |
FR3017664A1 (fr) | Systeme inertiel de stockage d'energie | |
EP3408042B1 (fr) | Outillage permettant la fabrication d'un produit en metal par coulee en charge | |
EP0927827A1 (fr) | Vérin hydraulique intégrant un piston pourvu d'un segment d'amortissement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15781672 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15781672 Country of ref document: EP Kind code of ref document: A1 |