WO2016065811A1 - 微透镜阵列及其制作方法、图像获取装置和显示装置 - Google Patents

微透镜阵列及其制作方法、图像获取装置和显示装置 Download PDF

Info

Publication number
WO2016065811A1
WO2016065811A1 PCT/CN2015/074568 CN2015074568W WO2016065811A1 WO 2016065811 A1 WO2016065811 A1 WO 2016065811A1 CN 2015074568 W CN2015074568 W CN 2015074568W WO 2016065811 A1 WO2016065811 A1 WO 2016065811A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
microlens array
prepolymer
receiving grooves
microlens
Prior art date
Application number
PCT/CN2015/074568
Other languages
English (en)
French (fr)
Inventor
周春苗
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/776,884 priority Critical patent/US20160299263A1/en
Publication of WO2016065811A1 publication Critical patent/WO2016065811A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • B29D11/00375Production of microlenses by moulding lenses in holes through a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0031Refractive
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to the field of integrated imaging technologies, and in particular, to a microlens array and a method for fabricating the same, an image acquisition device, and a display device.
  • Integrated imaging technology is a display technology that restores the light field of an object in space or images an object within a certain spatial range. It is a full-true 3D stereo display.
  • Technology there is no contradiction between the display mechanism and the principle of human visual vision. There is no stereoscopic viewing fatigue in the past and it can be displayed in all directions. Therefore, it is attracting more and more attention as a next-generation display technology.
  • a microlens array-based integrated imaging technique is a technique of recording a spatial scene of an object 11 using a microlens array and reproducing a 3D image 13 of the spatial scene.
  • the camera 14 provided with the microlens array records the information of the spatial scene of the object 11 from different directions through each microlens element 12 in the microlens array, thereby generating a micro image array; when reproducing, according to the optical path reversible principle, setting
  • the microlens array on the light exit surface of the display panel 15 collects and restores the light transmitted from the micro image array to construct a 3D image 13 of the spatial scene of the object 11.
  • Microlens arrays are key components for integrated imaging, and the development and performance of microlens arrays directly affect the development and performance of integrated imaging.
  • Conventional microlens arrays are mainly fabricated by grinding or machining, and their processing size and precision are limited by abrasive tools and machining equipment.
  • large-scale microlens arrays fabricated by existing processes are used. There is a problem of poor accuracy and uniformity that cannot meet the needs of integrated imaging.
  • An object of the present invention is to provide a microlens array and a manufacturing method thereof, an image acquiring device and a display device, which are capable of reducing the difficulty of the manufacturing process and improving the lens array after fabrication. Column accuracy and uniformity.
  • the present invention provides a method for fabricating a microlens array, comprising the following steps:
  • the prepolymer is cured such that the prepolymer in each receiving tank is cured to form a microlens element, thereby obtaining the microlens array.
  • the step of forming a plurality of receiving grooves on the substrate comprises:
  • the substrate is etched by a photolithographic patterning process to form the plurality of receiving grooves on the substrate.
  • the step of forming a plurality of receiving grooves on the substrate comprises:
  • the photosensitive resin material layer is exposed and developed to form the plurality of receiving grooves on the photosensitive resin material layer.
  • the step of instilling the colloidal prepolymer into each of the plurality of receiving tanks further comprises:
  • An opaque immiscible layer is formed on an upper surface of a sidewall of each of the plurality of receiving grooves.
  • the force between the prepolymer and the incompatible layer One is to change the focal length of the microlens element.
  • the material of the immiscible layer comprises polystyrene and/or polysilyl ester.
  • the material of the prepolymer comprises any one or a combination of any one of methacrylate, epoxy acrylate and silicone acrylate.
  • the prepolymer has a viscosity between 4000 cps and 7000 cps.
  • curing is carried out by means of ultraviolet light.
  • the material of the photosensitive resin material layer includes any one of trimethylolpropane triacrylate and dipropylene glycol diacrylate or a combination thereof.
  • the present invention also provides a microlens array including a substrate, a plurality of receiving grooves formed on the substrate, and microlens elements disposed in the plurality of receiving grooves, the micro
  • the lens element is a polymer.
  • the substrate includes a substrate body, and the plurality of receiving grooves are formed on the substrate body.
  • the substrate includes a substrate body on which a photosensitive resin material layer is disposed, and the plurality of receiving grooves are formed on the photosensitive resin material layer.
  • an upper surface of the side wall of each of the plurality of receiving grooves is provided with an opaque impermeable layer.
  • the material of the immiscible layer comprises polystyrene and/or polysilyl ester.
  • the material of the polymer includes any one or a combination of any one of methacrylate, epoxy acrylate, and silicone acrylate.
  • the material of the photosensitive resin material layer includes any one or a combination of trimethylolpropane triacrylate and dipropylene glycol diacrylate.
  • the present invention also provides an image acquisition device comprising a camera and a microlens array disposed on the camera, the microlens array being the above-described microlens array provided by the present invention.
  • the present invention also provides a display device comprising a display panel and a microlens array disposed on a light exiting surface of the display panel, the microlens array being the above-described microlens array provided by the present invention.
  • the prepolymer when the microlens array is fabricated, the prepolymer is dripped into each of the accommodating grooves, and the prepolymer droplets self-assemble to form a convex surface having a top surface due to the surface tension of the prepolymer itself. After further curing, the protrusion no longer flows, so that a stable shape can be maintained, and thus the cured prepolymer is formed into a microlens element, and the plurality of microlens elements are formed into a microlens array.
  • the manufacturing method in the present invention is more convenient, the related mold production is omitted, and the precision and uniformity of the microlens array are better.
  • the microlens array can be fabricated on the substrate of the display panel, thereby reducing the cost.
  • FIG. 1 is a schematic diagram of 3D image display performed by an integrated imaging system based on a microlens array in the prior art
  • FIG. 2 is a schematic flow chart of a method of fabricating a microlens array according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a microlens element formed in a housing groove in an embodiment of the present invention
  • FIG. 4 is a schematic view showing a layer of a photosensitive resin material formed on a substrate in an embodiment of the present invention
  • Figure 5 is a schematic view showing the formation of a receiving groove on the photosensitive resin material layer in the embodiment of the present invention.
  • Figure 6 is a schematic view showing the formation of an incompatible layer in an embodiment of the present invention.
  • Figure 7 is a schematic view of a prepolymer instilled into a holding tank in an embodiment of the present invention.
  • Figure 8 is a schematic illustration of curing of a prepolymer in an embodiment of the present invention.
  • the reference numerals are: 11, an object; 12, a microlens element; 13, a 3D image; 14, a camera; 15, a display panel; 21, a substrate, 22, a receiving groove; 221, a side wall of the receiving groove; Prepolymer; 24, photosensitive resin material layer; 25, mask; 26, incompatible layer.
  • a method for fabricating a microlens array includes:
  • the colloidal prepolymer 23 is dripped into each of the plurality of receiving grooves 22 such that the top surface of the prepolymer 23 forms a convex curved surface as shown in FIG. 7 (see step S3 in FIG. 2); as well as
  • the prepolymer 23 is cured, as shown in Fig. 8, so that the prepolymer 23 in each accommodating tank is solidified to form a microlens element, thereby obtaining a microlens array (see step S4 in Fig. 2).
  • a microlens array is produced by a method of dropping a prepolymer 23, and specifically, after the gel-like prepolymer 23 is dropped into the accommodating groove 22, the colloidal droplets are under the surface tension of themselves.
  • the self-assembly forms a protrusion as shown in FIG.
  • the gel-like projections solidify to form stable solid protrusions, i.e., microlens elements are formed (the microlens elements are polymers, and those skilled in the art will readily understand that the polymer is composed of The prepolymer is polymerized to form a microlens array on the substrate.
  • the present invention mainly adopts a method of forming a microlens array by mold and machining in the prior art by injecting a prepolymer 23 into the accommodating groove 22 and solidifying the prepolymer 23 to form a micro.
  • the lens array has a simple processing method, and when the manufacturing method of the present invention is used to fabricate a large-scale microlens array, it is only necessary to increase the number of the receiving grooves 22, and the process is simple; in addition, when the plurality of receiving grooves 22 have the same shape, And the amount of the plurality of microlens elements formed in each of the accommodating grooves 22 is the same, thereby improving the uniformity of the microlens array; and the substrate in the microlens array may be a display panel.
  • the glass substrate is used to reduce the manufacturing cost.
  • the manner of forming the receiving groove 22 is not specifically limited, and the receiving groove 22 may be formed directly on the substrate 21, that is, the substrate 21 is etched to form a groove, which is the receiving groove 22 Alternatively, a material for forming a sidewall of the receiving groove may be coated on the substrate 21, and the material may be etched to form the receiving groove 22.
  • the step of forming the receiving groove 22 on the substrate 21 includes:
  • the substrate 21 is etched by a photolithography patterning process to form a plurality of receiving grooves 22 on the substrate 21.
  • the photoresist layer is first exposed using a mask. Developing to remove the photoresist corresponding to the position at which the accommodating groove 22 is to be formed, and exposing the substrate 21 while leaving the photoresist at the remaining positions; then etching the exposed portion of the substrate 21 to form on the substrate 21.
  • a plurality of receiving slots 22 is provided.
  • the prepolymer 23 is dripped in the accommodating groove 22 formed in this manner, and the prepolymer 23 is solidified to form a microlens element, thereby forming a microlens array on the substrate, and the formed microlens array has a small thickness Therefore, the thickness of the display panel using the microlens array is small.
  • the substrate 21 can be a glass substrate. Due to the high strength of the glass substrate, the formed microlens element is relatively stable and is not easily damaged.
  • the step of forming the receiving groove 22 on the substrate 21 includes:
  • a photosensitive resin material layer 24 is formed on the substrate 21, as shown in FIG. 4, where the photosensitive resin material layer 24 may be the photoresist layer in the first embodiment;
  • the photosensitive resin material layer 24 is exposed and developed to form a plurality of receiving grooves 22 on the photosensitive resin material layer 24.
  • a photosensitive resin material layer 24 is coated on the substrate 21, and then the photosensitive resin material layer 24 is exposed by the masking plate 25, and the opaque region of the masking plate 25 and the receiving groove 22 are located.
  • the light transmitting region corresponds to the position of the side wall of the accommodating groove 22 (as shown in FIG. 5), so that the photosensitive resin material layer 24 corresponding to the position of the accommodating groove 22 is denatured after exposure, and then denatured.
  • the subsequent photosensitive resin material layer 24 is developed to form the receiving groove 22.
  • the second embodiment can form the accommodating groove 22 on the photosensitive resin material layer 24, and only the exposure and development processes can be used without etching, thereby reducing the number of process steps. , improve production efficiency.
  • the material from which the prepolymer 23 is made may include any one or a combination of any of methacrylate, epoxy acrylate, and silicone acrylate.
  • the viscosity of the prepolymer 23 is between 4,000 cps and 7000 cps, thereby facilitating the drip and solidification of the prepolymer 23. It can be understood that by adjusting the viscosity of the prepolymer 23, the angle ⁇ between the convex surface formed by the prepolymer 23 and the horizontal plane can be adjusted, thereby adjusting the shape of the microlens element, that is, changing the focal length of the microlens element.
  • UV ultraviolet
  • step S3 in Figure 2 also includes:
  • An opaque immiscible layer 26 is formed on the upper surface of the side wall 221 of each accommodating groove, and the immiscible layer 26 is incompatible with the prepolymer 23.
  • the volume of each of the prepolymers 23 is made larger than the volume of each of the holding tanks 22. Since the impermeable layer 26 is provided on the upper surface of the side wall of each of the accommodating grooves 22, the prepolymer 23 does not stick to the immiscible layer 26 when the prepolymer 23 is dropped onto the substrate, but Slide into the receiving groove 22.
  • the prepolymer 23 in the accommodating groove 22 is prevented from being interconnected with the prepolymer 23 in the adjacent accommodating groove 22 to form a plurality of independent microlens elements, which are visible on the side wall of the accommodating groove.
  • the incompatible layer 26 it is ensured that the finally formed plurality of microlens elements are independent of each other, thereby reducing crosstalk and light leakage between the respective microlens elements in the microlens array during 3D imaging, and improving the display effect.
  • a black ink may be formed as an immiscible layer 26 on the upper surface of the side wall 221 of the accommodating groove 22 by transfer.
  • the material from which the immiscible layer 26 is made may include polystyrene and/or polysilyl ester.
  • each of the accommodating grooves 22 When the shape of each of the accommodating grooves 22 is uniform and the volume of the prepolymer in each accommodating groove 22 is the same, the convex surface formed by the prepolymer 23 in each accommodating groove 22 and the side wall of the accommodating groove 22 are formed.
  • the force between the immiscible layers 26 provided on 221 is also the same, which makes the shape of each microlens element the same, thereby forming a uniform microlens array.
  • the prepolymer 23 itself has fluidity, by changing the shape of each of the accommodating grooves 22, the volume of the prepolymer 23 in each accommodating groove 22, the prepolymer 23 and the incompatible layer 26 Any one of the forces can change the focal length of the microlens element. Therefore, the manufacturing method provided by the present invention can more conveniently obtain microlens elements of different shapes and sizes.
  • the method for fabricating the microlens array provided by the present invention is described above, and It can be seen that when the microlens array is fabricated, the prepolymer is dripped into each of the accommodating grooves, and the prepolymer droplets self-assemble to form a convex surface having a top surface due to the surface tension of the prepolymer itself, further After curing, the projections no longer flow, so that a stable shape can be maintained, and thus the cured prepolymer is formed into microlens elements, and the plurality of microlens elements are formed into a microlens array.
  • the manufacturing method in the present invention is more convenient, the related mold production is omitted, and the precision and uniformity of the microlens array are better.
  • the microlens array can be fabricated on a substrate (eg, a glass substrate) of the display panel, thereby reducing cost.
  • the microlens array As a second aspect of the present invention, there is provided a microlens array produced by the above-described fabrication method, and a microlens fabricated by the fabrication method provided by the present invention as compared with a prior art method of fabricating a microlens array by grinding a mold
  • the array is more accurate and uniform.
  • the microlens array includes a substrate, a plurality of receiving grooves formed on the substrate, and microlens elements disposed in each of the plurality of receiving grooves, the microlens elements being polymers.
  • the polymer is polymerized from a prepolymer.
  • the material from which the polymer is made may include any one or a combination of any one of methacrylate, epoxy acrylate, and silicone acrylate.
  • the substrate may be directly etched to form a receiving groove, or a photosensitive resin material layer may be formed on the substrate, and the photosensitive resin material layer may be exposed and developed to form a receiving groove.
  • the substrate may include a substrate body on which the receiving groove is formed, thereby making the structure of the microlens array stable and having a small thickness.
  • the substrate includes a substrate body on which a photosensitive resin material layer is disposed, and a receiving groove is formed on the photosensitive resin material layer.
  • the accommodating groove can be formed on the photosensitive resin material layer by only the exposure and development processes without etching, thereby reducing the number of process steps and improving the production efficiency.
  • the material for forming the photosensitive resin material layer includes: trimethylolpropane triacrylate (TMPTA) and dipropionic acid diacrylate (2-Propenoic acid, 1,1'- [(1-methyl-1,2-ethanediyl)bis[oxy(methyl-2,1-etha Nedyl)]]ester, abbreviated as "TPGDA”) or a combination of these two substances.
  • an upper surface of the side wall of each of the accommodating grooves is provided with an opaque impermeable layer, and thus, a pre-polymer is injected into each accommodating groove to form a microlens element, adjacent The prepolymer in the receiving tank does not circulate, thereby reducing crosstalk and light leakage.
  • the material of the immiscible layer includes polystyrene and/or polysilyl ester.
  • an image acquisition apparatus comprising a camera and a microlens array disposed on the camera, the microlens array being the above-described microlens array provided by the present invention.
  • the image acquisition device can acquire image information of a plurality of directions of an object through a camera and a microlens array, and transmit the image information to a display device for display. Since the precision and uniformity of the microlens array in the present invention are good, the image acquired by the image pickup device including the microlens array is more accurate.
  • the microlens array is disposed on the lens of the camera. Before entering the camera, the light enters the microlens array, and is refracted by the microlens array and then enters the lens of the camera. That is, the camera obtains the refraction through the microlens array. Image information obtained afterwards.
  • a display device comprising a display panel and a microlens array disposed on a light-emitting surface of the display panel, the microlens array being the above-described microlens array provided by the present invention.
  • the image source played by the display device provided by the present invention is taken by the image acquisition device provided by the present invention.
  • the image acquiring device After acquiring the image information of the object, the image acquiring device transmits the image information to the display device, and the display device restores the image information to a 3D image through a microlens array on the light emitting surface of the display panel.
  • the substrate of the microlens array and the substrate of the display panel may be the same substrate (for example, a glass substrate), thereby reducing production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

一种微透镜阵列及其制作方法、一种图像获取装置和一种显示装置,所述微透镜阵列的制作方法包括:提供基板(21);在基板上形成多个容纳槽(22);向所述多个容纳槽中的每一个内滴注胶状的预聚合物(23),使得所述预聚合物(23)的顶面形成为外凸的曲面;对所述预聚合物(23)进行固化,使得每个容纳槽(22)中的预聚合物(23)固化以形成微透镜元,从而获得所述微透镜阵列。该制作方法工艺简单,适用于大规模的微透镜阵列,且制作的微透镜阵列的精度和均匀性更好。

Description

微透镜阵列及其制作方法、图像获取装置和显示装置 技术领域
本发明涉及集成成像技术领域,具体涉及一种微透镜阵列及其制作方法、一种图像获取装置和一种显示装置。
背景技术
随着3D显示概念的出现,新型显示技术不断涌现,其中集成成像技术是一种在空间里还原物体光场或者使物体在一定空间范围内成像的显示技术,它是一种全真3D立体显示技术,不存在显示机理和人眼视觉原理之间的矛盾,没有以往的立体观看疲劳且可以全方位立体显示,因此作为下一代显示技术,日益受到人们的关注。
如图1所示,通常,基于微透镜阵列的集成成像技术是一种利用微透镜阵列对物体11的空间场景进行记录,并再现出该空间场景的3D图像13的技术。记录时,设置有微透镜阵列的摄像头14通过微透镜阵列中的每个微透镜元12从不同方向记录物体11的空间场景的信息,从而生成微图像阵列;再现时,根据光路可逆原理,设置在显示面板15的出光面上的微透镜阵列把从微图像阵列透射出的光线聚集还原,从而构建出物体11的空间场景的3D图像13。
微透镜阵列是实现集成成像的关键器件,微透镜阵列的发展和性能直接影响着集成成像的发展和性能。传统的微透镜阵列主要是通过磨具或机械加工的方式制作而成,其加工尺寸和精度受限于磨具和机械加工设备;同时,采用现有的工艺制作而成的大规模微透镜阵列存在精度和均匀性差的问题,无法满足集成成像的需求。
发明内容
本发明的目的在于提供一种微透镜阵列及其制作方法、图像获取装置和显示装置,以降低制作工艺的难度,且提高制作后的透镜阵 列的精度和均匀性。
为了实现上述目的,本发明提供一种微透镜阵列的制作方法,包括以下步骤:
提供基板;
在所述基板上形成多个容纳槽;
向所述多个容纳槽中的每一个内滴注胶状的预聚合物,使得所述预聚合物的顶面形成为外凸的曲面;以及
对所述预聚合物进行固化,使得每个容纳槽中的预聚合物固化以形成微透镜元,从而获得所述微透镜阵列。
优选地,在所述基板上形成多个容纳槽的步骤包括:
在所述基板上形成光刻胶层;以及
通过光刻构图工艺对所述基板进行刻蚀,以在所述基板上形成所述多个容纳槽。
优选地,在所述基板上形成多个容纳槽的步骤包括:
在所述基板上形成感光树脂材料层;以及
对所述感光树脂材料层进行曝光和显影,以在所述感光树脂材料层上形成所述多个容纳槽。
优选地,向所述多个容纳槽中的每一个内滴注胶状的预聚合物的步骤之前还包括:
在所述多个容纳槽中的每一个的侧壁的上表面上形成不透光的不相溶层。
优选地,通过改变所述多个容纳槽中的每一个的形状、每个容纳槽内的预聚合物的体积、所述预聚合物与所述不相溶层之间的作用力中的任意一者来改变所述微透镜元的焦距。
优选地,所述不相溶层的材料包括聚苯乙烯和/或聚硅基酯。
优选地,所述预聚合物的材料包括甲基丙烯酸酯、环氧丙烯酸酯和有机硅丙烯酸酯中的任意一种或任意多种的组合。
优选地,所述预聚合物的粘度在4000cps-7000cps之间。
优选地,对所述预聚合物进行固化的步骤中,采用紫外线光照的方式进行固化。
优选地,所述感光树脂材料层的材料包括三羟甲基丙烷三丙烯酸酯和二缩丙二醇双丙烯酸酯中的任一种或其组合。
相应地,本发明还提供一种微透镜阵列,所述微透镜阵列包括基板、形成在所述基板上的多个容纳槽和设置在所述多个容纳槽内的微透镜元,所述微透镜元为聚合物。
优选地,所述基板包括基板本体,所述多个容纳槽形成在所述基板本体上。
优选地,所述基板包括基板本体,所述基板本体上设置有感光树脂材料层,所述多个容纳槽形成在所述感光树脂材料层上。
优选地,所述多个容纳槽中的每一个的侧壁的上表面上设置有不透光的不相溶层。
优选地,所述不相溶层的材料包括聚苯乙烯和/或聚硅基酯。
优选地,所述聚合物的材料包括甲基丙烯酸酯、环氧丙烯酸酯和有机硅丙烯酸酯中的任意一种或任意多种的组合。
优选地,所述感光树脂材料层的材料包括三羟甲基丙烷三丙烯酸酯和二缩丙二醇双丙烯酸酯中的任意一种或其组合。
相应地,本发明还提供一种图像获取装置,该图像获取装置包括摄像头和设置在该摄像头上的微透镜阵列,该微透镜阵列为本发明所提供的上述微透镜阵列。
相应地,本发明还提供一种显示装置,该显示装置包括显示面板和设置在该显示面板的出光面上的微透镜阵列,该微透镜阵列为本发明所提供的上述微透镜阵列。
在本发明中,制作微透镜阵列时,将预聚合物滴注在每个容纳槽中,由于预聚合物本身的表面张力作用,使得预聚合物液滴自组装形成顶面为曲面的凸起,进一步固化后,该凸起不再发生流动,从而可以保持稳定的形状,因而固化后的预聚合物形成为微透镜元,多个微透镜元形成为微透镜阵列。制作大规模的微透镜阵列时,本发明中的制作方法更加方便,省去了相关的模具的制作,并使得微透镜阵列的精度和均匀性更好。另外,微透镜阵列可以制作在显示面板的基板上,从而降低了成本。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是现有技术中基于微透镜阵列的集成成像系统进行3D图像显示的示意图;
图2是根据本发明的实施方式的微透镜阵列的制作方法的流程示意图;
图3是本发明的实施方式中在容纳槽内形成的微透镜元的结构示意图;
图4是本发明的实施方式中在基板上形成感光树脂材料层的示意图;
图5是本发明的实施方式中在感光树脂材料层上形成容纳槽的示意图;
图6是本发明的实施方式中形成不相溶层的示意图;
图7是本发明的实施方式中向容纳槽内滴注预聚合物的示意图;
图8是本发明的实施方式中对预聚合物进行固化的示意图。
其中,附图标记为:11、物体;12、微透镜元;13、3D图像;14、摄像头;15、显示面板;21、基板、22、容纳槽;221、容纳槽的侧壁;23、预聚合物;24、感光树脂材料层;25、掩膜板;26、不相溶层。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
作为本发明的第一个方面,提供一种微透镜阵列的制作方法,如图2所示,包括:
提供基板21(参见图2中的步骤S1);
在基板21上形成多个容纳槽22(参见图2中的步骤S2);
向多个容纳槽22中的每一个内滴注胶状的预聚合物23,使得预聚合物23的顶面形成外凸的曲面,如图7所示(参见图2中的步骤S3);以及
对预聚合物23进行固化,如图8所示,使得每个容纳槽中的预聚合物23固化以形成微透镜元,从而获得微透镜阵列(参见图2中的步骤S4)。
在本发明中,通过滴注预聚合物23的方法制作微透镜阵列,具体地,胶状的预聚合物23滴注到容纳槽22内后,胶状的液滴在本身的表面张力作用下自组装形成凸起,如图3所示。对预聚合物23固化后,胶状的凸起固化形成稳定的固态凸起,即形成微透镜元(所述微透镜元为聚合物,本领域技术人员容易理解的是,所述聚合物由预聚合物聚合而成),从而在基板上形成微透镜阵列。和现有技术中通过模具和机械加工来形成微透镜阵列的方式相比,本发明主要采用的方式是通过向容纳槽22内滴注预聚合物23,并使预聚合物23固化而形成微透镜阵列,其加工工艺简单,且本发明所述的制作方法制作大规模微透镜阵列时,只需增加容纳槽22的数量即可,工艺简单;另外,当多个容纳槽22的形状相同,且每个容纳槽22内滴注预聚合物的量相同时,形成的多个微透镜元的形状也相同,从而提高微透镜阵列的均匀性;并且该微透镜阵列中的基板可以为显示面板中的玻璃基板,从而降低制作成本。
在本发明中,对容纳槽22的形成方式不作具体限定,可以直接在基板21上形成所述容纳槽22,即,对基板21进行刻蚀而形成凹槽,该凹槽即为容纳槽22;也可以先在基板21上涂覆用于形成容纳槽的侧壁的材料,再对该材料进行刻蚀而形成容纳槽22。
作为本发明的第一种具体实施方式,在基板21上形成容纳槽22的步骤包括:
在基板21上形成光刻胶层;以及
通过光刻构图工艺对基板21进行刻蚀,以在基板21上形成多个容纳槽22。具体地,首先采用掩膜板对所述光刻胶层进行曝光和 显影,以除去待形成容纳槽22的位置所对应的光刻胶,并露出基板21,而保留其余位置处的光刻胶;然后对基板21露出的部分进行刻蚀,从而在基板21上形成多个容纳槽22。
在采用这种方式形成的容纳槽22中滴注预聚合物23,并将预聚合物23固化以形成微透镜元,从而在基板上形成微透镜阵列,所形成的微透镜阵列的厚度较小,因此使得采用该微透镜阵列的显示面板的厚度较小;同时,基板21可以采用玻璃基板,由于玻璃基板的强度较大,使得形成的微透镜元较稳定,不易被损坏。
作为本发明的第二种具体实施方式,在基板21上形成容纳槽22的步骤包括:
在基板21上形成感光树脂材料层24,如图4所示,这里,感光树脂材料层24可以为第一种实施方式中的光刻胶层;以及
对感光树脂材料层24进行曝光和显影,以在感光树脂材料层24上形成多个容纳槽22。具体地,如图4所示,在基板21上涂覆感光树脂材料层24,然后利用掩膜板25对感光树脂材料层24进行曝光,掩膜板25的不透光区域与容纳槽22所在位置相对应,透光区与容纳槽22的侧壁所在位置相对应(如图5所示),从而使得与容纳槽22的位置相对应的感光树脂材料层24在曝光后变性,然后对变性后的感光树脂材料层24显影以形成容纳槽22。
和第一种具体实施方式相比,第二种具体实施方式在感光树脂材料层24上形成容纳槽22时,仅采用曝光和显影工艺即可,而不需要进行刻蚀,从而减少了工艺步骤,提高了制作效率。
具体地,制作预聚合物23的材料可以包括甲基丙烯酸酯、环氧丙烯酸酯和有机硅丙烯酸酯中的任意一种或任意多种的组合。
进一步地,预聚合物23的粘度在4000cps-7000cps之间,从而便于对预聚合物23进行滴注和固化。可以理解的是,通过调节预聚合物23的粘度,可以调节预聚合物23形成的凸起表面与水平面之间的夹角θ,从而调节微透镜元的形状,即改变微透镜元的焦距。
更进一步地,在对预聚合物23进行固化的步骤中,如图8所示,采用紫外线(UV)光照的方式进行固化,从而使得微透镜元的形状 固定。
向容纳槽22内滴注胶状的预聚合物23后,预聚合物23在容纳槽22内形成为顶面为曲面的凸起结构,顶面中部的高度高于容纳槽的侧壁的高度,因此,为了防止容纳槽22内的预聚合物23在固化之前与相邻容纳槽22内的预聚合物发生相互流通的现象,进一步地,向容纳槽22内滴注预聚合物23的步骤(即图2中的步骤S3)之前还包括:
在每个容纳槽的侧壁221的上表面上形成不透光的不相溶层26,不相溶层26与预聚合物23不相溶。滴注预聚合物23时,使得每滴预聚合物23的体积都大于每个容纳槽22的容积。由于每个容纳槽22的侧壁的上表面上设置有不相溶层26,因此,预聚合物23向基板滴落时,预聚合物23不会粘在不相溶层26上,而是滑进容纳槽22内。这样,防止了容纳槽22内的预聚合物23与相邻容纳槽22内的预聚合物23发生相互连接,以形成多个独立的微透镜元,可见,在容纳槽的侧壁上设置了不相溶层26后,确保了最终形成的多个微透镜元之间互相独立,从而减少了3D成像时微透镜阵列中的各个微透镜元之间的串扰和漏光现象,提高了显示效果。
如图6所示,可以采用转印的方式在容纳槽22的侧壁221的上表面上形成黑色油墨作为不相溶层26。具体地,制成不相溶层26的材料可以包括聚苯乙烯和/或聚硅基酯。
当每个容纳槽22的形状一致,并且每个容纳槽22内的预聚合物的体积相同时,每个容纳槽22内的预聚合物23形成的凸起表面与该容纳槽22的侧壁221上设置的不相溶层26之间的作用力也相同,这使得每个微透镜元的形状相同,从而形成均匀的微透镜阵列。由于所述预聚合物23本身具有流动性,因此,通过改变每个容纳槽22的形状、每个容纳槽22内的预聚合物23的体积、该预聚合物23与不相溶层26之间的作用力中任意一者均可以改变微透镜元的焦距,因此,本发明提供的制作方法可以更方便地得到不同形状和不同尺寸的微透镜元。
以上对本发明提供的微透镜阵列的制作方法进行了描述,可以 看出,制作微透镜阵列时,将预聚合物滴注在每个容纳槽中,由于预聚合物本身的表面张力作用,使得预聚合物液滴自组装形成顶面为曲面的凸起,进一步固化后,凸起不再发生流动,从而可以保持稳定的形状,因而固化后的预聚合物形成为微透镜元,多个微透镜元形成为微透镜阵列。制作大规模的微透镜阵列时,本发明中的制作方法更加方便,省去了相关的模具的制作,并使得微透镜阵列的精度和均匀性更好。另外,微透镜阵列可以制作在显示面板的基板(例如玻璃基板)上,从而降低了成本。
作为本发明的第二个方面,提供一种由上述制作方法制作的微透镜阵列,和现有技术中通过打磨模具来制作微透镜阵列的方法相比,由本发明提供的制作方法制作的微透镜阵列的精度和均匀性更高。具体地,所述微透镜阵列包括基板、形成在基板上的多个容纳槽和设置在所述多个容纳槽中的每一个内的微透镜元,所述微透镜元为聚合物。本领域技术人员容易理解的是,所述聚合物由预聚合物聚合而成。
其中,制成所述聚合物的材料可以包括甲基丙烯酸酯、环氧丙烯酸酯和有机硅丙烯酸酯中的任意一种或任意多种的组合。
如上文中所述,可以对基板直接进行刻蚀以形成容纳槽,也可以在基板上形成感光树脂材料层,对感光树脂材料层进行曝光和显影以形成容纳槽。
相应地,所述基板可以包括基板本体,容纳槽被形成在所述基板本体上,从而使得微透镜阵列的结构稳定且厚度较小。
或者,所述基板包括基板本体,基板本体上设置有感光树脂材料层,容纳槽被形成在所述感光树脂材料层上。在这种情况下,仅采用曝光和显影工艺即可在所述感光树脂材料层上形成容纳槽,而不需要进行刻蚀,从而减少了工艺步骤,提高了制作效率。具体地,制作所述感光树脂材料层的材料包括:三羟甲基丙烷三丙烯酸酯(trimethylolpropane triacrylate,简称为“TMPTA”)和二缩丙二醇双丙烯酸酯(2-Propenoic acid,1,1'-[(1-methyl-1,2-ethanediyl)bis[oxy(methyl-2,1-etha nediyl)]]ester,简称为“TPGDA”)中的任意一种或这两种物质的组合。
进一步地,所述容纳槽中的每一个的侧壁的上表面上设置有不透光的不相溶层,因而向每个容纳槽内滴注预聚合物以形成微透镜元时,相邻的容纳槽内的预聚合物之间不会流通,从而减少串扰和漏光现象。
具体地,所述不相溶层的材料包括聚苯乙烯和/或聚硅基酯。
作为本发明的第三个方面,提供一种图像获取装置,该图像获取装置包括摄像头和设置在该摄像头上的微透镜阵列,该微透镜阵列为本发明提供的上述微透镜阵列。所述图像获取装置通过摄像头和微透镜阵列可以获取物体的多个方向的图像信息,并将该图像信息传输至显示装置进行显示。由于本发明中的微透镜阵列的精度和均匀性较好,因而包括所述微透镜阵列的图像获取装置所获取的图像更准确。
应当理解的是,微透镜阵列是设置在摄像头的镜头上的,光进入摄像头之前,先进入微透镜阵列,经微透镜阵列折射后再进入摄像头的镜头,即,摄像头获取的是经过微透镜阵列折射后得到的图像信息。
作为本发明的第四个方面,提供一种显示装置,该显示装置包括显示面板和设置在该显示面板的出光面上的微透镜阵列,该微透镜阵列为本发明提供的上述微透镜阵列。
应当理解的是,本发明所提供的显示装置所播放的图像源是本发明提供的图像获取装置拍摄的。所述图像获取装置获取物体的图像信息后,将所述图像信息传输至显示装置,显示装置通过显示面板的出光面上的微透镜阵列将所述图像信息还原为3D图像。微透镜阵列的基板和显示面板的基板可以为同一个基板(例如玻璃基板),从而降低生产成本。
应该理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也属于本发明的保护范围。

Claims (19)

  1. 一种微透镜阵列的制作方法,包括以下步骤:
    提供基板;
    在所述基板上形成多个容纳槽;
    向所述多个容纳槽中的每一个内滴注胶状的预聚合物,使得所述预聚合物的顶面形成为外凸的曲面;以及
    对所述预聚合物进行固化,使得每个容纳槽中的预聚合物固化以形成微透镜元,从而获得所述微透镜阵列。
  2. 根据权利要求1所述的制作方法,其特征在于,在所述基板上形成多个容纳槽的步骤包括:
    在所述基板上形成光刻胶层;以及
    通过光刻构图工艺对所述基板进行刻蚀,以在所述基板上形成所述多个容纳槽。
  3. 根据权利要求1所述的制作方法,其特征在于,在所述基板上形成多个容纳槽的步骤包括:
    在所述基板上形成感光树脂材料层;以及
    对所述感光树脂材料层进行曝光和显影,以在所述感光树脂材料层上形成所述多个容纳槽。
  4. 根据权利要求1所述的制作方法,其特征在于,向所述多个容纳槽中的每一个内滴注胶状的预聚合物的步骤之前还包括:
    在所述多个容纳槽中的每一个的侧壁的上表面上形成不透光的不相溶层。
  5. 根据权利要求4所述的制作方法,其特征在于,通过改变所述多个容纳槽中的每一个的形状、每个容纳槽内的预聚合物的体积、所述预聚合物与所述不相溶层之间的作用力中的任意一者来改变所 述微透镜元的焦距。
  6. 根据权利要求4所述的制作方法,其特征在于,所述不相溶层的材料包括聚苯乙烯和/或聚硅基酯。
  7. 根据权利要求1至6中任意一项所述的制作方法,其特征在于,所述预聚合物的材料包括甲基丙烯酸酯、环氧丙烯酸酯和有机硅丙烯酸酯中的任意一种或任意多种的组合。
  8. 根据权利要求7所述的制作方法,其特征在于,所述预聚合物的粘度在4000cps-7000cps之间。
  9. 根据权利要求7所述的制作方法,其特征在于,对所述预聚合物进行固化的步骤中,采用紫外线光照的方式进行固化。
  10. 根据权利要求3所述的制作方法,其特征在于,所述感光树脂材料层的材料包括三羟甲基丙烷三丙烯酸酯和二缩丙二醇双丙烯酸酯中的任一种或其组合。
  11. 一种微透镜阵列,所述微透镜阵列包括基板、形成在所述基板上的多个容纳槽和设置在所述多个容纳槽内的微透镜元,所述微透镜元为聚合物。
  12. 根据权利要求11所述的微透镜阵列,其特征在于,所述基板包括基板本体,所述多个容纳槽形成在所述基板本体上。
  13. 根据权利要求11所述的微透镜阵列,其特征在于,所述基板包括基板本体,所述基板本体上设置有感光树脂材料层,所述多个容纳槽形成在所述感光树脂材料层上。
  14. 根据权利要求11所述的微透镜阵列,其特征在于,所述多个容纳槽中的每一个的侧壁的上表面上设置有不透光的不相溶层。
  15. 根据权利要求14所述的微透镜阵列,其特征在于,所述不相溶层的材料包括聚苯乙烯和/或聚硅基酯。
  16. 根据权利要求11至15中任意一项所述的微透镜阵列,其特征在于,所述聚合物的材料包括甲基丙烯酸酯、环氧丙烯酸酯和有机硅丙烯酸酯中的任意一种或任意多种的组合。
  17. 根据权利要求13所述的微透镜阵列,其特征在于,所述感光树脂材料层的材料包括三羟甲基丙烷三丙烯酸酯和二缩丙二醇双丙烯酸酯中的任意一种或其组合。
  18. 一种图像获取装置,该图像获取装置包括摄像头和设置在该摄像头上的微透镜阵列,其特征在于,该微透镜阵列为权利要求11至17中任意一项所述的微透镜阵列。
  19. 一种显示装置,该显示装置包括显示面板和设置在该显示面板的出光面上的微透镜阵列,其特征在于,该微透镜阵列为权利要求11至17中任意一项所述的微透镜阵列。
PCT/CN2015/074568 2014-10-28 2015-03-19 微透镜阵列及其制作方法、图像获取装置和显示装置 WO2016065811A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/776,884 US20160299263A1 (en) 2014-10-28 2015-03-19 Microlens array, manufacturing method thereof, image acquisition device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410589941.3A CN104345359B (zh) 2014-10-28 2014-10-28 微透镜阵列及其制作方法、图像获取装置、显示装置
CN201410589941.3 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016065811A1 true WO2016065811A1 (zh) 2016-05-06

Family

ID=52501366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074568 WO2016065811A1 (zh) 2014-10-28 2015-03-19 微透镜阵列及其制作方法、图像获取装置和显示装置

Country Status (3)

Country Link
US (1) US20160299263A1 (zh)
CN (1) CN104345359B (zh)
WO (1) WO2016065811A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325894A (zh) * 2021-12-23 2022-04-12 中国科学院上海微系统与信息技术研究所 一种微透镜阵列的制备方法、微透镜阵列、系统及设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345359B (zh) * 2014-10-28 2017-01-18 京东方科技集团股份有限公司 微透镜阵列及其制作方法、图像获取装置、显示装置
CN106210466A (zh) * 2016-06-30 2016-12-07 联想(北京)有限公司 电子设备及其摄像头
DE102017203180B4 (de) * 2017-02-27 2022-11-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Herstellen eines optischen Mikrolinsenarrays und Mikrolinsenarray
TWI829458B (zh) * 2022-12-08 2024-01-11 友達光電股份有限公司 微透鏡結構、其製造方法及顯示裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672936A (zh) * 2009-09-23 2010-03-17 东南大学 一种聚合物透镜阵列
CN102004274A (zh) * 2009-09-03 2011-04-06 奇景光电股份有限公司 微透镜结构、微透镜工艺及应用于微透镜工艺的岸堤图案
CN103064136A (zh) * 2013-01-16 2013-04-24 福州大学 用于集成成像3d显示的组合微透镜阵列及其制作方法
CN103163573A (zh) * 2011-12-16 2013-06-19 福州高意光学有限公司 一种制作微透镜或微透镜阵列的方法
CN103399368A (zh) * 2013-08-15 2013-11-20 东南大学 一种微透镜、微透镜阵列结构及其制作工艺
CN104345359A (zh) * 2014-10-28 2015-02-11 京东方科技集团股份有限公司 微透镜阵列及其制作方法、图像获取装置、显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534101A (en) * 1994-03-02 1996-07-09 Telecommunication Research Laboratories Method and apparatus for making optical components by direct dispensing of curable liquid
KR100483224B1 (ko) * 1996-10-30 2005-09-30 세이코 엡슨 가부시키가이샤 컬러필터 및 그의 제조방법
DE69841946D1 (de) * 1997-08-08 2010-11-25 Dainippon Printing Co Ltd Struktur zur Musterbildung, Verfahren zur Musterbildung, und deren Anwendung
EP1251365B1 (en) * 2001-04-20 2004-02-25 Matsushita Electric Industrial Co., Ltd. Microlens array and method of its manufacturing
US7154674B2 (en) * 2002-04-15 2006-12-26 Koninklijke Philips Electronics, N.V. Imaging method
WO2006038648A1 (ja) * 2004-10-06 2006-04-13 Matsushita Electric Industrial Co., Ltd. マイクロレンズ、マイクロレンズアレイ及びその製造方法
JP4341579B2 (ja) * 2005-05-19 2009-10-07 セイコーエプソン株式会社 マイクロレンズの製造方法
JP2009258685A (ja) * 2008-03-28 2009-11-05 Lintec Corp プラズマディスプレイ用光学積層体
JP5274151B2 (ja) * 2008-08-21 2013-08-28 富士フイルム株式会社 感光性樹脂組成物、カラーフィルタ及びその製造方法、並びに、固体撮像素子
JP6149339B2 (ja) * 2010-06-16 2017-06-21 株式会社ニコン 表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102004274A (zh) * 2009-09-03 2011-04-06 奇景光电股份有限公司 微透镜结构、微透镜工艺及应用于微透镜工艺的岸堤图案
CN101672936A (zh) * 2009-09-23 2010-03-17 东南大学 一种聚合物透镜阵列
CN103163573A (zh) * 2011-12-16 2013-06-19 福州高意光学有限公司 一种制作微透镜或微透镜阵列的方法
CN103064136A (zh) * 2013-01-16 2013-04-24 福州大学 用于集成成像3d显示的组合微透镜阵列及其制作方法
CN103399368A (zh) * 2013-08-15 2013-11-20 东南大学 一种微透镜、微透镜阵列结构及其制作工艺
CN104345359A (zh) * 2014-10-28 2015-02-11 京东方科技集团股份有限公司 微透镜阵列及其制作方法、图像获取装置、显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325894A (zh) * 2021-12-23 2022-04-12 中国科学院上海微系统与信息技术研究所 一种微透镜阵列的制备方法、微透镜阵列、系统及设备
CN114325894B (zh) * 2021-12-23 2023-04-28 中国科学院上海微系统与信息技术研究所 一种微透镜阵列的制备方法、微透镜阵列、系统及设备

Also Published As

Publication number Publication date
CN104345359B (zh) 2017-01-18
CN104345359A (zh) 2015-02-11
US20160299263A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2016065811A1 (zh) 微透镜阵列及其制作方法、图像获取装置和显示装置
US9419049B2 (en) Optical assembly including plenoptic microlens array
US6587276B2 (en) Optical reproduction system
US10386616B2 (en) Method of fabricating a wafer level optical lens assembly
US7399421B2 (en) Injection molded microoptics
US10890783B2 (en) Method of forming a film with a lenticular lens array
US7794633B2 (en) Method and apparatus for fabricating lens masters
CN113238306B (zh) 提高集成成像3d显示景深的多焦距微透镜阵列及制备方法
US10714520B1 (en) Manufacturing an on-chip microlens array
WO2015093945A1 (en) Method of fabricating a wafer level optical lens assembly
CN103885102A (zh) 微透镜阵列装置、制造方法及具备其的太阳能电池模块
CN114420803A (zh) 一种Micro-LED显示模组的制备方法、显示模组及显示装置
US8937774B2 (en) Method for making paired lenses with an opaque barrier between, and product made
CN101080819A (zh) 微透镜阵列
CN104216035A (zh) 位于成像光纤顶端的曲面变焦距复眼微透镜的制作方法
CN114325894B (zh) 一种微透镜阵列的制备方法、微透镜阵列、系统及设备
KR101563190B1 (ko) 마이크로 프리즘 미러가 포함된 미세유체 채널 및 그 제조방법
Peng et al. Fabrication of pinhole/micro‐lens array for improving resolution of integral imaging 3‐D display
US9919455B2 (en) Methods for forming a lens plate for an integrated camera using UV-transparent molds and methods for forming UV-transparent molds
JP2010223975A (ja) レンズアレイの製造方法及びレンズアレイ
Welch On the evolution of wafer level cameras
JP2001133601A (ja) マイクロレンズアレイ及びその製造方法並びに表示装置
JP2008100494A (ja) マイクロレンズ原版及びマイクロレンズ製造方法
Yu et al. Self-alignment Micro-lens by Gradient of Surface Tension
JPH04101101A (ja) レンズアレー

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14776884

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854264

Country of ref document: EP

Kind code of ref document: A1