WO2016064163A2 - Metal separation method using precipitation reaction in couette-taylor reactor and metal separation apparatus therefor - Google Patents

Metal separation method using precipitation reaction in couette-taylor reactor and metal separation apparatus therefor Download PDF

Info

Publication number
WO2016064163A2
WO2016064163A2 PCT/KR2015/011075 KR2015011075W WO2016064163A2 WO 2016064163 A2 WO2016064163 A2 WO 2016064163A2 KR 2015011075 W KR2015011075 W KR 2015011075W WO 2016064163 A2 WO2016064163 A2 WO 2016064163A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
iron
ferrous
reaction
separation
Prior art date
Application number
PCT/KR2015/011075
Other languages
French (fr)
Korean (ko)
Other versions
WO2016064163A3 (en
Inventor
손정수
김수경
양동효
이강인
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to CN201580056683.5A priority Critical patent/CN106999795A/en
Publication of WO2016064163A2 publication Critical patent/WO2016064163A2/en
Publication of WO2016064163A3 publication Critical patent/WO2016064163A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions

Definitions

  • the present invention relates to a metal separation method and a separation device therefor.
  • conventional separation methods include the gothite precipitation method and the iron hydroxide precipitation method.
  • the gothite precipitation method oxidizes iron and precipitates iron in the form of gothite, which has a disadvantage that the reaction temperature is about 80 ° C. and the separation is not high.
  • Iron hydroxide precipitation is performed at room temperature and has a high degree of separation, but the filterability of the precipitate is poor, which makes it difficult to filter.
  • An object of the present invention is a method for separating iron and nonferrous metals from a metal solution containing iron and non-ferrous metal, comprising the steps of oxidizing at least a portion of iron in the metal solution from divalent to trivalent; Reacting the metal solution oxidized with iron in a Kuet-Taylor reactor; Solid-separating the effluent from the Quet-Taylor reactor.
  • the pH in the reaction step may be 3 to 5.
  • the oxidation step can take place in a Quet-Taylor reactor.
  • the reaction is a continuous process and the pH control agent and the oxidant may be continuously added to the Kuet-Taylor reactor.
  • the non-ferrous metal may be less prone to precipitation of metal hydroxide than iron of trivalent ions in the pH conditions of the reaction step.
  • the non-ferrous metal may have a pH at which hydroxide is generated is three or more higher than iron of trivalent ions.
  • the nonferrous metal may include at least one of aluminum, nickel, cobalt, zinc, and copper.
  • the solid-liquid separation may be performed through a filtering method.
  • the reaction step may be performed at room temperature.
  • the object of the present invention is a method for separating iron and non-ferrous metals from a metal solution containing iron and non-ferrous metals, the step of reacting the metal solution in a Kuet-Taylor reactor to precipitate the iron into crystalline FeOOH; Solid-separating the effluent from the Kuet-Taylor reactor.
  • the precipitation step may be performed under conditions in which the tendency of the metal hydroxide precipitation of iron is greater than the tendency of the metal hydroxide precipitation of the nonferrous metal.
  • the pH of the precipitation step may be 3 to 5.
  • the precipitation step may be performed at room temperature.
  • the method may further include oxidizing the iron from divalent to trivalent.
  • the precipitation step is a continuous process and the pH control agent and the oxidant may be continuously added to the Kuet-Taylor reactor.
  • the non-ferrous metal may have a pH at which hydroxide is generated is three or more higher than iron of trivalent ions.
  • the nonferrous metal may include at least one of aluminum, nickel, cobalt, zinc, and copper.
  • the solid-liquid separation may be performed through a filtering method.
  • the object of the present invention is a method for separating a metal from a metal solution containing a first metal and a second metal, the Cue-Taylor reactor under conditions in which the metal hydroxide precipitation tendency of the first metal and the second metal is different Reacting the metal solution using; Solid-separating the effluent of the Kuet-Taylor reactor.
  • Conditions for which the precipitation tends to be different may include pH conditions.
  • the method may further include changing an ionic state to change a metal hydroxide precipitation tendency according to pH with respect to at least one of the first metal and the second metal.
  • the pH of the hydroxide formation of the first metal and the second metal may vary by 3 or more.
  • the reaction is carried out at room temperature, the solid-liquid separation may be carried out by a filtering method.
  • Another object of the present invention and the Kuet-Taylor reactor body including a reaction space therein; A pH regulator supply unit for supplying a pH regulator to the reaction space; An oxidant supply unit supplying an oxidant to the reaction space; A reaction solution supply unit supplying a reaction solution containing iron and nonferrous metals to the reaction space; It can be achieved by a separation device of iron and non-ferrous metal including a filtering portion for solid-liquid separation of the effluent flowing out of the reaction space.
  • a control unit for controlling the supply amount of the pH adjuster supply unit based on the measurement result of the pH measuring unit may be further included.
  • a method for separating a metal having a simple process and a high degree of separation and a separator for the same.
  • Figure 2 shows the reaction control in the separation device according to an embodiment of the present invention
  • Figure 3 shows the hydroxide precipitation tendency of the metal to be separated
  • Figure 4 shows a separation method according to an embodiment of the present invention
  • FIG. 5 shows a separation method according to another embodiment of the present invention
  • Figure 6 shows the precipitation rate of iron and cobalt in the first experimental example of the present invention
  • Figure 7 shows the precipitation rate of iron and cobalt in the second experimental example of the present invention
  • the separation of iron and nonferrous metals will mainly be described.
  • the present invention is not limited thereto, and may be applied to separating two or more metals.
  • 1 is a separator of ferrous and nonferrous metals according to the present invention.
  • the separator consists of a reactor 10, a filtering unit 20, a reactant supply unit 30, a pH measuring unit 41 and a control unit 50.
  • the reactor 10 of the present invention is a Kuet-Taylor reactor.
  • the reaction space S is formed between the inner cylinder 11 and the outer cylinder 12.
  • a vortex (taylor vortex) is formed in the reaction space S.
  • the reaction is promoted by the vortex formed while flowing from the left side to the right side of the reaction space (S).
  • Rotating means 13 and a rotating shaft 14 for rotating the inner cylinder 11 are provided, and sealing parts 15 and 16 are provided on the left and right of the reaction space S.
  • a plurality of communication holes 17a to 17e are formed.
  • the reaction solution is supplied to the reaction space S from the outside through some communication holes 17a, 17c, and 17d, and the reaction state of the reaction space S is checked through the other communication holes 17b. .
  • the reactant after the reaction flows out through the communication hole 17e.
  • the filtering unit 20 solid-separates the effluent from the reactor 10.
  • the filtering is performed by using a natural load, but in another exemplary embodiment, the filtering may be performed by using pressure and / or vacuum.
  • the reactant supply unit 30 includes pH adjuster supply units 31a and 31b, oxidant supply units 32a and 32b, and reaction solution supply units 33a and 33b.
  • the pH regulator supply parts 31a and 31b include a pH regulator tank 31a and a pump 31b
  • the oxidant supply parts 32a and 32b include an oxidant tank 32a and a pump 32b
  • a reaction solution supply part ( 33a, 33b includes a reaction solution tank 33a and a pump 33b.
  • the pH regulator, the oxidizing agent and the reaction solution are continuously supplied through the reactant supply unit 30, and the reactants are continuously discharged through the communication hole 17e, so that the entire reaction may be made in a continuous reaction.
  • the pH measuring unit 41 measures the pH of the reaction space (S) through the communication hole (17b).
  • Figure 2 shows a control unit of the separation device according to the present invention.
  • the controller 50 receives the pH of the reaction space S from the pH measuring unit 41 and controls the flow rate of the pH regulator pump 31b to obtain a desired pH. In addition, the controller 50 controls the oxidant pump 32b and the reaction solution pump 33b so that a constant reaction is performed.
  • the reactor 10 further includes a temperature measuring part and a temperature adjusting part of the reaction space S, and the controller 50 may control the temperature adjusting part based on the measured temperature.
  • the temperature control part may be made of a jacket type surrounding the outer cylinder 12 or may be provided to adjust the temperature of the reaction solution tank 33a.
  • the present invention utilizes the fact that metal hydroxide precipitation tends to vary depending on pH and metal ion state, and that a hydroxide of a crystalline form can be obtained by the Kuet-Taylor reaction.
  • Figure 3 shows the metal hydroxide precipitation tendency by metal at 25 °C (E. Jackson, Hydrometallugical Extraction and Reclamation, Ellis Horwood publishing, etc. can be found).
  • the iron (Fe) shows a high hydroxide precipitation tendency when the pH is higher than 7 to 8 in the divalent state, but a high precipitation tendency when the pH is higher than about 2 in the trivalent state.
  • nickel when the pH is higher than 7 to 8, nickel, It can be seen that cobalt, silver, manganese, zinc and the like have a high hydroxide precipitation tendency.
  • the reaction occurs in the Taylor turbulence, leading to the resulting solid phase in crystalline form.
  • Fe 3 + in the solution are precipitated as a tight bars (FeOOH) form, bars are tight This crystal form.
  • the precipitation of iron in the form of gothite herein means that most of the precipitated iron, for example at least 80%, or at least 90% or at least 95% or at least 99%, is precipitated in crystalline goatite form.
  • Crystalline gothite is easier to filter than iron hydroxide.
  • filtering by self weight can also be performed in a fairly short time.
  • crystalline goatite can be obtained at room temperature. Reaction at room temperature can simplify the reactor structure and reduce operating costs.
  • the reaction solution is injected into the reactor (S101).
  • the reaction solution contains two or more metals, and may be iron and nonferrous metals.
  • the reaction solution is not limited thereto, but may be obtained in a non-ferrous metal manufacturing process or a waste battery recycling process.
  • reaction solution containing the cathode active material of the waste battery can be obtained.
  • the reaction solution may include at least one of iron, manganese, nickel, cobalt, and lithium.
  • waste battery recycling (1) separating the waste battery pack into waste battery modules (2) separating the waste battery module to obtain waste battery cells (3) obtaining positive and negative active materials from the battery cells (4) positive and negative active materials After discharging and drying, to obtain a positive electrode (5) to crush the positive electrode and to separate the particle size, and then leaching sulfuric acid (6) to remove aluminum and copper through precipitate filtration to obtain a reaction solution.
  • the reaction solution may be prepared in various ways, such as two components (iron and cobalt, etc.), three components (iron, cobalt, manganese, etc.), and four components (iron, cobalt, manganese, nickel, etc.).
  • iron is oxidized from divalent to trivalent (S102). This is to change the hydroxide precipitation tendency of iron and nonferrous metals according to pH. Trivalently oxidized iron tends to precipitate hydroxide above pH 2, while most other nonferrous metals tend to precipitate hydroxide above pH above pH 2.
  • Oxidation of iron may be performed by injecting an oxidant into the reaction space.
  • the oxidant is not limited thereto, and hydrogen peroxide may be used.
  • trivalent iron is precipitated as a goot (S103). This process can be carried out with constant pH.
  • PH for the separation of ferrous and nonferrous metals varies from 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 6, 3 to 5, 3 to 4, 4 to 6 or 4 to 5 Can be adjusted. Specifically, the pH can be adjusted to 3, 4, 5, or 6. The pH may vary depending on the nonferrous metal component.
  • pH control may be performed by injecting a pH control agent into the reaction space.
  • the pH adjusting agent may vary depending on the pH of the reaction solution and the desired pH. If the reaction solution is a sulfuric acid solution and the pH is lower than 5 and the desired pH is 5, a basic solution such as NaOH may be used as the pH adjusting agent.
  • the dose of pH adjuster can be adjusted while monitoring the pH of the reaction space.
  • Reaction solution injection (S101), iron oxidation (S102) and FeOOH formation (S103) described above can all be made in a single reaction space of the Kuet-Taylor reactor, in which case these reactions can be substantially simultaneously performed.
  • the separation reaction using the Kuet-Taylor reactor may be carried out at room temperature, the reaction may be carried out in a continuous reaction.
  • the effluent flowing out of the reactor is filtered out.
  • the present invention is not limited to the separation of iron, but may be applied to the separation of metals in a metal solution, which will be described with reference to FIG. 5.
  • a reaction solution including the first metal and the second metal is prepared (S201), and both the first metal and the second metal may not be iron.
  • the precipitation conditions of the first metal and the second metal are changed (S202). This is to selectively precipitate only one of the first metal and the second metal by precipitation reaction under different precipitation conditions.
  • the precipitation reaction rate may be, for example, at least 80%, at least 90%, at least 95%, or at least 99% of the first metal and at most 20%, at most 10%, at most 5%, or at most 1%.
  • the precipitation rate of the first metal may be 10 times, 20 times, 30 times, 50 times, or 100 times higher than the precipitation rate of the second metal.
  • Precipitation conditions may be pH, but is not limited thereto and may be variously selected such as temperature or reactor rpm. If the precipitation conditions of the first metal and the second metal are already different, this step may be omitted.
  • This may be performed by changing the ionic state of any one of the first metal and the second metal to adjust the pH at which precipitation occurs. Thereby, it can be adjusted so that the difference in pH of both metals in which precipitation is made may be 6, 5, 4, 3, or 2 or more.
  • the precipitation reaction is carried out in the intermediate condition of the precipitation conditions of both metals.
  • the precipitation reaction may be performed while maintaining the pH between 2 and 7.
  • the precipitation reaction is controlled by adjusting the pH to 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 6, 3 to 5, 3 to 4, 4 to 6 or 4 to 5 Can be done. More specifically, the precipitation reaction may be carried out while adjusting the pH to 3, 4, 5 or 6.
  • any one of the first metal and the second metal is selectively precipitated to form a solid phase.
  • the effluent is made of metal separation.
  • LAMINAR and LCR-TERA 3100 were used, and ICP-OES was used for metal analysis.
  • a 2 M NaOH aqueous solution was used as a pH adjusting agent and a 34.5% hydrogen peroxide aqueous solution was used as an oxidizing agent.
  • the reactor RPM was 600 and the reaction was carried out at 25 ° C.
  • the reactor was first filled with distilled water and the distilled water was substituted while supplying the reaction solution, pH adjuster and oxidant.
  • the distillate was sampled every 30 minutes after all the distilled water had been replaced and the pH was set to 5.
  • the sampled effluent was filtered and analyzed by XRD on the liquid component to obtain the precipitation rate of each component.
  • the concentration of the metal component was 3 g / L cobalt and 30 g / L iron.
  • the pH of the reaction solution was 3.22, NaOH was added to maintain the pH 5.
  • the filtering was carried out by its own weight, and it was confirmed that the filtering was performed in a shorter time than the general iron hydroxide.
  • the concentration of the metal component was 90 g / L cobalt and 9 g / L iron.
  • the pH of the reaction solution was 1.91, and NaOH was added to keep the pH at 5.
  • the filtering was carried out by its own weight, and it was confirmed that the filtering was performed in a shorter time than the general iron hydroxide.
  • the present invention can be used for separation between metals.

Abstract

The present invention relates to a metal separation method and a metal separation apparatus therefor. The metal separation method according to the present invention is directed to a method for separating metals from a metal solution containing a first metal and a second metal, wherein the method comprises the steps of: carrying out a reaction of the metal solution using a Couette-Taylor reactor in the conditions in which metal hydroxide precipitation tendencies of the first and second metals are different; and solid-liquid separating an effluence from the Couette-Taylor reactor.

Description

쿠에트-테일러 반응기에서의 침전반응을 이용한 금속 분리방법 및 이를 위한 분리장치Metal Separation Method Using Precipitation in Cuette-Taylor Reactor and Separator
본 발명은 금속 분리방법 및 이를 위한 분리장치에 관한 것이다.The present invention relates to a metal separation method and a separation device therefor.
산업현장에서 용액 중에 혼합되어 있는 금속을 분리하여야 하는 공정이 많이 존재한다. 특히 철과 비철금속이 혼합되어 있는 금속용액에서 철과 비철금속을 분리해야 하는 공정이 많이 존재한다. 예를 들어, 비철금속의 제련공정에서 철과 비철금속의 분리가 필요하다.There are many processes in the industrial field to separate the metal mixed in the solution. In particular, there are many processes in which ferrous and nonferrous metals must be separated from a metal solution in which ferrous and nonferrous metals are mixed. For example, in the smelting process of nonferrous metals, separation of iron and nonferrous metals is required.
철과 비철금속의 경우 기존의 분리방법으로는 괴타이트 침전법과 수산화철 침전법이 있다. 괴타이트 침전법은 철을 산화시키고 철을 괴타이트 형태로 침전시키는데, 반응온도가 80℃정도로 높고 분리도가 높지 않은 단점이 있다. 수산화철 침전법은 상온에서 수행되고 분리도가 높으나, 침전물의 여과성이 좋지 않아 필터링이 어려운 문제가 있다.In the case of ferrous and non-ferrous metals, conventional separation methods include the gothite precipitation method and the iron hydroxide precipitation method. The gothite precipitation method oxidizes iron and precipitates iron in the form of gothite, which has a disadvantage that the reaction temperature is about 80 ° C. and the separation is not high. Iron hydroxide precipitation is performed at room temperature and has a high degree of separation, but the filterability of the precipitate is poor, which makes it difficult to filter.
따라서 본 발명의 목적은 공정이 간단하고 분리도가 높은 금속의 분리방법 및 이를 위한 분리장치를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for separating a metal having a high degree of separation and a separation process, and a separation device for the same.
상기 본 발명의 목적은 철과 비철금속을 포함하는 금속용액에서 철과 비철금속을 분리하는 방법에 있어서, 상기 금속용액 내의 철의 적어도 일부를 2가에서 3가로 산화시키는 단계와; 철이 산화된 금속용액을 쿠에트-테일러 반응기에서 반응시키는 단계와; 쿠에트-테일러 반응기로부터의 유출물을 고액분리하는 단계를 포함하는 것에 의해 달성된다.An object of the present invention is a method for separating iron and nonferrous metals from a metal solution containing iron and non-ferrous metal, comprising the steps of oxidizing at least a portion of iron in the metal solution from divalent to trivalent; Reacting the metal solution oxidized with iron in a Kuet-Taylor reactor; Solid-separating the effluent from the Quet-Taylor reactor.
상기 반응단계에서의 pH는 3 내지 5일 수 있다.The pH in the reaction step may be 3 to 5.
상기 산화단계는 쿠에트-테일러 반응기 내에서 이루어질 수 있다.The oxidation step can take place in a Quet-Taylor reactor.
상기 반응은 연속공정을 이루어지며 상기 쿠에트-테일러 반응기에는 pH조절제와 산화제가 연속으로 투입될 수 있다.The reaction is a continuous process and the pH control agent and the oxidant may be continuously added to the Kuet-Taylor reactor.
상기 비철금속은 상기 반응단계의 pH 조건에서 3가이온의 철보다 금속수산화물 침전 경향이 작을 수 있다.The non-ferrous metal may be less prone to precipitation of metal hydroxide than iron of trivalent ions in the pH conditions of the reaction step.
상기 비철금속은 수산화물이 생성되는 pH가 3가 이온의 철보다 3이상 높을 수 있다.The non-ferrous metal may have a pH at which hydroxide is generated is three or more higher than iron of trivalent ions.
상기 비철금속은 알루미늄, 니켈, 코발트, 아연, 구리 중 적어도 어느 하나를 포함할 수 있다.The nonferrous metal may include at least one of aluminum, nickel, cobalt, zinc, and copper.
상기 고액분리는 필터링 방법을 통해 수행될 수 있다.The solid-liquid separation may be performed through a filtering method.
상기 반응 단계는 상온에서 수행될 수 있다.The reaction step may be performed at room temperature.
상기 본 발명의 목적은 철과 비철금속을 포함하는 금속용액에서 철과 비철금속을 분리하는 방법에 있어서, 쿠에트-테일러 반응기에서 상기 금속용액을 반응시켜 상기 철을 결정형의 FeOOH로 침전시키는 단계와; 상기 쿠에트-테일러 반응기로부터의 유출물을 고액분리하는 단계를 포함하는 것에 의해 달성된다.The object of the present invention is a method for separating iron and non-ferrous metals from a metal solution containing iron and non-ferrous metals, the step of reacting the metal solution in a Kuet-Taylor reactor to precipitate the iron into crystalline FeOOH; Solid-separating the effluent from the Kuet-Taylor reactor.
상기 침전단계는 철의 금속수산화물 침전 경향이 상기 비철금속의 금속수산화물 침전 경향보다 큰 조건에서 수행될 수 있다.The precipitation step may be performed under conditions in which the tendency of the metal hydroxide precipitation of iron is greater than the tendency of the metal hydroxide precipitation of the nonferrous metal.
상기 침전단계의 pH는 3 내지 5일 수 있다.The pH of the precipitation step may be 3 to 5.
상기 침전단계는 상온에서 수행될 수 있다.The precipitation step may be performed at room temperature.
상기 철을 2가에서 3가로 산화시키는 단계를 더 포함할 수 있다.The method may further include oxidizing the iron from divalent to trivalent.
상기 침전단계는 연속공정을 이루어지며 상기 쿠에트-테일러 반응기에는 pH조절제와 산화제가 연속으로 투입될 수 있다.The precipitation step is a continuous process and the pH control agent and the oxidant may be continuously added to the Kuet-Taylor reactor.
상기 비철금속은 수산화물이 생성되는 pH가 3가 이온의 철보다 3이상 높을 수 있다.The non-ferrous metal may have a pH at which hydroxide is generated is three or more higher than iron of trivalent ions.
상기 비철금속은 알루미늄, 니켈, 코발트, 아연, 구리 중 적어도 어느 하나를 포함할 수 있다.The nonferrous metal may include at least one of aluminum, nickel, cobalt, zinc, and copper.
상기 고액분리는 필터링 방법을 통해 수행될 수 있다.The solid-liquid separation may be performed through a filtering method.
상기 본 발명의 목적은 제1금속과 제2금속을 포함하는 금속용액에서 금속을 분리하는 방법에 있어서, 상기 제1금속과 상기 제2금속의 금속수산화물 침전 경향이 다른 조건에서 쿠에트-테일러 반응기를 이용하여 상기 금속용액을 반응시키는 단계와; 상기 쿠에트-테일러 반응기의 유출물을 고액분리하는 단계를 포함하는 것에 의해 달성된다.The object of the present invention is a method for separating a metal from a metal solution containing a first metal and a second metal, the Cue-Taylor reactor under conditions in which the metal hydroxide precipitation tendency of the first metal and the second metal is different Reacting the metal solution using; Solid-separating the effluent of the Kuet-Taylor reactor.
상기 침전 경향이 다른 조건은 pH 조건을 포함할 수 있다.Conditions for which the precipitation tends to be different may include pH conditions.
상기 제1금속과 상기 제2금속 중 적어도 하나에 대하여 pH에 따른 금속수산화물 침전 경향을 변경하도록 이온 상태를 변경하는 단계를 더 포함할 수 있다.The method may further include changing an ionic state to change a metal hydroxide precipitation tendency according to pH with respect to at least one of the first metal and the second metal.
상기 이온 상태 변경에 의해 제1금속과 제2금속의 수산화물 형성 pH는 3이상 차이가 날 수 있다.By changing the ion state, the pH of the hydroxide formation of the first metal and the second metal may vary by 3 or more.
상기 반응은 상온에서 수행되며, 상기 고액분리는 필터링 방법으로 수행될 수 있다.The reaction is carried out at room temperature, the solid-liquid separation may be carried out by a filtering method.
상기 본 발명의 다른 목적은 내부에 반응공간을 포함하는 쿠에트-테일러 반응기 본체와; 상기 반응공간에 pH 조절제를 공급하는 pH 조절제 공급부와; 상기 반응공간에 산화제를 공급하는 산화제 공급부와; 상기 반응공간에 철과 비철금속을 포함하는 반응용액을 공급하는 반응용액 공급부와; 상기 반응공간에서 유출된 유출물을 고액분리하는 필터링부를 포함하는 철과 비철금속의 분리 장치에 의해 달성될 수 있다.Another object of the present invention and the Kuet-Taylor reactor body including a reaction space therein; A pH regulator supply unit for supplying a pH regulator to the reaction space; An oxidant supply unit supplying an oxidant to the reaction space; A reaction solution supply unit supplying a reaction solution containing iron and nonferrous metals to the reaction space; It can be achieved by a separation device of iron and non-ferrous metal including a filtering portion for solid-liquid separation of the effluent flowing out of the reaction space.
상기 반응공간의 pH를 측정하는 pH 측정부와; 상기 pH 측정부의 측정결과를 기초로 상기 pH 조절제 공급부의 공급량을 제어하는 제어부를 더 포함할 수 있다.PH measuring unit for measuring the pH of the reaction space; A control unit for controlling the supply amount of the pH adjuster supply unit based on the measurement result of the pH measuring unit may be further included.
본 발명에 따르면 공정이 간단하고 분리도가 높은 금속의 분리방법 및 이를 위한 분리장치가 제공된다.According to the present invention, there is provided a method for separating a metal having a simple process and a high degree of separation, and a separator for the same.
도 1은 본 발명의 실시예에 따른 분리장치를 나타낸 것이고,1 shows a separation device according to an embodiment of the present invention,
도 2는 본 발명의 실시예에 따른 분리장치에서 반응 제어를 나타낸 것이고,Figure 2 shows the reaction control in the separation device according to an embodiment of the present invention,
도 3은 분리대상 금속의 수산화물 침전 경향을 나타낸 것이고,Figure 3 shows the hydroxide precipitation tendency of the metal to be separated,
도 4는 본 발명의 실시예에 따른 분리방법을 나타낸 것이고,Figure 4 shows a separation method according to an embodiment of the present invention,
도 5는 본 발명의 다른 실시예에 따른 분리방법을 나타낸 것이고,Figure 5 shows a separation method according to another embodiment of the present invention,
도 6은 본 발명의 제1실험예에서 철과 코발트의 침전율을 나타낸 것이고,Figure 6 shows the precipitation rate of iron and cobalt in the first experimental example of the present invention,
도 7은 본 발명의 제2실험예에서 철과 코발트의 침전율을 나타낸 것이고,Figure 7 shows the precipitation rate of iron and cobalt in the second experimental example of the present invention,
도 8은 본 발명의 제2실험예에서 얻은 철 침전물의 XRD 그래프이다.8 is an XRD graph of iron precipitate obtained in Experimental Example 2 of the present invention.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
첨부된 도면은 본 발명의 기술적 사상을 더욱 구체적으로 설명하기 위하여 도시한 일 예에 불과하므로 본 발명의 사상이 첨부된 도면에 한정되는 것은 아니다.The accompanying drawings are only examples as illustrated in order to explain the technical idea of the present invention in more detail, and thus the spirit of the present invention is not limited to the accompanying drawings.
이하의 설명에서는 철과 비철금속의 분리를 주로 예시하여 설명한다. 그러나 본 발명은 이에 한정되지 않고 2개 이상의 금속을 분리하는데 적용될 수 있다. In the following description, the separation of iron and nonferrous metals will mainly be described. However, the present invention is not limited thereto, and may be applied to separating two or more metals.
도 1은 본 발명에 따른 철과 비철금속의 분리장치이다.1 is a separator of ferrous and nonferrous metals according to the present invention.
분리장치는 반응기(10), 필터링부(20), 반응물 공급부(30), pH 측정부(41) 및 제어부(50)로 이루어져 있다.The separator consists of a reactor 10, a filtering unit 20, a reactant supply unit 30, a pH measuring unit 41 and a control unit 50.
본 발명의 반응기(10)는 쿠에트-테일러 반응기이다. 쿠에트-테일러 반응기에서는 내부원통(11)과 외부원통(12) 사이가 반응공간(S)이 된다. 내부원통(11)이 고속으로 회전함에 따라 반응공간(S)에 와류(테일러 와류)가 형성된다. 반응물은 반응공간(S)의 좌측에서 우측으로 흘러가면서 형성된 와류에 의해 반응이 촉진된다.The reactor 10 of the present invention is a Kuet-Taylor reactor. In the Kuet-Taylor reactor, the reaction space S is formed between the inner cylinder 11 and the outer cylinder 12. As the inner cylinder 11 rotates at a high speed, a vortex (taylor vortex) is formed in the reaction space S. The reaction is promoted by the vortex formed while flowing from the left side to the right side of the reaction space (S).
내부원통(11)의 회전을 위한 회전수단(13)과 회전축(14)이 마련되어 있으며, 반응공간(S)의 좌우에는 밀봉부(15, 16)가 마련되어 있다. Rotating means 13 and a rotating shaft 14 for rotating the inner cylinder 11 are provided, and sealing parts 15 and 16 are provided on the left and right of the reaction space S.
외부원통(11)에는 복수의 연통공(17a 내지 17e)이 형성되어 있다. 이들 중 일부 연통공(17a, 17c, 17d)을 통해 외부에서 반응용액 등이 반응공간(S)으로 공급되고, 다른 연통공(17b)을 통해서는 반응공간(S)의 반응상황을 체크하게 된다. 반응한 후의 반응물은 연통공(17e)을 통해 외부로 유출된다.In the outer cylinder 11, a plurality of communication holes 17a to 17e are formed. The reaction solution is supplied to the reaction space S from the outside through some communication holes 17a, 17c, and 17d, and the reaction state of the reaction space S is checked through the other communication holes 17b. . The reactant after the reaction flows out through the communication hole 17e.
필터링부(20)는 반응기(10)로부터의 유출물을 고액분리한다. 실시예에서는 자연하중을 이용하여 필터링하게 되어 있으나, 다른 실시예에서는 가압 및/또는 진공 등을 이용하여 필터링할 수도 있다.The filtering unit 20 solid-separates the effluent from the reactor 10. In the exemplary embodiment, the filtering is performed by using a natural load, but in another exemplary embodiment, the filtering may be performed by using pressure and / or vacuum.
반응물 공급부(30)는 pH 조절제 공급부(31a, 31b), 산화제 공급부(32a, 32b) 및 반응용액 공급부(33a, 33b)를 포함한다. pH 조절제 공급부(31a, 31b)는 pH 조절제 탱크(31a)와 펌프(31b)를 포함하고, 산화제 공급부(32a, 32b)는 산화제 탱크(32a)와 펌프(32b)를 포함하고, 반응용액 공급부(33a, 33b)는 반응용액 탱크(33a)와 펌프(33b)를 포함한다.The reactant supply unit 30 includes pH adjuster supply units 31a and 31b, oxidant supply units 32a and 32b, and reaction solution supply units 33a and 33b. The pH regulator supply parts 31a and 31b include a pH regulator tank 31a and a pump 31b, and the oxidant supply parts 32a and 32b include an oxidant tank 32a and a pump 32b, and a reaction solution supply part ( 33a, 33b includes a reaction solution tank 33a and a pump 33b.
반응물 공급부(30)를 통해 pH 조절제, 산화제 및 반응용액이 연속하여 공급되고 연통공(17e)를 통해 반응물이 연속적으로 유출되어 전체 반응이 연속반응으로 이루어질 수 있다.The pH regulator, the oxidizing agent and the reaction solution are continuously supplied through the reactant supply unit 30, and the reactants are continuously discharged through the communication hole 17e, so that the entire reaction may be made in a continuous reaction.
pH 측정부(41)는 연통공(17b)을 통해 반응공간(S)의 pH를 측정한다.The pH measuring unit 41 measures the pH of the reaction space (S) through the communication hole (17b).
도 2는 본 발명에 따른 분리장치의 제어부를 도시한 것이다.Figure 2 shows a control unit of the separation device according to the present invention.
제어부(50)는 pH 측정부(41)에서 반응공간(S)의 pH를 입력받고, 원하는 pH를 얻기 위해 pH 조절제 펌프(31b)의 유량을 제어한다. 또한 제어부(50)는 산화제 펌프(32b) 및 반응용액 펌프(33b)를 제어하여 일정한 반응이 이루어지도록 한다.The controller 50 receives the pH of the reaction space S from the pH measuring unit 41 and controls the flow rate of the pH regulator pump 31b to obtain a desired pH. In addition, the controller 50 controls the oxidant pump 32b and the reaction solution pump 33b so that a constant reaction is performed.
다른 실시예에서 반응기(10)는 반응공간(S)의 온도측정부와 온도조절부를 더 포함하고 제어부(50)는 측정된 온도를 기초로 온도조절부를 제어할 수 있다. 온도조절부는 외부 원통(12)을 감싸는 재킷타입으로 이루어지거나 반응용액 탱크(33a)의 온도를 조절하도록 마련될 수 있다.In another embodiment, the reactor 10 further includes a temperature measuring part and a temperature adjusting part of the reaction space S, and the controller 50 may control the temperature adjusting part based on the measured temperature. The temperature control part may be made of a jacket type surrounding the outer cylinder 12 or may be provided to adjust the temperature of the reaction solution tank 33a.
이하 본 발명에 따른 분리방법을 설명한다.Hereinafter, a separation method according to the present invention will be described.
본 발명은 pH와 금속이온 상태에 따라 금속 별로 금속수산화물 침전 경향이 다른 점과 쿠에트-테일러 반응에 의해 결정형의 수산화물을 얻을 수 있는 것을 이용한다.The present invention utilizes the fact that metal hydroxide precipitation tends to vary depending on pH and metal ion state, and that a hydroxide of a crystalline form can be obtained by the Kuet-Taylor reaction.
도 3은 25℃에서의 금속 별 금속수산화물 침전 경향을 나타낸 것이다(E. Jackson, Hydrometallugical Extraction and Reclamation, Ellis Horwood출판 등에서 확인가능함). 철(Fe)를 보면 2가 상태에서는 pH가 7 내지 8보다 높아야 수산화물 침전 경향이 높으나 3가 상태에서는 pH 2 정도보다 높으면 수산화물 침전 경향이 높음을 알 수 있다 또한 pH가 7 내지 8보다 높으면 니켈, 코발트, 은, 망간, 아연 등이 수산화물 침전 경향도 높음을 알 수 있다. Figure 3 shows the metal hydroxide precipitation tendency by metal at 25 ℃ (E. Jackson, Hydrometallugical Extraction and Reclamation, Ellis Horwood publishing, etc. can be found). The iron (Fe) shows a high hydroxide precipitation tendency when the pH is higher than 7 to 8 in the divalent state, but a high precipitation tendency when the pH is higher than about 2 in the trivalent state. In addition, when the pH is higher than 7 to 8, nickel, It can be seen that cobalt, silver, manganese, zinc and the like have a high hydroxide precipitation tendency.
따라서 철을 3가로 변환하고 pH를 2와 7사이에서 유지하면 철과 다른 비철금속의 수산화물 침전 경향에 차이를 줄 수 있다. 즉 이 pH조건에서는 철이 다른 비철금속에 비해 선택적으로 많이 수산화물로 침전된다는 것이며, 이를 통해 철과 비철금속을 분리할 수 있게 된다.Therefore, converting iron to trivalent and maintaining a pH between 2 and 7 can make a difference in the hydroxide precipitation tendency of iron and other nonferrous metals. In other words, in this pH condition, iron is more selectively precipitated as a hydroxide than other nonferrous metals, and thus iron and nonferrous metals can be separated.
이와 같이 양 금속의 수산화물 침전 경향이 차이가 있는 pH 조건에서 수산화 반응을 시키면 하나의 금속은 수산화물로 침전되고 다른 금속은 용액 중에 남게 되어 분리가 가능해진다.As such, when the hydroxide reaction is carried out at pH conditions in which the precipitation tendency of both metals is different, one metal precipitates as a hydroxide and the other metal remains in solution, allowing separation.
쿠에트-테일러 반응기는 테일러 난류 내에서 반응이 일어나기 때문에 생성되는 고체상이 결정형으로 유도된다. 용액 중의 Fe3 +은 괴타이트(FeOOH) 형태로 침전되며, 괴타이트는 결정형이 된다. 본 명세서에서 철이 괴타이트 형태로 침전된다는 것은 침전되는 철의 대부분, 예를 들어 80%이상, 또는 90% 이상 또는 95% 이상 또는 99% 이상이 결정형 괴타이트 형태로 침전되는 것을 의미한다.In the Kuet-Taylor reactor, the reaction occurs in the Taylor turbulence, leading to the resulting solid phase in crystalline form. Fe 3 + in the solution are precipitated as a tight bars (FeOOH) form, bars are tight This crystal form. The precipitation of iron in the form of gothite herein means that most of the precipitated iron, for example at least 80%, or at least 90% or at least 95% or at least 99%, is precipitated in crystalline goatite form.
결정형 괴타이트는 수산화철에 비해 필터링이 용이하다. 따라서 자중에 의한 필터링도 상당히 짧은 시간 내에 수행될 수 있다.Crystalline gothite is easier to filter than iron hydroxide. Thus, filtering by self weight can also be performed in a fairly short time.
또한 쿠에트-테일러 반응기를 이용하면 상온에서 결정형 괴타이트를 얻을 수 있다. 상온에서 반응되기 때문에 반응기 구조가 간단해질 수 있고, 운전 비용도 절감된다. In addition, using the Kuet-Taylor reactor, crystalline goatite can be obtained at room temperature. Reaction at room temperature can simplify the reactor structure and reduce operating costs.
도 4를 참조하여 본 발명에 따른 분리방법을 설명한다.A separation method according to the present invention will be described with reference to FIG. 4.
먼저 반응용액을 반응기에 주입한다(S101). 반응용액에는 2가지 이상의 금속이 포함되어 있으며, 철과 비철금속일 수 있다. 반응용액은, 이에 한정되지 않으나 비철금속제조과정이나 폐전지 재활용 과정에서 얻어질 수 있다.First, the reaction solution is injected into the reactor (S101). The reaction solution contains two or more metals, and may be iron and nonferrous metals. The reaction solution is not limited thereto, but may be obtained in a non-ferrous metal manufacturing process or a waste battery recycling process.
비철금속 제조과정에서는 소량의 철을 비철금속과 완전히 분리하는 것이 중요하며, 본원 발명을 이용하여 철을 제거할 수 있다. It is important to completely separate a small amount of iron from the non-ferrous metal in the non-ferrous metal manufacturing process, it can be removed using the present invention.
폐전지 재활용에서는 폐전지의 양극활물질을 포함하는 반응용액을 얻을 수 있다. 이 때 반응용액은 철, 망간, 니켈, 코발트 및 리튬 중 적어도 어느 하나를 포함할 수 있다.In the waste battery recycling, a reaction solution containing the cathode active material of the waste battery can be obtained. In this case, the reaction solution may include at least one of iron, manganese, nickel, cobalt, and lithium.
폐전지 재활용에서는 (1) 폐배터리팩을 폐배터리 모듈로 분리 (2) 폐배터리 모듈을 분리하여 폐배터리셀을 얻고 (3) 페배터리셀로부터 양극 및 음극활물질을 얻고 (4) 양극 및 음극활물질을 방전 및 건조하여 양극을 얻은 후 (5) 양극을 분쇄하고 입도분리한 후 황산침출을 거치고 (6) 침전물 여과를 통해 알루미늄과 구리를 제거하고 반응용액을 얻을 수 있다.In waste battery recycling, (1) separating the waste battery pack into waste battery modules (2) separating the waste battery module to obtain waste battery cells (3) obtaining positive and negative active materials from the battery cells (4) positive and negative active materials After discharging and drying, to obtain a positive electrode (5) to crush the positive electrode and to separate the particle size, and then leaching sulfuric acid (6) to remove aluminum and copper through precipitate filtration to obtain a reaction solution.
반응용액은 2개 성분(철과 코발트 등), 3개 성분(철, 코발트 및 망간 등), 4개 성분(철, 코발트, 망간 및 니켈 등)등 다양하게 마련될 수 있다.The reaction solution may be prepared in various ways, such as two components (iron and cobalt, etc.), three components (iron, cobalt, manganese, etc.), and four components (iron, cobalt, manganese, nickel, etc.).
다음으로 철을 2가에서 3가로 산화시킨다(S102). 이는 pH에 따라 철과 비철금속의 수산화물 침전 경향을 다르게 만들기 위함이다. 3가로 산화된 철은 pH 2 이상에서 수산화물 침전 경향이 높은 반면 대부분의 다른 비철금속은 pH 2보다 높은 pH 이상에서 수산화물 침전 경향이 높다. Next, iron is oxidized from divalent to trivalent (S102). This is to change the hydroxide precipitation tendency of iron and nonferrous metals according to pH. Trivalently oxidized iron tends to precipitate hydroxide above pH 2, while most other nonferrous metals tend to precipitate hydroxide above pH above pH 2.
철의 산화는 산화제를 반응공간에 주입하여 수행될 수 있다. 산화제는, 이에 한정되지 않으나, 과산화수소를 사용할 수 있다.Oxidation of iron may be performed by injecting an oxidant into the reaction space. The oxidant is not limited thereto, and hydrogen peroxide may be used.
다음으로 3가 철을 괴타이트로 침전시킨다(S103). 이 과정은 pH를 일정하게 유지시키고 수행될 수 있다.Next, trivalent iron is precipitated as a goot (S103). This process can be carried out with constant pH.
철과 비철금속의 분리를 위해 pH는 2 내지 7, 2 내지 6, 2 내지 5, 2내지 4, 2 내지 3, 3 내지 6, 3 내지 5, 3 내지 4, 4 내지 6 또는 4 내지 5 등 다양하게 조절될 수 있다. 구체적으로는 pH를 3, 4, 5 또는 6에 맞추고 실시할 수 있다. pH는 비철금속 성분에 따라 달라질 수 있다.PH for the separation of ferrous and nonferrous metals varies from 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 6, 3 to 5, 3 to 4, 4 to 6 or 4 to 5 Can be adjusted. Specifically, the pH can be adjusted to 3, 4, 5, or 6. The pH may vary depending on the nonferrous metal component.
pH 조절은 pH 조절제를 반응공간에 주입하여 수행될 수 있다. pH 조절제는 반응용액의 pH와 원하는 pH에 따라 달라질 수 있다. 반응용액이 황산용액으로 pH가 5보다 낮고 원하는 pH가 5라면 pH조절제로는 NaOH와 같은 염기성 용액이 사용될 수 있다. pH 조절제의 투입량은 반응공간의 pH를 모니터링하면서 조절될 수 있다.pH control may be performed by injecting a pH control agent into the reaction space. The pH adjusting agent may vary depending on the pH of the reaction solution and the desired pH. If the reaction solution is a sulfuric acid solution and the pH is lower than 5 and the desired pH is 5, a basic solution such as NaOH may be used as the pH adjusting agent. The dose of pH adjuster can be adjusted while monitoring the pH of the reaction space.
이상 설명한 반응용액 주입(S101), 철 산화(S102) 및 FeOOH 형성(S103)은 모두 쿠에트-테일러 반응기의 단일 반응공간 내에서 이루어질 수 있으며, 이 경우 이들 반응은 실질적으로 동시에 이루어 질 수 있다.Reaction solution injection (S101), iron oxidation (S102) and FeOOH formation (S103) described above can all be made in a single reaction space of the Kuet-Taylor reactor, in which case these reactions can be substantially simultaneously performed.
한편, 쿠에트-테일러 반응기를 이용한 분리반응은 상온에서 수행될 수 있으며, 반응은 연속반응으로 진행될 수 있다.On the other hand, the separation reaction using the Kuet-Taylor reactor may be carried out at room temperature, the reaction may be carried out in a continuous reaction.
다음으로 반응기에서 유출된 유출물을 필터링한다. 철은 괴타이트 결정형으로 침전되어 고상으로 존재하며 다른 비철금속은 이온상태로 용액 중에 존재한다. 따라서 유출물을 필터링하면 철과 비철금속을 분리할 수 있다.Next, the effluent flowing out of the reactor is filtered out. Iron precipitates in the gothite crystalline form and is present in the solid phase, while other nonferrous metals are present in solution in an ionic state. Therefore, filtering the effluent can separate ferrous and nonferrous metals.
본 발명은 철의 분리에 한정되지 않고 금속 용액에서의 금속 분리에도 적용될 수 있는데 이를 도 5를 참조하여 설명한다.The present invention is not limited to the separation of iron, but may be applied to the separation of metals in a metal solution, which will be described with reference to FIG. 5.
먼저, 제1금속 및 제2금속을 포함하는 반응용액을 마련한다(S201), 제1금속과 제2금속은 모두 철이 아닐 수 있다.First, a reaction solution including the first metal and the second metal is prepared (S201), and both the first metal and the second metal may not be iron.
다음으로 제1금속과 제2금속의 침전 조건을 변화시킨다(S202). 이는 침전 조건이 상이한 상태에서 침전반응하여 제1금속과 제2금속 중 어느 하나만을 선택적으로 침전시키기 위함이다. 침전반응율은 예를 들어 제1금속은 80% 이상, 90%이상, 95%이상 또는 99%이상이고 제2금속은 20%이하, 10%이하, 5%이하 또는 1%이하일 수 있다. 또는 제1금속의 침전율이 제2금속의 침전율보다 10배, 20배, 30배, 50배 또는 100배 높을 수 있다.Next, the precipitation conditions of the first metal and the second metal are changed (S202). This is to selectively precipitate only one of the first metal and the second metal by precipitation reaction under different precipitation conditions. The precipitation reaction rate may be, for example, at least 80%, at least 90%, at least 95%, or at least 99% of the first metal and at most 20%, at most 10%, at most 5%, or at most 1%. Alternatively, the precipitation rate of the first metal may be 10 times, 20 times, 30 times, 50 times, or 100 times higher than the precipitation rate of the second metal.
침전 조건은 pH일 수 있으나, 이에 한정되지 않고 온도나 반응기 rpm 등 다양하게 선택될 수 있다. 이미 제1금속과 제2금속의 침전 조건이 상이하다면 본 단계는 생략될 수 있다.Precipitation conditions may be pH, but is not limited thereto and may be variously selected such as temperature or reactor rpm. If the precipitation conditions of the first metal and the second metal are already different, this step may be omitted.
이는 제1금속과 제2금속 중 어느 하나의 이온상태를 변화하여 침전이 이루어지는 pH를 조절하는 방식으로 수행될 수 있다. 이에 의해 침전이 이루어지는 양 금속의 pH의 차이가 6, 5, 4, 3 또는 2 이상 나도록 조절할 수 있다.This may be performed by changing the ionic state of any one of the first metal and the second metal to adjust the pH at which precipitation occurs. Thereby, it can be adjusted so that the difference in pH of both metals in which precipitation is made may be 6, 5, 4, 3, or 2 or more.
이후 침전조건이 상이한 상태에서 침전반응(S203)을 수행한다. 이 때 침전반응은 양 금속의 침전조건의 중간조건에서 이루어진다. 예를 들어 제1금속의 수산화물 생성 pH가 2이상이고, 제2금속의 수산화물 생성 pH가 7이상이면 침전반응은 pH를 2 내지 7 사이에서 유지하면서 이루어질 수 있다. 구체적으로는 pH를 2 내지 7, 2 내지 6, 2 내지 5, 2내지 4, 2 내지 3, 3 내지 6, 3 내지 5, 3 내지 4, 4 내지 6 또는 4 내지 5로 조절하면서 침전반응을 수행할 수 있다. 더 구체적으로는 pH를 3, 4, 5 또는 6으로 맞추면서 침전반응이 수행될 수 있다.Since the precipitation conditions are different from the precipitation reaction (S203) is carried out. At this time, the precipitation reaction is carried out in the intermediate condition of the precipitation conditions of both metals. For example, when the hydroxide generation pH of the first metal is 2 or more, and the hydroxide production pH of the second metal is 7 or more, the precipitation reaction may be performed while maintaining the pH between 2 and 7. Specifically, the precipitation reaction is controlled by adjusting the pH to 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 6, 3 to 5, 3 to 4, 4 to 6 or 4 to 5 Can be done. More specifically, the precipitation reaction may be carried out while adjusting the pH to 3, 4, 5 or 6.
침전반응(S203)에 의해 제1금속과 제2금속 중 어느 하나가 선택적으로 침전되어 고체상이 형성된다.By precipitation reaction (S203) any one of the first metal and the second metal is selectively precipitated to form a solid phase.
이후 유출물을 고액분리(S204)하면 금속분리가 이루어진다.After the solids separation (S204) the effluent is made of metal separation.
이하 실험예를 이용하여 본 발명을 더 상세히 설명한다.The present invention will be described in more detail using the following experimental examples.
실험에서는 철과 코발트를 포함하는 반응용액을 대상으로 수행했으며, 코발트는 CoSO4 7H2O를 사용하고 철은 FeSO4 7H2O를 사용하였다. 코발트와 철을 물로 희석하고 일정량의 황산을 추가하여 pH를 낮추었다.In the experiment, a reaction solution containing iron and cobalt was carried out. Cobalt was used for CoSO 4 7H 2 O and FeSO 4 7H 2 O was used for iron. Cobalt and iron were diluted with water and a certain amount of sulfuric acid was added to lower the pH.
쿠에트-테일러 반응기로는 LAMINAR, LCR-TERA 3100을 사용하였고, 금속분석을 위해서는 ICP-OES를 사용하였다. pH조절제로는 2M의 NaOH 수용액을 사용하고 산화제로는 34.5%의 과산화수소 수용액을 사용하였다. 반응기의 RPM은 600이고 25℃에서 반응을 수행하였다. As the Kuet-Taylor reactor, LAMINAR and LCR-TERA 3100 were used, and ICP-OES was used for metal analysis. A 2 M NaOH aqueous solution was used as a pH adjusting agent and a 34.5% hydrogen peroxide aqueous solution was used as an oxidizing agent. The reactor RPM was 600 and the reaction was carried out at 25 ° C.
처음 반응기를 증류수로 채우고 반응용액, pH조절제 및 산화제를 공급하면서 증류수를 치환하였다. 증류수가 모두 치환되고 pH가 5로 세팅된 이후 30분 간격으로 유출물을 샘플링하였다. 샘플링된 유출물을 필터링하고 액체성분에 대해 XRD 분석하여 각 성분의 침전율을 얻었다.The reactor was first filled with distilled water and the distilled water was substituted while supplying the reaction solution, pH adjuster and oxidant. The distillate was sampled every 30 minutes after all the distilled water had been replaced and the pH was set to 5. The sampled effluent was filtered and analyzed by XRD on the liquid component to obtain the precipitation rate of each component.
실험예 1Experimental Example 1
금속성분의 농도는 코발트가 3g/L이고 철이 30g/L였다. 반응용액의 pH는 3.22였고, pH가 5를 유지하도록 NaOH를 투입했다.The concentration of the metal component was 3 g / L cobalt and 30 g / L iron. The pH of the reaction solution was 3.22, NaOH was added to maintain the pH 5.
실험결과는 아래 표 1과 도 6과 같다.Experimental results are shown in Table 1 and FIG. 6 below.
시간(분)Minutes ICP-ICP- OESOES ; ; Co mgCo mg /L/ L ICP-ICP- OESOES Fe mgFe mg /L/ L Co 침전율(%)Co precipitation rate (%) Fe 침전율(%)Fe precipitation rate (%)
3030 14901490 0.310.31 3.433.43 99.999.9
6060 15701570 0.250.25 1.621.62 99.899.8
9090 16501650 1.801.80 66 99.899.8
120120 16201620 1.391.39 8.98.9 99.899.8
150150 14701470 1.041.04 4.84.8 99.999.9
180180 14701470 0.250.25 12.612.6 99.999.9
결과에서 보는 바와 같이 철은 99%이상 침전된 반면, 코발트는 대부분 10%이하로 침전되었다. 따라서 철과 코발트를 분리할 수 있음을 확인하였다.As shown in the results, iron was precipitated more than 99%, while cobalt was precipitated to less than 10%. Therefore, it was confirmed that iron and cobalt can be separated.
한편, 필터링은 자중에 의하여 수행되었으며 일반적인 수산화철의 경우보다 필터링이 짧은 시간에 이루어짐을 확인하였다.On the other hand, the filtering was carried out by its own weight, and it was confirmed that the filtering was performed in a shorter time than the general iron hydroxide.
실험예 2Experimental Example 2
금속성분의 농도는 코발트가 90g/L이고 철이 9g/L였다. 반응용액의 pH는 1.91이였고, pH가 5를 유지하도록 NaOH를 투입했다.The concentration of the metal component was 90 g / L cobalt and 9 g / L iron. The pH of the reaction solution was 1.91, and NaOH was added to keep the pH at 5.
실험결과는 아래 표 2와 도 7과 같다.Experimental results are shown in Table 2 and FIG. 7 below.
시간(분)Minutes ICP-ICP- OESOES ; ; Co mgCo mg /L/ L ICP-ICP- OESOES Fe mg/L Fe mg / L Co 침전율(%)Co precipitation rate (%) Fe 침전율(%)Fe precipitation rate (%)
3030 4460044600 0.250.25 3.83.8 99.999.9
6060 4890048900 0.250.25 5.515.51 99.999.9
9090 5090050900 0.250.25 9.99.9 99.999.9
120120 5290052900 0.250.25 14.114.1 99.999.9
150150 5080050800 0.250.25 9.69.6 99.999.9
180180 5040050400 0.250.25 8.88.8 99.999.9
결과에서 보는 바와 같이 철은 99%이상 침전된 반면, 코발트는 대부분 10%이하로 침전되었다. 따라서 철과 코발트를 분리할 수 있음을 확인하였다.As shown in the results, iron was precipitated more than 99%, while cobalt was precipitated to less than 10%. Therefore, it was confirmed that iron and cobalt can be separated.
한편, 필터링은 자중에 의하여 수행되었으며 일반적인 수산화철의 경우보다 필터링이 짧은 시간에 이루어짐을 확인하였다.On the other hand, the filtering was carried out by its own weight, and it was confirmed that the filtering was performed in a shorter time than the general iron hydroxide.
도 8은 필터 후 고상 침전물에 대한 XRD 분석 결과이다. 결정형 FeOOH에 해당하는 피크가 발견되어, 철이 결정형 FeOOH로 침전되었음을 확인할 수 있다.8 is an XRD analysis of the solid precipitate after the filter. A peak corresponding to crystalline FeOOH was found, confirming that iron precipitated into crystalline FeOOH.
전술한 실시예들은 본 발명을 설명하기 위한 예시로서, 본 발명이 이에 한정되는 것은 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양하게 변형하여 본 발명을 실시하는 것이 가능할 것이므로, 본 발명의 기술적 보호범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.The above-described embodiments are examples for explaining the present invention, but the present invention is not limited thereto. Those skilled in the art to which the present invention pertains will be capable of carrying out the present invention by various modifications therefrom, and the technical protection scope of the present invention should be defined by the appended claims.
본 발명은 금속 간의 분리에 사용될 수 있다.The present invention can be used for separation between metals.

Claims (25)

  1. 철과 비철금속을 포함하는 금속용액에서 철과 비철금속을 분리하는 방법에 있어서,In the method for separating ferrous and nonferrous metals from a metal solution containing ferrous and nonferrous metals,
    상기 금속용액 내의 철의 적어도 일부를 2가에서 3가로 산화시키는 단계와;Oxidizing at least a portion of iron in the metal solution from divalent to trivalent;
    철이 산화된 금속용액을 쿠에트-테일러 반응기에서 반응시키는 단계와;Reacting the metal solution oxidized with iron in a Kuet-Taylor reactor;
    쿠에트-테일러 반응기로부터의 유출물을 고액분리하는 단계를 포함하는 철과 비철금속의 분리방법.A method for separating ferrous and nonferrous metals comprising solid-liquid separation of an effluent from a Quet-Taylor reactor.
  2. 제1항에서,In claim 1,
    상기 반응단계에서의 pH는 3 내지 5인 것을 특징으로 하는 철과 비철금속의 분리방법.PH of the reaction step is a separation method of iron and non-ferrous metal, characterized in that 3 to 5.
  3. 제2항에서,In claim 2,
    상기 산화단계는 쿠에트-테일러 반응기 내에서 이루어지는 것을 특징으로 하는 철과 비철금속의 분리방법.The oxidation step is a separation method of iron and non-ferrous metal, characterized in that in the Kuet-Taylor reactor.
  4. 제3항에서,In claim 3,
    상기 반응은 연속공정을 이루어지며 상기 쿠에트-테일러 반응기에는 pH조절제와 산화제가 연속으로 투입되는 것을 특징으로 하는 철과 비철금속의 분리방법.The reaction is a continuous process and the method of separating the ferrous and non-ferrous metal, characterized in that the pH control agent and the oxidant is continuously added to the Kuet-Taylor reactor.
  5. 제1항에서,In claim 1,
    상기 비철금속은 상기 반응단계의 pH 조건에서 3가이온의 철보다 금속수산화물 침전 경향이 작은 것을 특징으로 하는 철과 비철금속의 분리방법.The non-ferrous metal is a separation method of iron and non-ferrous metals, characterized in that the metal hydroxide precipitation tends to be less than the trivalent iron in the pH conditions of the reaction step.
  6. 제5항에서,In claim 5,
    상기 비철금속은 수산화물이 생성되는 pH가 3가 이온의 철보다 3이상 높은 것을 특징으로 하는 철과 비철금속의 분리방법.The non-ferrous metal is a separation method of iron and non-ferrous metal, characterized in that the pH of the hydroxide is formed more than three than the iron of trivalent ions.
  7. 제5항에서,In claim 5,
    상기 비철금속은 알루미늄, 니켈, 코발트, 아연, 구리 중 적어도 어느 하나를 포함하는 것을 특징을 하는 철과 비철금속의 분리방법.The non-ferrous metal is an iron, non-ferrous metal separation method characterized in that it comprises at least any one of nickel, cobalt, zinc, copper.
  8. 제1항에서,In claim 1,
    상기 고액분리는 필터링 방법을 통해 수행되는 것을 특징으로 하는 철과 비철금속의 분리방법.The solid-liquid separation is a separation method of ferrous and non-ferrous metal, characterized in that carried out through a filtering method.
  9. 제1항에서,In claim 1,
    상기 반응 단계는 상온에서 수행되는 것을 특징으로 하는 철과 비철금속의 분리방법.The reaction step is separated iron and non-ferrous metal, characterized in that carried out at room temperature.
  10. 철과 비철금속을 포함하는 금속용액에서 철과 비철금속을 분리하는 방법에 있어서,In the method for separating ferrous and nonferrous metals from a metal solution containing ferrous and nonferrous metals,
    쿠에트-테일러 반응기에서 상기 금속용액을 반응시켜 상기 철을 결정형의 FeOOH로 침전시키는 단계와;Reacting the metal solution in a Kuet-Taylor reactor to precipitate the iron into crystalline FeOOH;
    상기 쿠에트-테일러 반응기로부터의 유출물을 고액분리하는 단계를 포함하는 철과 비철금속의 분리방법.Solid-liquid separation of the effluent from the Kuet-Taylor reactor.
  11. 제10항에서,In claim 10,
    상기 침전단계는 철의 금속수산화물 침전 경향이 상기 비철금속의 금속수산화물 침전 경향보다 큰 조건에서 수행되는 것을 특징으로 하는 철과 비철금속의 분리방법.The precipitation step is a method of separating iron and nonferrous metals, characterized in that the metal hydroxide precipitation tendency of iron is carried out in a condition larger than the metal hydroxide precipitation tendency of the nonferrous metal.
  12. 제11항에서,In claim 11,
    상기 침전단계의 pH는 3 내지 5인 것을 특징으로 하는 철과 비철금속의 분리방법.PH of the precipitation step is a separation method of iron and non-ferrous metal, characterized in that 3 to 5.
  13. 제11항에서,In claim 11,
    상기 침전단계는 상온에서 수행되는 것을 특징으로 하는 철과 비철금속의 분리방법.The precipitation step is a separation method of iron and nonferrous metals, characterized in that carried out at room temperature.
  14. 제11항에서,In claim 11,
    상기 철을 2가에서 3가로 산화시키는 단계를 더 포함하는 철과 비철금속의 분리방법. Separating the iron and non-ferrous metal further comprising the step of oxidizing the iron from divalent to trivalent.
  15. 제14항에서,The method of claim 14,
    상기 침전단계는 연속공정을 이루어지며 상기 쿠에트-테일러 반응기에는 pH조절제와 산화제가 연속으로 투입되는 것을 특징으로 하는 철과 비철금속의 분리방법.The precipitation step is a continuous process and the method of separating the ferrous and non-ferrous metal, characterized in that the pH control agent and the oxidant is continuously added to the Kuet-Taylor reactor.
  16. 제14항에서,The method of claim 14,
    상기 비철금속은 수산화물이 생성되는 pH가 3가 이온의 철보다 3이상 높은 것을 특징으로 하는 철과 비철금속의 분리방법.The non-ferrous metal is a separation method of iron and non-ferrous metal, characterized in that the pH of the hydroxide is formed more than three than the iron of trivalent ions.
  17. 제10항에서,In claim 10,
    상기 비철금속은 알루미늄, 니켈, 코발트, 아연, 구리 중 적어도 어느 하나를 포함하는 것을 특징을 하는 철과 비철금속의 분리방법.The non-ferrous metal is an iron, non-ferrous metal separation method characterized in that it comprises at least any one of nickel, cobalt, zinc, copper.
  18. 제10항에서,In claim 10,
    상기 고액분리는 필터링 방법을 통해 수행되는 것을 특징으로 하는 철과 비철금속의 분리방법.The solid-liquid separation is a separation method of ferrous and non-ferrous metal, characterized in that carried out through a filtering method.
  19. 제1금속과 제2금속을 포함하는 금속용액에서 금속을 분리하는 방법에 있어서,In the method for separating the metal in the metal solution containing the first metal and the second metal,
    상기 제1금속과 상기 제2금속의 금속수산화물 침전 경향이 다른 조건에서 쿠에트-테일러 반응기를 이용하여 상기 금속용액을 반응시키는 단계와;Reacting the metal solution using a Kuet-Taylor reactor under conditions in which the metal hydroxide precipitation tendency of the first metal and the second metal is different;
    상기 쿠에트-테일러 반응기의 유출물을 고액분리하는 단계를 포함하는 금속 분리 방법.Solid-liquid separation of the effluent of the Kuet-Taylor reactor.
  20. 제19항에서,The method of claim 19,
    상기 침전 경향이 다른 조건은 pH 조건을 포함하는 것을 특징으로 하는 금속 분리 방법.Conditions for different precipitation tendency include a metal separation method characterized in that it comprises a pH condition.
  21. 제20항에서,The method of claim 20,
    상기 제1금속과 상기 제2금속 중 적어도 하나에 대하여 pH에 따른 금속수산화물 침전 경향을 변경하도록 이온 상태를 변경하는 단계를 더 포함하는 것을 특징으로 하는 금속 분리 방법.And changing the ionic state to change the metal hydroxide precipitation tendency according to pH for at least one of the first metal and the second metal.
  22. 제21항에서,The method of claim 21,
    상기 이온 상태 변경에 의해 제1금속과 제2금속의 수산화물 형성 pH는 3이상 차이가 나는 것을 특징으로 하는 금속 분리 방법.The hydroxide formation pH of the first metal and the second metal is changed by at least three by the ion state change.
  23. 제19항에서,The method of claim 19,
    상기 반응은 상온에서 수행되며, The reaction is carried out at room temperature,
    상기 고액분리는 필터링 방법으로 수행되는 것을 특징으로 하는 금속 분리 방법. The solid-liquid separation is metal separation method, characterized in that carried out by a filtering method.
  24. 내부에 반응공간을 포함하는 쿠에트-테일러 반응기 본체와;A Kuet-Taylor reactor body including a reaction space therein;
    상기 반응공간에 pH 조절제를 공급하는 pH 조절제 공급부와;A pH regulator supply unit for supplying a pH regulator to the reaction space;
    상기 반응공간에 산화제를 공급하는 산화제 공급부와;An oxidant supply unit supplying an oxidant to the reaction space;
    상기 반응공간에 철과 비철금속을 포함하는 반응용액을 공급하는 반응용액 공급부와;A reaction solution supply unit supplying a reaction solution containing iron and nonferrous metals to the reaction space;
    상기 반응공간에서 유출된 유출물을 고액분리하는 필터링부를 포함하는 철과 비철금속의 분리 장치.Separation device of iron and non-ferrous metal comprising a filtering unit for separating the effluent flowing out of the reaction space in a solid-liquid.
  25. 제24항에 있어서,The method of claim 24,
    상기 반응공간의 pH를 측정하는 pH 측정부와;PH measuring unit for measuring the pH of the reaction space;
    상기 pH 측정부의 측정결과를 기초로 상기 pH 조절제 공급부의 공급량을 제어하는 제어부를 더 포함하는 것을 특징으로 하는 철과 비철금속의 분리장치.Separating device for iron and non-ferrous metal, characterized in that further comprising a control unit for controlling the supply amount of the pH regulator supply unit based on the measurement result of the pH measuring unit.
PCT/KR2015/011075 2014-10-20 2015-10-20 Metal separation method using precipitation reaction in couette-taylor reactor and metal separation apparatus therefor WO2016064163A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580056683.5A CN106999795A (en) 2014-10-20 2015-10-20 Utilize the metal separation method and the separator for it of the precipitation reaction in Taylor's Ku Aite reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140141555A KR101537064B1 (en) 2014-10-20 2014-10-20 Method of separating metal using precipitation reaction in Couette-Taylor reactor and Apparatus therefor
KR10-2014-0141555 2014-10-20

Publications (2)

Publication Number Publication Date
WO2016064163A2 true WO2016064163A2 (en) 2016-04-28
WO2016064163A3 WO2016064163A3 (en) 2017-05-18

Family

ID=53884952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011075 WO2016064163A2 (en) 2014-10-20 2015-10-20 Metal separation method using precipitation reaction in couette-taylor reactor and metal separation apparatus therefor

Country Status (3)

Country Link
KR (1) KR101537064B1 (en)
CN (1) CN106999795A (en)
WO (1) WO2016064163A2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298992A (en) * 1995-05-08 1996-11-19 Nippon Steel Corp Recovery of iron from waste water
US5827701A (en) * 1996-05-21 1998-10-27 Lueking; Donald R. Method for the generation and use of ferric ions
EP1504809A1 (en) * 2003-08-08 2005-02-09 ETH Zürich Rotating stirring device with substantially narrow distribution of energy dissipation rate
KR101053416B1 (en) * 2003-12-29 2011-08-01 니뽄스틸코포레이션 Wastewater treatment and recovery of valuable metals, and method for producing plating solution or plating stock solution using iron hydroxide recovered therefrom
KR101207135B1 (en) * 2010-10-06 2012-11-30 케이엔디티앤아이 주식회사 Crystallization reaction apparatus capable of micro scale mixing process and Crystalline separation processing System
CN102107963B (en) * 2010-12-30 2012-09-05 天津市环境保护科学研究院 Method for treating acid-washing wastewater and metallic ions in iron and steel industry
CN103343229A (en) * 2013-06-28 2013-10-09 江西理工大学 Method for comprehensively recovering valuable metals from electroplating waste mud
CN103739118B (en) * 2014-01-06 2016-01-20 博天环境集团股份有限公司 The treatment process of analysis

Also Published As

Publication number Publication date
WO2016064163A3 (en) 2017-05-18
KR101537064B1 (en) 2015-07-16
CN106999795A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2021241944A1 (en) Method for recovering valuable metal from waste electrode material of lithium secondary battery by using lithium carbonate
KR101648693B1 (en) Valuable metals recovery system from the waste slurry of lithium secondary battery
WO2012176956A1 (en) Complex electrokinetic decontamination apparatus for decontamination of radionuclide
WO2016129732A1 (en) Method for regenerating waste precursor for positive electrode active material for lithium secondary battery by means of ball mill
WO2016129733A1 (en) Method for preparing high-density nickel-cobalt-manganese composite precursor
WO2017200260A1 (en) Hydrogen-containing water producing device
WO2021241817A1 (en) Method for reusing active material by using positive electrode scrap
WO2023191414A1 (en) Method for preparing secondary battery material from black mass
WO2016114439A1 (en) Method for simultaneously recovering cobalt and manganese from lithium based battery
WO2021125735A1 (en) Method for separating transition metal from waste cathode material
WO2016064163A2 (en) Metal separation method using precipitation reaction in couette-taylor reactor and metal separation apparatus therefor
WO2017078315A1 (en) Method for recovering valuable metals from valuable metal-containing target waste
WO2020071640A1 (en) Method and system for regenerating lithium precursor
WO2018012905A1 (en) Method for concentrating and recovering noble metals
WO2018008930A1 (en) Magnetic cesium adsorbent, preparation method therefor, and cesium removal method using same
WO2015147419A1 (en) Anode mixture for lithium ion secondary battery, method for preparing same, and lithium ion secondary battery having same
CN101045963A (en) Dry type refining method for copper
WO2022059991A1 (en) Method and apparatus for manufacturing metal nanoparticles
WO2015190889A1 (en) Vanadium solution, electrolyte comprising same, secondary battery comprising same, and method for preparing same
WO2023243827A1 (en) Method for producing aqueous solution containing nickel or cobalt
WO2024005307A1 (en) Method for preparing copper sulfate electrolytic solution
WO2023191430A1 (en) Method for producing cyanoethyl group-containing polymer
WO2015126131A1 (en) Redox flow battery
WO2014171745A1 (en) Method for manufacturing electrically conductive separation membrane for water treatment, separation membrane manufactured thereby, and water treatment method using same separation membrane
WO2018092954A1 (en) Method for recovering copper alloy-derived metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852985

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852985

Country of ref document: EP

Kind code of ref document: A2